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THE JOURNAL OF SymBoLIc Logic
Volume 43, Number 1, March 1978

SETS WHICH DO NOT HAVE SUBSETS
OF EVERY HIGHER DEGREE'

STEPHEN G. SIMPSON

Let A be a subset of w, the set of natural numbers. The degree .of A is its
degree of recursive unsolvability. We say that A is rich if every degree above
that of A is represented by a subset of A. We say that A is poor if no degree
strictly above that of A is represented by a subset of A. The existence of
infinite poor (and hence nonrich) sets was proved by Soare [9].

THEOREM 1. Suppose that A is infinite and not rich. Then every hyperarith -
metical subset H of w is recursive in A.

In the special case when H is arithmetical, Theorem 1 was proved by
Jockusch [4] who employed a degree-theoretic analysis of Ramsey’s theorem
[3]. In our proof of Theorem 1 we employ a similar, degree-theoretic analysis of
a certain generalization of Ramsey’s theorem. The generalization of Ramsey’s
theorem is due to Nash-Williams [6]. If A C w we write [A ] for the set of all
infinite subsets of A. If P C [w]” we let H(P) be the set of all infinite sets A
such that either [A]* C P or [A]* N P = J. Nash-Williams’ theorem is essen-
tially the statement that if P C [w]” is clopen (in the usual, Baire topology on
[@]®) then H(P) is nonempty. Subsequent, further generalizations of Ramsey’s
theorem were proved by Galvin and Prikry [1], Silver [8], Mathias [5], and
analyzed degree-theoretically by Solovay [10]; those results are not needed for
this paper.

A subset of [w]” is said to be recursively enumerable if it can be written in the
form {A € [w]*|3yR(A(y))} where A(y)=A N{0,1,...,y—1} and R is a
recursive predicate of finite sets. A set P C [w]* is said to be recursive if both P
and [w]” — P are recursively enumerable. A recursive subset of [w]* is clopen;
indeed, a subset of [w]“ is clopen if and only if it is recursive in some subset of
o (cf. [7, pp. 351-353]). Below we study degrees of members of H(P) where P
is recursive. It follows from a result of Solovay [10] that, for P recursive, H(P)
contains a hyperarithmetical set. A strong converse to this result is the
following:

LemMMma 1. For any hyperarithmetical set B C w there exists a recursive set
P C[w]” such that B is recursive in A for all A € H(P).

PrOOF. A set PC[w]® is said to be unbalanced if [A]° CP for all
A € H(P). Our notation for the hyperarithmetical hierarchy is from Spector
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136 S. G. SIMPSON

[11]. For each b € O we shall construct a recursive, unbalanced set P,Cl[w]®
such that H, is recursive in A uniformly for all A € H(P,). Here the word
“uniformly”” means that for each b € O there will exist a number e, such that
Ai{es} (A, i) is the characteristic function of H, for all A € H(P,). Further-
more, P, and e, will be obtained recursively from b by means of the recursion
theorem [7, §11.7].

The case b =1 is handled trivially by putting P, = [w]“. The case b =2 is
handled by the following sublemma which is essentially a special case of [3,
Lemma 5.9].

SuBLEMMA. Let K = H, be the complete, recursively enumerable subset of w.
There exists a recursive, unbalanced set P C [w]” such that K is recursive in A
uniformly for all A € H(P).

Proor. Let K ={x|3yR(x,y)} where R is recursive. For A ={a, b,c,...}
with a <b <c < --- put A into P if and only if

Vx <a@y <b.R(x,y)<>3z <c.R(x,2)).

Then P is easily seen to satisfy the conclusions of the sublemma.

Returning to the proof of Lemma 1, given b =2“ we may suppose induc-
tively that we are in possession of a recursive, unbalanced set P, such that H, is
recursive in A uniformly for all A € H(P,). We have

H, = jump of H, = K",

Relativizing the previous sublemma to H, we obtain an unbalanced set
Q C[w]” such that Q is recursive in H,, and H, is recursive in the pair H,, A
uniformly for all A € H(Q). Since P, is recursive, [w]® — H(P,) is recursively
enumerable. But Q is recursive in A uniformly for all A € H(P,). Therefore,
we can define a recursive set R C [w]® such that H(P,) N R = H(P.) N Q. We
then put P,=P,NR. Clearly P, is recursive. By the Nash-Williams theorem, it is
easy to see that P, is unbalanced and, in fact, H(P,) = H(P.) N H(Q). Hence
H, is recursive in A uniformly for all A € H(P,).

Finally, given b = 3 - 5¢, we may suppose inductively that we are in possession
of recursive, unbalanced sets P, such that H ., is recursive in A uniformly
for all n € w, A € H(P(.). Let P, be the set of all A such that A —{n}
belongs to Py, where n is the least element of A. Then clearly P, is recursive
and unbalanced, and H, is recursive in A uniformly for all A € H(P,). This
completes the proof of Lemma 1.

RemaArRk. Let ATR be the formal system of ‘‘arithmetical transfinite
recursion”, discussed by H. Friedman in [12]. Let A}—CR (respectively
39— CR) be the assertion, in the language of second order arithmetic, that
H(P) is nonempty whenever P is a clopen (open) subset of [w]“. Here CR
stands for ‘“‘completely Ramsey”’, cf. Silver [8]. By adapting Lemma 1 above
and a lemma of Solovay [10], I can prove (in a very weak formal system) that
A} — CR and X} — CR are equivalent to each other and to (the principal axiom
of) ATR. Earlier, in 1973, J. Steel [13] had proved that A}— AD and X{— AD
are equivalent to each other and to ATR, A} — AD (respectively %] —AD)being
the assertion that every clopen (open) subset of w“ is determined.
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If PC[w]” let H(P) be the set of all A C w such that A — F € H(P) for
some finite set F. The next lemma is a generalization of [4, Lemma 2].

LeEMMA 2. Suppose A is infinite and not rich. Then A € H*(P) for every
recursive P C [w]®.

Proor. We shall assume that A is an infinite set not in H*(P) and prove
that A isrich. Let B be a set in which A is recursive. We must show that A has
a subset C of the same degree as B. Since P is recursive, there exist recursive
predicates S and T such that

P={D €[w]"|3yS(D(y))} and
[@]* =P ={D €[w]” |3y T(D(y))}

Moreover we may choose S and T so that for each D € [w]® there is exactly
one initial segment D (y) of D such that S(D(y)) or T(D(y)) holds. We shall
obtain C as U {C, |i =1} where for each i

(i) Gi.1 is a finite subset of A,

(ii) max(C) <min(C.,),

(iii) either S(Ci.1) or T(Cisy),

(iv) i € B if and only if S(C..).

The C; are defined by recursion on i as follows. Put C, = {0}. Given C; put
F;={j|j =max(C)} and let C., be the finite set of least index (in some
effective indexing) which satisfies (i)—(iv). Such a finite set exists since A — F; is
not in H(P). Clearly C is recursive in B. On the other hand, C., is the unique
initial segment of C — F; such that (iii) holds. In particular, the sequence of G;’s
is recursive in C. Hence by (iv) B is recursive in C. This proves Lemma 2.

Theorem 1 is an immediate consequence of Lemmas 1 and 2.

Theorem 1 is sharp in that no nonhyperarithmetical set is recursive (or even
hyperarithmetical) in every infinite poor set. For, by a remark in [9], there
exists a nonempty, arithmetical collection of infinite poor sets, so the
Gandy-KTreisel-Tait theorem (cf. Grilliot [2]) is applicable.

Say that € C [w]” is downward closed if B € € whenever BE[A]°, A € €.
A €-degree is the degree of an element of 6. A set X of degrees is upward
closed if b € X whenever b =a € X.

CoroLLARY 1. If € C[w]” is downward closed and contains a hyperarith -
metical element, then the set of all €-degrees is upward closed.

ProOF. Let b =a where a is a €-degree. Let A be a set of degree a. If A is
rich, there is B € [A ] of degree b. If A is not rich, consider a hyperarithmeti-
cal set H € €. By Theorem 1, H is recursive in A and H is rich. Hence there is
B € [H]” of degree b. In either case B € € so b is a €-degree.

CoroLLARY 2. If P C[w]” is recursive, then the set of all H(P)-degrees is
upward closed.

Proor. Clearly H(P) is downward closed. Also, as remarked before
Lemma 1, H(P) contains a hyperarithmetical element. Now the desired
conclusion follows from Corollary 1.
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138 S. G. SIMPSON

NOTE ADDED IN PROOF (JANUARY 12, 1978). In the proof of Corollary 2,
use was made of a lemma of Solovay to the effect that if P is recursive the H(P)
contains a hyperarithmetical set. A simplified proof of Solovay’s lemma has been
discovered by R. B. Mansfield. Mansfield’s paper is entitled 4 footnote to a theorem
of Solovay on recursive encodability and will appear in the Proceedings of the As-
sociation for Symbolic Logic summer meeting in Wroclaw, Poland, August 1977,
to be published by North-Holland.
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