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1 The Main Results

Our context is the study of w-models of subsystems of second order arithmetic
[5, Chapter VIII]. As in [5, Chapter VII], a 3-model is an w-model M such that,
for all ¥} sentences ¢ with parameters from M, ¢ is true if and only if M = .
Theorems 1.1 and 1.3 below are an interesting supplement to the results on
B-models which have been presented in Simpson [5, §§VII.2 and VIIL.6].

Let HYP denote the set of hyperarithmetical reals. It is well known that,
for any G-model M, HYP is properly included in M, and each X € HYP is
definable in M.

Theorem 1.1. There exists a countable S-model satisfying
VX (if X is definable, then X € HYP).

Proof. Fix a recursive enumeration S, ¢ € w, of the ¥{ sets of reals. If p is a
finite subset of w X w<¥, say that (X, )ne. meets p if Xp,, &--- B X,,, € S, for
all (e, (n1,...,ng)) € p. Let P be the set of p such that there exists (X,)new
meeting p. Put p < ¢ if and only if p O ¢. Say that D C P is dense if for
all p € P there exists ¢ € D such that ¢ < p. Say that D is definable if it is
definable over the w-model HYP, i.e., arithmetical in the complete IT} subset of
w. Say that (G,,)new is generic if for every dense definable D C P there exists
p € D such that (G,)new meets p. We can show that for every p € P there
exists a generic (Gp)neo meeting p. (This is a fusion argument, a la Gandy
forcing.) Clearly {G,, : n € w} is a S-model. We can also show that, if C is
countable and C N HYP = (), then there exists a generic (Gp)ne, such that
CN{G,:new}=0.

Let La({X)new) be the language of second order arithmetic with additional
set constants X,, n € w. Let ¢ be a sentence of La((X,)new). We say that



p forces @, written p I ¢, if for all generic (G, )ne, meeting p, the S-model
{Gy, : n € w} satisfies p[(Xy/Gn)new]- It can be shown that, for all generic
(Gn)new, the f-model {G,, : n € w} satisfies [(X,,/Gpn)neo] if and only if
(Gn)new meets some p such that p Ik .

If 7 is a permutation of w, define an action of m on P and La((X,)new) by
7(0) = {(e ((m1), -, 11 : (€ (11, - 14)) € p} and w(Xn) = Xogny. Tt s
straightforward to show that p I- ¢ if and only if w(p) IF 7w(v). The support of
p € P is defined by supp(p) = U{{n1,...,nk} : (e, (n1,...,ng)) € p}. Clearly
if p,q € P and supp(p) Nsupp(q) = 0, then pUq € P.

We claim that if (Gp)new and (G}, )ne, are generic, then the S-models {G,, :
n € w} and {G], : n € w} satisfy the same La-sentences. Suppose not. Then for
some p,q € P we have p IF ¢ and ¢ IF = ¢, for some Lo-sentence ¢. Let 7 be a
permutation of w such that supp(w(p)) Nsupp(q) = 0. Since w(v) = ¢, we have
7(p) IF ¢, hence 7(p) U ¢ IF ¢, a contradiction. This proves our claim.

Finally, let M = {G,, : n € w} where (Gp)necw is generic. Suppose A € M
is definable in M. Let (G} )new be generic such that M’ = {G), : n € w} has
M N M =HYP. Let (X) be an Lo-formula with X as its only free variable,
such that M | (3 exactly one X) ¢(X), and M = ¢(A). Then M’ = (3 exactly
one X)p(X). Let A € M’ be such that M’ = ¢(A’). Then for each n € w,
we have that n € A if and only if M | 3X (p(X) and n € X), if and only
if M' E 3X (p(X) and n € X), if and only if n € A’. Thus A = A’. Hence
A € HYP. This completes the proof. o

Remark 1.2. Theorem 1.1 has been announced without proof by Friedman [3,
Theorem 4.3]. Until now, a proof of Theorem 1.1 has not been available.

We now improve Theorem 1.1 as follows.
Let <gyp denote hyperarithmetical reducibility, i.e., X <gvyp Y if and only
if X is hyperarithmetical in Y.

Theorem 1.3. There exists a countable S-model satisfying

(%) VX VY (if X is definable from Y, then X <gvyp Y).

The S-model which we shall use to prove Theorem 1.3 is the same as for
Theorem 1.1, namely M = {G,, : n € w} where (G, )nec. is generic. In order to
see that M has the desired property, we first relativize the proof of Theorem 1.1,
as follows. Given Y, let PY be the set of p € P such that there exists (X,,)new
meeting p with Xo = Y. (Obviously 0 plays no special role here.) Say that
(Gp)new is generic over Y if, for every dense DY C PY definable from Y over
HYP(Y) = {X : X <uyp Y}, there exists p € DY such that (G,,)ne, meets p.

Lemma 1.4. If (G,,)ne. is generic over Y, then Go =Y, and {G,, : n € w} is
a (-model satisfying VX (if X is definable from Y, then X <pvyp Y).

Proof. The proof of this lemma is a straightforward relativization to Y of the
proof of Theorem 1.1. O



Consequently, in order to prove Theorem 1.3, it suffices to prove the following
lemma.

Lemma 1.5. If (G,,) e, is generic, then (G, ) e, is generic over Gy.

Proof. Tt suffices to show that, for all p forcing (D¢ is dense in PX¢), there
exists ¢ < p forcing 3r (r € DX° and (X,,)ne., meets 7).

Assume p I (DX° is dense in PX0). Since p I p € PXo, it follows that
pl-3q(q < p and ¢ € DX°). Fix p’ < p and ¢’ < p such that p’ IF ¢ € DXo.
Put S" = {Xo : (X,)new meets p'}. Then S’ is a X7 set, so let e € w be such
that S’ = S.. Claim 1: {(e,(0))} IF ¢’ € DXo. If not, let p” < {(e, (0))} be
such that p” I ¢’ ¢ DX°. Let 7 be a permutation such that 7(0) = 0 and
supp(p’) N supp(w(p”)) = {0}. Then p’ Un(p”) € P and 7(p”) IF ¢ ¢ DX, a
contradiction. This proves Claim 1.

Claim 2: ¢’ U {(e, (0))} € P. To see this, let (G} )new be generic meeting
{(e,(0))}. By Claim 1 we have ¢ € D%. Hence ¢’ € P, i.e., there exists
(Xn)new meeting ¢' with Xo = Gf,. Thus (X, )ne, meets ¢’ U {(e, (0))}. This
proves Claim 2. Finally, put ¢ = ¢ U {(e,(0))}. Then ¢” < ¢ < p and
q" I+ (¢ € DX and (X,,)ne. meets ¢'). This proves our lemma. ad

The proof of Theorem 1.3 is immediate from Lemmas 1.4 and 1.5.

2 Conservation Results

In this section we generalize the construction of §1 to a wider setting. We then
use this idea to obtain some conservation results involving the scheme (x) of
Theorem 1.3.

Two important subsystems of second order arithmetic are ATRy (arithmeti-
cal transfinite recursion with restricted induction) and IIL_-Tly (the transfinite
induction scheme). For general background, see Simpson [5]. It is known [5,
§VIL.2] that ATRy C II1_-Tly, and that every 3-model is a model of II1_-Tly.

Let (N,S) be a countable model of ATRy, where S C P(|N]|). Define
Pn,s) = {p: (N,S) |= (pis a finite subset of w x w<* and there exists (Xp)new
meeting p)}. The notion of (G,)ne|n| being generic over (N, S) is defined in the
obvious way. As in §1, the basic forcing lemmas can be proved. Let (Gpn)ne|n|
be generic over (N,S). Put 8’ ={G,, : n € |N|}.

Lemma 2.1. (N,S’) satisfies the scheme (%) of Theorem 1.3.

Proof. The proof is a straightforward generalization of the arguments of §1. O
Lemma 2.2. Let ¢ be a I1} sentence with parameters from |N|. If (N, S) = v,
then (N,S’) = .

Proof. Write ¢ as VX (X € S,) for some fixed e € |[N|. If (N,S) = ¢, then for
each n € |[N| we have that {p € P(n.s) : (e, (n)) € p} is dense in Py, s), hence
OIF X, €S.. Thus §IFVX (X € S,), i.e., DI, so (N,S) = . |



Remark 2.3. Since (N, S) = ATR; and ATRy is axiomatized by a I3 sentence,
it follows by Lemma 2.2 that (N,S’) = ATRy. Lemma 2.2 also implies that
(N,S) and (N,S’) satisfy the same II} sentences with parameters from |N|.
From this it follows that the recursive well orderings of (N,S) and (N,S’)
are the same, and that HYPy sy = HYP(y s/). It can also be shown that
HYP (y.s)=SNS.

We now have:
Theorem 2.4. ATR( + (*) is conservative over ATR, for ¥} sentences.

Proof. Let ¢ be a ¥} sentence. Suppose ATRg I/ ¢. Let (INV,S) be a countable
model of ATRy + — . Let &' = {G,, : n € |N|} as above. Since —¢ is a I1}
sentence, we have by Lemmas 2.1 and 2.2 that (N,S’) | ATRg + (%) + — .
Thus ATRg + (x) I/ ¢. O

In order to obtain a similar result for ITL_-Tly, we first prove:

Lemma 2.5. (N,S’) = “all ordinals are recursive”, i.e., “every well ordering
is isomorphic to a recursive well ordering”.

Proof. Recall from [5, §§VIIL.3 and VIIL.6] that all of the basic results of
hyperarithmetical theory are provable in ATRg. In particular, by [5, Theo-
rem VIIL.6.7], the Gandy/Kreisel/Tait Theorem holds in ATRy. Thus for all
p € Pv,s) we have

(N,S) [= there exists (X, )ne, meeting p such that ¥n (w" = wK).

Now, it is provable in ATRy that the predicate wi¥ = w{K is ¥1. Thus we have
0 IF VX (W = wfK), ie., 0 I “all ordinals are recursive”. This proves our
lemma. ]

Remark 2.6. An alternative proof of Lemma 2.5 is to note that ATRg + (%) -
“O does not exist”, because O would be definable but not hyperarithmetical.
And “O does not exist” is equivalent over ATRg to “all ordinals are recursive”.
(Here O denotes the complete I} set of integers. See [5, §VIIL.3].)

Theorem 2.7. IIl_-Tly + (*) is conservative over IIL_-Tly for ¥} sentences.

Proof. By Lemma 2.5 it suffices to prove: if (N,S) = transfinite induction for
recursive well orderings, then (N,S’) |= transfinite induction for recursive well
orderings. Let e € |[N| be such that (N,S) = “<. is a recursive well ordering”.
Suppose p IF 3n (n € field(<.) and p(n)). Put A = {n € field(<.) : p I 7 p(n)}.
Clearly A # (). By definability of forcing, A is definable over (N,S). Hence
there exists a € A such that (N,S) = “a is the <.-least element of A”. For
each n <. a we have p IF = p(n), but p I =¢(a), so let ¢ < p be such that
q IF ¢(a). Then ¢ IF “a is the <.-least n such that ¢(n)”. Thus (N,§’) |
transfinite induction for recursive well orderings. o

Remark 2.8. Theorems 2.4 and 2.7 are best possible, in the sense that we
cannot replace X3 by IIL. An example is the II3 sentence “all ordinals are
recursive”, which is provable in ATRg + (*) but not in IT._-Tlo.



3 Recursion-Theoretic Analogs

The results of §§1 and 2 are in the realm of hyperarithmetical theory. We now
present the analogous results in the realm of recursion theory, concerning models
of WKLg. For background on this topic, see Simpson [5, §§VIIL.2 and XI.2].

Let REC denote the set of recursive reals. It is well known that, for any
w-model M of WKLy, REC is properly included in M, and each X € REC is
definable in M. The recursion-theoretic analog of Theorem 1.1 is:

Theorem 3.1. There exists a countable w-model of WKL satisfying
VX (if X is definable, then X € REC).

Proof. Use exactly the same construction and argument as for Theorem 1.1,
replacing 31 sets by I19 subsets of 2«. |

Remark 3.2. Theorem 3.1 is originally due to Friedman [2, Theorem 1.10,
unpublished] (see also [3, Theorem 1.6]). It was later proved again by Simpson
[6] (see also Simpson/Tanaka/Yamazaki [7]). All three proofs of Theorem 3.1
are different from one another.

Let <p denote Turing reducibility, i.e., X <7 Y if and only if X is com-
putable using Y as an oracle. The recursion-theoretic analog of Theorem 1.3
is:

Theorem 3.3. There exists a countable w-model of WKL satisfying
(%) VX VY (if X is definable from Y, then X <p Y).

Proof. Use exactly the same construction and argument as for Theorem 1.3,
replacing 31 sets by I19 subsets of 2«. |

The recursion-theoretic analog of Theorems 2.4 and 2.7 is:

Theorem 3.4. WKL + (xx) is conservative over WKLg for arithmetical sen-
tences.

Proof. The proof is analogous to the arguments of §2. o

Remark 3.5. Theorems 3.3 and 3.4 are originally due to Simpson [6]. The
proofs given here are different from the proofs that were given in [6].

4 Some Additional Results

In this section we present some additional results and open questions.

Lemma 4.1. Let ¢(X) be a ¥1 formula with no free set variables other than
X. The following is provable in ATRy. If 3X (X ¢ HYP and ¢(X)), then 3P (P
is a perfect tree and VX (if X is a path through P then ¢(X))).



Proof. This is a well known consequence of formalizing the Perfect Set Theorem
within ATRg. See Simpson [5, §§V.4 and VIIIL.3]. See also Sacks [4, §II1.6]. O

Lemma 4.2. Let ¢(X) be a ¥ formula with no free set variables other than
X. The following is provable in ATRy 4+ “all ordinals are recursive”. If 3X (X ¢
HYP and (X)), then 3P (P is a perfect tree and VX (if X is a path through
P then ¢(X))).

Proof. Since p(X) is X1, we can write ¢(X) = IV Vf In R(X[n],Y[n], f[n])
where R is a primitive recursive predicate. Let T’x y be the tree consisting of
all 7 such that = (3n < 1h(7)) R(X[n],Y[n],7[n]). For a < w¥ put

vo(X) = Y (Tx,y is well founded of height < «).

Note that, for each o < wf¥, @, (X) is X1. Reasoning in ATRy + “all ordinals
are recursive”, we have VX (¢(X) if and only if (Ja < w{¥) ¢, (X)). Thus
Lemma 4.2 follows easily from Lemma 4.1. o

Theorem 4.3. Let T be ATR, or IIL_-Tly. Let »(X) be a X1 formula with
no free set variables other than X. If T+ 3X (X ¢ HYP and ¢(X)), then
T+ 3P (P is a perfect tree and VX (if X is a path through P then ¢(X))).

Proof. From Friedman [1] or Simpson [5, §VIL.2], we have that T + the dis-
junction (1) all ordinals are recursive, or (2) there exists a countable coded
B-model M satisfying T' 4+ “all ordinals are recursive”. In case (1), the desired
conclusion follows from Lemma 4.2. In case (2), we have M = 3X (X ¢ HYP
and ¢(X)), so the proof of Lemma 4.2 within M gives a < w{¥ such that
M E 3IX (X ¢ HYP and ¢,(X)). It follows that 3X (X ¢ HYP and ¢, (X)).
We can then apply Lemma 4.1 to ¢, (X) to obtain the desired conclusion. O

Corollary 4.4. Let T and ¢(X) be as in Theorem 4.3. If T+ 3X (X ¢ HYP
and ¢(X)), then T F VY 3X (p(X) and Vn (X # (Y),)).

Proof. This follows easily from Theorem 4.3. a

Theorem 4.5. Let T and ¢(X) be as in Theorem 4.3. If T + (3 exactly one
X)@(X), then T+ 3X (X € HYP and ¢(X)).

Proof. Consider cases (1) and (2) as in the proof of Theorem 4.3. In both
cases it suffices to show that, for all @ < W if (3 exactly one X) ¢, (X) then
3X (X € HYP and ¢, (X)). This follows from Lemma 4.1 applied to ¢, (X). O

Remark 4.6. Theorems 4.3 and 4.5 appear to be new. Corollary 4.4 has been
stated without proof by Friedman [3, Theorems 3.4 and 4.4]. A recursion-
theoretic analog of Corollary 4.4 has been stated without proof by Friedman [3,
Theorem 1.7], but this statement of Friedman is known to be false, in view of
Simpson [6]. A recursion-theoretic analog of Theorem 4.5 has been proved by
Simpson/Tanaka/Yamazaki [7].



Question 4.7. Suppose WKLg - 3X (X ¢ REC and ¢(X)) where ¢(X) is 31,
or even arithmetical, with no free set variables other than X. Does it follow
that WKLy F 3X Y (X # Y A p(X) A (Y))? A similar question has been
asked by Friedman [2, unpublished)].

Question 4.8. Suppose WKLy - (3 exactly one X)p(X) where p(X) is %}
with no free set variables other than X. Does it follow that WKLy F 3X (X €
REC and ¢(X))? If p(X) is arithmetical or II} then the answer is yes, by
Simpson/Tanaka/Yamazaki [7].
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