COUNTABLE VALUED FIELDS IN WEAK SUBSYSTEMS OF SECOND-ORDER ARITHMETIC

Kostas HATZIKIRIAKOU and Stephen G. SIMPSON*
Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA

Communicated by A. Nerode
Received 28 September 1987

0. Introduction

This paper is part of the program of reverse mathematics. We assume the reader is familiar with this program as well as with RCA_{0} and WKL_{0}, the two weak subsystems of second-order arithmetic we are going to work with here. (If not, a good place to start is [2].)

In [2], [3], [4], many well-known theorems about countable rings, countable fields, etc. were studied in the context of reverse mathematics. For example, in [2], it was shown that, over the weak base theory RCA_{0}, the statement that every countable commutative ring has a prime ideal is equivalent to weak König's Lemma, i.e. the statement that every infinite $\{0,1\}$ tree has a path.

Our main result in this paper is that, over RCA_{0}, Weak König's Lemma is equivalent to the theorem on extension of valuations for countable fields. The statement of this theorem is as follows: "Given a monomorphism of countable fields $h: L \rightarrow K$ and a valuation ring R of L, there exists a valuation ring V of K such that $h^{-1}(V)=R$."

In [5], Smith produces a recursive valued field (F, R) with a recursive algebraic closure \tilde{F} such that R does not extend to a recursive valuation ring \tilde{R} of \tilde{F}. However, there is little or no overlap between the contents of the present paper and [5].

1. Countable valued fields in $\mathbf{R C A}_{0}$

1.1. Definition (RCA_{0}). A countable valued field consists of a countable field F together with a countable linearly ordered abelian group G and a function ord : $F \rightarrow G \cup\{\infty\}$ satisfying:
(i) $\operatorname{ord}(a)=\infty$ iff $a=0$,
(ii) $\operatorname{ord}(a \cdot b)=\operatorname{ord}(a)+\operatorname{ord}(b)$,

[^0](iii) $\operatorname{ord}(a+b) \geqslant \min (\operatorname{ord}(a)$, $\operatorname{ord}(b))$.

Such a function is called a valuation on F.
1.2. Definition $\left(\mathrm{RCA}_{0}\right)$. A subring V of a countable field F is called a valuation ring of F iff for any $x \in F^{*}=F \backslash\{0\}$ either $x \in V$ or $x^{-1} \in V$.
1.3. Theorem $\left(\mathrm{RCA}_{0}\right)$. A valuation ring V of a countable field F is a local ring, i.e. it has a unique maximal ideal M_{V} consisting of all non-units of V.

Proof. The set of non-units of $V, M_{V}=\left\{a \in V: a^{-1} \notin V\right\}$, exists by Δ_{1}^{0} comprehension, an axiom scheme that RCA_{0} includes. We prove that M_{V} is an ideal. Let $x, y \in M_{V}$. We can assume $x \cdot y^{-1} \in V$. Then $1+x \cdot y^{-1}=(x+y) / y \in V$. If $x+y$ were not in M_{V}, then $1 /(x+y)$ would belong to V, whence $y^{-1} \in V$ and this would contradict the fact that $y \in M_{V}$. Now, let $x \in M_{V}$ and $y \in V$. Then $x \cdot y \in M_{V}$. If not, $(x \cdot y)^{-1} \in V$, i.e. $y^{-1} \cdot x^{-1} \in V$, whence $x^{-1} \in V$ which contradicts the fact that $x \in M_{V}$. Hence M_{V} is an ideal which clearly is the unique maximal ideal of V.
1.4. Theorem $\left(\mathrm{RCA}_{0}\right)$. Every valuation on a countable field F gives rise to a valuation ring of F and, conversely, every valuation ring of a countable field F gives rise to a valuation on F.

Proof. Suppose ord is a valuation on F. The set $V=\{a \in F$: ord $(a) \geqslant 0\}$ exists by Δ_{1}^{0} comprehension and it is a valuation ring of F; the unique maximal ideal of V is $M_{V}=\{a \in F: \operatorname{ord}(a)>0\}$. Conversely, let V be a valuation ring of F. Let $V^{*}=\left\{a \in V: a^{-1} \in V\right\}$. This set exists by Δ_{1}^{0} comprehension. V^{*} is a subgroup of the multiplicative group $F^{*}=F \backslash\{0\}$, so we may form the quotient group $G=F^{*} / V^{*}$. The elements of G are those $a \in F^{*}$ such that $\forall b((b<a$ and $\left.b \in F^{*}\right) \rightarrow a \cdot b^{-1} \notin V^{*}$), i.e. minimal representatives of the equivalence classes under the equivalence relation $a \sim b$ iff $a \cdot b^{-1} \in V^{*}$. (Here, minimal refers to the ordering of \mathbb{N}, assuming that $F \subseteq \mathbb{N}$; see Section 2 in [2].) Thus, G is an abelian multiplicative countable group and on G we can define the linear ordering $\forall a, b \in G a<_{G} b$ iff $a^{-1} \cdot b \in V \backslash V^{*}$. This ordering exists by Δ_{1}^{0} comprehension, and $\left(G,<_{G}\right)$ is an ordercd abclian group. Hence, we can now define a valuation ord : $F \rightarrow G \cup\{\infty\}$ via

$$
\operatorname{ord}(a)=\left\{\begin{array}{cl}
\text { the least (in the sense of } \left.<_{\mathbb{N}}\right) c \text { such } \\
\text { that } c \in F^{*} \text { and } c \cdot a^{-1} \in V^{*}, & \text { if } a \neq 0 \\
\infty & \text { if } a=0
\end{array}\right.
$$

The previous theorem allows the following equivalent definition of a countable valued field.
1.5. Definition (RCA_{0}). A countable valued field consists of a countable field F and a valuation ring V of F. We write (F, V).
1.6. Definition $\left(\mathrm{RCA}_{0}\right)$. An extension $h:(F, R) \rightarrow(K, V)$ of countable valued fields is a field monomorphism $h: F \rightarrow K$ such that $h^{-1}(V)=R$.
1.7. Remark. Suppose $h:(F, R) \rightarrow(K, V)$ is an extension of countable valued fields as above. Let $\operatorname{ord}_{F}: F^{*} \rightarrow G_{F}$ and $\operatorname{ord}_{K}: K^{*} \rightarrow G_{K}$ be the valuations associated with (F, R) and (K, V) as in Theorem 1.4. Then, there is an obvious monomorphism $\hat{h}: G_{F} \rightarrow G_{K}$ such that the following diagram commutes:

Conversely, given any such commutative diagram, there is a corresponding extension of countable valued fields. These facts can be proved in RCA_{0}.

2. Proof of the main theorem

To prove our main theorem, we need the following two lemmas.
2.1. Lemma (WKL_{0}). Let K be a countable field, R a countable commutative ring, I an ideal of R, and $h: R \rightarrow K$ a ring monomorphism. Then there exists a valuation ring V of K such that $h(R) \subseteq V \subseteq K$ and $h(I) \subseteq M_{V} \subset V$.

Proof. We argue in WKL_{0}. The method is similar to the one used in the construction of a prime ideal of a countable commutative ring. (See Theorem 3.1 in [2].) Let a_{0}, a_{1}, \ldots be an enumeration of K. Let b_{0}, b_{1}, \ldots be an enumeration of $h(R)$. Let c_{0}, c_{1}, \ldots be an enumeration of $h(I)$. Note that $h(R)$ and $h(I)$ are defined by Σ_{1}^{0} formulas and, hence, they can be enumerated within RCA_{0}.

We define a tree T by induction on $s=\operatorname{lh}(\sigma)$ and simultaneously we define finite sets $X_{\sigma} \subseteq K, \sigma \in T$, with the property that $\sigma \subset \tau$ implies $X_{\sigma} \subseteq X_{\tau}$. At stage $s, T_{s}=\{\sigma \in T: \operatorname{lh}(\sigma)=s\}$ is defined. For $s=0$, let $T_{0}=\{\emptyset\}$ and $X_{\emptyset}=\emptyset$. Assume T_{s-1} is defined and let $\sigma \in T_{s-1}$. The construction splits into the following 5 cases. For convenience assume that $s=5 m+r, 0 \leqslant r<5$.
$r=0$. For each $\sigma \in T_{s-1}$, put $\sigma 0 \in T_{s}$ and let $X_{\sigma 0}=X_{\sigma} \cup\left\{b_{m}\right\}$.
$r=1$. For each $\sigma \in T_{s-1}$, put $\sigma 0 \in T_{s}$ and let $X_{\sigma 0}=X_{\sigma}$, unless $m=(i, j, k)$ (every natural number encodes a triple of natural numbers) and $a_{i}, a_{j} \in X_{o}$ in which case let $X_{\sigma 0}=X_{\sigma} \cup\left\{a_{i}+a_{j}\right\}$.
$r=2$. For each $\sigma \in T_{s}$, put $\sigma 0 \in T_{s}$ and let $X_{\sigma 0}=X_{\sigma}$, unless $m=(i, j, k)$ and $a_{i}, a_{j} \in X_{\sigma}$ in which case let $X_{\sigma 0}=X_{\sigma} \cup\left\{a_{i} \cdot a_{j}\right\}$.
$r=3$. For each $\sigma \in T_{s-1}$, put $\sigma 0 \in T_{s}$ and let $X_{\sigma 0}=X_{\sigma}$, unless $m=(i, j, k)$ and $a_{i} \cdot a_{j}=1$ in which case put $\sigma 0, \sigma 1 \in T_{s}$ and let $X_{\sigma 0}=X_{\sigma} \cup\left\{a_{i}\right\}$ and $X_{o 1}=$ $X_{\sigma} \cup\left\{a_{j}\right\}$.
$r=4$. For each $\sigma \in T_{s-1}$, put $\sigma 0 \in T_{s}$ and let $X_{\sigma 0}=X_{\sigma}$, unless $m=(i, j, k)$ and
$a_{i} \in X_{\sigma}$ and $a_{i} \cdot c_{j}=1$ in which case put neither $\sigma 0$ nor $\sigma 1 \in T_{s}$ and do not define $X_{\sigma 0}$ and $X_{\sigma 1}$.

Claim (RCA_{0}). T is infinite.
Proof. Consider the Π_{1}^{0} formula

$$
\psi(s) \equiv \exists \sigma \in T_{s}\left(1 \notin I_{\sigma}\right)
$$

where I_{σ} is the ideal generated by I inside the ring $R\left[X_{\sigma}\right]$, i.e. the ring generated by $R \cup X_{\sigma}$ inside K. (Note that I_{σ} and $R\left[X_{\sigma}\right]$ are defined by Σ_{1}^{0} formulas; we do not assume that they exist as sets.)

Now, $\psi(0)$ holds since I is an ideal of R. Assume that $\psi(s-1)$ holds, $\sigma \in T_{s-1}$ and $1 \notin I_{\sigma}$. If $r=0,1,2$, or 4 , then clearly $I_{\sigma 0}=I_{\sigma}$ and so $\psi(s)$ holds. If $r=3$, then, either only $\sigma 0$ was thrown into T_{s}, whence $X_{\sigma 0}=X_{\sigma}$ and $I_{\sigma 0}=I_{\sigma}$ and so $\psi(s)$ holds, or both $\sigma 0, \sigma 1 \in T_{s}$ and $X_{\sigma 0}=X_{\sigma} \bigcup\{a\}, X_{\sigma 1}=X_{\sigma} \cup\left\{a^{-1}\right\}$, for some $a \in K$. In this case assume that $1 \in I_{\sigma 0}$ and $1 \in I_{\sigma 1}$. Then, we have:
(I) $1=\alpha_{0}+\alpha_{1} \cdot a+\cdots+\alpha_{n} \cdot a^{n}, \quad \alpha_{i} \in I_{a}, i=1, \ldots, n$.
(II) $1=\beta_{0}+\beta_{1} \cdot a^{-1}+\cdots+\beta_{m} \cdot a^{-m}, \quad \beta_{i} \in I_{\sigma}, i=1, \ldots, m$.

By the Σ_{1}^{0} least element principle we may assume that m, n are chosen as small as possible and, by symmetry, we may assume that $n \geqslant m$. Now, we have:
(II) $\Rightarrow a^{n}=\beta_{0} \cdot a^{n}+\cdots+\beta_{m} \cdot a^{n-m}$
$\Rightarrow\left(1-\beta_{0}\right) \cdot a^{n}=\beta_{1} \cdot a^{n-1}+\cdots+\beta_{m} \cdot a^{n-m}$,
(I) $\Rightarrow\left(1-\beta_{0}\right)=\left(1-\beta_{0}\right) \cdot \alpha_{0}+\cdots+\alpha_{n} \cdot \beta_{1} \cdot a^{n-1}+\cdots+\alpha_{n} \cdot \beta_{m} \cdot a^{n-m}$,
i.e. $1=\beta_{0}+\left(1-\beta_{0}\right) \cdot \alpha_{0}+\cdots+\alpha_{n} \cdot \beta_{1} \cdot a^{n-1}+\cdots+\alpha_{n} \cdot \beta_{m} \cdot a^{n-m}$,
so 1 can be written as a polynomial in a of degree smaller than n with coefficients in I_{σ}. (The above computation is taken from the standard textbook proof of the extension of valuations theorem; see, for instance, Lemma 9.1, Section II, in [1].) This is a contradiction. Hence, either $1 \notin I_{\sigma 0}$ or $1 \notin I_{\sigma 1}$ and so $\psi(s)$ holds. Since RCA_{0} includes Π_{1}^{0} induction (see Lemma 1.1 in [2]), we have that $\psi(s)$ holds for all $s \in \mathbb{N}$. Hence, T is infinite.
(Claim)
Now, by Weak König's Lemma let f be a path through T. Let $V_{0}=\bigcup_{\sigma \subset f} X_{\sigma}$. Then, V_{0} is a valuation ring of K (because of cases $r=1,2,3$) and $h(R) \subseteq V_{0}$ (because of case $r=0$). Moreover, every element of $h(I)$ is a non-unit of V_{0} (because of case $r=4$). However, V_{0} is defined by a Σ_{1}^{0} formula and, so, may not exist. Hence, consider the following tree S of all sequences $\sigma \in \operatorname{Seq}_{2}$ satisfying:

For all $i, j, k<\operatorname{lh}(\sigma)$:
(i) $a_{i}=b_{j} \Rightarrow \sigma(i)=1$,
(ii) $\sigma(i)=\sigma(j)$ and $a_{i}+a_{j}=a_{k} \Rightarrow \sigma(k)=1$,
(iii) $\sigma(i)=\sigma(j)$ and $a_{i} \cdot a_{j}=a_{k} \Rightarrow \sigma(k)=1$,
(iv) $a_{i} \cdot a_{j}=1 \Rightarrow \sigma(i)=1$ or $\sigma(j)=1$,
(v) $a_{i}=c_{j}$ and $a_{i} \cdot a_{k}=1 \Rightarrow \sigma(k)=0$.

To see that S is an infinite tree, let $s \in \mathbb{N}$. Then let $X=\left\{i<s: \forall n\left(a_{i} \in X_{f(n)}\right)\right\}$. X exists by bounded Σ_{1}^{0} comprehension (see Lemma 1.6 in [2]). So, define $\sigma \in 2^{s}$ by

$$
\sigma(i)= \begin{cases}1 & \text { if } i \in X, \\ 0 & \text { if } i \notin X .\end{cases}
$$

Then, σ exists and $\sigma \in S$ since V_{0} is a valuation ring of $K, h(R) \subseteq V_{0}$, and every element of $h(I)$ is a non-unit of V_{0}. So, S is infinite and hence there is a path g through it. Let $V=\left\{a_{i}: g(i)=1\right\}$. Then, this set exists by Δ_{1}^{0} comprehension and it is a valuation ring of K (conditions (ii), (iii), (iv)), such that $h(R) \subseteq V$ (condition (i)). By condition (v), all elements of $h(I)$ are non-units, hence $h(I) \subseteq M_{V}$, where M_{V} is the maximal ideal of V which exists by Δ_{1}^{0} comprehension (Theorem 1.3).
2.2. Lemma $\left(\mathrm{RCA}_{0}\right)$. Lemma 2.1 implies the theorem on extension of valuations for countable fields: "Given a monomorphism of countable fields $h: L \rightarrow K$ and a valuation ring R of L, there exists a valuation ring V of K such that $h^{-1}(V)=R$."

Proof. Assume Lemma 2.1. Then, given the monomorphism $h: L \rightarrow K$ and the valuation ring R of L, there is a valuation ring V of K such that $h(R) \subseteq V \subseteq K$ and $h\left(M_{R}\right) \subseteq M_{V} \subset V$. We need to prove that $h^{-1}(V)=R$. Let $a \in R$, then $h(a) \in h(R)$, hence $h(a) \in V$ and so $a \in h^{-1}(V)$. Let $a \in h^{-1}(V)$, then $h(a) \in V$. Then, if $h(a)=0$, we have $a=0$, hence $a \in R$. If $h(a) \neq 0$, then $a \neq 0$ and if $a \notin R$ then $a^{-1} \in M_{R}$, whence $h\left(a^{-1}\right) \in h\left(M_{R}\right) \subseteq M_{V}$. Hence, $1 / h(a) \in M_{V}$, whence $1 \in M_{V}$, a contradiction. So $a \in R$.

Now, we are ready to prove the following:
2.3. Theorem (RCA_{0}). The following are equivalent:
(i) Weak König's Lemma.
(ii) The theorem on extension of valuations for countable fields.

Proof. (i) \Rightarrow (ii) follows from Lemmas 2.1 and 2.2.
(ii) \Rightarrow (i). Assume (ii). Let $f, g: \mathbb{N} \rightarrow \mathbb{N}$ be two $1-1$ functions such that $f(n) \neq g(m), \forall n, m \in \mathbb{N}$. Consider the field $K=\mathbb{Q}\left(x_{n}: n \in \mathbb{N}\right)$ and the field $L=\mathbb{Q}\left(y_{n}, z_{n}: n \in \mathbb{N}\right)$. Let $h: L \rightarrow K$ be the field monomorphism defined via $h\left(y_{n}\right)=x_{f(n)}$ and $h\left(z_{n}\right)=x_{g(n)}, \forall n \in \mathbb{N}$. Let G be the direct sum of countably many copies of \mathbb{Z}; so, a typical element of G is $a=\left(a_{0}, a_{1}, \ldots, a_{k}, \ldots\right)$ where $a_{k} \in \mathbb{Z}$ and $a_{k}=0$ for all but a finite number of indices k. G is an ordered abelian group under the lexicographical ordering: $\boldsymbol{a}<_{G} \boldsymbol{b}$ if and only if $a_{l}<_{\mathbb{Z}} b_{l}$ where l is the least k such that $a_{k} \neq b_{k}$. We define a valuation ord: $L \rightarrow G \cup\{\infty\}$ as follows: For any monomial $y_{1}^{m_{1}} \cdot z_{1}^{n_{1}} \cdots y_{r}^{m_{r}} \cdot z_{r}^{n_{r}}, m_{i} \geqslant 0, n_{i} \geqslant 0$ for $i=1, \ldots, r$ define:

$$
\operatorname{ord}\left(y_{1}^{m_{1}} \cdot z_{1}^{n_{1}} \cdots \cdots y_{r}^{m_{r}} \cdot z_{r}^{n_{r}}\right)=\left(m_{1},-n_{1}, \ldots, m_{r},-n_{r}, 0,0, \ldots\right) \in G .
$$

Then, for $p \in \mathbb{Q}\left[y_{n}, z_{n}: n \in \mathbb{N}\right]$, say $p=\sum_{i=1}^{s} c_{i} w_{i}$, where w_{i} is a monomial and $c_{i} \in \mathbb{Q}-\{0\}, i=1, \ldots, s$, define $\operatorname{ord}(p)=\min$ ord w_{i}. We define $\operatorname{ord}(0)=\infty$. Now, for $a=p / q \in L=\mathbb{Q}\left(y_{n}, z_{n}: n \in \mathbb{N}\right)$, define $\operatorname{ord}(a)=\operatorname{ord}(p)-\operatorname{ord}(q)$. It is easy to verify that ord is a valuation. Let $R=\{a: a \in L$ and $\operatorname{ord}(a) \geqslant 0\}$. Then, by (ii), there is a valuation ring V of K such that $h^{-1}(V)=R$. Let $X=\left\{n: x_{n} \in V\right\}$. For $m \in N$ we have $x_{f(m)} \in V$ (since $h^{-1}\left(x_{f(m)}\right)=y_{m} \in R$) and $x_{g(m)} \notin V$ (since $\left.h^{-1}\left(x_{g(m)}\right)=z_{m} \notin R\right)$. Hence, $f(m) \in X$ and $g(m) \notin X, \forall m \in \mathbb{N}$. So, by assuming (ii), we proved (over RCA_{0}) the statement: "If $f, g: \mathbb{N} \rightarrow \mathbb{N}$ are $1-1$ functions and $f(n) \neq g(m) \quad \forall n, m \in \mathbb{N}$, then $\exists X \forall m(f(m) \in X$ and $g(m) \notin X)$." But, over RCA_{0}, this is equivalent to Weak König's lemma (see Lemma 3.2 in [2]), and, hence, we are done.

References

[1] O. Endler, Valuation Theory (Springer, Berlin, 1972).
[2] H. Friedman, S. Simpson and R. Smith, Countable algebra and set existence axioms, Ann. Pure Appl. Logic 25 (1983) 141-181; Addendum 27 (1983) 319-320.
[3] S. Simpson and R. Smith, Factorization of polynomials and Σ_{1}^{0} induction, Ann. Pure Appl. I ogic 31 (1986) 289-306.
[4] S. Simpson, Ordinal numbers and the Hilbert Basis Theorem, J. Symbolic Logic 53 (1988) 961-974.
[5] R. Smith, Splitting algorithms and effective valuation theory, in: J.N. Crossley, ed., Aspects of Effective Algebra (Upside Down A Book Company, 1980) 232-245.

[^0]: * Simpson's research was partially supported by NSF grant DMS-8701481.

