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Abstract. Continuing the investigations of X. Yu and others, we
study the role of set existence axioms in classical Lebesgue mea-
sure theory. We show that pairwise disjoint countable additivity
for open sets of reals is provable in RCA0. We show that sev-
eral well-known measure-theoretic propositions including the Vitali
Covering Theorem are equivalent to WWKL over RCA0.

1. Introduction

The purpose of Reverse Mathematics is to study the role of set ex-
istence axioms, with an eye to determining which axioms are needed
in order to prove specific mathematical theorems. In many cases, it
is shown that a specific mathematical theorem is equivalent to the set
existence axiom which is needed to prove it. Such equivalences are
often proved in the weak base theory RCA0. RCA0 may be viewed as a
kind of formalized constructive or recursive mathematics, with full clas-
sical logic but severely restricted comprehension and induction. The
program of Reverse Mathematics has been developed in many publica-
tions; see for instance [5, 10, 11, 12, 20].

In this paper we carry out a Reverse Mathematics study of some
aspects of classical Lebesgue measure theory. Historically, the subject
of measure theory developed hand in hand with the nonconstructive,
set-theoretic approach to mathematics. Errett Bishop has remarked
that the foundations of measure theory present a special challenge to
the constructive mathematician. Although our program of Reverse
Mathematics is quite different from Bishop-style constructivism, we feel
that Bishop’s remark implicitly raises an interesting question: Which
nonconstructive set existence axioms are needed for measure theory?
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This paper, together with earlier papers of Yu and others [21, 22, 23,
24, 25, 26], constitute an answer to that question.

The results of this paper build upon and clarify some early results
of Yu and Simpson. The reader of this paper will find that familiarity
with Yu–Simpson [26] is desirable but not essential. We begin in section
2 by exploring the extent to which measure theory can be developed
in RCA0. We show that pairwise disjoint countable additivity for open
sets of reals is provable in RCA0. This is in contrast to a result of Yu–
Simpson [26]: countable additivity for open sets of reals is equivalent
over RCA0 to a nonconstructive set existence axiom known as Weak
Weak König’s Lemma (WWKL). We show in sections 3 and 4 that
several other basic propositions of measure theory are also equivalent
to WWKL over RCA0. Finally in section 5 we show that the Vitali
Covering Theorem is likewise equivalent to WWKL over RCA0.

2. Measure Theory in RCA0

Recall that RCA0 is the subsystem of second order arithmetic with
∆0

1 comprehension and Σ0
1 induction. The purpose of this section is to

show that some measure-theoretic results can be proved in RCA0.
Within RCA0, let X be a compact separable metric space. We define

C(X) = Â, the completion of A, where A is the vector space of rational
“polynomials” over X under the sup-norm, ‖f‖ = supx∈X |f(x)|. For
the precise definitions within RCA0, see [26] and section III.E of Brown’s
thesis [4]. The construction of C(X) within RCA0 is inspired by the
constructive Stone–Weierstrass theorem in section 4.5 of Bishop and
Bridges [2]. It is provable in RCA0 that there is a natural one-to-
one correspondence between points of C(X) and continuous functions
f : X → R which are equipped with a modulus of uniform continuity,
that is to say, a function h : N → N such that for all n ∈ N and x,
y ∈ X

d(x, y) <
1

2h(n)
implies |f(x)− f(y)| < 1

2n
.

Within RCA0 we define a measure (more accurately, a nonnegative
Borel probability measure) on X to be a nonnegative bounded linear
functional µ : C(X) → R such that µ(1) = 1. (Here µ(1) denotes
µ(f), f ∈ C(X), f(x) = 1 for all x ∈ X.) For example, if X = [0, 1],
the unit interval, then there is an obvious measure µL : C([0, 1]) → R
given by µL(f) =

∫ 1

0
f(x) dx, the Riemann integral of f from 0 to 1.

We refer to µL as Lebesgue measure on [0, 1]. There is also the obvious
generalization to Lebesgue measure µL on X = [0, 1]n, the n-cube.
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Definition 2.1 (measure of an open set). This definition is made in
RCA0. Let X be any compact separable metric space, and let µ be any
measure on X. If U is an open set in X, we define

µ(U) = sup {µ(f) | f ∈ C(X) , 0 ≤ f ≤ 1 , f = 0 on X \ U } .
Within RCA0 this supremum need not exist as a real number. (Indeed,
the existence of µ(U) for all open sets U is equivalent to ACA0 over
RCA0.) Therefore, when working within RCA0, we interpret assertions
about µ(U) in a “virtual” or comparative sense. For example, µ(U) ≤
µ(V ) is taken to mean that for all ε > 0 and all f ∈ C(X) with
0 ≤ f ≤ 1 and f = 0 on X \ U , there exists g ∈ C(X) with 0 ≤ g ≤ 1
and g = 0 on X \ V such that µ(f) ≤ µ(g) + ε. See also [26].

Some basic properties of Lebesgue measure are easily proved in RCA0.
For instance, it is straightforward to show that the Lebesgue measure
of the union of a finite set of pairwise disjoint open intervals is equal
to the sum of the lengths of the intervals.

We define L1(X,µ) to be the completion of C(X) under the L1-
norm given by ‖f‖1 = µ(|f |). (For the precise definitions, see [5] and
[26].) In RCA0 we see that L1(X,µ) is a separable Banach space, but to
assert within RCA0 that points of the Banach space L1(X,µ) represent
measurable functions f : X → R is problematic. We shall comment
further on this question in section 4 below.

Lemma 2.2. The following is provable in RCA0. If Un, n ∈ N, is a
sequence of open sets, then

µ

( ∞⋃
n=0

Un

)
≥ lim

k→∞
µ

(
k⋃

n=0

Un

)
.

Proof. Trivial.

Lemma 2.3. The following is provable in RCA0. If U0, U1, . . . , Uk is a
finite, pairwise disjoint sequence of open sets, then

µ

(
k⋃

n=0

Un

)
≥

k∑
n=0

µ(Un) .

Proof. Trivial.

An open set is said to be connected if it is not the union of two
disjoint nonempty open sets. Let us say that a compact separable
metric space X is nice if for all sufficiently small δ > 0 and all x ∈ X,
the open ball

B(x, δ) = { y ∈ X | d(x, y) < δ }
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is connected. Such a δ is called a modulus of niceness for X.
For example, the unit interval [0, 1] and the n-cube [0, 1]n are nice,

but the Cantor space 2N is not nice.

Theorem 2.4 (disjoint countable additivity). The following is prov-
able in RCA0. Assume that X is nice. If Un, n ∈ N, is a pairwise
disjoint sequence of open sets in X, then

µ

( ∞⋃
n=0

Un

)
=

∞∑
n=0

µ (Un) .

Proof. Put U =
⋃∞
n=0 Un. Note that U is an open set. By Lemmas

2.2 and 2.3, we have in RCA0 that µ(U) ≥
∑∞

n=0 µ(Un). It remains
to prove in RCA0 that µ(U) ≤

∑∞
n=0 µ(Un). Let f ∈ C(X) be such

that 0 ≤ f ≤ 1 and f = 0 on X \ U . It suffices to prove that µ(f) ≤∑∞
n=0 µ(Un).
Claim 1: There is a sequence of continuous functions fn : X → R,

n ∈ N, defined by fn(x) = f(x) for all x ∈ Un, fn(x) = 0 for all
x ∈ X \ Un.

To prove this in RCA0, recall from [6] or [20] that a code for a
continuous function g from X to Y is a collection G of quadruples
(a, r, b, s) with certain properties, the idea being that d(a, x) < r im-
plies d(b, g(x)) ≤ s. Also, a code for an open set U is a collection of
pairs (a, r) with certain properties, the idea being that d(a, x) < r im-
plies x ∈ U . In this case we write (a, r) < U to mean that d(a, b)+r < s
for some (b, s) belonging to the code of U . Now let F be a code for
f : X → R. Define a sequence of codes Fn, n ∈ N, by putting (a, r, b, s)
into Fn if and only if

1. (a, r, b, s) belongs to F and (a, r) < Un, or
2. (a, r, b, s) belongs to F and b− s ≤ 0 ≤ b+ s, or
3. b− s ≤ 0 ≤ b+ s and (a, r) < Um for some m 6= n.

It is straightforward to verify that Fn is a code for fn as required by
claim 1.

Claim 2: The sequence fn, n ∈ N, is a sequence of elements of C(X).
To prove this in RCA0, we must show that the sequence of fn’s has

a sequence of moduli of uniform continuity. Let h : N → N be a
modulus of uniform continuity for f , and let k be so large that 1/2k is
a modulus of niceness for X. We shall show that h′ : N → N defined
by h′(m) = max(h(m), k) is a modulus of uniform continuity for all of
the fn’s. Let x, y ∈ X and m ∈ N be such that d(x, y) < 1/2h

′(m).
To show that |fn(x)− fn(y)| < 1/2m, we consider three cases. Case 1:
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x, y ∈ Un. In this case we have

|fn(x)− fn(y)| = |f(x)− f(y)| < 1

2m
.

Case 2: x, y ∈ X \ Un. In this case we have fn(x) = fn(y) = 0
so |fn(x) − fn(x)| = 0. Case 3: x ∈ Un, y ∈ X \ Un. Note that
fn(x) = f(x), while fn(y) = 0. Put B = B(x, 1/2h

′(m)). Then B is
connected and x, y ∈ B. If B ⊆ U , then we would have

B = (B ∩ Un) ∪ (B ∩ (U \ Un))

and this would be a decomposition of B into two disjoint nonempty
open sets, a contradiction. Thus B \ U is nonempty. Let z be a point
of B \U . Then f(z) = 0 and hence |fn(x)−fn(y)| = |fn(x)| = |f(x)| =
|f(x)− f(z)| < 1/2m. This proves claim 2.

Claim 3:

µ(f) =

∞∑
n=0

µ(fn) .(1)

Note that by definition we already have

f(x) =

∞∑
n=0

fn(x)

for all x ∈ X. Since µ : C(X) → R is a bounded linear functional,
(1) will follow if we show that the series

∑∞
n=0 fn converges uniformly

to f . If this were not the case, then there would be an ε > 0 such
that, for infinitely many n, f(x) > ε for some x ∈ Un. By uniform
continuity of f , let δ > 0 be such that, for all x and y ∈ X, d(x, y) < δ
implies |f(x)−f(y)| < ε. We may safely assume that δ is a modulus of
niceness for X. Now consider n and x such that x ∈ Un and f(x) > ε.
Clearly f(y) > 0 for all y ∈ B(x, δ); hence B(x, δ) ⊆ U . Since both
Un and U \Un are open, and since B(x, δ) is connected, it follows that
B(x, δ) ⊆ Un. Thus, for infinitely many n, we have ∃xB(x, δ) ⊆ Un.
On the other hand, by compactness of X, there exists a finite sequence
of points x1, . . . , xk ∈ X such that X =

⋃k
i=1B(xi, δ). It follows that

for infinitely many n we have xi ∈ Un for some i, 1 ≤ i ≤ k. Since
the predicate xi ∈ Un is Σ0

1, it follows by Σ0
1 induction and bounded Σ0

1

comprehension in RCA0 that there exist m, n and i such that m 6= n and
1 ≤ i ≤ k and xi ∈ Um and xi ∈ Un. This contradicts our assumption
that the sets Un, n ∈ N, are pairwise disjoint. Equation (1) and claim
3 are now proved.
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From (1) we see that for each ε > 0 there exists k such that µ(f)−ε ≤∑k
n=0 µ(fn). Thus we have

µ(f)− ε ≤
k∑

n=0

µ(fn) ≤
k∑

n=0

µ(Un) ≤
∞∑
n=0

µ(Un) .

Since this holds for all ε > 0, it follows that µ(f) ≤
∑∞

n=0 µ(Un). Thus
µ(U) ≤

∑∞
n=0 µ(Un) and the proof of Theorem 2.4 is complete.

Corollary 2.5. The following is provable in RCA0. If (an, bn), n ∈ N
is a sequence of pairwise disjoint open intervals, then

µL

( ∞⋃
n=0

(an, bn)

)
=

∞∑
n=0

|an − bn| .

Proof. This is a special case of Theorem 2.4.

Remark 2.6. Theorem 2.4 fails if we drop the assumption that X is
nice. Indeed, let µC be the familiar “fair coin” measure on the Cantor
space X = 2N, given by µC({x|x(n) = i}) = 1/2 for all n ∈ N and
i ∈ {0, 1}. It can be shown that disjoint finite additivity for µC is
equivalent to WWKL over RCA0. (WWKL is defined and discussed in
the next section.) In particular, disjoint finite additivity for µC is not
provable in RCA0.

3. Measure Theory in WWKL0

Yu and Simpson [26] introduced a subsystem of second order arith-
metic known as WWKL0, consisting of RCA0 plus the following axiom:
if T is a subtree of 2<N with no infinite path, then

lim
n→∞

|{ σ ∈ T | length(σ) = n}|
2n

= 0 .(2)

This axiom is known as Weak Weak König’s Lemma (WWKL). It is
a weaker axiom than Weak König’s Lemma (WKL), which reads as
follows: if T is a subtree of 2<N with no infinite path, then T is finite.

Remark 3.1. Yu and Simpson [26] constructed an ω-model of WWKL0

(namely a random real model) which is not an ω-model of WKL0. In
addition, Yu and Simpson [26] pointed out that the recursive sets form
an ω-model of RCA0 which is not an ω-model of WWKL0. Thus WWKL0

is properly weaker than WKL0 and properly stronger than RCA0. Fur-
thermore, the mathematical content of WKL0 and WWKL0 is known to
be nonconstructive. On the other hand, WKL0 and therefore WWKL0

are known to be conservative over Primitive Recursive Arithmetic for
Π0

2 sentences. This conservation result for WKL0 is due to Friedman [9];
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see also Sieg [18]. In this sense, every mathematical theorem provable
in WKL0 or WWKL0 is finitistically reducible in the sense of Hilbert’s
Program; see [19, 6, 20].

Remark 3.2. The study of ω-models of WWKL0 is closely related to
the theory of 1-random sequences, as initiated by Martin-Löf [16] and
continued by Kučera [7, 13, 14, 15]. At the time of writing of [26], Yu
and Simpson were unaware of this work of Martin-Löf and Kučera.

The purpose of this section and the next is to review and extend the
results of [26] and [21] concerning measure theory in WWKL0.

A measure µ : C(X)→ R on a compact separable metric space X is
said to be countably additive if

µ

( ∞⋃
n=0

Un

)
= lim

k→∞
µ

(
k⋃

n=0

Un

)
for any sequence of open sets Un, n ∈ N, in X. The following theorem
is implicit in [26] and [21].

Theorem 3.3. The following assertions are pairwise equivalent over
RCA0.

1. WWKL.
2. (countable additivity) For any compact separable metric space X

and any measure µ on X, µ is countably additive.
3. For any covering of the closed unit interval [0, 1] by a sequence of

open intervals (an, bn), n ∈ N, we have
∑∞

n=0 |an − bn| ≥ 1.

Proof. That WWKL implies statement 2 is proved in Theorem 1 of [26].
The implication 2 → 3 is trivial. It remains to prove that statement 3
implies WWKL.

Reasoning in RCA0, let T be a subtree of 2<N with no infinite path.
Put

T̃ = {σa〈i〉 | σ ∈ T, σa〈i〉 /∈ T, i < 2} .
For σ ∈ 2<N put lh(σ) = length of σ and

aσ =

lh(σ)−1∑
n=0

σ(n)

2n+1
, bσ = aσ +

1

2lh(σ)
.

Note that |aσ − bσ| = 1/2lh(σ). Note also that σ, τ ∈ 2<N are incompa-
rable if and only if (aσ, bσ) ∩ (aτ , bτ ) = ∅. In particular, the intervals

(aτ , bτ ), τ ∈ T̃ , are pairwise disjoint and cover [0, 1) except for some
of the points aσ, σ ∈ 2<N. Fix ε > 0 and put cσ = aσ − ε/4lh(σ),

dσ = aσ + ε/4lh(σ). Then the open intervals (aτ , bτ ), τ ∈ T̃ , (cσ, dσ),
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σ ∈ 2<N and (1− ε, 1 + ε) form a covering of [0, 1]. Applying statement
3, we see that the sum of the lengths of these intervals is ≥ 1, i.e.∑

τ∈T̃

1

2lh(τ)
+ 6ε ≥ 1 .

Since this holds for all ε > 0, we see that∑
τ∈T̃

1

2lh(τ)
= 1 .

From this, equation (2) follows easily. Thus we have proved that state-
ment 3 implies WWKL. This completes the proof of the theorem.

It is possible to take a somewhat different approach to measure the-
ory in RCA0. Note that the definition of µ(U) that we have given
(Definition 2.1) is extensional in RCA0. This means that if U and V
contain the same points then µ(U) = µ(V ), provably in RCA0. An
alternative approach is the intensional one, embodied in Definition 3.4
below.

Recall that an open set U is given in RCA0 as a sequence of basic
open sets. In the case of the real line, basic open sets are just intervals
with rational endpoints.

Definition 3.4 (intensional Lebesgue measure). We make this defini-
tion in RCA0. Let U = 〈(an, bn)〉n∈N be an open set in the real line.
The intensional Lebesgue measure of U is defined by

µI(U) = lim
k→∞

µL

(
k⋃

n=0

(an, bn)

)
.

Theorem 3.5. It is provable in RCA0 that intensional Lebesgue mea-
sure µI is countably additive on open sets. In other words, if Un, n ∈ N,
is a sequence of open sets, then

µI

( ∞⋃
n=0

Un

)
= lim

k→∞
µI

(
k⋃

n=0

Un

)
.

Proof. This is immediate from the definitions, since
⋃∞
n=0Un is defined

as the union of the sequences of basic open intervals in Un, n ∈ N.

Returning now to WWKL0, we can prove that intensional Lebesgue
measure concides with extensional Lebesgue measure. In fact, we have
the following easy result.

Theorem 3.6. The following assertions are pairwise equivalent over
RCA0.
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1. WWKL.
2. µI(U) = µL(U) for all open sets U ⊆ [0, 1].
3. µI is extensional on open sets. In other words, for all open sets
U, V ⊆ [0, 1], if ∀x(x ∈ U ↔ x ∈ V ) then µI(U) = µI(V ).

4. For all open sets U ⊇ [0, 1], we have µI(U) ≥ 1.

Proof. This is immediate from Theorems 3.3 and 3.5.

4. More Measure Theory in WWKL0

In this section we show that a good theory of measurable functions
and measurable sets can be developed within WWKL0.

We first consider pointwise values of measurable functions. Our ap-
proach is due to Yu [21, 24].

Let X be a compact separable metric space and let µ : C(X) → R
be a positive Borel probability measure on X. Recall that L1(X,µ) is
defined within RCA0 as the completion of C(X) under the L1-norm. In
what sense or to what extent can we prove that a point of the Banach
space L1(X,µ) gives rise to a function f : X → R ?

In order to answer this question, recall that f ∈ L1(X,µ) is given by
a sequence fn ∈ C(X), n ∈ N, which converges to f in the L1-norm;
more precisely

‖fn − fn+1‖1 ≤
1

2n

for all n ∈ N. We now observe that it is provable in WWKL0 that the
sequence of continuous functions fn, n ∈ N, converges pointwise almost
everywhere. This is established by the following proposition:

Proposition 4.1 (Yu [21]). Provably in WWKL0 we have a sequence
of closed sets

Cf
0 ⊆ Cf

1 ⊆ · · · ⊆ Cf
n ⊆ . . . , n ∈ N

such that

µ(X \ Cf
n) ≤ 1

2n

for all n, and

|fm(x)− fm′(x)| ≤ 1

2k

for all x ∈ Cf
n and all m, m′, k such that m,m′ ≥ n+ 2k + 2.

Proof. Put

Cf
n =

{
x
∣∣∣ ∀k ∞∑

i=n+2k+2

|fi(x)− fi+1(x)| ≤ 1

2k

}
.
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Then for x ∈ Cf
n and m′ ≥ m ≥ n+ 2k + 2 we have

|fm(x)− fm′(x)| ≤
m′−1∑
i=m

|fi(x)− fi+1(x)|

≤
∞∑

i=n+2k+2

|fi(x)− fi+1(x)|

≤ 1

2k
.

Moreover Cf
n is a closed set. It remains to show that µ(X \Cf

n) ≤ 1/2n.

To see this, note that Cf
n =

⋂∞
k=0C

f
nk where

Cf
nk =

{
x
∣∣∣ ∞∑
i=n+2k+2

|fi(x)− fi+1(x)| ≤ 1

2k

}
.

We need a lemma:

Lemma 4.2. The following is provable in RCA0. For f ∈ C(X) and
ε > 0, we have µ({x | f(x) > ε}) ≤ ‖f‖1/ε.

Proof. Put U = {x | f(x) > ε}. Note that U is an open set. If
g ∈ C(X), 0 ≤ g ≤ 1, g = 0 on X \ U , then we have εg ≤ |f |,
hence εµ(g) = µ(εg) ≤ µ(|f |) = ‖f‖1, hence µ(g) ≤ ‖f‖1/ε. Thus
µ(U) ≤ ‖f‖1/ε and the lemma is proved.

Using this lemma we have

µ(X \ Cf
nk) = µ

({
x
∣∣∣ ∞∑
i=n+2k+2

|fi(x)− fi+1(x)| > 1

2k

})

≤ 2k

∥∥∥∥∥
∞∑

i=n+2k+2

|fi − fi+1|
∥∥∥∥∥

1

≤ 2k
∞∑

i=n+2k+2

‖fi − fi+1‖1

≤ 2k
∞∑

i=n+2k+2

1

2i

=
1

2n+k+1
,
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hence by countable additivity

µ(X \ Cf
n) ≤

∞∑
k=0

µ(X \ Cf
nk)

≤
∞∑
k=0

1

2n+k+1
=

1

2n
.

This completes the proof of Proposition 4.1.

Remark 4.3 (Yu [21]). In accordance with Proposition 4.1, for

f = 〈fn〉n∈N ∈ L1(X,µ)

and x ∈
⋃∞
n=0C

f
n , we define f(x) = limn→∞ fn(x). Thus we see that

f(x) is defined on an Fσ set of measure 1. Moreover, if f = g in
L1(X,µ), i.e. if ‖f − g‖1 = 0, then f(x) = g(x) for all x in an Fσ set
of measure 1. These facts are provable in WWKL0.

We now turn to a discussion of measurable sets within WWKL0. We
sketch two approaches to this topic. Our first approach is to identify
measurable sets with their characteristic functions in L1(X,µ), accord-
ing to the following definition.

Definition 4.4. This definition is made within WWKL0. We say that
f ∈ L1(X,µ) is a measurable characteristic function if there exists a
sequence of closed sets

C0 ⊆ C1 ⊆ · · · ⊆ Cn ⊆ . . . , n ∈ N ,
such that µ(X \ Cn) ≤ 1/2n for all n, and f(x) ∈ {0, 1} for all x ∈⋃∞
n=0Cn. Here f(x) is as defined in Remark 4.3.

Our second approach is more direct, but in its present form it applies
only to certain specific situations. For concreteness we consider only
Lebesgue measure µL on the unit interval [0, 1]. Our discussion can
easily be extended to Lebesgue measure on the n-cube [0, 1]n, the “fair
coin” measure on the Cantor space 2N, etc.

Definition 4.5. The following definition is made within RCA0. Let S
be the Boolean algebra of finite unions of intervals in [0, 1] with rational
endpoints. For E1, E2 ∈ S we define the distance

d(E1, E2) = µL((E1 \ E2) ∪ (E2 \ E1)) ,

the Lebesgue measure of the symmetric difference of E1 and E2. Thus

d is a pseudometric on S, and we define Ŝ to be the compact separable
metric space which is the completion of S under d. A point E ∈ Ŝ is
called a Lebesgue measurable set in [0, 1].
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We shall show that these two approaches to measurable sets (Defi-
nitions 4.4 and 4.5) are equivalent in WWKL0.

Begin by defining an isometry χ : S → L1([0, 1], µL) as follows. For
0 ≤ a < b ≤ 1 define

χ([a, b]) = 〈fn〉n∈N ∈ L1([0, 1], µL)

where fn(0) = fn(a) = fn(b) = fn(1) = 0 and

fn

(
a +

b− a
2n+1

)
= fn

(
b− b− a

2n+1

)
= 1

and fn ∈ C([0, 1]) is piecewise linear otherwise. Thus χ([a, b]) is a
measurable characteristic function corresponding to the interval [a, b].
For 0 ≤ a1 < b1 < · · · < ak < bk ≤ 1 define

χ([a1, b1] ∪ · · · ∪ [ak, bk]) = χ([a1, b1]) + · · ·+ χ([ak, bk]) .

It is straightforward to prove in RCA0 that χ extends to an isometry

χ̂ : Ŝ → L1([0, 1], µL) .

Proposition 4.6. The following is provable in WWKL0. If E ∈ Ŝ
is a Lebesgue measurable set, then χ̂(E) is a measurable characteristic
function in L1([0, 1], µL). Conversely, given a measurable characteristic

function f ∈ L1([0, 1], µL), we can find E ∈ Ŝ such that χ̂(E) = f in
L1([0, 1], µL).

Proof. It is straightforward to prove in RCA0 that for all E ∈ Ŝ, χ̂(E)
is a measurable characteristic function.

For the converse, let f be a measurable characteristic function. By
Definition 4.4 we have that f(x) ∈ {0, 1} for all x ∈

⋃∞
n=0Cn. By

Proposition 4.1 we have |f(x) − f3n+3(x)| < 1/2n for all x ∈ Cf
n . Put

Un = {x | |f3n+3(x) − 1| < 1/2n} and Vn = {x | |f3n+3(x)| < 1/2n}.
Then for n ≥ 1, Un and Vn are disjoint open sets. Moreover Cn ∩Cf

n ⊆
Un ∪ Vn, hence µL(Un ∪ Vn) ≥ 1 − 1/2n−1. By countable additivity
(Theorem 3.3) we can effectively find En, Fn ∈ S such that En ⊆ Un
and Fn ⊆ Vn and µL(En ∪ Fn) ≥ 1 − 1/2n−2. Put E = 〈En+5〉n∈N. It

is straightforward to show that E belongs to Ŝ and that χ̂(E) = f in
L1([0, 1], µL). This completes the proof.

Remark 4.7. We have presented two notions of Lebesgue measurable
set and shown that they are equivalent in WWKL0. Our first notion
(Definition 4.4) has the advantage of generality in that it applies to
any measure on a compact separable metric space. Our second no-
tion (Definition 4.5) is advantageous in other ways, namely it is more
straightforward and works well in RCA0. It would be desirable to find
a single definition which combines all of these advantages.
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5. Vitali’s Theorem

Let S be a collection of sets. A point x is said to be Vitali covered by
S if for all ε > 0 there exists S ∈ S such that x ∈ S and the diameter
of S is less than ε. The Vitali Covering Theorem in its simplest form
says the following: if I is a sequence of intervals which Vitali covers
an interval E in the real line, then I contains a countable, pairwise
disjoint set of intervals In, n ∈ N, such that

⋃∞
n=0 In covers E except

for a set of Lebesgue measure 0.
The purpose of this section is to show that various forms of the Vitali

Covering Theorem are provable in WWKL0 and in fact equivalent to
WWKL over RCA0.

Throughout this section, we use µ to denote Lebesgue measure.

Lemma 5.1 (Baby Vitali Lemma). The following is provable in RCA0.
Let I0, . . . , In be a finite sequence of intervals. Then we can find a pair-
wise disjoint subsequence Ik0 , . . . , Ikm such that

µ(Ik0 ∪ · · · ∪ Ikm) ≥ 1

3
µ(I0 ∪ · · · ∪ In) .

Proof. Put N = {0, . . . , n}. By bounded Σ0
1 comprehension in RCA0,

the finite sets

{ (i, j) ∈ N2 | Ii ∩ Ij = ∅ }

and

{ (i, j) ∈ N2 | µ(Ii) ≤ µ(Ij) }

exist. Using these finite sets as parameters, we can carry out the fol-
lowing primitive recursion within RCA0. Begin by letting k0 ≤ n be
such that µ(Ik0) is as large as possible. Then let k1 be such that
Ik1 ∩ Ik0 = ∅ and µ(Ik1) is as large as possible. At stage j, let kj be
such that Ikj ∩ Ik0 = ∅, . . . , Ikj ∩ Ikj−1

= ∅ and µ(Ikj) is as large as
possible. The recursion ends with a finite, pairwise disjoint sequence
of intervals Ik0 , . . . , Ikm such that

∀i ≤ n ∃j ≤ m [ Ii ∩ Ikj 6= ∅ ] .

By construction it follows easily that

∀i ≤ n ∃j ≤ m [ Ii ∩ Ikj 6= ∅ and µ(Ii) ≤ µ(Ikj) ] .

For any such i and j, we have Ii ⊆ I ′kj , where I ′kj is an interval with

the same midpoint as Ikj and 3 times as long. (If I = [a, b], then
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I ′ = [2a− b, 2b− a].) Thus

µ(I0 ∪ · · · ∪ In) ≤ µ(I ′k0
∪ · · · ∪ I ′km)

≤ µ(I ′k0
) + · · ·+ µ(I ′km)

= 3µ(Ik0) + · · ·+ 3µ(Ikm)

= 3µ(Ik0 ∪ · · · ∪ Ikm)

and the lemma is proved.

Lemma 5.2. The following is provable in WWKL0. Let E be an in-
terval, and let In, n ∈ N, be a sequence of intervals. If E ⊆

⋃∞
n=0 In,

then

µ(E) ≤ lim
k→∞

µ

(
k⋃

n=0

In

)
.

Proof. If the intervals In are open, then the desired conclusion follows
immediately from countable additivity (Theorem 3.3). Otherwise, fix
ε > 0 and let I ′n be an open interval with the same midpoint as In and

µ(I ′n) = µ(In) +
ε

2n
.

Then by countable additivity we have

µ(E) ≤ lim
k→∞

µ

(
k⋃

n=0

I ′n

)
≤ lim

k→∞
µ

(
k⋃

n=0

In

)
+ 2ε .

Since this holds for all ε > 0, the desired conclusion follows.

Lemma 5.3 (Vitali theorem for intervals). The following is provable
in WWKL0. Let E be an interval, and let I be a sequence of intervals
which is a Vitali covering of E. Then I contains a pairwise disjoint
sequence of intervals In, n ∈ N, such that

µ

(
E \

∞⋃
n=0

In

)
= 0 .

Proof. We reason in WWKL0. Without loss of generality, let us assume
that I consists of closed intervals. Let I∗ be the set of finite unions
I1 ∪ · · · ∪ Ik where I1, . . . , Ik are pairwise disjoint intervals from I.

We claim: Given A ∈ I∗, if µ(E \ A) > 0 then we can find B ∈ I∗
such that A ∩ B = ∅ and

µ(E \ (A ∪B)) <
3

4
µ(E \ A) .(3)
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To prove the claim, use Lemma 5.2 and the Vitali property to find a
finite set of intervals J1, . . . , Jl ∈ I such that J1, . . . , Jl ⊆ E \ A and

µ (E \ (A ∪ J1 ∪ · · · ∪ Jl)) <
1

12
µ(E \ A) .

By the Baby Vitali Lemma 5.1, we can find a pairwise disjoint subset
{I1, . . . , Ik} ⊆ {J1, . . . , Jl} such that

µ(I1 ∪ · · · ∪ Ik) ≥
1

3
µ(J1 ∪ · · · ∪ Jl) .

We then have

µ(E \ (A ∪ I1 ∪ · · · ∪ Ik))

<
2

3
µ(J1 ∪ · · · ∪ Jl) +

1

12
µ(E \ A)

≤ 2

3
µ(E \ A) +

1

12
µ(E \ A)

=
3

4
µ(E \ A)

Thus we may take B = I1 ∪ · · · ∪ Ik and our claim is proved.
Note that the predicates A ∩ B = ∅ and (3) are Σ0

1. Thus within
RCA0 we can apply our claim recursively to choose a pairwise disjoint
sequence A0 = ∅, A1, A2, . . . of sets in I∗ such that for all n ≥ 1,

µ(E \ (A1 ∪ · · · ∪ An)) <

(
3

4

)n
µ(E) .

Then by countable additivity we have

µ

(
E \

∞⋃
n=1

An

)
= 0

and the lemma is proved.

Remark 5.4. It is straightforward to generalize the previous lemma
to the case of a Vitali covering of the n-cube [0, 1]n by closed balls or
n-dimensional cubes. In the case of closed balls, the constant 3 in the
Baby Vitali Lemma 5.1 is replaced by 3n.

Theorem 5.5. The Vitali theorem for the interval [0, 1] (as stated in
Lemma 5.3) is equivalent to WWKL over RCA0.

Proof. Lemma 5.3 shows that, in RCA0, WWKL implies the Vitali
theorem for intervals. It remains to prove within RCA0 that the Vitali
theorem for [0, 1] implies WWKL. Instead of proving WWKL, we shall
prove the equivalent statement 3.3.3. Reasoning in RCA0, suppose that
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(an, bn), n ∈ N, is a sequence of open intervals which covers [0, 1]. Let
I be the countable set of intervals

(anki, bnki) =

(
an +

i

k
(bn − an) , an +

i + 1

k
(bn − an)

)
where i, k, n ∈ N and 0 ≤ i < k. Then I is a Vitali covering of [0, 1].
By the Vitali theorem for intervals, I contains a sequence of pairwise
disjoint intervals Im, m ∈ N, such that

µ

( ∞⋃
m=0

Im

)
≥ 1 .

By disjoint countable additivity (Corollary 2.5), we have

∞∑
m=0

µ(Im) ≥ 1 .

From this it follows easily that
∑∞

n=0 |an− bn| ≥ 1. Thus we have 3.3.3
and our theorem is proved.

We now turn to Vitali’s theorem for measurable sets. Recall our
discussion of measurable sets in section 4. A sequence of intervals I is
said to almost Vitali cover a Lebesgue measurable set E ⊆ [0, 1] if for
all ε > 0 we have µL (E \Oε) = 0, where

Oε =
⋃
{I | I ∈ I , diam(I) < ε} .

Theorem 5.6. The following is provable in WWKL0. Let E ⊆ [0, 1]
be a Lebesgue measurable set with µ(E) > 0. Let I be a sequence of
intervals which almost Vitali covers E. Then I contains a pairwise
disjoint sequence of intervals In, n ∈ N, such that

µ

(
E \

∞⋃
n=0

In

)
= 0 .

Proof. The proof of this theorem is similar to that of Lemma 5.3. The
only modification needed is in the proof of the claim. Recall from
Definition 4.5 that E = limn→∞En where each En is a finite union of
intervals in [0, 1]. Fix m so large that

µ((E \ Em) ∪ (Em \ E)) <
1

36
µ(E \ A) .

As before, find a finite set of intervals J1, . . . , Jl ∈ I such that

J1 ∪ · · · ∪ Jl ⊆ Em \ A
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and

µ (Em \ (A ∪ J1 ∪ · · · ∪ Jl)) <
1

36
µ(E \ A) .

Find {I1, . . . , Ik} ⊆ {J1, . . . , Jl} as before. We then have

µ(E \ (A ∪ I1 ∪ · · · ∪ Ik))

< µ(Em \ (A ∪ I1 ∪ · · · ∪ Ik)) +
1

36
µ(E \ A)

<
2

3
µ(J1 ∪ · · · ∪ Jl) +

2

36
µ(E \ A)

≤ 2

3
µ(Em \ A) +

2

36
µ(E \ A)

<
2

3
µ(E \ A) +

3

36
µ(E \ A)

=
3

4
µ(E \ A)

Thus we may take B = I1 ∪ · · · ∪ Ik and the claim is proved. The rest
of the proof is as for Lemma 5.3.

Remark 5.7. Once again, the previous theorem can be generalized to
the case of a Lebesgue measurable set E ⊆ [0, 1]n and a Vitali covering
consisting of closed balls or n-dimensional cubes. Such versions of
Vitali’s theorem are also provable in WWKL0.
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