
Some conservation results on weak König’s

lemma

Stephen G. Simpson 1

Department of Mathematics, The Pennsylvania State University, University Park,
PA 16802, USA

Kazuyuki Tanaka 2

Mathematical Institute, Tohoku University, Sendai, 980-8578, Japan

Takeshi Yamazaki 3

College of Integrated Arts and Sciences, Osaka Prefecture University, Sakai,
599-8531, Japan

Abstract

By RCA0, we denote the system of second order arithmetic based on recursive com-
prehension axioms and Σ0

1 induction.WKL0 is defined to be RCA0 plus weak König’s
lemma: every infinite tree of sequences of 0’s and 1’s has an infinite path. In this
paper, we first show that for any countable model M of RCA0, there exists a count-
able model M ′ of WKL0 whose first order part is the same as that of M , and whose
second order part consists of the M -recursive sets and sets not in the second order
part of M . By combining this fact with a certain forcing argument over universal
trees, we obtain the following result (which has been called Tanaka’s conjecture):
if WKL0 proves ∀X∃!Y ϕ(X, Y ) with ϕ arithmetical, so does RCA0. We also discuss
several improvements of this results.
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1 Introduction

A celebrated metamathematical theorem due to L. Harrington asserts that

WKL0 is conservative over RCA0 for the arithmetical (in fact, Π1
1) sentences.

In other words, if an arithmetical theorem can be obtained by some analytical

methods involving the compactness argument over computable mathematics,

it is already provable without it. This result can be viewed as a computable

analogue of the Gödel-Kreisel theorem on set theory, which asserts that if

an arithmetical sentence can be proved in ZF with the axiom of choice, it is

already provable without it.

It is natural to think of extending Harrington’s conservation result to analyt-

ical sentences, since the Gödel-Kreisel theorem has been extended to the Σ1
2

(in fact, Π1
3) sentences by J. Shoenfield. However, we can easily see that WKL0

is not conservative over RCA0 for all Σ1
1 sentences, since an instance of weak

König’s lemma is Σ1
1.

In this context, it has been conjectured by K. Tanaka [14] that if WKL0 proves

∀X∃!Y ϕ(X, Y ) with ϕ arithmetical, so does RCA0. By ∃!Xϕ(X), we mean

that there exists a unique X satisfying ϕ(X). The difficulty in solving the

conjecture arises from the restricted induction of those systems. It was soon

realized that Tanaka’s conjecture holds under the assumption of arithmetical

induction.

Some important results concerned with this conjecture were obtained by sev-

eral people. Most notably, A. M. Fernandes [3] already proved the conjecture

for the sentences of the form ∀X∃!Y ϕ(X, Y ) with ϕ ∈ Σ0
3. He also showed that

WKL0 + Σ0
2 induction is conservative over RCA0 + Σ0

2 induction with respect

to the sentences of the same form. In a different context, U. Kohlenbach [8]
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independently obtained many results somewhat similar to ours. He works in

finite type systems with weak Konig’s lemma, and investigates particular ex-

amples of unique existence theorems, e.g., the best Chebysheff approximation.

It is not so easy to translate his results into our terms, but from them, we

can obtain more or less a solution to the conjecture for sentences of the form

∀X∃!Y ϕ(X, Y ) with ϕ ∈ Σ0
2. Finally, Yamazaki [15] discusses variations of

Tanaka’s conjecture, generalizing a result of Brown and Simpson [2].

The origin of the present paper was a defective attack on this problem by the

last two authors. Subsequently, by adducing a result of Pour-El/Kripke [9],

the first author completed the proof, which launched a joint study on more

elaborate results and techniques reported in this paper.

Let us note an application of our main result. The fundamental theorem

of algebra, which asserts that any complex polynomial of any positive de-

gree has a unique factorization into linear terms, can be stated in the form

∀X∃!Y ϕ(X, Y ) with ϕ arithmetical by using a canonical expression (i.e., the

binary expansion) for the complex numbers. Most of popular proofs of the

theorem use some analytical methods which can be easily formalized in WKL0

but not in RCA0. However, by our conservation result, it can be concluded

without elaborating a computable solution that the fundamental theorem of

algebra (for polynomials of positive standard degrees) is already provable in

RCA0.

By contrast, consider the statement that any continuous real function on the

closed unit interval [0, 1] has a maximum value. This sentence cannot be ex-

pressed in the form ∀X∃!Y ϕ(X, Y ) with ϕ arithmetical. The point is that we

can not determine arithmetically whether or not a set encodes a total contin-

uous function in the terms of Simpson [12].

Now, we recall some basic definitions about the systems RCA0 and WKL0. The

language L2 of second-order arithmetic is a two-sorted language with number

variables x, y, z, . . . and set variables X, Y, Z, . . . Numerical terms are built

up from numerical variables and constant symbols 0, 1 by means of binary

operations + and ·. Atomic formulas are s = t, s < t and s ∈ X, where

s and t are numerical terms. Bounded (Σ0
0 or Π0

0) formulas are constructed

from atomic formulas by propositional connectives and bounded numerical

quantifiers (∀x < t) and (∃x < t), where t does not contain x. A Σ0
n formula
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is of the form ∃x1∀x2 . . . xnθ with θ bounded, and a Π0
n formula is of the

form ∀x1∃x2 . . . xnθ with θ bounded. All the Σ0
n and Π0

n formulas are the

arithmetical (Σ1
0 or Π1

0) formulas. A Σ1
n formula is of the form ∃X1∀X2 . . .Xnϕ

with ϕ arithmetical, and a Π1
n formula is of the form ∀X1∃X2 . . .Xnϕ with ϕ

arithmetical.

The system RCA0 consists of

1. the ordered semiring axioms for (ω,+, ·, 0, 1, <),

2. ∆0
1 comprehension scheme:

∀x(ϕ(x) ↔ ψ(x)) → ∃X∀x(x ∈ X ↔ ϕ(x)),

where ϕ(x) is Σ0
1, ψ(x) is Π0

1, and X does not occur freely in ϕ(x),

3. Σ0
1 induction scheme:

ϕ(0) ∧ ∀x(ϕ(x) → ϕ(x+ 1)) → ∀xϕ(x),

where ϕ(x) is a Σ0
1 formula.

Within RCA0, we define 2<N to be the set of (codes for) finite sequences of 0’s

and 1’s. A set T ⊆ 2<N is said to be a tree (or precisely 0-1 tree) if any initial

segment of a sequence in T is also in T . We say that P ⊆ N is a path through

T if for each n, the sequence P [n] = 〈χP (0), χP (1), . . . , χP (n− 1)〉 belongs to

T , where χP is the characteristic function of P . The axioms of WKL0 consists

of those of RCA0 plus weak König’s lemma: every infinite 0-1 tree T has a

path.

The interest of WKL0 has been well established through an ongoing program,

called Reverse Mathematics. H. Friedman, S. G. Simpson and others have

shown that numerous well-known theorems in different fields of mathematics

are provably equivalent to WKL0 over RCA0 [12].

An L2-structureM is an ordered 7-tuple (|M |, SM ,+M , ·M , 0M , 1M , <M), where

|M | serves as the range of the number variables and SM is a set of subsets

of |M |, that is, the range of the set variables. The first order part of M is

obtained from M by removing SM . If its first order part is the structure of
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standard natural numbers, M is called an ω-structure or an ω-model. In par-

ticular, ω-models of WKL0 are known as Scott systems and extensively studied

by not a few people, e.g. Kaye [7].

In the next section, we use tree forcing to prove that for any countable model

M of RCA0, there exists a countable model M ′ of WKL0 such that M and M ′

have the same first order part and SM ∩ SM ′ is the set of M-recursive subsets

of |M |. This can be regarded as a non-ω extension of Kreisel’s recursive hard

core theorem, which asserts that the intersection of all ω-models of WKL0 is

the set of recursive sets. In Section 3, we introduce universal tree forcing. In

Section 4, by combining the techniques in the preceding sections, we prove

our main theorem that if WKL0 proves ∀X∃!Y ϕ(X, Y ) with ϕ arithmetical,

so does RCA0. In Section 5, we use a forcing argument with uniformly pointed

perfect trees to prove that if WKL0 proves ∀X∃!Y ϕ(X, Y ) with ϕ Π1
1, then

RCA0 proves ∀X∃Y ϕ(X, Y ). In Section 6, we prove a stronger form of our

main theorem, that is, if WKL+
0 proves ∀X∃!Y ϕ(X, Y ) with ϕ arithmetical,

so does RCA0.

2 A non-ω hard core theorem

In this section, we first review the tree forcing argument which is originated by

Jockusch/Soare [6] and used by L. Harrington for his conservation result on

WKL0. We then reinforce this argument with some other machinery to prove

that for any countable model M of RCA0, there exists a countable model M ′

of WKL0 such that M ′ has the same first order part as M and SM ∩SM ′ is the

set of M -recursive subsets of |M |. The following exposition of the tree forcing

argument is based on [12, Section IX.2]. See also [12, Section VIII.2] for an

account of hard core theorems.

Let M be an L2-structure which satisfies the axioms of ordered semirings and

Σ0
1 induction. We say that X ⊆ |M | is ∆0

1 definable over M , denoted X ∈ ∆0
1-

def(M), if there exist Σ0
1 formulas ϕ1 and ϕ2 with parameters from |M | ∪ SM

such that

X = {n ∈ |M | :M |= ϕ1(n)} = {n ∈ |M | :M |= ¬ϕ2(n)}.

If ϕ1 and ϕ2 have no set parameter (except A ∈ SM), we say that X is M -
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recursive (in A). By RECM (or RECM(A)), we denote the set of subsets of

|M | which are M-recursive (M -recursive in A). If L2-structures M and M ′

have the same first order part, RECM = RECM ′ . It is also easy to see that if

M is a model of RCA0, ∆0
1-def(M) = SM .

Lemma 2.1 Let M be an L2-structure which satisfies the axioms of ordered

semirings and Σ0
1 induction. Let M ′ be the L2-structure with the same first

order part as M and SM ′ = ∆0
1-def(M). Then M ′ is a model of RCA0.

Proof. See the proof of [12, Lemma IX.1.8]. �

We now define basic notions of the tree forcing. LetM be a countable model of

RCA0. Let TM be the set of all T ∈ SM such thatM |= T is an infinite 0-1 tree.

For any T ∈ TM and P ⊆ |M |, we say that P is a path through T if, for any

n ∈ |M |, P [n] ∈ T . Here P [n] is a sequence σ ∈ (2n)M such that for all

m <M n, m ∈ P if and only if M |= σ(m) = 1. Let [T ] be the set of paths

through T . We put PM = [(2<N)M ]. We say that D ⊆ TM is dense if, for

each T ∈ TM , there exists T ′ ∈ D such that T ′ ⊆ T . A path G is said to be

TM -generic if, for every M-definable dense set D ⊆ TM , there exists T ∈ D
such that G ∈ [T ].

Lemma 2.2 Let M be a countable model of RCA0. For any T ∈ TM , there

exists a TM -generic G such that G ∈ [T ].

Proof. Let 〈Di : i ∈ ω〉 be an enumeration of all M-definable dense sets. We

can easily construct a sequence of trees Ti (i ∈ ω) such that T0 = T, Ti+1 ⊆ Ti

and Ti+1 ∈ Di for each i ∈ ω. Then, a path G =
⋂
Ti is what we want. �

Lemma 2.3 Let M be a countable model of RCA0 and suppose that G ∈ PM

is TM -generic. Let M ′ be the L2-structure such that M ′ has the same first

order part as M and SM ′ = SM ∪ {G}. Then, M ′ |= Σ0
1 induction.

Proof. It suffices to prove that for any m ∈ |M | and any Σ0
1 formula ϕ(x,G)

with parameters from |M | ∪SM ′, the set {n ∈ |M | : n <M m ∧M ′ |= ϕ(n,G)}
is M-finite, since Σ0

1 induction is provably equivalent to bounded Σ0
1 compre-

hension (cf. [12, Remark II.3.11]). Without loss of generality, we may assume

that ϕ(x,G) is of the form ∃yθ(x,G[y]), where θ(x, τ) is Σ0
0 with parameters

from |M | ∪ SM . Let Dm be the set of all T ∈ TM such that for any n <M m,

M satisfies either
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1. ∀τ ∈ T¬θ(n, τ), or

2. ∃w∀τ ∈ T (lh(τ ) = w → ∃τ ′ ⊆ τθ(n, τ ′),

where lh(τ) denotes the length of sequence τ . Since we can prove that Dm is

dense (see[12, Lemma IX.2.4], there exists T ′ ∈ Dm such that G ∈ [T ′]. Then,

{n ∈ |M | : n <M m ∧M ′ |= ϕ(n,G)} if and only if {n ∈ |M | : n <M m

∧∃w∀τ ∈ T ′(lh(τ) = w → ∃τ ′ ⊆ τθ(n, τ ′)}. Therefore, by Σ0
1 induction over

M , {n ∈ |M | : n <M m ∧M ′ |= ϕ(n,G)} is M-finite. �

Let B = 〈Bi : i ∈ ω〉 be a sequence from PM = [(2<N)M ]. ∆0
1-def(M ;B) is the

set of all X ⊆ |M | such that there exist Σ0
0 formulas θ1 and θ2 with parameters

from |M | ∪ SM such that

X = {n ∈ |M | : ∀m ∈ |M |(M |= θ1(n,B1[m], . . . , Bl[m]))}

= {n ∈ |M | : ∃m ∈ |M |(M |= θ2(n,B1[m], . . . , Bl[m]))}

for some l ∈ ω. M [B] denotes the L2-structure (|M |,∆0
1-def(M ;B),+M , ·M ,

0M , 1M , <M). If B = 〈P 〉, then we write M [P ] for M [B].

Lemma 2.4 Let M be a countable model of RCA0. For any TM -generic G,

M [G] is a countable model of RCA0.

Proof. It is obvious from Lemmas 2.1 and 2.3. �

Corollary 2.5 Let M be a countable model of RCA0. For any T ∈ TM , there

exists a countable model M ′ of RCA0 such that M ′ has the same first part as

M , SM ⊆ SM ′ and M ′ |= T has a path.

Proof. It is straightforward from Lemmas 2.2 and 2.4. �

Lemma 2.6 Let M be a countable model of RCA0. Then there exists a count-

able model M ′ of WKL0 such that M ′ has the first part as M and SM ⊆ SM ′.

Proof. Use Corollary 2.5 repeatedly. �

Theorem 2.7 (L. Harrington) For any Π1
1 sentence ϕ, if ϕ is a theorem of

WKL0, then ϕ is already a theorem of RCA0. In particular, the arithmetical

part of WKL0 is the same as that of RCA0, or equivalently Σ0
1-PA (first order

Peano arithmetic with induction scheme restricted to the Σ0
1-formulas).
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Proof. It easily follows from Lemma 2.6 by the help of Gödel’s completeness

theorem. �

We now recall another important characterization of models of WKL0. Let M

be a countable model of RCA0. Let C be a countable subset of the set P (|M |)
of all subsets of |M |. D ⊆ TM is M ∪ C definable if there exists a formula

ϕ with parameters from |M | ∪ SM ∪ C such that for any T ∈ TM , T ∈ D

if and only if M ′ |= ϕ(T ), where M ′ = (|M |, SM ∪ C,+M , ·M , 0M , 1M , <M).

A path G is said to be TM -C-generic if, for every M ∪ C definable dense set

D ⊆ TM , there exists T ∈ D such that G ∈ [T ]. If G is TM -C-generic, then

G is TM -generic. The following lemma is a straightforward generalization of

Lemma 2.2.

Lemma 2.8 Let M be a countable model of RCA0. Let C be a countable subset

of P (|M |). For any T ∈ TM , there exists TM -C-generic G such that G ∈ [T ].

Lemma 2.9 Let M be a countable model of RCA0. Suppose that C is a count-

able subset of P (|M |) with SM ∩C = ∅ and G is TM -C-generic. Then SM [G] ∩
C = ∅.

Proof. We want to prove that for any A ∈ C and any Σ0
1 formula ϕ1 and ϕ2

with parameters from |M | ∪ SM ∪ {G},

A �= {n ∈ |M | :M [G] |= ϕ1(n,G)} or A �= {n ∈ |M | :M [G] |= ¬ϕ2(n,G)}.

So fix any A ∈ C. Suppose that ϕi(x,G) is of the form ∃yθi(x,G[y]) where

θi(x, τ) is Σ0
0 with parameters from |M | ∪SM , for i = 0, 1. Then let DA be the

set of all T ∈ TM such that one of the followings holds for some m ∈ |M |:

A1. m ∈ A ∧M |= ∀τ ∈ T¬θ1(m, τ),

A2. m �∈ A ∧M |= ∃w∀τ ∈ T (lh(τ ) = w → ∃τ ′ ⊆ τθ1(m, τ
′)),

A3. m ∈ A ∧M |= ∃w∀τ ∈ T (lh(τ ) = w → ∃τ ′ ⊆ τθ2(m, τ
′)),

A4. m �∈ A ∧M |= ∀τ ∈ T¬θ2(m, τ).

We show that DA is dense. Then, there exists an M-tree in DA such that G

is a path through it. Hence, by the definition of DA, the proof is completed.
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To see that DA is dense, let T ∈ TM be given. We first claim that there exists

P ∈ [T ] such that A �= {n ∈ |M | : M [P ] |= ϕ1(n, P )} or A �= {n ∈ |M | :

M [P ] |= ¬ϕ2(n, P )}. By way of contradiction, deny the claim. By Lemma 2.6,

we can construct a countable model M ′ of WKL0 such that M ′ has the same

first order part as M and SM ⊆ SM ′. Then,

n ∈ A⇔M ′ |= ∀Z(Z is a path through T → ϕ1(n, Z)).

Since “Z is a path through T” is expressed as a Π0
1 formula, “Z is a path

through T → ϕ1(n, Z)” is Σ0
1, and so the whole formula ∀Z(Z is a path

through T → ϕ1(n, Z)) is logically equivalent in M ′ to a Σ0
1 formula ϕ′

1(n)

with parameters from |M | ∪SM by virtue of compactness of the Cantor space

(cf. [12, Lemma V.III.2.4]). Since for any n ∈ |M |, M ′ |= ϕ′(n) if and only

if M |= ϕ′(n), we finally have n ∈ A ⇔ M |= ϕ′(n). Similarly, we have n ∈
A⇔M ′ |= ∃Z(Z is a path through T ∧¬ϕ2(n, Z))}, and so by compactness,

there exists a Π0
1 formula ψ′(x) with parameters from |M | ∪ SM such that

n ∈ A ⇔ M |= ψ′(n) for all N ∈ |M |. Therefore, A is in SM since M is

a model of RCA0. This contradicts with our assumption. Thus the claim is

proved.

By the above claim, there exist P ∈ [T ] and m ∈ |M | such that one of the

following conditions holds:

B1. m ∈ A ∧M [P ] |= ∀y¬θ1(m,P [y]),

B2. m �∈ A ∧M [P ] |= ∃yθ1(m,P [y]),

B3. m ∈ A ∧M [P ] |= ∃yθ2(m,P [y]),

B4. m �∈ A ∧M [P ] |= ∀y¬θ2(m,Z[y]).

First suppose that condition B1 holds. Let T ′ = {τ ∈ T : ∀τ ′ ⊆ τ¬θ1(m, τ ′)}.
Then, T ′ ∈ TM . It is also clear that A1 holds with T ′ (instead of T ). Thus

T ′ ∈ DA. Next suppose that condition B2 holds. Take σ ∈ (2<N)M with σ =

P [lh(σ)] and θ1(m,σ). Set T ′ = {τ ∈ T : τ is compatible with σ}. T ′ clearly

satisfies A2, hence T ′ ∈ DA. The other two cases can be treated similarly.

Hence, in any case, there exists a subtree T ′ of T such that T ′ ∈ DA, which

means that DA is dense. �

Corollary 2.10 Let M be a countable model of RCA0. Let C a countable
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subset of P (|M |) such that SM ∩ C = ∅. For any T ∈ TM , there exists a

countable model M ′ of RCA0 such that the following four conditions hold:

(1) M ′ has the same first part as M,

(2) SM ⊆ SM ′ ,

(3) SM ′ ∩ C = ∅,

(4) M ′ |= T has a path.

Proof. It is straightforward from Lemmas 2.4, 2.8 and 2.9. �

Lemma 2.11 Let M be a countable model of RCA0, and C a countable subset

of P (|M |) such that SM ∩ C = ∅. Then there exists a countable model M ′

of WKL0 such that M ′ has the same first order part as M , SM ⊆ SM ′ and

SM ′ ∩ C = ∅.

Proof. Use Corollary 2.10 repeatedly. �

The next theorem is a generalized version of Kreisel’s hard core theorem.

Theorem 2.12 Let M be a countable model of RCA0. Then there exists a

countable model M ′ of WKL0 such that M ′ has the same first order part as M

and SM ∩ SM ′ = RECM .

Proof. Let M be a countable model of RCA0. Then (|M |,RECM ,+M , ·M , 0M
1M , <M) is a countable model of RCA0. Set C = SM \RECM . By Lemma 2.11,

there exists a countable model M ′ of WKL0 such that M ′ has the same first

order part as M , S ′ ⊆ SM ′ and SM ′ ∩ C = ∅. That is, SM ∩ SM ′ = RECM . �

Corollary 2.13 Let N be a countable model of Σ0
1-PA. Then there exist un-

countably many countable models M of WKL0 such that N is the first order

part of M .

Proof. Suppose that A = {M : M is a countable model of WKL0 with the

first order part N} is countable. Let C be the set (∪{SM :M ∈ A})\RECM0 ,

where M0 = (|N |, ∅,+N , ·N , 0N , 1N , <N). By Lemma 2.11, we obtain another

model M ′ of WKL0 such that N is the first order part of M ′ and SM ′ ∩C = ∅.
This is a contradiction. �
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3 Forcing with universal trees

In this section, we introduce the notion of M-universal trees and prove that

all M-universal trees are homeomorphic to one another over M , where M is

a countable model of RCA0. Then, we show that all M-universal trees weakly

force the same L2(|M | ∪ SM)-sentences.

Definition 3.1 Let M be a countable model of RCA0. Let ϕ be a sentence in

L2(|M | ∪ SM ∪ {G}). For any T ∈ TM , ϕ is said to be weakly forced by T

(denoted T � ϕ) if M [G] |= ϕ for all TM -generic G ∈ [T ].

Lemma 3.2 Let M be a countable model of RCA0. Let ϕ be a sentence in

L2(|M | ∪ SM ∪ {G}). Then we have

(1) T � ϕ is definable over M . Indeed, there exists an L2-formula ϕ′ such that

T � ϕ(n1, . . . , nk, A1, . . . Al) if and only if M |= ϕ′(n1, . . . , nk, A1, . . . Al, T ),

where n1, . . . nk are from |M | and A1, . . . Al from SM .

(2) For any TM -generic G ∈ [T ], if M [G] |= ϕ then there exists T ′ ∈ TM such

that T ′ ⊆ T , G ∈ [T ′] and T ′ � ϕ.

Proof. We need to prove (1) and (2) of Lemma 3.2 simultaneously by in-

duction on ϕ. However, we here only show (1) since (2) can be treated in an

obvious way.

Case 1: Suppose that ϕ is atomic. When ϕ is t ∈ G, T � ϕ if and only if

M |= ∃m(∀σ ∈ T (lh(σ) = m→ σ(t) = 1)).

For other atomic ϕ, T � ϕ if and only ifM |= ϕ. Thus T � ϕ is definable over

M .

Case 2: Suppose that ϕ ≡ ¬ψ. We clearly have ∀T ′ ∈ TM(T ′ ⊆ T → T ′ �� ψ)

if T � ϕ. Conversely, assume that T �� ϕ. Then, there exists G ∈ [T ] such

that M [G] |= ψ. By the induction hypothesis of (2), there exists T ′ ∈ TM such

that T ′ ⊆ T , G ∈ [T ′] and T ′ � ψ. Thus, T � ϕ if and only if ∀T ′ ∈ TM(T ′ ⊆
T → T ′ �� ψ). Therefore, T � ϕ is definable.

Case 3: Suppose that ϕ ≡ (ψ1∧ψ2). Then, T � ϕ if and only if T � ψ1 ∧ T �
ψ2. So T � ϕ is definable.
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Case 4: Suppose that ϕ ≡ ∃xψ(x). We show that

T � ϕ⇔ ∀T ′ ∈ TM(T ′ ⊆ T → ∃T ′′ ∈ TM∃n ∈ |M |(T ′′ ⊆ T ′ ∧ T ′′ � ψ(n))).

First assume that the right hand side. Let D = {T ′ ∈ TM : ∃n ∈ |M |(T ′ �
ψ(n)) or [T ] ∩ [T ′] = ∅}. Then it is easy to see that D is dense. Fix any TM -

generic path G through T . Since D is dense, there exists T ′ such that G ∈ [T ′]

and T ′ � ψ(n) for some n ∈ |M |. Therefore M [G] � ϕ, and hence T � ϕ.

Conversely, assume that T � ϕ. Fix any T ′ ∈ TM with T ′ ⊆ T . Let G be a

generic path through T ′. Then M [G] � ϕ. Therefore, M [G] � ψ(n) for some

n ∈ |M |. By the induction hypothesis of (2), there exists T ′′ ∈ TM such that

T ′′ ⊆ T ′ and T ′′ � ψ(n).

Case 5: Suppose that ϕ ≡ ∃Xψ(X). Let Y be a triple 〈A,ψ1, ψ2〉 where A ∈
SM and, ψ1 and ψ2 are (codes for) Σ0

1 and Π0
1 formulas with parameters from

|M | ∪ {A,G}. Let TrΣ0
1
and TrΠ0

1
be appropriate universal lightface formulas.

Name(Y ) is defined to be ∀x(TrΣ0
1
(ψ1, x, A, G) ↔ TrΠ0

1
(ψ2, x, A,G)). For any

T ′ ∈ TM and any TM -generic G ∈ [T ′], if T ′ � Name(Y ), then {n ∈ |M | :

M [G] |= TrΣ0
1
(ψ1, n, A,G)} ∈ SM [G]. Conversely, for any Z ∈ SM [G], there

exists a triple W = 〈B,ψ′
1, ψ

′
2〉 such that M [G] |= Name(W ) and Z = {n ∈

|M | :M [G] |= TrΣ0
1
(ψ′

1, n, B,G)} ∈ SM [G].

By ψ(Y ), we denote the formula obtained from ψ(X) by replacing t ∈ X

with TrΣ0
1
(ψ1, t, A,G). Then, by the same way as Case 4, we can prove that

T � ϕ if and only if ∀T ′ ∈ TM(T ′ ⊆ T → ∃T ′′ ∈ TM(T ′′ ⊆ T ′ ∧ ∃Y (T ′′ �
Name(Y ) ∧ ψ(Y )))) �

Let B(X) be the set of Boolean expressions built from atoms in X by means

of the usual set operations ∪, ∩ and c. For σ ∈ (2<N)M , let [σ] = {P ∈ PM :

P [lh(σ)] = σ}. Then for any expression b ∈ B((2<N)M), [b] is defined to be

the subset of PM which b denotes in the obvious way. For simplicity, we often

write B for B((2<N)M).

For any two T, T ′ ∈ TM , a mapping F from [T ] to [T ′] is said to be M -

continuous or simply continuous if SM contains a function f : B → B (called

a code for F ) such that for any b ∈ B,

[f(b)] ∩ [T ] = F−1([b] ∩ [T ′]).
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Then, we can easily see that F (P ) ∈ ∆0
1-def(M ;P ).

Definition 3.3 Let M be a countable model of RCA0. A tree T ∈ TM is said

to be (M-)universal if for any T ′ ∈ TM , there exists an M-continuous F from

[T ] to [T ′].

Obviously, any subtree of a universal tree is also universal, whenever it belongs

to TM . In the rest of this section, we only treat a countable model M of RCA0

such that SM = RECM(A) for some A. Such a modelM is said to be principal

with a generator A.

Lemma 3.4 Let M be a principal model of RCA0. Then the following hold:

(1) There exists an M-universal tree.

(2) If T is a universal tree, then for any T ′ ∈ TM , there exists anM -continuous

function F from [T ] onto [T ′].

(3) If T and T ′ are universal trees, then there exists an M -homeomorphism F

from [T ] to [T ′].

Proof. Let M be a principal model of RCA0 with a generator A. For any

n ∈ |M | and i = 0, 1, let bin be a Boolean expression
⋃{τ : τ (n) = i ∧ lh(τ) =

n+1}. Then, [T ] ⊆ [bin] if and only if every P ∈ [T ] satisfies P (n) = i, i = 0, 1.

SinceM is principal, there exists a universal Σ0
1 formula ϕΣ(e, x) with param-

eters from |M | ∪ SM . Then, we say that g : |M | × |M | → |M | is a productive

function for T if for any e and d ∈ |M |, supposing that (∀n ∈M([T ] ⊆ [b1n] →
ϕΣ(e, n)), ∀n ∈ M([T ] ⊆ [b0n] → ϕΣ(d, n)) and ¬∃x(ϕΣ(e, x) ∧ ϕΣ(d, x)), we

have

¬(ϕΣ(e, g(e, d)) ∨ ϕΣ(d, g(e, d))).

Claim 1 There exists a tree T ∈ TM which has a productive function in SM .

Proof. For any consistent first-order theory Γ, let TΓ be an infinite tree such

that [TΓ] = the set of the characteristic functions of consistent, complete

extensions of Γ which is closed under logical consequence. It is known that

for any T ∈ TM , there exists a first-order theory ΓT such that there exists an

M-homeomorphism function from [TΓT
] to [T ]. (See [12, Section IV.3.2] for

details.)
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For any X ∈ SM , let QX be an L1(R)-theory whose axioms consist of Robinson

arithmetic Q plus {R(n) : n ∈ X} ∪ {¬R(n) : n �∈ X} with a new unary

relation symbol R. Then QX is consistent since it has a weak model [12,

Theorem II.8.4].

We show that TQA
has a productive function in SM where A is a generator of

M . Assume that ¬∃x(ϕΣ(e, x) ∧ ϕΣ(d, x)). We can effectively find an L1(R)-

formula Φe,d with only one free variable such that

ϕΣ(e, n) → QA � Φe,d(n
¯
), ϕΣ(d, n) → QA � ¬Φe,d(n

¯
),

where n
¯

is the numeral for n (cf. Theorem III.1.23 [5]). By a diagonal argu-

ment [5, pp. 158], we can also effectively find an L1(R)-sentence ψ such that

QA � ψe,d ↔ ¬Φe,d(�ψe,d ), where �ψe,d is the Gödel number of ψe,d. Let g

be a function such that g(e, d) = �ψe,d . Then g is a productive function for

TQA
[10, pp. 94]. �

Let f be a function from |M | to B. Then we can extend f to f ′ : B → B such

that for each σ ∈ (2<N)M ,

f ′(σ) =
⋂

i<lh(σ),σ(i)=1

f(i) ∩
⋂

j<lh(σ),σ(j)=0

f(j)c,

and that f ′ preserves Boolean operations. For simplicity, we also write f for

f ′.

Claim 2 Assume that T ∈ TM has a productive function in SM . Then, for

any T ′ ∈ TM , there exists an M -continuous function F from [T ] onto [T ′].

Proof. Our proof is inspired with an argument due to Pour-El/Kripke [9, the

proof of Lemma 1].

Assume that T ∈ TM has a productive function g in SM . Fix any T ′ ∈ TM .

To construct an M-continuous function F from [T ] onto [T ′], it suffices to

show that there exists an f : |M | → B in SM such that for any b ∈ B,

[T ] ∩ [f(b)] �= ∅ ⇔ [T ′] ∩ [b] �= ∅. For, letting F (P ) be a unique P ′ ∈ [T ′] such

that P ′ ∈ ⋂
n∈M f(P [n]), F is an M-continuous function from [T ] onto [T ′]

with code f .

Let ψ1(a, u, v, x, y) be a Σ0
1 formula saying that [T ] ∩ [v] ⊆ [b0x] or [T ′] ∩ [u] ⊆

[b1a]∧ x = g((y)0, (y)1). Similarly, let ψ2(a, u, v, x, y) mean that [T ]∩ [v] ⊆ [b1x]
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or [T ′] ∩ [u] ⊆ [b0a]∧ x = g((y)0, (y)1). By the recursion theorem, there exist

two functions t1 and t2 in SM such that

∀x(ϕΣ(t1(a, u, v), x) ↔ ψ1(a, u, v, x, 〈t1(a, u, v), t2(a, u, v)〉)) and,

∀x(ϕΣ(t2(a, u, v), x) ↔ ψ2(a, u, v, x, 〈t1(a, u, v), t2(a, u, v)〉)).

Finally, put k(a, u, v) = g(t1(a, u, v), t2(a, u, v)).

Assuming that for any l <M n, f(l) is defined, let f(n) =
⋃
σ∈(2n)M

(f(σ) ∩
b1k(n,σ,f(σ))). Then, it is obvious that f ∈ SM . We now want to show that

(1) ∀b ∈ B([T ] ∩ [f(b)] �= ∅ ⇔ [T ′] ∩ [b] �= ∅).

Let ϕ(n) be a Σ0
0(Σ

0
1) formula which means that ∀σ ∈ 2n(([T ] ∩ [f(σ)] �=

∅ ↔ [T ′] ∩ [σ] �= ∅)). Then, it suffices to show that M |= ∀nϕ(n). Obviously,

M |= ϕ(0). Suppose that M |= ϕ(n). Then, we will show that M |= ϕ(n + 1)

holds, that is, for any σ ∈ (2n)M ,

[T ] ∩ [f(σ)] ∩ [f(n)] �= ∅ ⇔ [T ′] ∩ [σ] ∩ [b1n] �= ∅

and

[T ] ∩ [f(σ)] ∩ [f(n)]c �= ∅ ⇔ [T ′] ∩ [σ] ∩ [b0n] �= ∅.

We may suppose that [T ′] ∩ [σ] �= ∅. By the hypothesis, [T ] ∩ [f(σ)] �= ∅. We

first prove that [T ′]∩ [σ]∩ [b1n] = ∅ ⇒ [T1]∩ [f(σ)] ∩ [f(n)] = ∅. Suppose that

[T ′] ∩ [σ] ∩ [b1n] = ∅. By the construction of k, M satisfies

(2) ∀x(ϕΣ(t2(n, σ, f(σ)), x) ↔ (x = k(n, σ, f(σ)) ∨ [T ] ∩ [f(σ)] ⊆ [b1x]))

and

(3) ∀x(ϕΣ(t1(n, σ, f(σ)), x) ↔ [T ] ∩ [f(σ)] ⊆ [b0x]).

By way of contradiction, we assume that [T ] ∩ [f(σ)] ∩ [f(n)] �= ∅. Then,

[T ] ∩ [f(σ)] ∩ [b1k(n,σ,f(σ))] �= ∅ since f(n) = [f(σ)] ∩ [b1k(n,σ,f(σ))]. Therefore,

¬∃x(ϕΣ(t1(n, σ, f(σ)), x) ∧ ϕΣ(t2(n, σ, f(σ)), x).

Since g is a productive function for T ,

¬ϕΣ(t2(n, σ, f(σ)), k(n, σ, f(σ))).
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This contradicts with (2). Therefore, [T ′]∩[σ]∩[b1n] = ∅ ⇒ [T ]∩[f(σ)]∩[f(n)] =

∅. In a similar manner, we can prove that

[T ′] ∩ [σ] ∩ [b0n] = ∅ ⇒ [T ] ∩ [f(σ)] ∩ [f(n)]c = ∅

and

[T ′] ∩ [σ] ∩ [b1n] �= ∅ ∧ [T ′] ∩ [σ] ∩ [b0n] �= ∅ ⇒

[T ] ∩ [f(σ)] ∩ [f (n)] �= ∅ ∧ [T ] ∩ [f(σ)] ∩ [f(n)]c �= ∅.

Thus, M |= ϕ(n + 1). By Σ0
0(Σ

0
1)-induction, then (1) holds. The proof is

completed. �

Claim 3 Let M be a countable model of RCA0. Suppose that both T and T ′

have productive functions in SM . Then there exists an M -homeomorphism H

from [T ] to [T ′].

Proof. The proof is an obvious modification of the proof of Claim 2. (Cf. [9,

the proof of Lemma 2].) Suppose that both T and T ′ have productive functions

in S. To construct a homeomorphismH from [T ] to [T ′], it suffices to show that

there exist two functions h1 and h2 from M to B such that for any b, b′ ∈ B,

[T ] ∩ [b′] ∩ [h1(b)] �= ∅ if and only if [T ′] ∩ [h2(b
′)] ∩ [b] �= ∅.

For, letting H(P ) be a unique P ′ ∈ [T ′] such that P ′ ∈ ⋂
n∈M h1(P [n]), H is

an M-homeomorphism from [T ] to [T ′] with code h1 and H−1 has a code h2.

We construct h1 and h2 as follows. Assume that we have already defined h1(l)

and h2(l) for any l <M n. Then for any b, b′ ∈ B({σ : lh(σ) ≤ n}),

[T ] ∩ [b′] ∩ [h1(b)] �= ∅ if and only if [T ′] ∩ [h2(b
′)] ∩ [b] �= ∅.

As the proof of Claim 2, we can define h1(n) such that for any b ∈ B({σ :

lh(σ) ≤ n+1}) and b′ ∈ B, [T ]∩ [b′]∩ [h1(b)] �= ∅ if and only if [T ′]∩ [h2(b
′)]∩

[b] �= ∅. In a similar way, we can find h2(n) such that for any b, b′ ∈ B({σ :

lh(σ) ≤ n + 1}), [T ] ∩ [b′] ∩ [h1(b)] �= ∅ if and only if [T ′] ∩ [h2(b
′)] ∩ [b] �= ∅.

The proof is completed. �

Claim 4 Assume that T has a productive function in SM and there exists an

M-continuous function F from [T ′] to [T ]. Then [T ′] is M -homeomorphic to

[T ′′] for some T ′′ which has a productive function in SM .
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Proof. Our proof is just a formalization of a well-known fact on effectively

inseparable sets (cf. [9, Lemma 3]). Let f be a code for F . Then, we have

[T ] ⊆ [bin] ⇒ [T ′] ⊆ [f(bin)], i = 0, 1.

Let Γ be a propositional theory {∨{∧{aτ(i)i : i <M n} : τ ∈ T ′, lh(τ ) = n} :

n ∈ |M |}, where ai’s are atoms, and we set a1
i = ai and a

0
i = ¬ai. Let β be the

natural interpretation of B into propositional formulas such that β(b1n) = an

for all n ∈ |M |. Then,

[T ] ⊆ [bin] ⇒ [TΓ] ⊆ [biβ(f(b1n))], i = 0, 1.

By the Smn -theorem, there exists a function t in SM such that

∀x(ϕΣ(t(e), x) ↔ ϕΣ(e, β(f(x)))).

Let h(e, d) = β(f(b1g(t(e),t(d))). Then h is a productive function for TΓ, which is

M-homeomorphic to T ′. �

Claim 5 T ∈ TM is universal if and only if [T ] is M -homeomorphic to [T ′]

for some T ′ which has a productive function in SM .

Proof. It follows from Claims 2 and 4. �

It is straightforward from the above five claims to obtain (1) through (3) of

Lemma 3.4. �

Lemma 3.5 Let M be a principal model of RCA0. If T1 and T2 are M-

universal trees, then T1 � ϕ if and only if T2 � ϕ for any sentence ϕ in

L2(|M | ∪ SM).

Proof. Let T1 and T2 be universal trees. LetH be anM-homeomorphism from

[T1] to [T2]. It is enough to show that for any sentence ϕ of L2(|M | ∪ SM),

if T2 � ϕ then T1 �1 ϕ. Assume that T2 � ϕ. Fix any TM -generic G with

G ∈ [T1]. Since an M-homeomorphism preserves the genericity, H(G) is a

TM -generic path through T2. Then S[H(G)] |= ϕ. Since S[H(G)] = S[G],
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S[G] |= ϕ. Then T1 � ϕ. �

Fix a universal tree U . P
U
1,M be the set of all T ∈ TM such that T ⊆ U . We

always omit U unless there is a possibility of misunderstanding. G is said to be

P1,M -generic if for anyM -definable P1,M -dense set D, there exists T ∈ D such

that G ∈ [T ]. G is P1,M -generic if and only if G is TM -generic with G ∈ [U ].

Let ϕ be a sentence in L2(|M | ∪ SM ∪ {G}). For any T ∈ P1,M , ϕ is said to

be weakly forced by T (denoted T �1 ϕ) if M [G] |= ϕ for all P1,M -generic G

with G ∈ [T ]. That is, for any T ∈ P1,M , T �1 ϕ if and only if T � ϕ. We

write �1 ϕ if T �1 ϕ for all T ∈ P1,M .

Lemma 3.6 Let M be a principal model of RCA0. Let ϕ be an L2(|M | ∪SM)-

sentence. If G is P1,M -generic, then M [G] |= ϕ if and only if �1 ϕ.

Proof. Assume thatM [G] |= ϕ. Then there exists T ∈ P1,M such that G ∈ [T ]

and T �1 ϕ. By Lemma 3.5, T ′ � ϕ for any T ′ ∈ P1,M . �

Corollary 3.7 Let M be a principal model of RCA0. If G and H are P1,M -

generic, then M [G] and M [H] satisfy the same L2(|M | ∪ SM)-sentences.

Proof. It is straightforward from Lemma 3.6. �

Let C be a countable subset of P (|M |). G is said to be P1,M -C-generic if,

for every P1,M -dense, M ∪ C-definable set D, there exists T ∈ D such that

G ∈ [T ].

Lemma 3.8 Let M be a countable model of RCA0. Let C be a countable subset

of P (|M |) such that SM ∩ C = ∅. If G is P1,M -C-generic, then M [G] is a

countable model of RCA0 with SM [G] ∩ C = ∅.

Proof. Immediate from Lemma 2.9. �

4 A main result

We use iterated forcing to prove our main theorem that if WKL0 proves ∀X∃!Y
ϕ(X, Y ) with ϕ arithmetical, so does RCA0. We first define the 2-forcing no-

tion �2. Let M be a principal model of RCA0. A 2-condition is defined to be
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a pair 〈T1, T2〉 such that T1 ∈ P1,M and T1 �1 (Name(T2) and T2 ∈ P1,M [G1]).

〈T1, T2〉 ≤2 〈T ′
1, T

′
2〉 if T1 ⊆ T ′

1 and T1 �1 T2 ⊆ T ′
2. Let P2,M be the set

of 2-conditions. D ⊆ P2,M is P2,M -dense if, for each P ∈ P2,M , there ex-

ists P ′ ∈ D such that P ′ ≤2 P . Let G be a generic filter of P2,M , i.e.,

a filter such that for all definable P2,M -dense set D, G ∩ D �= ∅. Then,

G1 =
⋂{T1 : 〈T1, T2〉 ∈ G for some T2} is P1,M -generic. Moreover, G2 =

⋂{iG1(T2) : 〈T1, T2〉 ∈ G for some T1 with G1 ∈ [T1]} is P1,M [G1]-generic. Here

iG1(Y ) = {n ∈ |M | : ∃T ′ ∈ P1,M(G1 ∈ [T ′] ∧ T ′ � ψ1(n)}, i.e., the evalu-

ation of name Y = 〈X, ϕ1, ϕ2〉. Then, we regard G as a pair 〈G1, G2〉 and

call it P2,M -generic. For any P2,M -generic G = 〈G1, G2〉 and any 2-condition

P = 〈T1, T2〉, G ∈ [P ] means that Gj ∈ [Tj ] for j = 1, 2.

Definition 4.1 Let M be a principal model of RCA0. Let ϕ be a sentence of

L2(|M | ∪ SM ∪ {G1, G2}). For any P ∈ P2,M , ϕ is said to be weakly forced by

P (denoted P �2 ϕ) if M [G] |= ϕ for all P2,M -generic G ∈ [P ].

The next lemma can be proved in a standard way (cf. Lemma 3.2).

Lemma 4.2 Let M be a principal model of RCA0. Let ϕ be a sentence of

L2(|M | ∪ SM ∪ {G1, G2}). Then we have

(1) P �2 ϕ is definable over M .

(2) For any P2,M -generic G ∈ [P ], if M [G] |= ϕ then there exists P ′ ∈ P2,M

such that P ′ ≤2 P , G ∈ [P ′] and P ′ �2 ϕ.

Lemma 4.3 Let M be a principal model of RCA0. For G = 〈G1, G2〉 ∈ PM ×
PM , G is P2,M -generic if and only if G1 is P1,M -generic and G2 is P1,M [G1]-

generic.

Proof. Assume that G1 is P1,M -generic and G2 is P1,M [G1]-generic. Set

G = {〈T1, T2〉 : G1 ∈ [T1], G2 ∈ [iG1(T2)]}.

Then, it is easy to see that G is generic filter of P2,M with G = 〈G1, G2〉. So

G is P2,M -generic. �

Corollary 4.4 Let M be a principal model of RCA0. Let ϕ be a sentence of

L2(|M | ∪ SM ∪ {G1, G2}). Then, for any 〈T1, T2〉 ∈ P2,M , 〈T1, T2〉 �2 ϕ if and

only if T1 �1 T2 �1 ϕ.
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Proof. Immediate from Lemma 4.3. �

Lemma 4.5 Let M be a principal model of RCA0. Let ϕ be an L2(|M | ∪SM)-

sentence. If P and P ′ are two 2-conditions, then P �2 ϕ if and only if P ′ �2 ϕ.

Proof. Let P = 〈T1, T2〉 and P ′ = 〈T ′
1, T

′
2〉 be 2-conditions. Suppose that

P ′ �2 ϕ. We shall show P �2 ϕ. To see this, let G = 〈G1, G2〉 ∈ [P ] be P2,M -

generic. Since T1 and T ′
1 are M-universal, there exists an M-homeomorphism

H1 : [T1] → [T ′
1]. Then,M [G1] =M [H1(G1)]. Therefore, iG1(T2) isM [H1(G1)]-

universal. Similarly, there exists anM [H1(G1)]-homeomorphism H2 : [iG1(T2)]

→ [iH1(G1)(T2)]. Then, we have

M [〈G1, G2〉] = M [〈H1(G1), H2(G2)〉] |= ϕ,

since H(G) = 〈H1(G1), H2(G2)〉 is P2,M -generic with H(G) ∈ [P ′]. Thus,

P �2 ϕ. The other direction can be proved in the same way. �

Lemma 4.6 Let M be a principal model of RCA0. Let ϕ be an L2(|M | ∪SM)-

sentence. If G is P2,M -generic, then M [G] |= ϕ is equivalent to �2 ϕ, i.e.,

P �2 ϕ for all P ∈ P2,M .

Proof. Suppose that G is P2,M -generic andM [G] |= ϕ. SinceM [G] |= ϕ, there

exists P �2 ϕ. By Lemma 4.5, for any P ′ ∈ P2,M , P ′ �2 ϕ. �

Lemma 4.7 Let M be a principal model of RCA0. Let ϕ be an L2(|M | ∪
SM)-sentence. If G and H are P2,M -generic, then M [G] |= ϕ is equivalent to

M [H ] |= ϕ.

Proof. Immediate from Lemma 4.6. �

Let C be a countable subset of P (|M |). A P2,M -generic G is said to be P2,M -

C-generic if, for every P2,M -dense M ∪ C definable set D, there exists P ∈ D
such that G ∈ [P ]. Then, G = 〈G1, G2〉 ∈ P2

M is P2,M -C-generic if and only if

G1 is P1,M -C-generic and G2 is P1,M [G1]-C-generic.

Lemma 4.8 Let M be a principal model of RCA0. Let C be a countable subset

of P (|M |) such that SM ∩ C = ∅. If G is P2,M -C-generic, SM [G] ∩ C = ∅.
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Proof. Use Lemma 3.8 repeatedly. �

Now, by iterating 1-forcing notion, for any i > 0, we can define the i-forcing

notion. Given the (i − 1)-forcing notion, the i-forcing notion is defined as

follows. An i-condition is defined to be a pair 〈P, P ′〉 such that P is an (i−1)-

condition and P �i (Name(P ′) and P ′ is a 1-condition). 〈P, P ′〉 ≤i 〈Q,Q′〉
if P ≤i−1 Q and P �i−1 P

′ ⊆ Q′. 〈P, P ′〉 �i Name(X) if P �i−1 (P ′ �1

Name(X)). Let Pi be the set of i-conditions. D ⊆ Pi,M is Pi,M -dense, if for

each P ∈ Pi,M , there exists P ′ ∈ D such that P ′ ≤i P . Let G be a generic

filter of Pi,M . Then, we can regard G as a sequence 〈G1, . . . , Gi〉 such that

Gk is P1,M [〈G1,...Gk−1〉] for each k = 1, . . . , i. We call it Pi,M -generic. For any

Pi,M -generic G = 〈G1, . . . Gi〉 and any i-condition P = 〈T1, . . . , Ti〉, G ∈ [P ]

means that Gk ∈ [Tk] for k = 1, . . . i. Let C be a countable subset of P (|M |).
A Pi,M -generic G is said to be Pi,M -C-generic, if for every Pi,M -dense M ∪ C
definable set D, there exists P ∈ D such that G ∈ [P ].

Definition 4.9 Let M be a principal model of RCA0. Let ϕ be a sentence for

L2(|M | ∪ SM ∪ {G1, G2, . . . , Gi}). For any P ∈ Pi,M , ϕ is said to be weakly

forced by P (denoted P �i ϕ) if M [G] |= ϕ for all Pi,M -generic G ∈ [P ].

The above properties on 2-forcing notion (Lemma 4.2 to Lemma 4.8) can be

automatically extended to any i-forcing notion.

Next we define the ω-forcing notion. Fix a sequence U = 〈Ui : i > 0〉 such that

each Ui’s are i-names and 〈. . . 〈U1, U2〉, . . . , Ui−1〉 �i−1 “Ui is a universal tree”.

An ω-condition P is an i-condition such that P ≤i 〈. . . 〈U1, U2〉, . . . , Ui〉 , for

some i > 0. Let Pω be the set of ω-conditions. We may assume that ω is an

initial segment of M closed under +M and ·M [7]. Then, P ∈ Pω,M is definable

with parameters from |M | ∪ SM ∪ {ω} over M . If P ∈ Pω is an i-condition

and j > i, we can identify P with j-condition 〈. . . 〈〈P, Ui+1〉, . . . , Uj〉. Then,

for P, P ′ ∈ Pω, we write P ≤ω P
′ if P is an i-condition, P ′ is a j-condition,

j ≤ i and P ≤i P
′. Let G be a generic filter of Pω, i.e., a filter G meets

all dense subsets of Pω definable with parameters from |M | ∪ SM ∪ {ω} over

M . Then, we can regard G as a sequence 〈Gj : j > 0〉 such that the Gj’s are

P1,M [〈G1,...Gj−1〉]. We call it Pω,M -generic. For any Pω,M -genericG = 〈Gj : j > 0〉
and any ω-condition P = 〈. . . , 〈T1, T2〉, . . . , Ti〉, G ∈ [P ] means that Gk ∈ [Tk]

for k = 1, . . . , i.
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Lemma 4.10 Let M be a principal model of RCA0. Let G = 〈Gj : j > 0〉 be

Pω,M -generic. Then, M [G] |= WKL0.

Proof. For any T ∈ TM , if T ′ is an M-universal tree, there exists an M -

continuous function F : [T ′] → [T ]. Therefore, T has a path in SM [G1] since

G1 is a path through some M-universal tree. Thus, for each i ∈ ω>0, any

T ∈ TM [G1,...,Gi−1] has a path in SM [G1,...,Gi]. Then M [G] is a model of WKL0.

�

Definition 4.11 Let M be a principal model of RCA0. Let ϕ be a sentence in

L2(|M | ∪ SM ∪ {Gj : j > 0}). For any P ∈ Pω,M , ϕ is said to be weakly forced

by P (denoted P �ω ϕ) if M [G] |= ϕ for all Pω,M -generic G ∈ [P ].

The next lemma can be proved in the same way as Lemma 3.2.

Lemma 4.12 Let M be a principal model of RCA0. Let ϕ be a sentence in

L2(|M | ∪ SM ∪ {Gj : j > 0}). Then we have

(1) P �ω ϕ is definable with parameter from |M | ∪ SM ∪ {ω} over M .

(2) For any Pω,M -generic G ∈ [P ], if M [G] |= ϕ then there exists P ′ ∈ Pω,M

such that P ′ ≤ω P and P ′ �ω ϕ.

Lemma 4.13 Let M be a principal model of RCA0. If P1 and P2 are two

ω-conditions, then P1 �ω ϕ if and only if P2 �ω ϕ for any sentence ϕ in

L2(|M | ∪ SM).

Proof. The proof is an obvious modification of the proof of Lemma 4.5. Let

P1 and P2 be two ω-conditions. Suppose that P2 �ω ϕ. Fix any Pω,M -generic

G = 〈Gj : j > 0〉 ∈ [P1]. We assume that P1 = 〈. . . 〈〈T1, T2〉, T3〉 . . . , Tj〉
and P2 = 〈. . . 〈〈T ′

1, T
′
2〉, T ′

3〉 . . . , T ′
j〉. Since T1 and T ′

1 are M-universal, there

exists an M-homeomorphism H1 : [T1] → [T ′
1]. Then, M [G1] = M [H1(G1)].

Therefore, iG(T2)(= iG1(T2)) is M [H1(G1)]-universal. Then, there exists an

M [H1(G1)]-homeomorphism H1 : [iG1(T2)] → [iH1(G1)(T
′
2)]. Thus we have

M [G] =M [〈H1(G1), H2(G2), G3, . . . , Gj , . . .〉].

By iterating the above argument, let H be a sequence 〈Hk : k ≤ j〉 such that

each Hk is M [〈G1, . . . , Gk〉]-homeomorphism from [iG(Tk)] to [iG′(T ′
k)], where

G′ = 〈H1(G1), . . . , Hk(Gk)〉. Then, we have a Pω,M -generic H(G) such that

H(G) = 〈H1(G1), . . . , Hj(Gj), Gj+1, . . .〉. Therefore, M [G] = M [H(G)] |= ϕ
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by H(G) ∈ [P2]. Hence, P1 �ω ϕ ⇒ P2 �ω ϕ. Similarly, we can show that

P2 �ω ϕ⇒ P1 �ω ϕ. �

Lemma 4.14 Let M be a principal model of RCA0. Let ϕ be an L2(|M |∪SM)-

sentence. If G is Pω,M -generic, then M [G] |= ϕ is equivalent to �ω ϕ, i.e.,

P �ω ϕ for all P ∈ Pω,M .

Proof. Suppose that G is Pω,M -generic and M [G] |= ϕ. Since M [G] |= ϕ,

there exists P �ω ϕ. By Lemma 4.13, for any P ′ ∈ Pω,M , P ′ �ω ϕ. �

Lemma 4.15 Let M be a principal model of RCA0. Let ϕ be an L2(|M | ∪
SM)-sentence. If G and H are Pω,M -generic, then M [G] |= ϕ is equivalent to

M [H ] |= ϕ.

Proof. Immediate from Lemma 4.14. �

Let C be a countable subset of P (|M |). A Pω,M -generic G is said to be Pω,M -

C-generic if, for every Pω,M -dense,M ∪C definable set D, there exists P ∈ D
such that G ∈ [P ]. Then, if G = 〈Gj : j > 0〉, each Gj is P1,M [〈G1,...Gj−1〉]-C-

generic.

Lemma 4.16 LetM be a principal model of RCA0. Let C be a countable subset

of P (|M |) such that SM ∩C = ∅. If G is Pω,M -C-generic, then SM [G] ∩C = ∅.

Proof. Suppose that SM [G] ∩ C �= ∅. Then, there exists A ∈ C such that

A ∈ SM [〈G1,...Gj〉] for some j > 0. Since 〈G1, . . . , Gj〉 is Pj,M -C-generic (cf.

Lemma 4.3), this is a contradiction. �

Lemma 4.17 Let M be a principal model of RCA0. Then there exist two

countable models M1, M2 of WKL0 such that:

(1) M1 and M2 have the same first order part as M,

(2) SM1 ∩ SM2 = SM ,

(3) M1 and M2 satisfy the same L2(|M | ∪ SM)-sentences.

Proof. Suppose that M is a principal model of RCA0. Let G be Pω,M -generic.

Set C = SM [G] \ SM . By Lemma 4.16, there exists Pω,M -generic H such that

M [H ] ∩ C = ∅. By Lemma 4.15, M [G] and M [H ] satisfy the same sentences
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with parameters from |M |∪SM . By Lemma 4.10, M [G] andM [H] are models

of WKL0. �

Now, we have the main result of this paper.

Theorem 4.18 Let ϕ(X, Y ) be an arithmetical formula with only the free

variables shown. If WKL0 proves ∀X∃!Y ϕ(X, Y ), then so does RCA0. (Indeed,

RCA0 also proves ∀X∃Y (Y is recursive in X ∧ ϕ(X, Y )).)

Proof. Let ϕ(X, Y ) be an arithmetical formula with only the free variables

shown. Suppose that WKL0 proves ∀X∃!Y ϕ(X, Y ). By way of contradiction,

we assume RCA0 does not prove ∀X∃!Y (Y is recursive in X ∧ϕ(X, Y )). Then

by Gödel’s completeness theorem, there exists a countable model M of RCA0

in which ¬∃!Y (Y is recursive in A∧ϕ(A, Y ) holds for some A ∈ SM . Let S0 =

{B ∈ SM :M |= B is recursive in A} and M0 = (|M |, S0,+M , ·M , 0M , 1M , <M

). Then M0 is a principal model of RCA0 such that M0 |= ¬∃!Y ϕ(A, Y ).

First suppose that ∃Y ϕ(A, Y ) holds in M0. Then there exist more than one

sets in S0 which satisfy ϕ. By Lemma 2.6, there exists a model M ′ of WKL0

such that M ′ has the same first order part as M and SM0 ⊆ SM ′. Therefore,

WKL0 does not prove ∀X∃!Y ϕ(X, Y ), which is a contradiction.

Next assume that ∀Y ¬ϕ(A, Y ) holds withinM0. By Lemma 4.17, there exists

two countable models M1 and M2 of WKL0 such that:

(1) M1 and M2 have the same first order part as M0,

(2) SM1 ∩ SM2 = SM0 ,

(3) M1 and M2 satisfy the same sentences with parameters from |M | ∪ SM .

Let Yi ∈ SMi
be such that Mi satisfies ϕ(A, Yi) (i = 1, 2). Then, for each

n ∈ |M | and each i = 1, 2,

n ∈ Yi ⇔Mi |= ∃Y (ϕ(A, Y ) ∧ n ∈ Y ).

By (3), for each n in |M |,

M1 |= ∃Y (ϕ(A, Y ) ∧ n ∈ Y ) ⇔M2 |= ∃Y (ϕ(A, Y ) ∧ n ∈ Y ).
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Therefore, Y1=Y2. Then, by (2), Y1 ∈ SM0. Therefore, by (1) and (2),M0 satis-

fies ϕ(A, Y1) since ϕ is arithmetical andM |= ϕ(A, Y1). This is a contradiction.

�

Remark 4.19 We can also show that ifM is a principal model of RCA0 + Σ0
k

induction (k = 1, 2, . . . ,∞), then M [G] |= Σ0
k induction for any Pω,M -generic

G (Yamazaki [unpublished]). Therefore, Theorem 4.18 can be extended as

follows: if WKL0 + Σ0
k induction proves ∀X∃!Y ϕ(X, Y ), then RCA0 + Σ0

k

induction also proves ∀X∃!Y (Y is recursive in X)∧ ϕ(X, Y )), where ϕ(X, Y )

is an arithmetical formula with only the free variables shown. In case k = 2

and ϕ is Σ0
3, the above result was already proved by A. M. Fernandes [3],

where general cases were mentioned as an open problem. Simpson [13] gives

a different proof to Theorem 4.18 with more sophisticated recursion-theoretic

investigations.

The following theorem tends to show that our main theorem is optimal.

Theorem 4.20 (1) There exists a Π1
1 formula ϕ1(Y ) such that WKL0 proves

the sentence ∃!Y ϕ1(Y ), but WKL0 does not prove ∃Y (Y is recursive∧ϕ1(Y )).

(2) There exists a Π1
1 formula ϕ2(Y ) such that WKL0 proves the sentence

∃!Y ϕ2(Y ), but RCA0 does not prove it.

(3) There exists a Σ1
1 formula ϕ3(Y ) such that WKL0 proves the sentence

∃!Y ϕ3(Y ), but RCA0 does not prove ∃Y ϕ3(Y ).

Proof. (1) Let ϕ1(Y ) be the Π1
1 formula

Y = K or (K does not exist and Y = ∅)

where K is a complete recursively enumerable set. Then, the ω-model P (ω)

does not satisfy ∃Y (Y is recursive∧ϕ1(Y )).

(2) Let ϕ2(Y ) be the Π1
1 formula Y = ∅∨(T has no path), where T is a certain

recursive infinite 0-1 tree with no recursive path.

The ω-model REC does not satisfy ∃!Y ϕ2(Y ).
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(3) Let ϕ3(Y ) be the Σ1
1 formula Y = ∅∧ (T has a path). Then REC does not

satisfy ∃Y ϕ3(Y ). �

Problems. The following are still unknown to our circle.

(1) Suppose WKL0 � ∃!Xϕ(X) where ϕ(X) is a Σ1
1 formula with no free set

variables other than X. Is it the case that WKL0 � ∃X(X is recursive∧ϕ(X))?

(2) Suppose WKL0 � ∃X(X is not recursive∧ϕ(X)) where ϕ(X) is a Σ1
1 for-

mula with no free set variables other than X. Is it the case that WKL0 �
∃X, Y (X �= Y ∧ ϕ(X) ∧ ϕ(Y ))? A similar question has been asked by Fried-

man [4].

(3) In [1], Avigad constructed an effective translation of WKL0-proofs of Π1
1

sentences to RCA0-proofs of the same sentences, by formalizing Harrington’s

forcing argument. In fact, his translation has at most a polynomial increase

in the length of proofs. Unfortunately, we have not managed to find such an

effective bound for our conservation result.

5 Forcing with uniformly pointed perfect trees

In this section, we introduce a forcing argument with universal pointed perfect

trees, which is inspired by Sacks [11]. Then we show that for any countable

model M of RCA0, there exists a principal model M ′ of RCA0 such that M ′

has the same first order part as M and SM ⊆ SM ′.

Let M be a countable model of RCA0. For any T ∈ TM , T is M-perfect if

M |=(T is perfect). An M-perfect tree T is said to be uniformly pointed if for

all X ∈ [T ], T has the same index ofM -recursiveness in X, that is, there exist

e, d ∈ |M | such that for all X ∈ [T ],

M [X] |= ∀m(m ∈ T ↔ ϕΣ(e,m,X)) and ∀m(m ∈ T ↔ ¬ϕΣ(d,m,X)),

where ϕΣ(e,m,X) is a fixed universal lightface Σ0
1 formula.

Let P0,M be the set of uniformly pointed M -perfect trees. Then, it is easy

to show that P0,M is M-definable. We say that D ⊆ P0,M is dense if ∀T ∈
P0,M∃T ′ ∈ D(T ′ ⊆ T ). G is a P0,M -generic path if for any L2(|M |∪SM ∪{ω})-
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definable dense set D, there exists T ∈ D such that G ∈ [T ]. The following

lemma can be proved in the same way as Lemma 2.2

Lemma 5.1 Let M be a countable model of RCA0. For any T ∈ P0,M , there

exists a P0,M -generic path G ∈ [T ].

Lemma 5.2 Let M be a countable model of RCA0. If G is P0,M -generic, then

M [G] |= RCA0.

Proof. LetG be a P0,M -generic path. We only need to show thatM [G] satisfies

Σ0
1 induction. To see this, it suffices to prove the following. For any m ∈ |M |

and any Σ0
1-formula ϕ(x,G), the set {n : n <M m ∧ ϕ(n,G)} is M-finite.

We may assume that ϕ(x,G) ≡ ∃yθ(x,G[y]) where θ(x, τ) is Σ0
0 with param-

eters from |M | ∪ SM . Let Dm be the set of T ∈ P0,M such that there exists

σ ∈ (2m)M such that for each n <M m, M satisfies either

(1) σ(n) = 0 and ∀τ ∈ T¬θ(n, τ)

or

(2) σ(n) = 1 and ∃k∀τ ∈ T (lh(τ) = k → ∃τ ′ ⊆ τθ(n, τ ′)).

Then, the set {n : n <M m∧ϕ(n, P )} is M-finite if P ∈ [T ] for some T ∈ Dm.

Therefore, it remains to show that Dm is dense. Let T ∈ P0,M be given. We

say that σ ∈ (2m)M is good if M |= ∃τ ∈ T∀x < m(σ(x) = 1 → ∃τ ′ ⊆
τθ(x, τ ′)). Set Sm = {σ ∈ (2m)M : σ is good}. Since M satisfies bounded

Σ0
1 comprehension, Sm is M-finite. Moreover, Sm is nonempty since 〈0, . . . , 0〉

(with m 0’s ) is an element of Sm. Let σm be the lexicographically largest

element of Sm. Since σm is good, there exists τm ∈ T such that

M |= ∀x < m(σm(x) = 1 → ∃τ ′ ⊆ τmθ(x, τ
′)).

Set T ′ = {τ ∈ T : M |= τ is compatible with τm}. We are going to show that

T ′ ∈ Dm. To see this, let n <M m be given. If σm(n) = 1, then M |= ∃τ ′ ⊆
τmθ(n, τ

′). Then

M |= ∃k∀τ ∈ T ′(lh(τ) = k → ∃τ ′ ⊆ τθ(n, τ ′)).

Suppose that σm(n) = 0. Let σ′ be a 0-1 string such that σ′(n) = 1 and

σ′(x) = σm(x) for x �= n. Then, by the definition of σm, M |= ∀τ ∈ T¬θ(n, τ).
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So M |= ∀τ ∈ T ′¬θ(n, τ). Therefore, T ′ belongs to Dm �

Definition 5.3 Let T ∈ P0,M . For any L2(|M |∪SM ∪{ω,G})-sentence ϕ, we

say that T �0 ϕ if M [G] |= ϕ for all P0,M -generic path G ∈ [T ].

The next lemma can be proved.

Lemma 5.4 Let M be a countable model of RCA0. Let ϕ be a sentence in

L2(|M | ∪ SM ∪ {ω,G}). Then we have

(1) T �0 ϕ is definable with parameter from |M | ∪ SM ∪ {ω} over M .

(2) For any P0,M -generic G ∈ [T ], if M [G] |= ϕ then there exists T ′ ∈ P0,M

such that T ′ ⊆ T , G ∈ [T ′] and T ′ �0 ϕ.

Lemma 5.5 Let M be a countable model of RCA0. Let T and T ′ be M -perfect

trees. Then, there exists an M-homeomorphism H from [T ] to [T ′] with its

code M -recursive in T ⊕ T ′.

Proof. We shall first prove Lemma 5.5 under the assumption that T ′ = PM(=

(2<N)M). Define a function hT from PM to T inductively as follows. hT (〈〉) =

the least τ ∈ T such that τ"〈i〉 ∈ T for each i = 0, 1. For j = 0 or 1,

hT (σ
"〈j〉) = the least τ ∈ T such that hT (σ)

"〈j〉 ⊆ τ and τ"〈i〉 ∈ T for

each i = 0, 1. Then, hT is M -recursive in T . So, by the construction, Boolean-

preserving extension h of hT is a code for an M -homeomorphism from [T ] to

[PM ] which is M -recursive in T .

Let hT (and hT ′) be the code for M-homeomorphisms from [T ] (and [T ′]) to

[PM ]. Then a function hT (h
−1
T ′ �rng(hT ′)) can be extended to a code hT,T ′ for

anM -homeomorphism HT,T ′ from [T ] to [T ′] , which is M-recursive in T ⊕T ′.

�

HT,T ′ : [T ] → [T ′] and hT,T ′ in the proof of Lemma 5.5 are said be a canonical

M-homeomorphism and a canonical code for HT,T ′, respectively.

Lemma 5.6 Let T and T ′ be two M-trees in P0,M such that RECM(T ) =

RECM(T ′). Let H : [T ] → [T ′] be a canonicalM-homeomorphism. If T1 ∈ P0,M

is a subtree of T , then there exists a subtree T ′
1 of T ′ such that T ′

1 ∈ P0,M and

H([T1]) = [T ′
1].
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Proof. Let H : [T ] → [T ′] be a canonical M-homeomorphism. Fix T1 ∈ P0,M

such that T1 ⊆ T . Then, let T ′
1 = {σ ∈ T ′ : ∃τ ∈ T ′(σ ⊆ τ ∧ h(τ) ∈ T1},

where h is a canonical code for H. Since T is M-recursive in T ′, h is M -

recursive in T ′. So T ′
1 is M-recursive in T ′ ⊕ T1. Obviously, T ′

1 is M-perfect

and H([T1]) = [T ′
1].

It remains to show that T ′ is uniformly pointed. To see this, fix X ∈ [T ]. Since

H−1(X) ∈ [T1] and T1 is uniformly pointed, then

T ′
1 ≤T T

′ ⊕ T1 ≤T T
′ ⊕H−1(X) ≤T T

′ ⊕X.

Since T is M-recursive in T ′, h is M -recursive in T ′. So T ′
1 is M-recursive in

T ′ ⊕T1. Since X ∈ [T ′] and T ′ is uniformly pointed, then T ′
1 is M-recursive in

X. In fact, by the above argument, for any X ∈ [T ], T ′
1 has the same index of

M-recursiveness in X. �

Lemma 5.7 Let M be a countable model of RCA0. Let T ∈ P0,M . Then, for

any A ∈ SM , if T is M-recursive in A, there exists a subtree T ′ of T such that

T ′ ∈ P0,M and RECM(A) = RECM(T ′).

Proof. Fix any T ∈ P0,M and any A ∈ SM . Let h be a canonical code for

a canonical M -homeomorphism H : [T ] → [PM ]. We work over M . Define

B ⊆ PM inductively as follows:

(1) h(〈〉) ∈ B and

(2) if lh(σ) = 1 is odd and h(σ) ∈ B, then h(σ"〈i〉) ∈ B (i = 0, 1) and

(3) if lh(σ) = 1 is even, (lh(σ) − 1)/2 ∈ A and h(σ) ∈ B, then h(σ"〈0〉) ∈ B

(4) if lh(σ) = 1 is even, (lh(σ)− 1)/2 �∈ A and h(σ) ∈ B, then h(σ"〈1〉) ∈ B.

Set T ′ = {σ ∈ T : ∃τ ∈ B(σ ⊆ τ)}. By the construction, T ′ is perfect, and it

is recursive in A since T is recursive A. Moreover, for all m ∈ N,

m ∈ A↔ ∃σ ∈ 2<N(lh(σ) = 2n + 1 ∧ h(σ"〈0〉) ∈ T ′).

Therefore, A is recursive in T ⊕ T ′. Consider the leftmost path P through T ′.

Then, P is recursive in T ′. Since T is uniformly pointed, T is recursive in T ′,

so A is recursive in T ′. Hence A and T ′ are recursive in each other.

It remains to prove that T ′ is uniformly pointed. To see this, fix X ∈ [T ′].
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Then, for all m ∈ N,

m ∈ A↔ ∃σ ∈ 2<N(lh(σ) = 2n+ 1 ∧ h(σ"〈0〉) = X[h(σ"〈0〉)]).

Thus T ′ is uniformly pointed since T ′ is recursive in A. �

Lemma 5.8 Let M be a countable model of RCA0. Let T1, T2 ∈ P0,M . Then,

T1 �0 ϕ is equivalent to T2 �0 ϕ for any sentence ϕ in L2(|M | ∪ SM ∪ {ω}).

Proof. Let T1 and T2 be uniformly pointed M-perfect trees. Suppose that

T1 �0 ϕ and T2 ��0 ϕ for some L2(|M | ∪ SM ∪ {ω})-sentence ϕ. Then, by

Lemma 5.4 (2), there exists T ′
2 ∈ P0,M such that T ′

2 ⊆ T2 and T ′
2 �0 ¬ϕ.

According to Lemma 5.7, there exists T ′
1 and T ′′

2 such that T ′
1 �0 ϕ, T

′′
2 �0 ¬ϕ

and RECM(T ′
1) = RECM(T ′′

2 )(= RECM(T1 ⊕ T ′
2)). Let G be a P0,M -generic

path through T ′
1. Then M [G] |= ϕ. Let H : [T ′

1] → [T ′′
2 ] be a canonical M -

homeomorphism. By Lemma 5.6, we can show that H(G′) is P0,M -generic

through T ′′
2 . Since M [G] = M [H(G)], then M [H(G)] |= ϕ, so T ′′

2 ��0 ¬ϕ. This

is a contradiction. �

Lemma 5.9 Let M be a countable model of RCA0. Let ϕ be an L2(|M |∪SM ∪
{ω})-sentence. If G is P0,M -generic, then M [G] |= ϕ is equivalent to �0 ϕ,

i.e., T �0 ϕ for all T ∈ P0,M .

Proof. Let P0,M -generic G be given. Suppose that T ��0 ϕ for some T ∈ P0,M .

Since M [G] |= ϕ, there exists T ′ ∈ P0,M such that T ′ �0 ϕ. By Lemma 5.8,

this is a contradiction. �

Lemma 5.10 Let M be a countable model of RCA0. Then, �0 ∃X∀Y (Y is

recursive in X). That is, for any P0,M -generic G, M [G] is a principal model

of RCA0.

Proof. It is sufficient to show that for any Y ∈ SM , �0 (Y is recursive in G).

Fix A ∈ SM . Set DA = {T ∈ P0,M : T �0 (A is recursive in G)}. We want to

show that DA is dense. To see this, fix T ∈ P0,M . By Lemma 5.7, there exists

T ′ ∈ P0,M such that T ′ ⊆ T and A is M-recursive in T ′. Since T ′ is uniformly

pointed, for any P0,M -generic G through T ′, T ′ is M-recursive in G, that is, A

is M -recursive in G. Then T ′ ∈ DA. �

Theorem 5.11 Any countable model of RCA0 is a submodel of a principal

model of RCA0 with the same first order part.
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Proof. This follows immediately from Lemma 5.10.

Let C be a countable subset of P (M). Then, G is said to be P0,M -C-generic if

there exists T ∈ D such that G ∈ [T ] for all dense subset D of P0,M definable

with parameters from |M | ∪ SM ∪ C ∪ {ω}. For any T ∈ P0,M , there exists a

P0,M -C-generic path G through T .

Lemma 5.12 Let M be a countable model of RCA0. Let C be a countable

subset of P (|M |) such that SM ∩C = ∅. If G is P0,M -C-generic, then M [G]∩
C = ∅.

Proof. We want to show that for any A ∈ C and any Σ0
1 formulas ϕ1(x) and

ϕ2(x) with parameters from |M | ∪ S ∪ {G}, either A �= {n ∈ |M | : M [G] |=
ϕ1(n)} or A �= {n ∈ |M | :M [G] |= ¬ϕ2(n)}.

We may assume that ϕi(x) is of the form ∃yθi(x,G[y]), where θi(x, τ) is Σ0
0

with parameter from |M | ∪ SM (i = 1, 2). Let DA be the set of all T ∈ P0,M

such that one of the following holds for some m ∈ |M |:

A1. m ∈ A ∧M |= ∀τ ∈ T¬θ1(m, τ),

A2. m �∈ A ∧M |= ∃w∀τ ∈ T (lh(τ ) = w → ∃τ ′ ⊆ τθ1(m, τ
′)),

A3. m ∈ A ∧M |= ∃w∀τ ∈ T (lh(τ ) = w → ∃τ ′ ⊆ τθ2(m, τ
′)),

A4. m �∈ A ∧M |= ∀τ ∈ T¬θ2(m, τ).

Then it suffices to show that DA is dense.

To see this, let T ∈ P0,M be given. Case 1. Suppose that there exists m ∈ |M |
such that for all τ1, τ2 ∈ T , either m ∈ A ∧ M |= ∀τ ′ ⊆ τ1¬θe(m, τ ′) or

m �∈ A ∧M |= ∀τ ′ ⊆ τ2¬θd(m, τ ′). Then T belongs to DA.

Case 2. Suppose that there exists m ∈ |M | and τ1, τ2 ∈ T such that either

m �∈ A ∧ M |= ∃τ ′ ⊆ τ1θe(m, τ
′) or, m ∈ A ∧ M |= ∃τ ′ ⊆ τ2θd(m, τ

′). If

m �∈ A, let T ′ = {σ ∈ T : M |= σ is compatible with τ1}. If m ∈ A, let

T ′ = {σ ∈ T :M |= σ is compatible with τ2}. Then, T ′ isM -perfect. It is also

uniformly pointed since T ′ is M -recursive in T . So, T ′ belongs to DA.

31



Case 3. Neither Case 1 nor Case 2. Then,

A = {m :M |= ∃τ ∈ Tθ1(m, τ)} = {m :M |= ∀τ ∈ T¬θ2(m, τ)}.

This is a contradiction. �

Let M be a countable model of RCA0 and G be P0,M -generic. Then M [G] is

a principal model of RCA0 by Theorem 5.11. Therefore there exists a Pω,M [G]-

generic G′.

Lemma 5.13 LetM be a countable model of RCA0. Let ϕ be an L2(|M |∪SM)-

sentence. If G is P0,M -generic and G′ is Pω,M [G]-generic, then M [G][G′] |= ϕ

is equivalent to �0�ω ϕ.

Proof. Let G be P0,M -generic and G′ be Pω,M [G]-generic. By Lemma 4.14,

M [G][G′] |= ϕ⇔M [G] |=�ω ϕ.

By Lemma 5.9,

M [G] |=�ω ϕ⇔ M |=�0�ω ϕ.

�

Theorem 5.14 Let G and H be P0,M -generic. Let G′ and H ′ be Pω,M [G]-

generic and Pω,M [H]-generic, respectively. Then, M [G][G′] and M [H ][H ′] sat-

isfy the same L2(|M | ∪ SM)-sentences.

Proof. Immediate from Lemma 5.13. �

Lemma 5.15 There exist P0,M -generic G, P0,M -generic H, Pω,M [G]-generic

G′ and Pω,M [H]-generic H ′ such that SM [G][G′] ∩ SM [H][H′] = SM .

Proof. Fix any P0,M -generic G over M and any Pω,M [G]-generic G
′. Let C =

SM [G][G′] \S. Let H be P0,M -C-generic. Let H ′ be Pω,M [H]-C-generic. Then, by

Lemma 5.12 and Lemma 4.15, SM [G][G′] ∩ SM [H][H′] = SM . �

Corollary 5.16 Let M be a countable model of RCA0. Then there exist two

countable models M1 and M2 of WKL0 such that:

(1) M1 and M2 have the same first order part as M,

(2) SM1 ∩ SM2 = SM ,
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(3) M1 and M2 satisfy the same L2(|M | ∪ SM)-sentences.

Proof. Take G, H, G′ and H ′ as in Lemma 5.15. Let M1 = M [G][G′] and

M2 =M [H ][H ′]. By Lemma 4.10, M1 andM2 are models of WKL0. Moreover,

according to Theorem 5.14, they satisfy the same sentences with parameters

from |M | ∪ SM . �

Theorem 5.17 Let ϕ(X, Y ) be a Π1
1 formula with exactly the free variables

shown. If WKL0 proves ∀X∃!Y ϕ(X, Y ), then RCA0 proves ∀X∃Y ϕ(X, Y ).

Proof. Let ϕ(X, Y ) be a Π1
1 formula with exactly the free variables shown.

Suppose that WKL0 proves ∀X∃!Y ϕ(X, Y ). By way of contradiction, we as-

sume RCA0 does not prove ∀X∃Y ϕ(X, Y ). Then by Gödel’s completeness the-

orem, there exists a countable model M of RCA0 in which ¬∃Y ϕ(A, Y ) holds

for some A ∈ SM . By Corollary 5.16, there exist two countable models M1

and M2 of WKL0 such that (1) they have the same first order part as M , (2)

SM1 ∩ SM2 = SM and (3) they satisfy the same L2(|M | ∪ SM)-sentences. Let

Yi ∈ SMi
be such that Mi satisfies ϕ(A, Yi) (i = 1, 2). Then, for each n ∈ |M |

and each i = 1, 2,

n ∈ Yi ⇔Mi |= ∃Y (ϕ(A, Y ) ∧ n ∈ Y ).

By (3), for each n in |M |,

M1 |= ∃Y (ϕ(A, Y ) ∧ n ∈ Y ) ⇔M2 |= ∃Y (ϕ(A, Y ) ∧ n ∈ Y ).

Therefore, Y1=Y2. Then, by (2), Y1 ∈ SM0 . Therefore, by (1) and (2), M sat-

isfies ϕ(A, Y1) since ϕ is Π1
1 and M1 satisfies ϕ(A, Y1). This is a contradiction.

�

6 A further conservation result

The system WKL+
0 (RCA+

0 ) is obtained from WKL0 (RCA0) by adding the

following scheme:

∀n∀σ ∈ 2<N∃τ ∈ 2<N(σ ⊆ τ ∧ ϕ(n, τ)) → ∃X∀n∃kϕ(n,X[k]),

where ϕ(x, y) is an arithmetical formula with no occurrence of X. We recall

some backgrounds from Brown/Simpson [2]. There are two versions of the

33



Baire category theorem, BCT-I and BCT-II. A version of Urysohn’s lemma

for complete separable metric spaces follows from BCT-I, which is provable

in RCA0 (cf. [12, Lemma II.7.3]). By contrast, the Bounded Inverse Mapping

Theorem for separable Banach spaces is usually deduced from BCT-II, which

is not provable in RCA0, but in RCA+
0 . It is unknown whether or not the

Bounded Inverse Mapping Theorem is provable in RCA0. Brown/Simpson [2]

proved also that WKL+
0 is conservative over RCA0 with respect to Π1

1 sentences.

In this section, we generalize our main theorem to show that if WKL+
0 �

∀X∃!Y ϕ(X, Y ), then so does RCA0, where ϕ(X, Y ) is arithmetical. To prove

it, for any principal modelM of RCA0, we will construct two countable models

M1, M2 of WKL+
0 with SM1 ∩ SM2 = SM which have the same first order part,

and satisfy the same sentences with parameters from |M | ∪ SM .

LetM be a countable model of RCA0. For each σ, τ ∈ (2<N)M , we write τ ≤+
1 σ

if τ extends σ. We say that D ⊆ (2<N)M is dense if for each σ ∈ (2<N)M , there

exists τ ∈ D such that τ ≤+
1 σ. A path G is said to be (2<N)M -generic if,

for every M-definable dense set D ⊆ (2<N)M , there exists σ ∈ D such that

G ∈ [σ].

Lemma 6.1 Let M be a countable model of RCA0 and suppose that G ∈ PM

is (2<N)M -generic. Then M [G] |= RCA0.

Proof. See [2, Lemma 6.1]. �

Definition 6.2 Let M be a countable model of RCA0. Let ϕ be a sentence in

L2(|M | ∪ SM ∪ {G}). For any σ ∈ (2<N)M , ϕ is said to be weakly forced by σ

(denoted T �+
1 ϕ) if M [G] |= ϕ for all (2<N)M -generic G ∈ [σ].

Lemma 6.3 Let M be a countable model of RCA0. Let ϕ be a sentence of

L2(|M | ∪ SM ∪ {G}). Then we have

(1) σ �1 ϕ is definable over M .

(2) For any (2<N)M -generic G ∈ [σ], if M [G] |= ϕ then there exists σ ⊆ τ

such that G ∈ [τ ] and τ �+
1 ϕ.

Proof. Similar to Lemma 3.2. �

Lemma 6.4 Let M be a countable model of RCA0. If σ1 and σ2 are in (2<N)M ,
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then σ1 �+
1 ϕ if and only if σ2 �+

1 ϕ for any sentence ϕ of L2(|M | ∪ SM).

Proof. For any σ, τ ∈ (2<N)M , let F be a function from [σ] to [τ ] such that for

each X ∈ [σ], F (X) = {n : τ (n) = 1} ∪ {lh(τ) + n : n ∈ X ′} where X = {n :

σ(n) = 1}∪{lh(σ)+n : n ∈ X ′}. Obviously, F is anM -homeomorphism from

[σ] to [τ ]. Therefore, Lemma 6.4 can be proved in the same way as Lemma 3.5.

�

Let C be a countable subset of P (|M |). G is said to be (2<N)M -C-generic if

for every M ∪ C-definable dense D, there exists σ ∈ D such that G ∈ [σ].

Lemma 6.5 Let M be a countable model of RCA0, and C a countable subset

of P (|M |) such that C ∩ SM = ∅. If G is (2<N)M -C-generic, then M [G] is a

countable model of RCA0 with SM [G] ∩ C = ∅.

Proof. It suffices to show that for any A ∈ C and any Σ0
1 formulas ϕ1(x) and

ϕ2(x) with parameters from |M | ∪ S ∪ {G}, either A �= {n ∈ |M | : M [G] |=
ϕ1(n)} or A �= {n ∈ |M | : M [G] |= ¬ϕ2(n)}. By way of contradiction, we

suppose that A = {n ∈ |M | :M [G] |= ϕ1(n)} = {n ∈ |M | :M [G] |= ¬ϕ2(n)}.

We may assume that ϕi(x) is of the form ∃yθi(x,G[y]), where θi(x, τ) is Σ0
0

with parameter from |M | ∪SM (i = 1, 2). Let EA be the set of all σ ∈ (2<N)M

such that there exists m ∈ |M | such that for any extension τ of σ, one of the

following holds:

A1. m ∈ A ∧M |= ∀τ ′ ⊆ τ¬θ1(m, τ ′),

A2. m �∈ A ∧M |= ∃τ ′ ⊆ τθ1(m, τ
′),

A3. m ∈ A ∧M |= ∃τ ′ ⊆ τθ2(m, τ
′),

A4. m �∈ A ∧M |= ∀τ ′ ⊆ τ¬θ2(m, τ ′).

We define DA by

σ ∈ DA if and only if σ ∈ EA ∨ ¬∃τ ∈ EA(σ ⊆ τ).

Then DA is (2<N)M -dense, and M ∪C-definable. Take σ0 ∈ DA with G ∈ [σ0].

We first claim that σ0 ∈ EA. By way of contradiction, suppose that σ0 �∈ EA.
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Then for all τ ⊇ σ0,

∀x∃τ ′ ⊇ τ((x ∈ A↔ ∃τ ′′ ⊆ τ ′θ1(x, τ ′′)) ∧ (x ∈ A↔ ∀τ ′′ ⊆ τ ′¬θ2(x, τ ′′))).

Therefore, for any n ∈ |M |,

n ∈ A⇔M |= ∃τ ⊇ σ0∃τ ′ ⊆ τθ1(n, τ
′) ⇔ M |= ∀τ ⊃ σ0∀τ ′ ⊆ τ¬θ2(n, τ ′).

Then A ∈ SM . This is a contradiction with C ∩ SM = ∅. Thus, since σ0 is in

EA, there exists m0 ∈ |M | such that for all τ ⊃ σ0, either

B1. m0 ∈ A ∧M |= (∀τ ′ ⊆ τ¬θ1(m0, τ
′)∨ ∃τ ′ ≤ τθ2(m, τ

′)), or

B2. m0 �∈ A ∧M |= (∀τ ′ ⊆ τ¬θ2(m0, τ
′)∨ ∃τ ′ ≤ τθ1(m, τ

′)).

Assume that m0 ∈ A. Fix an initial segment τ of G such that τ is an end-

extension of σ0 and G[l] with θ1(m0, G[l]). By B1, ∃τ ′ ≤ τθ2(m, τ
′)). Then,

∃yθ2(m0, G[y]), that is, m0 �∈ A. This is a contradiction. The case of x0 �∈ A
can be treated similarly. This completes the proof. �

As in Section 4, by iterating the two forcing notions �1 and �+
1 alternatively,

we can define the notion of +-ω-forcing �+
ω , which satisfies the following prop-

erties.

Lemma 6.6 Let M be a principal model of RCA0. Then the following hold.

(1) If G is generic for �+
ω , then M [G] |= WKL+

0 .

(2) Any two +-ω-conditions weakly force the same L2(|M | ∪ SM)-sentences.

(3) Let C be a countable subset of P (|M |) such that SM ∩ C = ∅. Then there

exists a generic G for �+
ω such that SM [G] ∩ C = ∅.

Lemma 6.7 Let M be a principal model of RCA0. Then there exist two count-

able models M1, M2 of WKL+
0 such that:

(1) M1 and M2 have the same first order part as M,

(2) SM1 ∩ SM2 = SM ,

(3) M1 and M2 satisfy the same L2(|M | ∪ SM)-sentences.

Proof. It is straightforward from Lemma 6.6 (3). �
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Theorem 6.8 Let ϕ(X, Y ) be an arithmetical formula with only the free vari-

ables shown. If WKL+
0 proves ∀X∃!Y ϕ(X, Y ), then so does RCA0. (Then, RCA0

also proves ∀X∃Y (Y is recursive in X ∧ ϕ(X, Y )).)

Proof. The proof is an obvious modification of the proof of Theorem 4.18

with the help of Lemma 6.7. �
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