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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 43, Number 1, March 1978 

SETS WHICH DO NOT HAVE SUBSETS 
OF EVERY HIGHER DEGREE' 

STEPHEN G. SIMPSON 

Let A be a subset of co, the set of natural numbers. The degree of A is its 
degree of recursive unsolvability. We say that A is rich if every degree above 
that of A is represented by a subset of A. We say that A is poor if no degree 
strictly above that of A is represented by a subset of A. The existence of 
infinite poor (and hence nonrich) sets was proved by Soare [9]. 

THEOREM 1. Suppose that A is infinite and not rich. Then every hyperarith - 
metical subset H of co is recursive in A. 

In the special case when H is arithmetical, Theorem 1 was proved by 
Jockusch [4] who employed a degree-theoretic analysis of Ramsey's theorem 
[3]. In our proof of Theorem 1 we employ a similar, degree-theoretic analysis of 
a certain generalization of Ramsey's theorem. The generalization of Ramsey's 
theorem is due to Nash-Williams [6]. If A C co we write [A ]- for the set of all 
infinite subsets of A. If P C [co]@ we let H(P) be the set of all infinite sets A 
such that either [A ]- C P or [A ]- n P = 0. Nash-Williams' theorem is essen- 
tially the statement that if P C [co]@ is clopen (in the usual, Baire topology on 
[co]w) then H(P) is nonempty. Subsequent, further generalizations of Ramsey's 
theorem were proved by Galvin and Prikry [1], Silver [8], Mathias [5], and 
analyzed degree-theoretically by Solovay [10]; those results are not needed for 
this paper. 

A subset of [co]w is said to be recursively enumerable if it can be written in the 
form {A E[cw]wI:yR(A(y))} where A(y)=A n{O,l,...,y-l} and R is a 
recursive predicate of finite sets. A set P C [co]w is said to be recursive if both P 
and [co]@ - P are recursively enumerable. A recursive subset of [co]@ is clopen; 
indeed, a subset of [co]w is clopen if and only if it is recursive in some subset of 
co (cf. [7, pp. 351-353]). Below we study degrees of members of H(P) where P 
is recursive. It follows from a result of Solovay [10] that, for P recursive, H(P) 
contains a hyperarithmetical set. A strong converse to this result is the 
following: 

LEMMA 1. For any hyperarithmetical set B C co there exists a recursive set 
P C [a ]' such that B is recursive in A for all A E H(P). 

PROOF. A set P C [co ]w is said to be unbalanced if [A]" C P for all 
A E H(P). Our notation for the hyperarithmetical hierarchy is from Spector 
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136 S. G. SIMPSON 

[111. For each b E 0 we shall construct a recursive, unbalanced set Pb C[col 
such that Hb is recursive in A uniformly for all A E H(Pb). Here the word 
"uniformly" means that for each b E Q there will exist a number eb such that 
Ai{eb} (A, i) is the characteristic function of Hb for all A E H(Pb). Further- 
more, Pb and eb will be obtained recursively from b by means of the recursion 
theorem [7, ?11.7]. 

The case b = 1 is handled trivially by putting P1 = [o]@. The case b = 2 is 
handled by the following sublemma which is essentially a special case of [3, 
Lemma 5.9]. 

SUBLEMMA. Let K = H2 be the complete, recursively enumerable subset of W. 
There exists a recursive, unbalanced set P C [w]w such that K is recursive in A 
uniformly for all A E H(P). 

PROOF. Let K = {x 13 y R (x, y)} where R is recursive. For A = {a, b, c, ... } 
with a<b<c< c put A into P if and only if 

Vlx < a(3y < b. R(x, y)->3z < c. R(x, z)). 

Then P is easily seen to satisfy the conclusions of the sublemma. 
Returning to the proof of Lemma 1, given b = 2a we may suppose induc- 

tively that we are in possession of a recursive, unbalanced set Pa such that Ha is 
recursive in A uniformly for all A E H(Pa). We have 

Hb = jump of Ha = KH-. 

Relativizing the previous sublemma to Ha we obtain an unbalanced set 
Q C [()]' such that Q is recursive in Ha, and Hb is recursive in the pair Ha, A 
uniformly for all A E H(Q). Since Pa is recursive, [co]@ - H(Pa) is recursively 
enumerable. But Q is recursive in A uniformly for all A E H(Pa). Therefore, 
we can define a recursive set R C [w]w such that H(Pa) n R = H(Pa) n Q. We 
then put Pb = Pa n R. Clearly Pb is recursive. By the Nash-Williams theorem, it is 
easy to see that Pb is unbalanced and, in fact, H(Pb) = H(Pa) n H(Q). Hence 
Hb is recursive in A uniformly for all A E H(Pb). 

Finally, given b = 3 . 5', we may suppose inductively that we are in possession 
of recursive, unbalanced sets P{e}(n) such that H{e}(n) is recursive in A uniformly 
for all n E a, A E H(P{e}(n)). Let Pb be the set of all A such that A - {n} 
belongs to P{e}(n) where n is the least element of A. Then clearly Pb is recursive 
and unbalanced, and Hb is recursive in A uniformly for all A E H(Pb). This 
completes the proof of Lemma 1. 

REMARK. Let ATR be the formal system of "arithmetical transfinite 
recursion", discussed by H. Friedman in [12]. Let A?- CR (respectively 

- CR) be the assertion, in the language of second order arithmetic, that 
H(P) is nonempty whenever P is a clopen (open) subset of [co]@. Here CR 
stands for "completely Ramsey", cf. Silver [8]. By adapting Lemma 1 above 
and a lemma of Solovay [10], I can prove (in a very weak formal system) that 
A' - CR and E?- CR are equivalent to each other and to (the principal axiom 
of) ATR. Earlier, in 1973, J. Steel [13] had proved that A7- AD and , - AD 
are equivalent to each other and to ATR, A' - AD (respectively -AD) being 
the assertion that every clopen (open) subset of cov is determined. 
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SETS WHICH DO NOT HAVE SUBSETS 137 

If P C [co]- let H+(P) be the set of all A C co such that A - F E H(P) for 
some finite set F. The next lemma is a generalization of [4, Lemma 2]. 

LEMMA 2. Suppose A is infinite and not rich. Then A E H+(P) for every 
recursive P C [a ]-. 

PROOF. We shall assume that A is an infinite set not in H+(P) and prove 
that A is rich. Let B be a set in which A is recursive. We must show that A has 
a subset C of the same degree as B. Since P is recursive, there exist recursive 
predicates S and T such that 

P = {D E [v]- | 3yS(D(y))} and 

[a ]- - P = {D E [a]V |3y T(D(y))}. 

Moreover we may choose S and T so that for each D E [c]w there is exactly 
one initial segment D(y) of D such that S(D(y)) or T(D(y)) holds. We shall 
obtain C as U {C I i 2 1} where for each i 

(i) Ci+1 is a finite subset of A, 
(ii) max(Ci) < min(Cj+j), 

(iii) either S(Ci+1) or T(Cj+0) 
(iv) i E B if and only if S(Ci+1). 

The Ci are defined by recursion on i as follows. Put C0 = {O}. Given Ci put 
F ={jI j ? max(Cj)} and let C?+1 be the finite set of least index (in some 
effective indexing) which satisfies (i)-(iv). Such a finite set exists since A - F, is 
not in H(P). Clearly C is recursive in B. On the other hand, C?+1 is the unique 
initial segment of C - F, such that (iii) holds. In particular, the sequence of Ci's 
is recursive in C. Hence by (iv) B is recursive in C. This proves Lemma 2. 

Theorem 1 is an immediate consequence of Lemmas 1 and 2. 
Theorem 1 is sharp in that no nonhyperarithmetical set is recursive (or even 

hyperarithmetical) in every infinite poor set. For, by a remark in [9], there 
exists a nonempty, arithmetical collection of infinite poor sets, so the 
Gandy-Kreisel-Tait theorem (cf. Grilliot [2]) is applicable. 

Say that W C [co ]' is downward closed if B E W whenever B E [A ]', A E T. 
A i-degree is the degree of an element of T'. A set X of degrees is upward 
closed if b E X whenever b 2 a E X. 

COROLLARY 1. If 'K C [c]w is downward closed and contains a hyperarith- 
metical element, then the set of all i-degrees is upward closed. 

PROOF. Let b 2 a where a is a 'K-degree. Let A be a set of degree a. If A is 
rich, there is B E [A ]' of degree b. If A is not rich, consider a hyperarithmeti- 
cal set H E T'. By Theorem 1, H is recursive in A and H is rich. Hence there is 
B E [H]w of degree b. In either case B E W so b is a 'V-degree. 

COROLLARY 2. If P C [c]w is recursive, then the set of all H(P)-degrees is 
upward closed. 

PROOF. Clearly H(P) is downward closed. Also, as remarked before 
Lemma 1, H(P) contains a hyperarithmetical element. Now the desired 
conclusion follows from Corollary 1. 
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138 S. G. SIMPSON 

NOTE ADDED IN PROOF (JANUARY 12, 1978). In the proof of Corollary 2, 

use was made of a lemma of Solovay to the effect that if P is recursive the H(P) 
contains a hyperarithmetical set. A simplified proof of Solovay's lemma has been 
discovered by R. B. Mansfield. Mansfield's paper is entitled A footnote to a theorem 
of Solovay on recursive encodability and will appear in the Proceedings of the As- 
sociation for Symbolic Logic summer meeting in Wroclaw, Poland, August 1977, 
to be published by North-Holland. 
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