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0. Introduction 

This paper is part of the program of reverse mathematics. We assume the 

reader is familiar with this program as well as with RCA,, and WKL,, the two 

weak subsystems of second-order arithmetic we are going to work with here. (If 

not, a good place to start is [2].) 

In [2], [3], [4], many well-known theorems about countable rings, countable 

fields, etc. were studied in the context of reverse mathematics. For example, in 

[2], it was shown that, over the weak base theory RC&, the statement that every 

countable commutative ring has a prime ideal is equivalent to weak Konig’s 

Lemma, i.e. the statement that every infinite (0, l} tree has a path. 

Our main result in this paper is that, over RC&, Weak Konig’s Lemma is 

equivalent to the theorem on extension of valuations for countable fields. The 

statement of this theorem is as follows: “Given a monomorphism of countable 

fields h : L+ K and a valuation ring R of L, there exists a valuation ring V of K 
such that h-‘(V) = R.” 

In [5], Smith produces a recursive valued field (F, R) with a recursive algebraic 

closure P such that R does not extend to a recursive valuation ring R of F. 

However, there is little or no overlap between the contents of the present paper 

and [5]. 

1. Countable valued fields in RCA,, 

1.1. Definition (RCA,J. A countable valued field consists of a countable field F 
together with a countable linearly ordered abelian group G and a function 

ord : F + G U (00) satisfying: 

(i) ord(a) = 00 iff a = 0, 
(ii) ord(a - b) = ord(a) + ord(b), 
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(iii) ord(a + b) 2 min(ord(a), ord(b)). 

Such a function is called a valuation on F, 

1.2. Definition (RCAo). A subring V of a countable field F is called a valuation 
ring of F iff for any x E F* = F \ (0) either x E V or x-l E V. 

1.3. Theorem (RC&). A valuation ring V of a countable field F is a local ring, 
i.e. it has a unique maximal ideal MV consisting of all non-units of V. 

Proof. The set of non-units of V, MV = {a E V: a-’ $ V}, exists by A: com- 

prehension, an axiom scheme that RCA. includes. We prove that Mv is an ideal. 

Let x, y E Mv. We can assume x *y-l E V. Then 1 +x *y-l= (X +y)/y E V. If 

x + y were not in M,, then l/(x + y) would belong to V, whence y-’ E V and this 

would contradict the fact that y E Mv. Now, let x EM, and y E V. Then 

x . y E Mv. If not, (x . y)-’ E V, i.e. y-’ .x-l E V, whence x-l E V which con- 

tradicts the fact that x E Mv. Hence Mv is an ideal which clearly is the unique 

maximal ideal of V. 0 

1.4. Theorem (RC&). Every valuation on a countable field F gives rise to a 
valuation ring of F and, conversely, every valuation ring of a countable jield F 
gives rise to a valuation on F. 

Proof. Suppose ord is a valuation on F. The set V = {a E F: ord(a) 2 0} exists by 

A: comprehension and it is a valuation ring of F; the unique maximal ideal of V is 

Mv = {a E F: ord(a) > O}. Conversely, let V be a valuation ring of F. Let 

V* = {u E V: a-l E V}. This set exists by AT comprehension. V* is a subgroup of 

the multiplicative group F* = F \ {0}, so we may form the quotient group 

G = F*/V*. The elements of G are those a E F* such that Vb ((b <a and 

b E F*)+ a - b-’ $ V*), i.e. minimal representatives of the equivalence classes 

under the equivalence relation a -b iff a - b-’ E V*. (Here, minimal refers to the 

ordering of N, assuming that F c IW; see Section 2 in [2].) Thus, G is an abelian 

multiplicative countable group and on G we can define the linear ordering 

Va,b E G a<,b iff u-l - b E V\V*. This ordering exists by A; comprehension, 

and (G, <G) is an ordered abelian group. Hence, we can now define a valuation 

ord : F-G U (00) via 

i 

the least (in the sense of +i) c such 

ord(a) = thatcEF*andc*a-‘EV*, ifa#O, 
m if a = 0. 0 

The previous theorem allows the following equivalent definition of a countable 

valued field. 

1.5. Definition (RC&). A countable valued field consists of a countable field F 
and a valuation ring V of F. We write (F, V). 
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1.6. Definition (RCA,,). An extension h : (F, R)+ (K, V) of countable valued 

fields is a field monomorphism h : F+ K such that h-‘(V) = R. 

1.7. Remark. Suppose h : (F, R)+ (K, V) 1s an extension of countable valued 

fields as above. Let ord,: F*+ GI; and ordK: K*+ GK be the valuations 

associated with (F, R) and (K, V) as in Theorem 1.4. Then, there is an obvious 

monomorphism h^ : G,+ GK such that the following diagram commutes: 

Conversely, given any such commutative diagram, there is a corresponding 

extension of countable valued fields. These facts can be proved in RCA,,. 

2. Proof of the main theorem 

To prove our main theorem, we need the following two lemmas. 

2.1. Lemma (WKLJ. Let K be a countable field, R a countable commutative 
ring, I an ideal of R, and h : R -+ K a ring monomorphism. Then there exists a 
valuation ring V of K such that h(R) c V G K and h(l) c M, c V. 

Proof. We argue in WKLo. The method is similar to the one used in the 

construction of a prime ideal of a countable commutative ring. (See Theorem 3.1 

in [2].) Let a,,, a,, . . . be an enumeration of K. Let bo, b, , . . . be an enumeration 

of h(R). Let co, c,, . . . be an enumeration of h(I). Note that h(R) and h(Z) are 

defined by Z’: formulas and, hence, they can be enumerated within RCA,,. 

We define a tree T by induction on s = Ih(a) and simultaneously we define 

finite sets X0 c_ K, o E T, with the property that u c t implies X, c_ X,. At stage 

s, 72 = {o E T: lb(a) = s} is defined. For s = 0, let 7;, = {O} and X, = 0. Assume 

T,_, is defined and let o E T,_,. The construction splits into the following 5 cases. 

For convenience assume that s = 5m + r, 0 s r < 5. 
r=O. Foreacha~T,_,,putaO~~andletX,,,=X,U{b,}. 

r = 1. For each (5 E T,_l, put a0 E T, and let X,,, = X,, unless m = (i, j, k) 
(every natural number encodes a triple of natural numbers) and a;, a, E X, in 

which case let X0,, = X, U {a; + aj}. 
r = 2. For each (T E T,_,, put cr0 E T, and let X,,, = X0, unless m = (i, j, k) and 

ai, aj E X, in which case let X,,, = X, U {a; . a,}. 

r = 3. For each (T E T,_l, put a0 E ‘Is and let X,,,, = X0, unless m = (i, j, k) 
and a, - aj = 1 in which case put a0, al E IT; and let X0,, = X0 U {a,} and X0, = 

X0 U {a,>. 
r = 4. For each (T E T,_, , put a0 E K and let X0,, = X,, unless m = (i, j, k) and 
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ai E X, and a, - ci = 1 in which case put neither a0 nor al E T, and do not define 

X,, and X0,. 

Claim (RCA,,). T is infinite. 

Proof. Consider the rr(: formula 

where Z, is the ideal generated by I inside the ring R[X,], i.e. the ring generated 

by R U X0 inside K. (Note that Z, and R[X,] are defined by 2: formulas; we do 

not assume that they exist as sets.) 

Now, ~(0) holds since Z is an ideal of R. Assume that r&(s - 1) holds, u E T,_, 

and 1 $ I,. If r = 0, 1, 2, or 4, then clearly Z,, = Z, and so q(s) holds. If I = 3, 

then, either only a0 was thrown into T,, whence X,, = X0 and Z,, = Z, and so 

q,(s) holds, or both a0, al E T, and X,, = X,U{a}, X0, =X0 U {a-‘}, for some 

a E K. In this case assume that 1 E Z,, and 1 E Z,,. Then, we have: 

(I) l=~O+~,.a+...+&~.ua”, &;uiEl,, i=l,. . . ,n. 

(II) l=Po+P1.U-‘+...+Pm’U-m, PiEI,, i=l,. . . ,m. 

By the 2:’ least element principle we may assume that m, n are chosen as small as 

possible and, by symmetry, we may assume that n 2 m. Now, we have: 

(II) * u” = p. * un +. . . + pm * crrn 

+ (1 - p”) * un = 6,. a”-’ + * . . + pm. crm, 

(I) + (1 - p(J = (1 - p”) * a, +. . . + cu, * p, . a”-’ + . . . + cu, * pm * un-m, 

i.e. l=~o+(l-~o)~~~++~~++(Y,~~l~un~‘+~~~+cu,~~m~un-m, 

so 1 can be written as a polynomial in a of degree smaller than II with coefficients 

in Z,. (The above computation is taken from the standard textbook proof of the 

extension of valuations theorem; see, for instance, Lemma 9.1, Section II, in [l].) 

This is a contradiction. Hence, either 14 Z,,, or 1 4 ZG1 and so q(s) holds. Since 

RCA0 includes fl induction (see Lemma 1.1 in [2]), we have that v(s) holds for 

all s E N. Hence, T is infinite. 0 (Claim) 

Now, by Weak Konig’s Lemma let f be a path through T. Let V, = I-_&X,. 

Then, V, is a valuation ring of K (because of cases r = 1, 2, 3) and h(R) 5 V, 

(because of case r = 0). Moreover, every element of h(Z) is a non-unit of V, 

(because of case r = 4). However, V. is defined by a E: formula and, so, may not 

exist. Hence, consider the following tree S of all sequences u E Seq, satisfying: 

For all i, j, k < lb(a): 

(i) Ui = bj + u(i) = 1, 

(ii) u(i) = u(j) and U, + Uj = ok 3 a(k) = 1, 

(iii) u(i) = u(j) and ui - uj = uk + u(k) = 1, 

(iv) ui - uj = 1 j u(i) = 1 or u(j) = 1, 

(v) ui = cj and ui - uk = 1 3 u(k) = 0. 
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To see that S is an infinite tree, let s E N. Then let X = {i < s: Vn (Ui E Xfr,,)}. 

X exists by bounded 2: comprehension (see Lemma 1.6 in [2]). So, define u E 2” 

by 

o(i) = 
1 

1 ifiEX, 

0 if i $X. 

Then, u exists and u E S since V, is a valuation ring of K, h(R) c V,, and every 

element of h(Z) is a non-unit of V,. So, S is infinite and hence there is a path g 

through it. Let V = {ai: g(i) = 1). Then, this set exists by A: comprehension and 

it is a valuation ring of K (conditions (ii), (iii), (iv)), such that h(R) E V 
(condition (i)). By condition (v), all elements of h(Z) are non-units, hence 

h(Z) E K, where MI/ is the maximal ideal of V which exists by A: comprehension 

(Theorem 1.3). 0 

2.2. Lemma (RCA,). Lemma 2.1 implies the theorem on extension of valuations 
for countable fields: “Given a monomorphism of countable fields h : L-+ K and a 
valuation ring R of L, there exists a valuation ring V of K such that h-‘(V) = R.” 

Proof. Assume Lemma 2.1. Then, given the monomorphism h : L+ K and the 

valuation ring R of L, there is a valuation ring V of K such that h(R) E V G K 
and h(M,) E MV c V. We need to prove that h-‘(V)= R. Let a E R, then 

h(a) E h(R), hence h(u) E V and so a E h-‘(V). Let a E h-l(V), then h(u) E V. 
Then, if h(u) = 0, we have a = 0, hence a E R. If h(a) # 0, then a # 0 and if a r$ R 
then a-’ E MR, whence h(a-‘) E h(M,) E Mv. Hence, l/h(a) E M,, whence 

1 EM,, a contradiction. So a E R. Cl 

Now, we are ready to prove the following: 

2.3. Theorem (RC&). The following are equivalent: 
(i) Weak Kiinig’s Lemma. 

(ii) The theorem on extension of valuations for countable fields. 

Proof. (i) 3 (ii) follows from Lemmas 2.1 and 2.2. 

(ii) j (i). Assume (ii). Let f, g :N + N be two l-l functions such that 

f(n) #g(m), Vn, m E N. Consider the field K = Q(x,: n E N) and the field 

L = Q(y,, z,: n E N). Let h : L + K be the field monomorphism defined via 

44 = q(n) and h(4 =x,+), Vn E N. Let G be the direct sum of countably 

many copies of Z; so, a typical element of G is u = (a,, aI, . . . , ak, . . .) where 

ak E Z and ak = 0 for all but a finite number of indices k. G is an ordered abelian 

group under the lexicographical ordering: acG b if and only if a,<, bt where 1 is 

the least k such that ak # b,. We define a valuation ord: L--+ G U {a} as follows: 

For any monomial y’;’ . ~7’ . . * yy - z:, mi 2 0, n, 3 0 for i = 1, . . . , r define: 

ord(y;l’.z;‘.....y~.z:3=(ml, -nl,. . . ,mrr -n,,O,O,. . .)EG. 
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Then, for p E Q[y,, z,: n E N], say p = CT=, CiWi, where Wi is a monomial and 
ci E Q - {O}, i = 1, . . . ) s, define ord(p) = minord w,. We define ord(0) =a. 
Now, for a =p/q E L = Q(y,,, z,: n E N), define ord(a) = ord(p) - ord(q). It is 
easy to verify that ord is a valuation. Let R = {a: a E L and ord(a) 2 O}. Then, by 
(ii), there is a valuation ring V of K such that h-‘(V) = R. Let X = {n: x, E V}. 
For m E N we have x,,, E V (since h-‘(x,,,,) =y, E R) and Q,_, 4 V (since 

h-‘(x8(m)) = z, $ R). H ence, f(m) E X and g(m) .$X, Vm E N. So, by assuming 
(ii), we proved (over RC&) the statement: “If f, g: N-+ N are l-l functions and 

f(n) #g(m) Vn, m E N then 3XVm (f(m) E X and g(m) 4 X).” But, over 
RCA,,, this is equivalent to Weak K&rig’s lemma (see Lemma 3.2 in [2]), and, 
hence. we are done. 0 
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