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It is the norm rather than the exception for a field within mathematics
that originated with certain kinds of applications in mind to steer or drift
away from them in its subsequent development, as specialists become inter-
ested in other applications, or connections with core mathematics, or pure
theory. Though mathematical logic has never quite won acceptance in math-
ematics departments as a normal branch of mathematics, its development
has been entirely normal in the respect just indicated. It is now unfortu-
nately a comparatively rare event for a book to be published in the field that
has any very direct application to or connection with the kinds of philosoph-
ical issues that concerned the field’s originators. Indeed, it is a rare enough
event to make it appropriate for a philosophical journal to take note of the
appearance of such a book, even if detailed discussion of its technical content
would be beyond the scope of the journal.

The book under review is one of these rare exceptions. The author has
generously made the first chapter, which contains among other things an
outline of the whole book, available by posting it on the web1. The site
also contains links to other materials related to the book, including a short
account of developments in the field since the book appeared. The availability

1www.math.psu.edu/simpson/sosoa/
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of this resource, will I hope excuse me from dealing with some of the more
technical aspects of the work, which in any case might not be appropriate in
this journal, and allow me to concentrate on philosophical issues.

The philosophical issues to which the book’s results are relevant are those
raised by the existence of sects of heretical mathematicians who on one or
another philosophical or ideological ground have rejected many of the proofs
offered by their orthodox colleagues, and have insisted on a different and
generally speaking more restrictive notion of what constitutes a genuine proof
whose conclusions may be accepted as meaningful and true. (The best known
of the heretics was L. E. J. Brouwer, founder of intuitionism, which rejects
not only many of the axioms from which orthodox proofs proceed, but also
many of the rules of logic by which those proofs proceed.)

Such heresies are of interest philosophically from two points of view. On
the one hand, there are philosophers who think the question of what are
the appropriate axioms and rules of logic for mathematics to be one that
it is appropriate and important for philosophers to address, and among the
philosophers in this first group there are many who actually sympathize with
the heretics. (The best known presentday example is Michael Dummett, a
strong sympathizer with intuitionism.)

On the other hand, there are philosophers who think it is no part of the
philosopher’s business to dictate to mathematicians what methods they may
or may not use. For them, perhaps the most central question to what extent
has mathematics as we know it been shaped by mathematical facts independent
of us, and to what extent by “anthropological” facts about us? For them the
question of how much mathematics could be developed (and especially the
question whether enough mathematics for purposes of scientific applications
could be developed) on some more restricted basis than current orthodoxy
is of interest for its bearing on the question of far orthodox mathematics
was forced upon us, and how far its current acceptance was the result of
psychological and sociological and historical contingencies.

Mathematical logic provides mathematical tools for studying questions
about how many and just which results would or would not have been avail-
able if the choice of axioms or rules of logic had been different. Like any
other branch of applied mathematics, philosophically-oriented mathemati-
cal logic, also called foundational studies (though to philosophers this label
may misleadingly tend to suggest that its practitioners are committed to a
“foundationalist” epistemology, which need not be the case), proposes an
idealized mathematical representation of the phenomenon under study and
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proves mathematical results about the idealized mathematical respresenta-
tion, which then suggest conclusions about the phenomenon of interest. In
this case, the phenomenon of interest is mathematical provability, by ortho-
dox or heterodox standards, and the idealized mathematical reprsentations
are formal systems.

It is not claimed in foundational studies that proofs in a formal sys-
tem closely resemble what an ordinary working mathematician would call a
“proof”, any more than it is claimed in recursion theory that computations
on a Turing machine closely resemble what an ordinary working mathemati-
cian would call a “computation”. It is provability and computability that
is being represented, rather than proof or computation as such, and what is
claimed in the one case is that whenever there is a what an ordinary work-
ing mathematician would call a “proof” there is a proof in a relevant formal
system, just as what is claimed in the other case is that whenever there is
what an ordinary working mathematician would call a “computation” there
is a computation on a Turing machine. The latter claim is known as Turing’s
thesis, and the former is sometimes called Hilbert’s thesis.

For orthodox mathematics as a whole, the best formal idealization is
provided by a system of axiomatic set theory such as the one called ZFC.
For the non-set-theoretic mathematics (“that body of mathematics which is
prior to and independent of abstract set-theoretic concepts” as contrasted
with “those branches of mathematics that were created by the set-theoretic
revolution that took place approximately a century ago”, in the words of the
book under review), David Hilbert and Paul Bernays long ago proposed a
formal idealization named “second-order arithmetic”.

Philosophers who have heard of “second-order logic” may be in some
danger of being misled by this name. Forget all about “second-order logic”
and “second-order theories” in the sense of sets of sentences of a formal
language that are closed under some second-order consequence relation. The
formal system Z2 called “second-order arithmetic” is a first-order theory,
though one with two kinds of variables, number variables x, y, z, . . . and set
variables X, Y, Z, . . ., having in addition to symbols of the basic relations and
operations on natural numbers the symbol ∈ for membership of a number in
a set of numbers. It has a few basic axioms about the basic relations and
operations, plus two further items.

First, there is the axiom of induction:

∀X ((0 ∈ X & ∀x (x ∈ X → x+ 1 ∈ X))→ ∀x (x ∈ X))
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Second, there is the axiom scheme of comprehension, or rule according to
which for every formula Φ of the language, the following counts as an axiom:

∃X ∀x (x ∈ X ↔ Φ(x))

In other words, any condition expressible by a formula of the language de-
termines a set. (By contrast, the system PA of first-order arithmetic lacks
the apparatus of sets, and in place of the axiom of induction and scheme of
comprehension has a scheme of induction:

(Φ(0) & ∀x (Φ(x)→ Φ(x+ 1)))→ ∀xΦ(x)

In second-order arithmetic this does not have to be taken as axiomatic, be-
cause it is an immediate consequence of the induction axiom plus the com-
prehension scheme.)

Z2 as such deals with only two kinds of mathematical objects, natural
numbers and sets thereof. However, the usual set-theoretic proofs that, say,
there are no more rational numbers than natural numbers, and no more
real numbers than sets of natural numbers, actually show how to “code”
rational numbers by natural numbers, and real numbers by sets of natural
numbers, and it is possible, therefore to express theorems about rational and
real numbers and many other kinds of mathematical objects in “coded” form
in the language of Z2. (There are actually many different codings for each
kind of mathematical object. The question of why the particular codings
used in the book under review are more appropriate than others is touched
on only briefly in the book.)

The “subsystems” of the book’s title all differ from the full second-order
arithmetic (only) by involving weaker assumptions on set-existence than the
full comprehension scheme. Five subsystems, which in order of increasing
strength may be called S1 through S5 (and are officially named RCA0, WKL0,
ACA0, ATR0, and Π1

1-CA0), are intensively studied in the book. In three of
them, the set-existence assumptions are simply comprehension for formulas
of a suitably restricted kind.

The simplest class of formulas are those that involve no quantifications
over numbers and only bounded quantifications ∀x (x < t→ . . .) or ∃x (x <
t& . . .), abbreviated ∀x < t and ∃x < t. These may be called bounded for-
mulas. More complex are formulas of the types ∀yΦ and ∃yΦ where Φ is
bounded. These are called Π0

1 and Σ0
1 formulas. Whether or not a bounded

formula Φ(x, y, . . .) is correct for particular numerical values of x, y, . . . can
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always be effectively decided by a computation, and any such numerical in-
stance can always be proved if correct and disproved if incorrect, even in the
weakest of the systems considered in the book, by exhibiting a formalized
version of the relevant computation. Likewise, any correct Σ0

1 formula can
be proved, by proving a correct numerical instance, and any incorrect Π0

1 for-
mula can be disproved by disproving an incorrect numerical instance. More
complex are formulas of the types ∀z ∃yΦ and ∃z ∀yΦ with Φ bounded.
These are called Π0

2 and Σ0
2 formulas. More generally, formulas involving

as many quantifications over numbers as desired, but no quantification over
sets, are called arithmetical formulas. More complex are formulas of the
types ∀X Ψ and ∃X Φ where Ψ is arithmetical. These are called Π1

1 and Σ1
1

formulas.
The base system S1 provides only for the existence of recursive sets of

natural numbers. For any such set, the set itself can be defined by a Σ0
1

formula ∃yΨ+(x, y) and its complement can be defined by a different Σ0
1

formula ∃yΨ−(x, y). (This is one of the lemmas proved in intermediate-level
logic courses on the way to the proof of the Gödel incompleteness theorems.)
The set-existence axiom for S1 therefore takes the form:

∀x (∃yΨ+(x, y)↔ ¬∃yΨ−(x, y))→
∃X ∀x (x ∈ X ↔ ∃yΨ+(x, y))

(For certain technical reasons, the form of the induction axiom has to be
modified for this system also, but that is one of the technical issues beyond
the scope of this review.) S3 analogously provides for the existence of Σ0

1

and Π0
1 sets (that is, sets definable by Σ0

1 and Π0
1 formulas), and in fact then

implies the existence of arithmetical sets. S5 provides for the existence of Π1
1

and Σ1
1 sets.

The systems S2 and S4, whose significance was first appreciated by Harvey
Friedman, who may be considered the originator of the branch of logical
studies of which the author of the book under review has been the principal
developer, are different. Each admits of several equivalent formulation. For
S2, one may take the set-existence axioms to be of the following form, wherein
Ψ+ and Ψ− are bounded:

∀x (∃yΨ+(x, y)→ ¬∃yΨ−(x, y))→
∃X ∀x∀y ((Ψ+(x, y)→ x ∈ X) & (Ψ−(x, y)→ ¬x ∈ X))

In other words, if no number satisfies both the conditions ∃yΨ+(x, y) and
∃yΨ−(x, y), then there exists a set containing all the numbers that satisfy
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the first condition, and none of the numbers that satisfy the second. For
S4 the axioms are similar, but for Σ1

1 rather than Σ0
1 conditions. (Note that

these axioms assert the existence of a set, without supplying any formula
that is asserted to define it.)

It should be emphasized that S1, say, is not a formal system of “recursive
mathematics” in the sense of a formal system of mathematics in which it
is assumed that only recursive sets exist. Rather, S1 assumes the existence
of recursive sets, and does not assume anything one way or the other about
the existence of non-recursive sets. In proving an existential statement, one
can only prove ∃X Θ(X) by proving that there is a recursive set X with the
property expressed by the formula Θ. But in proving a universal statement,
∀X χ(X), no use is made of any axiom to the effect that the only X that
need be considered are recursive. There is no such axiom in the system,
and a proof of a universal statement in the system really does constitute
an orthodox proof that all sets X of natural numbers, not just the recursive
ones, have the property expressed by the formula χ. The system S1 (and this
goes for the other systems Si also) is a subsystem of orthodox second-order
arithmetic Z2 and has no theorems that contradict theorems of orthodox
mathematics. (By contrast, intuitionistic mathematics notoriously does have
such anti-classical theorems.)

There are also formal systems that codify various restrictive, heterodox
forms of mathematics, among which four may be mentioned in order of in-
creasing strength: PRA, HA, IR, ID<ω, which for present purposes I will call
T2 through T5. The heresies or ’isms they codify may be called finitism, intu-
itionism minus choice sequences, predicativism, and predicativism plus induc-
tive definitions. (Intuitionism proper does not appear on the list: Brouwer’s
thought resists full formalization, and if one took fully seriously his doctrine
of the “creative subject”, intuitionistic second-order arithmetic would be a
system equivalent in strength to orthodox second-order arithmetic Z2.)

The book under review has two parts. The first part of the book is
devoted to showing how and how far various branches of non-set-theoretic
mathematics can be developed in one or another of the systems Si. Algebra
and analysis (the branch of mathematics whose most basic part is differential
and integral calculus) are treated in some detail, and the results covered in
the book and the related papers cited at the end take one to the threshhold of
the kind of higher analysis used, for instance, in the mathematical treatment
of quantum mechanics.

A characteristic phenomenon encountered is that when some theorem Θ
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is proved in a system Si+1 and resists proof in the next lower system Si, it
often turns out that in fact adding the theorem Θ to the axioms of the base
system S1 actually would enable one to prove the characteristic axioms of
Si+1. Such proving of axioms from theorems is called “reverse mathematics”,
and is a main theme of the first part of the book.

The second part of the book is devoted to the study of models of the Si in
the sense of the branch of mathematical logic known as “formal semantics”
or “model theory”. It culminates in a in “semantic” or “model-theoretic”
proofs of conservativeness results, which in general have the form: “Every
formula of such-and-such a degree of complexity that is provable in such-
and-such a subsystem S of Z2 is actually provably in such-and-such a formal
system T intended to codify such-and-such a restricted, heterodox form of
mathematics.” The main such results — the book includes proofs of some
and references to the literature where proofs for the others may be found
— are the conservativeness of Si over Ti for Π0

2 in the case of i = 2 or 3,
and for Π1

1 formulas in the case of i = 4 or 5. There are also “syntactic” or
“proof-theoretic” proofs of such theorems.

Together the results of the two parts of the book show that the various
heresies or ’isms “correspond” in a sense to natural distinctions that can
be made within orthodox mathematics, pertaining to the strength of set-
theoretic axioms used — and by “reverse mathematics” unavoidably used —
to prove various theorems.

There are various ways in which one might wish to see the program rep-
resented by the book extended. For instance, geometry in general, and the
kind of higher geometry used in the mathematical treatment of general rela-
tivity in particular, has not yet been treated as fully as algebra and analysis
— not indeed that there aren’t plenty of subbranches of algebra and analysis
the strength of whose set-theoretic presuppositions remain to be calibrated
by another generation of students.

Also, to facilitate comparison with the actual productions of ordinary,
working mathematicians, and to reduce the need for coding and particular
choices of codings, it would be desirable to develop a more flexible formalism
that permitted one to talk directly about sets of sets of natural numbers, for
instance. The trouble here is that as soon as one admits such “higher-order”
objects one faces a labyrinth of options as to how to treat them, and in the
literature where such matters are considered, no particular format seems yet
to have emerged as optimal.

One might also consider looking for stronger systems S6, S7, . . . that would
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in some natural way continue the series S1 through S5, and there is in fact
some discussion of stronger systems in the book. Results statable in the lan-
guage of Z2 that are not provable in S5 exist, as do results so statable that
are not provable in full Z2, as do results so statable that are not provable
even in ZFC but that become provable with the additional assumption of
“large cardinal” axioms. But these are few and far between. Inversely, since
there are heresies or ’isms more restrictive even than finitism, one might con-
sider looking for a weaker system S0 to “correspond” to the most important
of them. In fact, some first steps towards weakening the base theory are
reported in the book.

It is all too easy for the philosopher to raise a whole series of questions
the answering of anyone of which would call for a great deal of labor on the
part of the logician, so let me stop here, emphasizing that the remark that
there may be more work to be done is no criticism of the work that has
been done. On the contrary, it is an important virtue in a book to raise
new questions even while answering old ones, and the book under review
possesses this virtue to a high degree.

If there is any point on which I do have a reservation, it is on the author’s
discussion of “Hilbert’s program”, and even here, any criticism must be tem-
pered by a recognition aim of the book is to present results of mathematical
logic that have bearing on philosophical concerns, rather than to spell out
in detail what that bearing is. This makes it almost inevitable that such di-
gressions as there are on philosophical topics will be rather compressed and
incomplete.

Bearing this in mind, my concern is as follows. Hilbert’s idea was to try to
persuade the finitists, who considered most of orthodox mathematics mean-
ingless, to abandon their opposition to orthodox mathematics, by convincing
them that whenever there is an orthodox proof of a theorem of the limited
class they considered meaningful, the result will be true because there will
be a finitist proof of it. In jargon, the ambition was roughly to prove Z2

conservative over T2 = PRA for Π0
1 formulas at least. Gödel’s incompleteness

theorems imply that Z2 simply is not thus conservative over PRA. Results in
the book under review imply that WKL0 is. Do we have here, as the author
claims, a partial realization of Hilbert’s program?

My answer would be, not yet, not so long as we have only given only an
orthodox proof of the conservativeness theorem (or only give an orthodox
proof that there must exist a finitist proof of the conservativeness theorem);
but yes, as soon as we give a finitist proof of the conservativeness theorem
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(and even if we only just give a finitist proof that there must be a finitist
proof of the conservativeness theorem). To argue that the finitist should
accept a given Π0

1,2 theorem because there is a proof of it in WKL0, and a
proof in WKL0 that if there is a proof of it in WKL0, then there is a proof
of it in PRA, is rather like arguing that an atheist should accept some given
doctrine on the grounds that the pope has proclaimed it, and that the pope
has proclaimed that his doctrinal pronouncements are infallible.

The author’s discussion in the book does not make this distinction very
clear. In practice, “semantic” or “model-theoretic” proofs generally are not
finitist as they stand, while “syntactic” or “proof-theoretic” proofs generally
are finitist; but model-theoretic proofs can often be turned into finitist ones
after the fact, so to speak, by some clever trick. In the present case, the trick
was performed some years ago by Harvey Friedman, but he has only just
recently (since the appearance of Simpson’s book) written it up for electronic
posting (with a link on Simpson’s site mentioned above), and it has not yet
appeared in print.

But this is a rather picayune complaint given how many matters that
are clarified. I am tempted to say that everyone interested in philosophy
of mathematics should read this book, but hesistate since not everyone with
such an interest will have the requisite technical background to work through
the book, and even trained logicians will find parts of it a challenge. What
I will say is that everyone interested in philosophy of mathematics who has
the requisite training in logic should tackle this book, and everyone with an
interest in philosophy of mathematics, even if their primary interest is not in
the technical side of the subject, should be aware of its contents.
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