A Symmetric β -Model

Stephen G. Simpson
Department of Mathematics
Pennsylvania State University
www.math.psu.edu/simpson/

Draft: May 23, 2000

This research was partially supported by NSF grant DMS-0070718. Subject Classification: 03F35, 03C62, 03C25, 03D80, 03B30.

1 The Main Results

Our context is the study of ω -models of subsystems of second order arithmetic [5, Chapter VIII]. As in [5, Chapter VIII], a β -model is an ω -model M such that, for all Σ_1^1 sentences φ with parameters from M, φ is true if and only if $M \models \varphi$. Theorems 1.1 and 1.3 below are an interesting supplement to the results on β -models which have been presented in Simpson [5, §§VII.2 and VIII.6].

Let HYP denote the set of hyperarithmetical reals. It is well known that, for any β -model M, HYP is properly included in M, and each $X \in$ HYP is definable in M.

Theorem 1.1. There exists a countable β -model satisfying

 $\forall X \text{ (if } X \text{ is definable, then } X \in \text{HYP}).$

Proof. Fix a recursive enumeration S_e , $e \in \omega$, of the Σ^1_1 sets of reals. If p is a finite subset of $\omega \times \omega^{<\omega}$, say that $\langle X_n \rangle_{n \in \omega}$ meets p if $X_{n_1} \oplus \cdots \oplus X_{n_k} \in S_e$ for all $(e, \langle n_1, \ldots, n_k \rangle) \in p$. Let \mathcal{P} be the set of p such that there exists $\langle X_n \rangle_{n \in \omega}$ meeting p. Put $p \leq q$ if and only if $p \supseteq q$. Say that $\mathcal{D} \subseteq \mathcal{P}$ is dense if for all $p \in \mathcal{P}$ there exists $q \in \mathcal{D}$ such that $q \leq p$. Say that \mathcal{D} is definable if it is definable over the ω -model HYP, i.e., arithmetical in the complete Π^1_1 subset of ω . Say that $\langle G_n \rangle_{n \in \omega}$ is generic if for every dense definable $\mathcal{D} \subseteq \mathcal{P}$ there exists $p \in \mathcal{D}$ such that $\langle G_n \rangle_{n \in \omega}$ meets p. We can show that for every $p \in \mathcal{P}$ there exists a generic $\langle G_n \rangle_{n \in \omega}$ meeting p. (This is a fusion argument, a la Gandy forcing.) Clearly $\{G_n : n \in \omega\}$ is a β -model. We can also show that, if C is countable and $C \cap \text{HYP} = \emptyset$, then there exists a generic $\langle G_n \rangle_{n \in \omega}$ such that $C \cap \{G_n : n \in \omega\} = \emptyset$.

Let $L_2(\langle X_n \rangle_{n \in \omega})$ be the language of second order arithmetic with additional set constants X_n , $n \in \omega$. Let φ be a sentence of $L_2(\langle X_n \rangle_{n \in \omega})$. We say that

p forces φ , written $p \Vdash \varphi$, if for all generic $\langle G_n \rangle_{n \in \omega}$ meeting p, the β -model $\{G_n : n \in \omega\}$ satisfies $\varphi[\langle X_n/G_n \rangle_{n \in \omega}]$. It can be shown that, for all generic $\langle G_n \rangle_{n \in \omega}$, the β -model $\{G_n : n \in \omega\}$ satisfies $\varphi[\langle X_n/G_n \rangle_{n \in \omega}]$ if and only if $\langle G_n \rangle_{n \in \omega}$ meets some p such that $p \Vdash \varphi$.

If π is a permutation of ω , define an action of π on \mathcal{P} and $L_2(\langle X_n \rangle_{n \in \omega})$ by $\pi(p) = \{(e, \langle \pi(n_1), \dots, \pi(n_k) \rangle) : (e, \langle n_1, \dots, n_k \rangle) \in p\}$ and $\pi(X_n) = X_{\pi(n)}$. It is straightforward to show that $p \Vdash \varphi$ if and only if $\pi(p) \Vdash \pi(\varphi)$. The support of $p \in \mathcal{P}$ is defined by $\sup(p) = \bigcup \{\{n_1, \dots, n_k\} : (e, \langle n_1, \dots, n_k \rangle) \in p\}$. Clearly if $p, q \in \mathcal{P}$ and $\sup(p) \cap \sup(q) = \emptyset$, then $p \cup q \in \mathcal{P}$.

We claim that if $\langle G_n \rangle_{n \in \omega}$ and $\langle G'_n \rangle_{n \in \omega}$ are generic, then the β -models $\{G_n : n \in \omega\}$ and $\{G'_n : n \in \omega\}$ satisfy the same L_2 -sentences. Suppose not. Then for some $p, q \in \mathcal{P}$ we have $p \Vdash \varphi$ and $q \Vdash \neg \varphi$, for some L_2 -sentence φ . Let π be a permutation of ω such that $\operatorname{supp}(\pi(p)) \cap \operatorname{supp}(q) = \emptyset$. Since $\pi(\varphi) = \varphi$, we have $\pi(p) \Vdash \varphi$, hence $\pi(p) \cup q \Vdash \varphi$, a contradiction. This proves our claim.

Finally, let $M = \{G_n : n \in \omega\}$ where $\langle G_n \rangle_{n \in \omega}$ is generic. Suppose $A \in M$ is definable in M. Let $\langle G'_n \rangle_{n \in \omega}$ be generic such that $M' = \{G'_n : n \in \omega\}$ has $M \cap M' = \text{HYP}$. Let $\varphi(X)$ be an L_2 -formula with X as its only free variable, such that $M \models (\exists \text{ exactly one } X) \varphi(X)$, and $M \models \varphi(A)$. Then $M' \models (\exists \text{ exactly one } X) \varphi(X)$. Let $A' \in M'$ be such that $M' \models \varphi(A')$. Then for each $n \in \omega$, we have that $n \in A$ if and only if $M \models \exists X (\varphi(X) \text{ and } n \in X)$, if and only if $M' \models \exists X (\varphi(X) \text{ and } n \in X)$, if and only if $n \in A'$. Thus $n \in A'$. Hence $n \in A$ is completes the proof.

Remark 1.2. Theorem 1.1 has been announced without proof by Friedman [3, Theorem 4.3]. Until now, a proof of Theorem 1.1 has not been available.

We now improve Theorem 1.1 as follows.

Let \leq_{HYP} denote hyperarithmetical reducibility, i.e., $X \leq_{\text{HYP}} Y$ if and only if X is hyperarithmetical in Y.

Theorem 1.3. There exists a countable β -model satisfying

(*) $\forall X \forall Y \text{ (if } X \text{ is definable from } Y, \text{ then } X \leq_{\text{HYP}} Y \text{)}.$

The β -model which we shall use to prove Theorem 1.3 is the same as for Theorem 1.1, namely $M = \{G_n : n \in \omega\}$ where $\langle G_n \rangle_{n \in \omega}$ is generic. In order to see that M has the desired property, we first relativize the proof of Theorem 1.1, as follows. Given Y, let \mathcal{P}^Y be the set of $p \in \mathcal{P}$ such that there exists $\langle X_n \rangle_{n \in \omega}$ meeting p with $X_0 = Y$. (Obviously 0 plays no special role here.) Say that $\langle G_n \rangle_{n \in \omega}$ is generic over Y if, for every dense $\mathcal{D}^Y \subseteq \mathcal{P}^Y$ definable from Y over Y and Y is Y, there exists Y is given that Y is Y in Y in Y.

Lemma 1.4. If $\langle G_n \rangle_{n \in \omega}$ is generic over Y, then $G_0 = Y$, and $\{G_n : n \in \omega\}$ is a β -model satisfying $\forall X$ (if X is definable from Y, then $X \leq_{\text{HYP}} Y$).

Proof. The proof of this lemma is a straightforward relativization to Y of the proof of Theorem 1.1.

Consequently, in order to prove Theorem 1.3, it suffices to prove the following lemma.

Lemma 1.5. If $\langle G_n \rangle_{n \in \omega}$ is generic, then $\langle G_n \rangle_{n \in \omega}$ is generic over G_0 .

Proof. It suffices to show that, for all p forcing (\mathcal{D}^{X_0}) is dense in \mathcal{P}^{X_0}), there exists $q \leq p$ forcing $\exists r \ (r \in \mathcal{D}^{X_0})$ and $\langle X_n \rangle_{n \in \omega}$ meets r).

Assume $p \Vdash (\mathcal{D}^{X_0})$ is dense in \mathcal{P}^{X_0}). Since $p \Vdash p \in \mathcal{P}^{X_0}$, it follows that

Assume $p \Vdash (\mathcal{D}^{X_0})$ is dense in \mathcal{P}^{X_0}). Since $p \Vdash p \in \mathcal{P}^{X_0}$, it follows that $p \Vdash \exists q \ (q \leq p \text{ and } q \in \mathcal{D}^{X_0})$. Fix $p' \leq p$ and $q' \leq p$ such that $p' \Vdash q' \in \mathcal{D}^{X_0}$. Put $S' = \{X_0 : \langle X_n \rangle_{n \in \omega} \text{ meets } p'\}$. Then S' is a Σ_1^1 set, so let $e \in \omega$ be such that $S' = S_e$. Claim 1: $\{(e, \langle 0 \rangle)\} \Vdash q' \in \mathcal{D}^{X_0}$. If not, let $p'' \leq \{(e, \langle 0 \rangle)\}$ be such that $p'' \Vdash q' \notin \mathcal{D}^{X_0}$. Let π be a permutation such that $\pi(0) = 0$ and $\operatorname{supp}(p') \cap \operatorname{supp}(\pi(p'')) = \{0\}$. Then $p' \cup \pi(p'') \in \mathcal{P}$ and $\pi(p'') \Vdash q' \notin \mathcal{D}^{X_0}$, a contradiction. This proves Claim 1.

Claim 2: $q' \cup \{(e, \langle 0 \rangle)\} \in \mathcal{P}$. To see this, let $\langle G'_n \rangle_{n \in \omega}$ be generic meeting $\{(e, \langle 0 \rangle)\}$. By Claim 1 we have $q' \in \mathcal{D}^{G'_0}$. Hence $q' \in \mathcal{P}^{G'_0}$, i.e., there exists $\langle X_n \rangle_{n \in \omega}$ meeting q' with $X_0 = G'_0$. Thus $\langle X_n \rangle_{n \in \omega}$ meets $q' \cup \{(e, \langle 0 \rangle)\}$. This proves Claim 2. Finally, put $q'' = q' \cup \{(e, \langle 0 \rangle)\}$. Then $q'' \leq q' \leq p$ and $q'' \Vdash (q' \in \mathcal{D}^{X_0})$ and $\langle X_n \rangle_{n \in \omega}$ meets q'. This proves our lemma.

The proof of Theorem 1.3 is immediate from Lemmas 1.4 and 1.5.

2 Conservation Results

In this section we generalize the construction of §1 to a wider setting. We then use this idea to obtain some conservation results involving the scheme (*) of Theorem 1.3.

Two important subsystems of second order arithmetic are ATR_0 (arithmetical transfinite recursion with restricted induction) and Π^1_{∞} - TI_0 (the transfinite induction scheme). For general background, see Simpson [5]. It is known [5, $\S \mathsf{VII}.2$] that $\mathsf{ATR}_0 \subseteq \Pi^1_{\infty}$ - TI_0 , and that every β -model is a model of Π^1_{∞} - TI_0 .

Let (N, \mathcal{S}) be a countable model of ATR_0 , where $\mathcal{S} \subseteq P(|N|)$. Define $\mathcal{P}_{(N,\mathcal{S})} = \{p : (N,\mathcal{S}) \models (p \text{ is a finite subset of } \omega \times \omega^{<\omega} \text{ and there exists } \langle X_n \rangle_{n \in \omega} \}$ meeting p). The notion of $\langle G_n \rangle_{n \in |N|}$ being generic over (N,\mathcal{S}) is defined in the obvious way. As in §1, the basic forcing lemmas can be proved. Let $\langle G_n \rangle_{n \in |N|}$ be generic over (N,\mathcal{S}) . Put $\mathcal{S}' = \{G_n : n \in |N|\}$.

Lemma 2.1. (N, \mathcal{S}') satisfies the scheme (*) of Theorem 1.3.

Proof. The proof is a straightforward generalization of the arguments of $\S 1$. \square

Lemma 2.2. Let ψ be a Π_2^1 sentence with parameters from |N|. If $(N, \mathcal{S}) \models \psi$, then $(N, \mathcal{S}') \models \psi$.

Proof. Write ψ as $\forall X (X \in S_e)$ for some fixed $e \in |N|$. If $(N, \mathcal{S}) \models \psi$, then for each $n \in |N|$ we have that $\{p \in \mathcal{P}_{(N,\mathcal{S})} : (e, \langle n \rangle) \in p\}$ is dense in $\mathcal{P}_{(N,\mathcal{S})}$, hence $\emptyset \Vdash X_n \in S_e$. Thus $\emptyset \Vdash \forall X (X \in S_e)$, i.e., $\emptyset \Vdash \psi$, so $(N, \mathcal{S}') \models \psi$.

Remark 2.3. Since $(N, \mathcal{S}) \models \mathsf{ATR}_0$ and ATR_0 is axiomatized by a Π^1_2 sentence, it follows by Lemma 2.2 that $(N, \mathcal{S}') \models \mathsf{ATR}_0$. Lemma 2.2 also implies that (N, \mathcal{S}) and (N, \mathcal{S}') satisfy the same Π^1_1 sentences with parameters from |N|. From this it follows that the recursive well orderings of (N, \mathcal{S}) and (N, \mathcal{S}') are the same, and that $\mathsf{HYP}_{(N,\mathcal{S})} = \mathsf{HYP}_{(N,\mathcal{S}')}$. It can also be shown that $\mathsf{HYP}_{(N,\mathcal{S})} = \mathcal{S} \cap \mathcal{S}'$.

We now have:

Theorem 2.4. $ATR_0 + (*)$ is conservative over ATR_0 for Σ_2^1 sentences.

Proof. Let φ be a Σ_2^1 sentence. Suppose $\mathsf{ATR}_0 \not\vdash \varphi$. Let (N, \mathcal{S}) be a countable model of $\mathsf{ATR}_0 + \neg \varphi$. Let $\mathcal{S}' = \{G_n : n \in |N|\}$ as above. Since $\neg \varphi$ is a Π_2^1 sentence, we have by Lemmas 2.1 and 2.2 that $(N, \mathcal{S}') \models \mathsf{ATR}_0 + (*) + \neg \varphi$. Thus $\mathsf{ATR}_0 + (*) \not\vdash \varphi$.

In order to obtain a similar result for Π^1_{∞} -TI₀, we first prove:

Lemma 2.5. $(N, \mathcal{S}') \models$ "all ordinals are recursive", i.e., "every well ordering is isomorphic to a recursive well ordering".

Proof. Recall from [5, §§VIII.3 and VIII.6] that all of the basic results of hyperarithmetical theory are provable in ATR_0 . In particular, by [5, Theorem VIII.6.7], the Gandy/Kreisel/Tait Theorem holds in ATR_0 . Thus for all $p \in \mathcal{P}_{(N,S)}$ we have

 $(N, \mathcal{S}) \models \text{there exists } \langle X_n \rangle_{n \in \omega} \text{ meeting } p \text{ such that } \forall n (\omega_1^{X_n} = \omega_1^{\text{CK}}).$

Now, it is provable in ATR₀ that the predicate $\omega_1^X = \omega_1^{\text{CK}}$ is Σ_1^1 . Thus we have $\emptyset \Vdash \forall X (\omega_1^X = \omega_1^{\text{CK}})$, i.e., $\emptyset \Vdash$ "all ordinals are recursive". This proves our

Remark 2.6. An alternative proof of Lemma 2.5 is to note that $\mathsf{ATR}_0 + (*) \vdash$ "O does not exist", because O would be definable but not hyperarithmetical. And "O does not exist" is equivalent over ATR_0 to "all ordinals are recursive". (Here O denotes the complete Π^1_1 set of integers. See [5, §VIII.3].)

Theorem 2.7. Π^1_{∞} -Tl₀ + (*) is conservative over Π^1_{∞} -Tl₀ for Σ^1_2 sentences.

Proof. By Lemma 2.5 it suffices to prove: if $(N, \mathcal{S}) \models \text{transfinite}$ induction for recursive well orderings, then $(N, \mathcal{S}') \models \text{transfinite}$ induction for recursive well orderings. Let $e \in |N|$ be such that $(N, \mathcal{S}) \models \text{``}<_e$ is a recursive well ordering''. Suppose $p \Vdash \exists n \ (n \in \text{field}(<_e) \text{ and } \varphi(n))$. Put $A = \{n \in \text{field}(<_e) : p \not \Vdash \neg \varphi(n)\}$. Clearly $A \neq \emptyset$. By definability of forcing, A is definable over (N, \mathcal{S}) . Hence there exists $a \in A$ such that $(N, \mathcal{S}) \models \text{``a}$ is the $<_e$ -least element of A''. For each $n <_e a$ we have $p \Vdash \neg \varphi(n)$, but $p \not \Vdash \neg \varphi(a)$, so let $q \leq p$ be such that $q \Vdash \varphi(a)$. Then $q \Vdash \text{``a}$ is the $<_e$ -least n such that $\varphi(n)$ ''. Thus $(N, \mathcal{S}') \models \text{transfinite}$ induction for recursive well orderings.

Remark 2.8. Theorems 2.4 and 2.7 are best possible, in the sense that we cannot replace Σ_2^1 by Π_2^1 . An example is the Π_2^1 sentence "all ordinals are recursive", which is provable in $\mathsf{ATR}_0 + (*)$ but not in $\Pi_\infty^1 - \mathsf{TI}_0$.

3 Recursion-Theoretic Analogs

The results of $\S\S1$ and 2 are in the realm of hyperarithmetical theory. We now present the analogous results in the realm of recursion theory, concerning models of WKL₀. For background on this topic, see Simpson [5, $\S\S$ VIII.2 and XI.2].

Let REC denote the set of recursive reals. It is well known that, for any ω -model M of WKL₀, REC is properly included in M, and each $X \in \text{REC}$ is definable in M. The recursion-theoretic analog of Theorem 1.1 is:

Theorem 3.1. There exists a countable ω -model of WKL₀ satisfying

 $\forall X \text{ (if } X \text{ is definable, then } X \in REC).$

Proof. Use exactly the same construction and argument as for Theorem 1.1, replacing Σ_1^1 sets by Π_1^0 subsets of 2^{ω} .

Remark 3.2. Theorem 3.1 is originally due to Friedman [2, Theorem 1.10, unpublished] (see also [3, Theorem 1.6]). It was later proved again by Simpson [6] (see also Simpson/Tanaka/Yamazaki [7]). All three proofs of Theorem 3.1 are different from one another.

Let \leq_T denote Turing reducibility, i.e., $X \leq_T Y$ if and only if X is computable using Y as an oracle. The recursion-theoretic analog of Theorem 1.3 is:

Theorem 3.3. There exists a countable ω -model of WKL₀ satisfying

(**) $\forall X \forall Y \text{ (if } X \text{ is definable from } Y \text{, then } X \leq_T Y \text{)}.$

Proof. Use exactly the same construction and argument as for Theorem 1.3, replacing Σ_1^1 sets by Π_1^0 subsets of 2^{ω} .

The recursion-theoretic analog of Theorems 2.4 and 2.7 is:

Theorem 3.4. $WKL_0 + (**)$ is conservative over WKL_0 for arithmetical sentences.

Proof. The proof is analogous to the arguments of §2.

Remark 3.5. Theorems 3.3 and 3.4 are originally due to Simpson [6]. The proofs given here are different from the proofs that were given in [6].

4 Some Additional Results

In this section we present some additional results and open questions.

Lemma 4.1. Let $\varphi(X)$ be a Σ_1^1 formula with no free set variables other than X. The following is provable in ATR_0 . If $\exists X \, (X \notin \mathsf{HYP} \text{ and } \varphi(X))$, then $\exists P \, (P \text{ is a perfect tree and } \forall X \, (\text{if } X \text{ is a path through } P \text{ then } \varphi(X)))$.

Proof. This is a well known consequence of formalizing the Perfect Set Theorem within ATR₀. See Simpson [5, $\S\S V.4$ and VIII.3]. See also Sacks [4, \S III.6]. \Box

Lemma 4.2. Let $\varphi(X)$ be a Σ_2^1 formula with no free set variables other than X. The following is provable in ATR_0 + "all ordinals are recursive". If $\exists X \, (X \notin \mathsf{HYP} \text{ and } \varphi(X))$, then $\exists P \, (P \text{ is a perfect tree and } \forall X \, (\text{if } X \text{ is a path through } P \text{ then } \varphi(X))).$

Proof. Since $\varphi(X)$ is Σ_2^1 , we can write $\varphi(X) \equiv \exists Y \, \forall f \, \exists n \, R(X[n], Y[n], f[n])$ where R is a primitive recursive predicate. Let $T_{X,Y}$ be the tree consisting of all τ such that $\neg (\exists n \leq \text{lh}(\tau)) \, R(X[n], Y[n], \tau[n])$. For $\alpha < \omega_1^{\text{CK}}$ put

 $\varphi_{\alpha}(X) \equiv \exists Y (T_{X,Y} \text{ is well founded of height } \leq \alpha).$

Note that, for each $\alpha < \omega_1^{\text{CK}}, \, \varphi_\alpha(X)$ is Σ_1^1 . Reasoning in ATR_0 + "all ordinals are recursive", we have $\forall X \, (\varphi(X) \text{ if and only if } (\exists \alpha < \omega_1^{\text{CK}}) \, \varphi_\alpha(X))$. Thus Lemma 4.2 follows easily from Lemma 4.1.

Theorem 4.3. Let T be ATR_0 or $\Pi^1_\infty\text{-}\mathsf{TI}_0$. Let $\varphi(X)$ be a Σ^1_2 formula with no free set variables other than X. If $T \vdash \exists X \, (X \notin \mathsf{HYP} \text{ and } \varphi(X))$, then $T \vdash \exists P \, (P \text{ is a perfect tree and } \forall X \, (\text{if } X \text{ is a path through } P \text{ then } \varphi(X)))$.

Proof. From Friedman [1] or Simpson [5, §VII.2], we have that $T \vdash$ the disjunction (1) all ordinals are recursive, or (2) there exists a countable coded β-model M satisfying T + "all ordinals are recursive". In case (1), the desired conclusion follows from Lemma 4.2. In case (2), we have $M \models \exists X (X \notin \mathsf{HYP})$ and $\varphi(X)$, so the proof of Lemma 4.2 within M gives $\alpha < \omega_1^{\mathsf{CK}}$ such that $M \models \exists X (X \notin \mathsf{HYP})$ and $\varphi_{\alpha}(X)$. It follows that $\exists X (X \notin \mathsf{HYP})$ and $\varphi_{\alpha}(X)$. We can then apply Lemma 4.1 to $\varphi_{\alpha}(X)$ to obtain the desired conclusion. □

Corollary 4.4. Let T and $\varphi(X)$ be as in Theorem 4.3. If $T \vdash \exists X (X \notin \text{HYP} \text{ and } \varphi(X))$, then $T \vdash \forall Y \exists X (\varphi(X) \text{ and } \forall n (X \neq (Y)_n))$.

Proof. This follows easily from Theorem 4.3.

Theorem 4.5. Let T and $\varphi(X)$ be as in Theorem 4.3. If $T \vdash (\exists \text{ exactly one } X) \varphi(X)$, then $T \vdash \exists X (X \in \text{HYP and } \varphi(X))$.

Proof. Consider cases (1) and (2) as in the proof of Theorem 4.3. In both cases it suffices to show that, for all $\alpha < \omega_1^{\text{CK}}$, if $(\exists \text{ exactly one } X) \varphi_{\alpha}(X)$ then $\exists X \ (X \in \text{HYP and } \varphi_{\alpha}(X))$. This follows from Lemma 4.1 applied to $\varphi_{\alpha}(X)$. \Box

Remark 4.6. Theorems 4.3 and 4.5 appear to be new. Corollary 4.4 has been stated without proof by Friedman [3, Theorems 3.4 and 4.4]. A recursion-theoretic analog of Corollary 4.4 has been stated without proof by Friedman [3, Theorem 1.7], but this statement of Friedman is known to be false, in view of Simpson [6]. A recursion-theoretic analog of Theorem 4.5 has been proved by Simpson/Tanaka/Yamazaki [7].

Question 4.7. Suppose WKL₀ $\vdash \exists X (X \notin REC \text{ and } \varphi(X))$ where $\varphi(X)$ is Σ_1^1 , or even arithmetical, with no free set variables other than X. Does it follow that WKL₀ $\vdash \exists X \exists Y (X \neq Y \land \varphi(X) \land \varphi(Y))$? A similar question has been asked by Friedman [2, unpublished].

Question 4.8. Suppose $\mathsf{WKL}_0 \vdash (\exists \text{ exactly one } X) \varphi(X)$ where $\varphi(X)$ is Σ_1^1 with no free set variables other than X. Does it follow that $\mathsf{WKL}_0 \vdash \exists X \, (X \in \mathsf{REC} \text{ and } \varphi(X))$? If $\varphi(X)$ is arithmetical or Π_1^1 then the answer is yes, by Simpson/Tanaka/Yamazaki [7].

References

- [1] Harvey Friedman. Bar induction and Π_1^1 -CA. Journal of Symbolic Logic, 34:353–362, 1969.
- [2] Harvey Friedman. Subsystems of second order arithmetic and their use in the formalization of mathematics. 19 pages, unpublished, March 1974.
- [3] Harvey Friedman. Some systems of second order arithmetic and their use. In *Proceedings of the International Congress of Mathematicians, Vancouver* 1974, volume 1, pages 235–242. Canadian Mathematical Congress, 1975.
- [4] Gerald E. Sacks. *Higher Recursion Theory*. Perspectives in Mathematical Logic. Springer-Verlag, 1990. XV + 344 pages.
- [5] Stephen G. Simpson. Subsystems of Second Order Arithmetic. Perspectives in Mathematical Logic. Springer-Verlag, 1999. XIV + 445 pages.
- [6] Stephen G. Simpson. Π_1^0 sets and models of WKL₀. April 2000. Preprint, 26 pages, to appear.
- [7] Stephen G. Simpson, Kazuyuki Tanaka, and Takeshi Yamazaki. Some conservation results for weak König's lemma. February 2000. Preprint, 26 pages, to appear.