

Sets Which Do Not Have Subsets of Every Higher Degree

Author(s): Stephen G. Simpson

Source: The Journal of Symbolic Logic, Vol. 43, No. 1 (Mar., 1978), pp. 135-138

Published by: Association for Symbolic Logic Stable URL: http://www.jstor.org/stable/2271956

Accessed: 30/04/2013 17:05

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Association for Symbolic Logic is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Symbolic Logic.

http://www.jstor.org

SETS WHICH DO NOT HAVE SUBSETS OF EVERY HIGHER DEGREE¹

STEPHEN G. SIMPSON

Let A be a subset of ω , the set of natural numbers. The degree of A is its degree of recursive unsolvability. We say that A is rich if every degree above that of A is represented by a subset of A. We say that A is poor if no degree strictly above that of A is represented by a subset of A. The existence of infinite poor (and hence nonrich) sets was proved by Soare [9].

THEOREM 1. Suppose that A is infinite and not rich. Then every hyperarithmetical subset H of ω is recursive in A.

In the special case when H is arithmetical, Theorem 1 was proved by Jockusch [4] who employed a degree-theoretic analysis of Ramsey's theorem [3]. In our proof of Theorem 1 we employ a similar, degree-theoretic analysis of a certain generalization of Ramsey's theorem. The generalization of Ramsey's theorem is due to Nash-Williams [6]. If $A \subseteq \omega$ we write $[A]^{\omega}$ for the set of all infinite subsets of A. If $P \subseteq [\omega]^{\omega}$ we let H(P) be the set of all infinite sets A such that either $[A]^{\omega} \subseteq P$ or $[A]^{\omega} \cap P = \emptyset$. Nash-Williams' theorem is essentially the statement that if $P \subseteq [\omega]^{\omega}$ is clopen (in the usual, Baire topology on $[\omega]^{\omega}$) then H(P) is nonempty. Subsequent, further generalizations of Ramsey's theorem were proved by Galvin and Prikry [1], Silver [8], Mathias [5], and analyzed degree-theoretically by Solovay [10]; those results are not needed for this paper.

A subset of $[\omega]^{\omega}$ is said to be *recursively enumerable* if it can be written in the form $\{A \in [\omega]^{\omega} \mid \exists y R(\bar{A}(y))\}$ where $\bar{A}(y) = A \cap \{0, 1, ..., y-1\}$ and R is a recursive predicate of finite sets. A set $P \subseteq [\omega]^{\omega}$ is said to be *recursive* if both P and $[\omega]^{\omega} - P$ are recursively enumerable. A recursive subset of $[\omega]^{\omega}$ is clopen; indeed, a subset of $[\omega]^{\omega}$ is clopen if and only if it is recursive in some subset of ω (cf. [7, pp. 351–353]). Below we study degrees of members of H(P) where P is recursive. It follows from a result of Solovay [10] that, for P recursive, H(P) contains a hyperarithmetical set. A strong converse to this result is the following:

LEMMA 1. For any hyperarithmetical set $B \subseteq \omega$ there exists a recursive set $P \subseteq [\omega]^{\omega}$ such that B is recursive in A for all $A \in H(P)$.

PROOF. A set $P \subseteq [\omega]^{\omega}$ is said to be *unbalanced* if $[A]^{\omega} \subseteq P$ for all $A \in H(P)$. Our notation for the hyperarithmetical hierarchy is from Spector

Received April 21, 1975.

¹This research was supported by a grant from the Science Research Council. Preparation of this paper was partially supported by NSF grant MSP 75–07408.

[11]. For each $b \in O$ we shall construct a recursive, unbalanced set $P_b \subseteq [\omega]^{\omega}$ such that H_b is recursive in A uniformly for all $A \in H(P_b)$. Here the word "uniformly" means that for each $b \in O$ there will exist a number e_b such that $\lambda i\{e_b\}(A,i)$ is the characteristic function of H_b for all $A \in H(P_b)$. Furthermore, P_b and e_b will be obtained recursively from b by means of the recursion theorem [7, §11.7].

The case b = 1 is handled trivially by putting $P_1 = [\omega]^{\omega}$. The case b = 2 is handled by the following sublemma which is essentially a special case of [3, Lemma 5.9].

Sublemma. Let $K = H_2$ be the complete, recursively enumerable subset of ω . There exists a recursive, unbalanced set $P \subseteq [\omega]^{\omega}$ such that K is recursive in A uniformly for all $A \in H(P)$.

PROOF. Let $K = \{x \mid \exists y \ R(x, y)\}$ where R is recursive. For $A = \{a, b, c, ...\}$ with $a < b < c < \cdots$ put A into P if and only if

$$\forall x < a (\exists y < b . R(x, y) \leftrightarrow \exists z < c . R(x, z)).$$

Then P is easily seen to satisfy the conclusions of the sublemma.

Returning to the proof of Lemma 1, given $b = 2^a$ we may suppose inductively that we are in possession of a recursive, unbalanced set P_a such that H_a is recursive in A uniformly for all $A \in H(P_a)$. We have

$$H_b = \text{jump of } H_a = K^{H_a}$$

Relativizing the previous sublemma to H_a we obtain an unbalanced set $Q \subseteq [\omega]^{\omega}$ such that Q is recursive in H_a , and H_b is recursive in the pair H_a , A uniformly for all $A \in H(Q)$. Since P_a is recursive, $[\omega]^{\omega} - H(P_a)$ is recursively enumerable. But Q is recursive in A uniformly for all $A \in H(P_a)$. Therefore, we can define a recursive set $R \subseteq [\omega]^{\omega}$ such that $H(P_a) \cap R = H(P_a) \cap Q$. We then put $P_b = P_a \cap R$. Clearly P_b is recursive. By the Nash-Williams theorem, it is easy to see that P_b is unbalanced and, in fact, $H(P_b) = H(P_a) \cap H(Q)$. Hence H_b is recursive in A uniformly for all $A \in H(P_b)$.

Finally, given $b = 3 \cdot 5^e$, we may suppose inductively that we are in possession of recursive, unbalanced sets $P_{(e)(n)}$ such that $H_{(e)(n)}$ is recursive in A uniformly for all $n \in \omega$, $A \in H(P_{(e)(n)})$. Let P_b be the set of all A such that $A - \{n\}$ belongs to $P_{(e)(n)}$ where n is the least element of A. Then clearly P_b is recursive and unbalanced, and H_b is recursive in A uniformly for all $A \in H(P_b)$. This completes the proof of Lemma 1.

REMARK. Let ATR be the formal system of "arithmetical transfinite recursion", discussed by H. Friedman in [12]. Let $\Delta_1^0 - CR$ (respectively $\Sigma_1^0 - CR$) be the assertion, in the language of second order arithmetic, that H(P) is nonempty whenever P is a clopen (open) subset of $[\omega]^{\omega}$. Here CR stands for "completely Ramsey", cf. Silver [8]. By adapting Lemma 1 above and a lemma of Solovay [10], I can prove (in a very weak formal system) that $\Delta_1^0 - CR$ and $\Sigma_1^0 - CR$ are equivalent to each other and to (the principal axiom of) ATR. Earlier, in 1973, J. Steel [13] had proved that $\Delta_1^0 - AD$ and $\Sigma_1^0 - AD$ are equivalent to each other and to ATR, $\Delta_1^0 - AD$ (respectively $\Sigma_1^0 - AD$) being the assertion that every clopen (open) subset of ω^{ω} is determined.

If $P \subseteq [\omega]^{\omega}$ let $H^+(P)$ be the set of all $A \subseteq \omega$ such that $A - F \in H(P)$ for some finite set F. The next lemma is a generalization of [4, Lemma 2].

LEMMA 2. Suppose A is infinite and not rich. Then $A \in H^+(P)$ for every recursive $P \subseteq [\omega]^{\omega}$.

PROOF. We shall assume that A is an infinite set not in $H^+(P)$ and prove that A is rich. Let B be a set in which A is recursive. We must show that A has a subset C of the same degree as B. Since P is recursive, there exist recursive predicates S and T such that

$$P = \{ D \in [\omega]^{\omega} \mid \exists y \, S(\bar{D}(y)) \} \quad \text{and}$$
$$[\omega]^{\omega} - P = \{ D \in [\omega]^{\omega} \mid \exists y \, T(\bar{D}(y)) \}.$$

Moreover we may choose S and T so that for each $D \in [\omega]^{\omega}$ there is exactly one initial segment $\bar{D}(y)$ of D such that $S(\bar{D}(y))$ or $T(\bar{D}(y))$ holds. We shall obtain C as $\bigcup \{C_i \mid i \geq 1\}$ where for each i

- (i) C_{i+1} is a finite subset of A,
- (ii) $\max(C_i) < \min(C_{i+1})$,
- (iii) either $S(C_{i+1})$ or $T(C_{i+1})$,
- (iv) $i \in B$ if and only if $S(C_{i+1})$.

The C_i are defined by recursion on i as follows. Put $C_0 = \{0\}$. Given C_i put $F_i = \{j \mid j \leq \max(C_i)\}$ and let C_{i+1} be the finite set of least index (in some effective indexing) which satisfies (i)–(iv). Such a finite set exists since $A - F_i$ is not in H(P). Clearly C is recursive in B. On the other hand, C_{i+1} is the unique initial segment of $C - F_i$ such that (iii) holds. In particular, the sequence of C_i 's is recursive in C. Hence by (iv) C is recursive in C. This proves Lemma 2.

Theorem 1 is an immediate consequence of Lemmas 1 and 2.

Theorem 1 is sharp in that no nonhyperarithmetical set is recursive (or even hyperarithmetical) in every infinite poor set. For, by a remark in [9], there exists a nonempty, arithmetical collection of infinite poor sets, so the Gandy-Kreisel-Tait theorem (cf. Grilliot [2]) is applicable.

Say that $\mathscr{C} \subseteq [\omega]^{\omega}$ is downward closed if $B \in \mathscr{C}$ whenever $B \in [A]^{\omega}$, $A \in \mathscr{C}$. A \mathscr{C} -degree is the degree of an element of \mathscr{C} . A set X of degrees is upward closed if $b \in X$ whenever $b \ge a \in X$.

COROLLARY 1. If $\mathscr{C} \subseteq [\omega]^{\omega}$ is downward closed and contains a hyperarithmetical element, then the set of all \mathscr{C} -degrees is upward closed.

PROOF. Let $b \ge a$ where a is a $\mathscr C$ -degree. Let A be a set of degree a. If A is rich, there is $B \in [A]^{\omega}$ of degree b. If A is not rich, consider a hyperarithmetical set $H \in \mathscr C$. By Theorem 1, H is recursive in A and H is rich. Hence there is $B \in [H]^{\omega}$ of degree b. In either case $B \in \mathscr C$ so b is a $\mathscr C$ -degree.

COROLLARY 2. If $P \subseteq [\omega]^{\omega}$ is recursive, then the set of all H(P)-degrees is upward closed.

PROOF. Clearly H(P) is downward closed. Also, as remarked before Lemma 1, H(P) contains a hyperarithmetical element. Now the desired conclusion follows from Corollary 1.

Note added in proof (January 12, 1978). In the proof of Corollary 2, use was made of a lemma of Solovay to the effect that if P is recursive the H(P) contains a hyperarithmetical set. A simplified proof of Solovay's lemma has been discovered by R. B. Mansfield. Mansfield's paper is entitled A footnote to a theorem of Solovay on recursive encodability and will appear in the Proceedings of the Association for Symbolic Logic summer meeting in Wroclaw, Poland, August 1977, to be published by North-Holland.

REFERENCES

- [1] F. GALVIN and K. PRIKRY, Borel sets and Ramsey's theorem, this JOURNAL, vol. 38 (1973), pp. 193–198.
- [2] T. GRILLIOT, Omitting types: applications to recursion theory, this JOURNAL, vol. 37 (1972), pp. 81–89.
- [3] C. G. JOCKUSCH, JR., Ramsey's theorem and recursion theory, this JOURNAL, vol. 37 (1972), pp. 268–280.
- [4] ——, Upward closure and cohesive degrees, Israel Journal of Mathematics, vol. 15 (1973), pp. 332-335.
 - [5] A. R. D. MATHIAS, Happy families, Annals of Mathematical Logic (to appear).
- [6] C. St. J. A. NASH-WILLIAMS, On well-quasi-ordering transfinite sequences, Proceedings of the Cambridge Philosophical Society, vol. 61 (1965), pp. 33-39.
- [7] H. ROGERS, JR., Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967.
 - [8] J. H. SILVER, Every analytic set is Ramsey, this JOURNAL, vol. 35 (1970), pp. 60-64.
 - [9] R. I. SOARE, Sets with no subset of higher degree, this JOURNAL, vol. 34 (1969), pp. 53-56.
- [10] R. M. SOLOVAY, Hyperarithmetically encodable sets, IBM research report RC 5245 (1975); Transactions of the American Mathematical Society (to appear).
 - [11] C. Spector, Recursive well-orderings, this Journal, vol. 20 (1955), pp. 151-163.
- [12] H. FRIEDMAN, Some systems of second order arithmetic and their use, Proceedings of the International Congress of Mathematicians, Vancouver, 1974, vol. 1, pp. 235-242.
- [13] J. STEEL, *Determinateness and subsystems of analysis*, Ph.D. Thesis, University of California at Berkeley, 1977.

UNIVERSITY OF OXFORD OXFORDSHIRE, ENGLAND

PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PA 16802