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O. Introduction (for algebraists) 

In the body of this paper we use the apparatus of mathematical logic to 
investigate the role of induction in algebraic reasoning. We show that a 
surprisingly strong form of induction is needed in order to prove certain very 
basic and simple algebraic lemmas. 

The purpose of this section is to explain one of our results in an intuitive way 
making no use of mathematical logic. We shall construct a 'counterexample' to 
the assertion that every polynomial over a field has an irreducible factor. The 
polynomial occurring in our 'counterexample' is the cyclotomic polynomial 
x 2n + 1 where n = 2 l°°°. 

Let I be the set of positive integers i having the property that i grains of sand 
do not constitute a heap of sand. Obviously 1 belongs t o / .  Furthermore, it is 
impossible to change a non-heap into a heap by adding one grain of sand. Thus 
for any i ~ 1we see that i + 1 also belongs to L On the other hand n = 21°°° clearly 
does not belong to L (This counterexample to induction was known to the ancient 
Greeks as the paradox of the heap.) For each i ~ I let Ki be the splitting field of 
x2'+ 1 over the rational field Q=Ko. Let K be the union of the tower 
Ko =_ K1 _ "-- =_ Ki _~ -. • (i ¢ 1). Thus K is a countable field. 

We claim that x e" + 1 has no irreducible factor over the field K. Suppose that 
p(x) were such a factor. There must be an i ¢ I such that all the coetiicients of 
p(x) belong to Ki. Thus p(x)=x  2"-1- ~ where o~ 2' + 1 =0. But then p(x) factors 
in Ki+l as (x2"-'-1+ ~)(x 2"-'-~- ~8) where /] = V~. This is a contradiction since 
Ki+l ~_ K. 

In Section 3 below we convert the above line of reasoning into a rigorous 
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argument. We show that a certain strong form of induction (known as ~1 
induction) is necessary for any proof of the following lemma: every polynomial 
over a countable field has an irreducible factor. On the other hand, it was shown 
in [1] that this same form of induction is sufficient for the development of a 
certain large portion of countable algebra. Combining these results we have a 
precise characterization of what form of induction is needed for that portion of 
algebra. 

1. Introduction (for logicians) 

In [1] familiar theorems of countable algebra were classified according to the 
set existence axioms which are needed to prove them. Many theorems of 
countable algebra turned out in [1] to be equivalent to such axioms, the 
equivalence being provable over the weak base theory RCAo. In the present 
work, we consider refinements of the results of [1] which are obtained by 
weakening the base theory. 

All of the formal theories in [1] and in the present paper are in the language of 
second order arithmetic. The theory RCAo consists of addition, multiplication, A°I 
comprehension and ~ induction. The presence of ~ induction allows one to 
define functions from natural numbers to natural numbers by primitive recursion. 
In particular RCAo proves the existence of the exponential function exp(m, n) = 
m n . 

In the present paper, we study the weaker system RC/~  consisting of addition, 
mutiplication, exponentiation, A ° comprehension, and ~ induction. Thus RCA0 
is equivalent to RCA~ plus ~ induction. It is known that RCA~ is properly 
weaker than RCAo. It turns out that some but not all of the results of [1] which 
were proved in RCAo can be proved in RCA~. For instance, it appears that 
RCA~ is sufficient to prove Theorems 3.5, 4.1, 4.4, 4.5, 5.4, and 6.4 of [1]. The 
proofs would be essentially the same as in [1] except that Lemma 1.5 of [1] must 
be replaced by Lemma 2.4 below. We do not know whether Theorems 2.5, 2.12, 
3.1, 3.3, and 4.3 of [1] are provable in RCA~. Lemma 2.4 of [1] is definitely not 
provable in RCA~. 

Our main purpose in the present paper is to show that RCA~ is not strong 
enough to prove certain basic lemmas about polynomials in one variable over a 
countable field. Specifically, let f(x) be any polynomial with integer coefficients in 
one variable, and let K be any countable field. We show that RCA~ is not strong 
enough to prove any of the following assertions: 

(1) f(x) has at least one factor over K which is irreducible over K. 
(2) f(x) has a factorization into polynomials over K each of which is irreducible 

over K. 
(3) The set of roots off(x)  in K is finite. 

Furthermore, we show that each of the assertions (1), (2) and (3) is equivalent 
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over RCA~ to Z ° induction. Thus no theory in the language of second-order 
arithmetic, which contains RCA~ but does not contain RCAo, can suffice to prove 
these assertions. 

The results which we have just described constitute a contribution to the 
program of Reverse Mathematics as described in [1], [2], [3] and [4]. The purpose 
of Reverse Mathematics is to determine which set existence axioms are needed to 
prove specific theorems of ordinary mathematics. In the present paper, the 
ordinary mathematical theorems which we have in mind are assertions (1), (2) 
and (3) above. The set existence axiom which we have in mind is bounded 27o 
comprehension, i.e. the scheme 

Vm =lXVi (i ~X~->(i < m  ^ ~(i))) 

where ~p(i) is any ~ formula in which X does not occur. We shall show in 
Section 2 that bounded 270 comprehension is equivalent to ~ induction. 

In an unpublished abstract [5], Friedman has announced another result of the 
above type. Namely, according to Friedman, ~ induction is equivalent to the 
assertion that every finitely generated vector space over the rational numbers (or 
over any countable field) has a basis. We do not know of any other results of this 
type, in which theorems of ordinary mathematics are equivalent to ~ induction. 
However, we suspect that there are many such results waiting to be discovered. 

2. The formal system RCA~ 

The language of RCA~ is the language of second-order arithmetic augmented 
by a binary function symbol exp denoting exponentiation. There are number 
variables i, j, k, m, n , . . .  and set variables X ,  Y, Z, . . .  The number variables 
are intended to range over the set to of natural numbers, while the set variables 
are intended to range over subsets of to. Numerical terms are the number 
variables, the constant symbols 0 and 1, and h + t2, tx- te, t~ ~ ( = exp(h, t2)) where 
tl and te are numerical terms. Atomic formulas are tl = te, tl < t2, and tl E X 
where tx and t2 are numerical terms. Formulas are built up from atomic formulas 
by means of propositional connectives, number quantifiers Vn and 3n, and set 
quantifiers VX and ::IX. 

The axioms of RCA~ include the following basic axioms: 

m +  1:~0, 

m +  l = n +  l--->m=n, 

m + O = m ,  

m + ( n +  1) = (m + n) + 1, 

m - 0 = 0 ,  

m.(n+ 1)=m.n+m, 
m 0 -- 1, 

m n+l -" m n • m, 

• ~m < O, 

m < n  + 1 < - * ( m - n  v m < n ) .  
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If t is any numerical term and 4 is any formula, we write (Vm < t) 4 (respectively 
(Bm < t )  4 )  as an abbreviation for '¢m (m <t---~ 4 )  (respectively 3m (m < t  ^ 
4)). The quantifiers V m < t  and : lm<t  are known as bounded number 
quantif~rs. A formula is called Z~o if it is built up from atomic formulas, 
propositional connectives, and bounded number quantifiers. A formula is called 

(respectively//~1) if it has the form 3m 4 (respectively Vm 4)  where 4 is 270. 
For k = 0, 1, --~k induction is the scheme 

(4(0) ^ Vn (4(n)--* 4(n + 1)))---> Vn 4(n)  

where 4 is 270. Also ~k comprehension is the scheme 

: XVn (n x,--, 4(n)) 

where 4 is ~k and X does not occur in 4- Finally A ° comprehension is the scheme 

Vn aXVn (n • x o 4 ( n ) )  

where 4 is 27 °, ~p is / /~,  and X does not occur in 4. 
The system RCA~ consists of the basic axioms plus A ° comprehension plus 

induction. The system RCAo consists of the basic axioms plus A ° comprehension 
plus ~ induction. Trivially RCAo is equivalent to RCA~ plus ~ induction. 

We now sketch a development of some results about sets and functions within 
RCA~. Ordered pairs of natural numbers are encoded as (m, n) = (m + n) 2 + m. 
We use [~ to denote the set of all natural numbers as defined within (any model 
of) RCA~. For any sets X and Y we write X x Y = {(m, n):  m • X ^ n e Y}. Also 
N k is the set of all (natural numbers which are codes for) sequences of natural 
numbers of length k. Functions f :X--~ Y are identified with sets of (codes for) 
ordered pairs. The following lemma says that the universe of total functions is 
dosed under Kleene's/~-operator. 

2.1. Lemma (RCA~). Suppose that 
Vtn :In (g(m, n)=0) .  Then there is a 
f (m) = least n such that g(m, n) =0.  

g : N k x iN--* N has the property that 
unique function f :  N k-* N defined by 

Proof. Immediate by A ° comprehension. [] 

The next lemma says that the universe is closed under bounded primitive 
recursion. 

2.2. Lemma (RCA~). Suppose g: N k---> [~, b : N x [~k...> N, h : N x N x N k--, N. 

Then there is a unique function f : N × N k - - , N  defined by f(O, m ) = g ( m )  and 
f(n + 1, m) -- min(b(n, m), h(f(n, m), n, m)). 

Proof. Fix m E N k and put b(n) = b(n, m). We first prove the lemma under the 
assumption that b is monotone, i.e. b(i)<<-bO') whenever i ~<j. Put c(n)= b(n) n. 
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Then each function from {0, 1 , . . . ,  n - 1) into {0, 1 , . . . ,  b(n - 1)} is encoded 
by a unique integer less than c(n). Using ~ induction a n d / t  o comprehension we 
can prove by induction on n that the sequence 

(f(1, ,n), f(2, m ) , . . . ,  f(n, ,n)) 
is encoded by some integer less than c(n). Then f itself exists by /to 
comprehension. 

Suppose now that b is not monotone. Using the special case of the lemma 
which has already been proved, define a function j :  N---> N by j(O) = O, j(n + 1) = 
j(n) if b(n + 1) ~< b(j(n)), j(n + 1) = n + 1 otherwise. By A ° comprehension 
define b'(n)=b(j(n))=max{b(i): i<~n}.  Then b'  is monotone and we can 
repeat the previous argument using c'(n) = b ' (n)  n instead of c(n). This completes 
the proof of Lemma 2.2. [] 

A set X is bounded if 3 n V m ( m ~ X - - - ~ m < n ) .  Let (pro:meN) be the 
enumeration of the prime numbers in increasing order. A set X is finite if it is 
encoded by a single number, i.e. if 3n Vm (m e X ~ p m  divides n). 

2.3. I.,¢mma (RCA~). Every bounded set is finite. 

Proof. Given X, use bounded primitive recursion to define f :  ~---, N by f ( 0 ) =  1, 
f (m + 1 )=f (m)  .p,~ if m eX ,  f (m + 1) = f ( m )  if m ~ X .  Thus f (n )=  H{pm:m < 
n A m ~ X}. If X is bounded by n, then X is encoded by f(n).  [] 

2.4. Lemma (RCA~). Let cp(n) be any ~11 formula. There exist a set X c ~ and a 
one-to-one function f :X--> N such that Vn (cp(n)~-> =Ira (m e X A f (m)  = n)). 

ProoL Let ¢p(n)= 3j O(j, n) where 0 is ~oo. By Zo o comprehension let X =  
{(j, n)" O(j, n) ^ - ( 3 i  < j )  O(i, n)}. Define f :X--> N by f((j ,  n)) = n. 

2.5. I~mma (RCA~). The following are pairwise equivalent: 
(a) ~ induction. 
(b) The universe of total functions is closed under primitive recurskm. 
(c) For any infinite set X there exists a principal function Zrx:[~---> X which 

enumerates the elements of X in increasing order. 
(d) Bounded ~t  comprehension. 
(e) I f  dp(i) is ~ and Vi (cp(i)--. i < n ) a n d  Vi Vj ((~(/ ' )Ai<j)-->cp(i)) ,  then 

3m Vi (cp(i) ~--~ i < m ) .  

Proof. The implications (a) to (b) to (c) to (d) are proved in [1]. The implication 
from (d) to (e) is obvious. To prove that (e) implies ~ induction, assume 
~,(0) ^ Vk 0p(k)--> ~p(k + 1)) n ---~p(n) where ~p is 2"~. Put qb(i) = 3k (i ~<k < 
n ^  ~p(k)). Then by (e) there exists m such that Vi (cp ( i )o i<m) .  Then 
~p(m) ^ - ( m  + 1), a contradiction. This completes the proof. [] 
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In order to orient the reader, we shall now give an example of a model of 
RCA~ in which 27 o induction fails. For more results on models of RCA~, see 
Section 4 below. 

2.6. Example. Let M be any nonstandard model of first-order Peano arithmetic. 
Let a • IM[ be any nonstandard integer and define a sequence bo = a, bn+l = b bn, 
n • to. Let II[ be the set of all b • [M[ such that b <M bn for some n • to. Clearly III 
is a proper initial segment of [M I. Let I be the submodel of M whose universe is 
[I[. Then I is a model of the first-order part of RCA~. If we let the set variables 
range over subsets of II[ of the form X tq III where X is M-finite, then I becomes a 
model of RCA~. Note that the set of standard integers is a proper ~ initial 
segment of L so we have an explicit failure of 2.5(e). 

3. Algebra in RCA~ 

A countable field is a set F ~_ • with operations + ,  - ,  • defined on F and 
constants 0, 1 where the usual field axioms are satisfied. A ~1 formula ~p(v) 
defines a ,y,o subfield of  F if tp(0) and tp(1) hold and Vx (dp(x)--->x e F) and 
Vx, y ((~O(x) ̂  ~p(y) A y ~ O)--->(dp(X + y) A dp(X -- y) A dp(X " y)  A tp(X + y))). These 
definitions can be extended in the obvious way to algebraic structures other than 
fields. The next lemma is useful in showing that many results in [1] which were 
proved in RCA0 can be proved in RCA~. 

3.1. Lennna (RCA~). Let F be a countable field and suppose that dp(v) defines a 
~ t  subfield of  F. Then there is a field K and a monomorphism f :  K--* F such that 
Wx(dp(x)~-->3y•K(f(y)=x)) .  Thus, every ~11 subfield is the range of  a 
monomorphism. 

Proof. By Lemma 2.4 there is a set X and a one-to-one f :X--> F such that 
Vx (tp(x) ~ :ly • X (f(y) = x)). Define field operations on X in the unique way so 
that f is a monomorphism. [] 

Other, more common, methods of constructing fields are also available to us. 
For example, given a ring R and indeterminates Xo, xl, • •. we may construct the 
polynomial ring R[xo, x l , .  • .] or, if R is a domain, we have the rational functions 
R(x0, x l , . . . )  over R. These constructions can be found in [9]. If R is a ring and I 
is an ideal of R, then R/I can be represented by a set of coset representatives 
where the least element of each coset is chosen. 

While these constructions work well in RCA~, other techniques require 
induction. The troublesome techniques arise when we introduce the structure of 
the nature numbers into the field. This is done when we study polynomials of 
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arbitrary degree or when we define the 'characteristic homomorphism' f :  ~ ' ~  F 
by f (1)  = 1. (Here 7/is the ring of integers.) 

To illustrate, let us consider the characteristic homomorphism. We can define 
@ : N---> F by the primitive recursion q~(0) = 0 and @(n + 1) = ¢ (n)  + 1. This is not 
a bounded primitive recursion, since the + on the right hand side is a field 
operation. Furthermore, the existence of a function ~ which satisfies this 
recursion is equivalent to ~ induction. We capture this in the next definition and 
theorem. 

3.2. Definition. A countable field F is an evaluation field if for each n e ~ there 
is a function E : Z [ X o , . . . ,  xn-1] x F " - , F  which satisfies these clauses for 

a = ( a o ,  • • • , a , , - 1 ) :  

(1) E ( O , a ) = O  and E(1, a ) = l ,  
1 

(2) E ( x i ,  a)  -" ai, 

(3) E f t  + g, a) = E(f ,  a) + E(g, a), 
(4) eft .g,  a) = e ( f ,  a)  . e ( g ,  a). 

We call E the evaluation function. 

This definition can be made for other algebraic structures by evaluating arbitrary 
terms in the. language of the structure. 

3.3. Theorem (RCA~). ~ induction is equivalent to the statement "Every 
countable field is an evaluation field". 

ProoL Since an evaluation function E can be obtained by primitive recursion it is 
clear that ,y0 induction implies that every countable field is an evaluation field. 

Suppose conversely, that Z~ induction fails. By I_emma 2.5(e) there is an n e 
and a ,y0 formula ~(x)  such that 

Vx (@(x)-* x ~ n) A VX, y (x < y <~ n A dp(y)--> dp(x)), 

but there is no m ~ n  with Vx (#?(x)<ox <~m). Notice that Vx (~(x)--* ~(x + 1)), 
but we assume more by considering the formula ~p(x) *-~ 3z ~< n (~(z)  ^ x ~ 22"). 
We see that Vx, y ( ( lp (X)A~p(y) ) - ->( lp (x+y)A~p(x .y ) ) ) ,  and there is no 
m ~ 2 ~" such that Vx (x <~ m <-* ~p(x)). Thus we will assume that ~ is dosed under 

+ and .. 
By Lemma 2.4 there is a set X and a one-to-one function f :X--> r~ such that 

Vx (¢ (x )  *-> 3y ~ X ( f (y )  = x)). Through f, X acquires the structure of + ,  • and 
< .  By the usual algebraic constructions there is an ordered field F and an 
order-preserving monomorphism g :X--> F. The field F is minimal in the sense 
that if h = g o f - l ,  then 

vx  F 3 k  ^ x h(k) ) .  

We claim that F is not an evaluation field. In fact, we claim that p ( x ) =  n .  x 
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cannot be evaluated at x = 1. If n • 1 e F, then there is a k ~< n such that 0 (k )  and 
n .  1 <~ h(k) .  But h-l(n • 1 ) =  n so that n = k and n is a maximal element for 
which is a contradiction. [] 

We cannot expect a field to be an evaluation field when working in RCA~, but 
many of our favorite fields are evaluation fields. We are taking special care to 
use only evaluation fields to prove our principal results about polynomials. The 
next few lemmas are to provide us with a stock of evaluation fields. 

A ring with an evaluation function will be called an evaluation ring. We say a 
ring R has a sum and product if there axe functions S and P on finite sequences of 
elements of R into R which satisfy these recurrence relations: 

S( (a ) )=a ,  S((as, . . . , a . , a . + a ) ) = S ( ( a , , . . . , a , ) ) + a n + l ,  
and 

P( (a ) )=a ,  P ( ( a l , . . . , a , , , a , , + l ) ) = P ( ( a l , . . .  ,a,,)).a,,+,. 

3.4. Lemma (RCA~). I f  R has a sum and product, then R is an evaluation ring. 

ProoL This is a simple substitution using A ° comprehension. [] 

3.5. Lemma (RCA~). The field of rational numbers, Q, is an evaluation field. 

Proof. First observe that N has a sum and product by bounded primitive 
recursion. For example, we may obtain P((ao , . . .  , an) )=f (~ao , . . .  ,an) ,n)  
where f is given by 

a, i f m =  (a) ,  
f(m, O)= O, otherwise, 

f(m, n + 1)=  ff(U "k' n)-a, 
(0,  

if m = (k, a )  and k has length n + 1, 

otherwise. 

f(m, n) is bounded by m". A sum and product for 7/and Q can now be easily 
defined. [] 

3.6. I.aemma (RCA~). Let t o , . . . ,  tk be indeterminates, then Q [ t 0 , . . . ,  tk] is an 
evaluation ring. 

Proof. Q[t0, • . . ,  tk] inherits a sum directly from O. As for the product, consider 
the coefficient c of a monomial m =t~. . . t~/ ,  occurring in the product of 
A, • • •,  f , .  Now c = ~o (1-I~"..0 o(i)) where o runs over all sequences with o(i) the 
coefficient of m~ occurring in / ]  and l-L-%.o m~ = m. Clearly, the set of these o is 
bounded and hence, by Lemma 2.3, is finite. We may now apply the sum and 
product from Q to obtain c. This can be done uniformly for all coefficients in the 
product o f j ~ , . . . , f , .  [] 
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3.7. Lemma (RCA~). Let R = Q[to, • • •, tn] and let M be a maximal ideal in R, 
then R / M  is an evaluation field. 

Proof. Immediate from Lemma 3.6 and the definition of R/M. [] 

This concludes our discussion of evaluation fields. As mentioned above, our 
principal theorems will be proven using evaluation fields. We now show, with the 
aid of ~ induction, that the assertions (1), (2) and (3) given in the introduction 
hold. 

3.8. Lenmm (RCAo). Let F be a countable field and f (x )  e Fix]. Then 
(1) f ( x )  has an irreducible factor. 
(2) f ( x )  has a finite factorization into irreducible polynomials over F. 
(3) f (x )  has only finitely many roots in F. 

Proof. Since (1) and (3) follow easily from (2) we need only prove (2). Define 

dp(n) ~ ~im >~ n 3gl, . . . , gm e F[x] i f (x)  = g~(x)"  " gin(X)). 

Notice that Vn (O(n)--*n <~ deg(f)), so by ~ induction (in the form of Lemma 
2.5(e)) there is an m ~<deg(f) such that Vn (dp(n)--~n<-m) and ¢(m).  Thus if 
f ( x ) = g ~ ( x ) . .  "gm(X) each gi(x) is irreducible. [] 

While we not particularly interested in the uniqueness of faetorizations, we 
note that uniqueness can also be shown in RCAo. These results can be extended 
to multivariate polynomials. 

3.9. "rneorem (RCA~). The following are pairwise equivalent: 
(a) inducaon. 
(b) For each countable field F and every polynomial f ( x )  e Fix], f ( x )  has only 

finitely many roots in F. 
(c) Same as (b) with 'field' replaced by 'evaluation field'. 

Proof. (a) implies (b) by Lemma 3.8 and (b) implies (c) trivially. We use Lemma 
2.5(d) to show (c) implies (a). Let ~(x) be a ~ formula and n ~ N. We want to 
show that {m ~<n:~(m)} exists. 

Let R = Q [ t o , . . . , t n ]  and M - ( ~ - p k : k ~ n )  where Po, P l , . . .  is an 
enumeration of the primes. At this stage we have not yet shown that M exists and 
is maximal. We first show M is maximal by showing that every element of R has 
an inverse modulo M. Every element of R can be written as a Q-linear 
combination of monomials til...t~k, modulo M. Furthermore, we can write an 
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element in the form a + btk where tk does not occur in either a or b. We can now 
explicitly define the inverse by bounded primitive recursion, viz. 

i ( a )=a  -1 if a e Q  and a ~ 0 ,  

f i(a) if a ~ O  and b=O, 
i(a + btk) = i(bpk)tk if a = 0 and b =fi 0, 

a . i(a 2 -  b2pk) -- b . i(a 2 -  b2p~)tk f fa,  b¢O.  

It is easily checked by 2~0 induction that (a + btk)" i(a + btk) = 1 if a and b are 
not both 0. Thus M is maximal. M exists by A ° comprehension, since 
f ¢  M *-* Bg ~ R ( f .  g - 1 e M). By Lemma 3.7 R / M  is an evaluation field. 

Let ~p(x) be the ~ formula which asserts that x is in the subfield of R / M  
generated by those tk, k<~n and ¢(k).  By Lemma 3.1 there is a field F and a 
monomorphism g : F---> R / M  such that Ip(x) ,-> By ~ F (g(y) = x). The restriction 
of the evaluation function on R / M  to F is an evaluation function on F. 

Let f ( x )=[ i ' /=o(x2-p i )  and suppose that { t r e F : f ( t r ) = 0 }  is finite. Thus 
{m <~n :=ltr ~ F (f(tr) = 0 ^ g(tr) =Pro)) is finite, but this is clearly the same as 
{m<~n:dp(m)}. [] 

3.10. Theorem (RCA~). The following are pairwise equivalent: 
(a) induction. 
(b) For every countable field and every polynomial f ( x )  E F[x], f (x )  has a finite 

factorization into irreducible polynomials over F. 
(c) Same as (b) with "field' replaced by 'evaluation field'. 

Proof. We show (c) implies (a). Let F be the field constructed in Theorem 3.9. 
Suppose f ( x ) =  1-['l=o (x 2 - p i )  has a finite factorization into irreducibles, f ( x ) =  
gl(x) '"  "gin(x). Thus 

{ tr ~ F :f(tr) = O} = {tr ~ F : 3i <<-m (x - tr= gi(x))) 

is a finite set, and following the proof of Theorem 3.9 we see that ~ induction 

holds. [] 

3.11. Theorem (RCA~). The following are pairwise equivalent: 
(a) Z~I induction. 
(b) For every countable field F and every polynomial f ( x )  ~ Fix], f (x )  has an 

irreducible factor. 
(c) Same as (b) with 'field' replaced by 'evaluation field'. 

Proof. We show (c) implies (a) by using 2.5(e). Let ~(v)  be ~ and n e N and 
suppose that Vk < 1 ~< n (~(1)--* ¢(k))  ^ Vk (¢(k)---> k ~< n). We want tO find an 
m ~<n such that Vk (~p(k)*-~k<-m). The proof uses the splitting fields Km of the 
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cyclotomic polynomials g ' (x )  = x 2" + 1. The next lemma has the basic facts about  

these fields. 

3o12o 

(1) 
(2) 

(3) 

(4) 

some 

Lemma (RCA~).  For each m • [~: 
K" exists and is an evaluation field. 
l f  t < m, then KI = K ' .  
[Kin :Q]  = 2 m and [Kn :Kin] = 2 "-m. 

I f  p(x) • K'[x] is an irreducible factor of g~(x), then p ( x ) = x  2"-" 
to •Km a root of g" (x). 

- t o  for 

Proof .  Let R,,, = Q [ t l , . . . ,  tin] and Mm the ideal generated by t12+ 1, ~ -  

tl, . . . ,  t2"- tm-~. Using the same methods as in Theorem 3.9 we see that Mm 
exists and is a maximal ideal. We claim Km =Rm/Mm is the splitting field of  
gin(X). By Lemma 3.7 Km is an evaluation field. 

For  each s • 2 m we define tos • Kin, a root of gm(X). This is done by bounded 

primitive recursion. For  m = 1, too = V "L-~= h ,  and tol = - t o o .  If tos is defined, 
t O ~ o = V ~  and tos~ = - V ~  = - t o ,  o. By 2~0 induction, tos • K "  if s • 2  m and 
g ' ( tos )  = 0. Furthermore,  if s :~ t, then to~ =t= tot, and to~ = tm if s = ( 0 , . . . ,  0) • 2".  

Now K "  is generated by t ' ,  contains all roots of g,n(X), and hence K "  is the 

splitting field of gin(x). This proves (1) and (2). 
Given s, t e 2 "  we can define by bounded primitive recursion a Q- 

automorphism O:K'-- ,  K" such that 0(to~) = tot. This is possible since x 2 -  to~ is 
irreducible over KI for s • 21. By the classical Kronecker  factorization algorithm 

[6, p. 82], t "  has an irreducible polynomial h(x) over Q. Since h(O(t')) = 0, we 
see that h(x) has 2 n distinct roots, and thus h(x) = x  2~ + 1 and [K"  :Q] = 2".  The 

standard proof  shows that [K~:Q]=[Kn:K,,]. [KIn:Q] so that [K~:Km] = 2 ~- ' ' .  

This proves (3). 

Let  to • K m  be a root ofig'(x), so that  to = to~ for some s • 2".  Now every root  
of x 2"-~ - to in K~ is a root of x 2" + 1, so by counting, x 2~ + 1 = I-[,,2- (x 2"-~ - to~). 
We claim that x 2"-" - to is irreducible. Let  v • K~ be a root of x 2"-" - to, then v is 
a root of x 2" + 1 and hence Q(v)  = K~. Thus x 2"-" - to splits completely on the 
adjunction of a single root,  it follows that  x 2"-" - to is irreducible. This proves (4) 
and concludes the proof  of Lemma 3.12. [] 

Let ~p(x) ~--~ 3m ~<n ( 0 ( m )  ^ x E K ' ) .  Clearly ~p(x) defines a ~ subfield of  K,,, 

so by Lemma 3.1 there is a field F and a monomorphism f :  F - ,  Kn such that  

Vx 0P(x)  ~ 3y • F i f ( y )  = x)).  The restriction of the evaluation function on Kn is 
an evaluation function on F. Thus F is an evaluation field. 

Suppose that gn(x) has an irreducible factor p(x) • Fix]. We may assume that  
p(x)•K,,,[x] for some m ~ n  where 0 ( m )  holds. Also p(x) is irreducible over  
K'[x], so by Lemma 3.12(4), p (x )  = x  2"-" - to for some to e K ' .  Now ff O(m + 1) 
holds, then p(x) is irreducible over K ' + I  also, and hence p(x) = x 2"-'-~ - v for 
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some v ¢ Km+l, which is impossible. Thus m is maximal and by Lemma 2.5(e), 
induction holds. [] 

4. Models of RCA~ 

The purpose of this section is to study logical properties of the formal system 
RCA~. Our method is to prove theorems concerning models of RCA~. From 
these model-theoretic results we deduce proof-theoretic corollaries. 

Let L2 be the language of RCA~, i.e. the language of second-order arithmetic 
augmented by a binary function symbol exp(m, n ) =  m ~. A model for 1.2 is an 
ordered 8-tuple 

M = ([MI, b ~M, +u ,  .M, expM, <M, 0 ~, 1 ~)  

where ]M] is a set; ~M is a collection of subsets of ]M[; +M, .~, and exp M are 
functions from IMI × IMI into IMI; <M is a subset of IMI × Igl; and (pc and 1M 
are distinguished elements of [M]. Let T be any theory in the language L2. We 
say the M satisfies T or is a model of  T if the axioms of T are universally true in M 
when the number variables range over ]M], the set variables range over 5e ~, and 
+ , . ,  exp, < ,  0, 1, are interpreted in the obvious way. All of the models we 

consider will satisfy the basic axioms plus 2~o induction (cf. Section 2). 
The first-order part of  M is the ordered 7-tuple obtained from the ordered 

8-tuple M by omitting 5e M. We shall now characterize the first-order parts of 
models of RCA~. 

By ~ collection we mean the scheme 

Vi 3j O(i, j)--* Vm =In Vi < m 3j < n O(i, j) 

where ¢(i, j) is any ~ formula in which m and n do not occur. 

4.1. Lemma. RCA~ proves ~ collection. 

Proof. We reason in RCA~. Assume Vi 3j dp(i, j). Let dp(i, j) = 3k 0(i, j, k) 
where 0 is Z~o. Write (j, k) = (j + k) 2 + j. Using Z~o induction and A ° comprehen- 
sion, we get a function f:[~---)N defined by f ( i ) =  least (j, k) such that O(i, j, k) 
holds. Using bounded primitive recursion, define g: ~---~ N by g(0) =f(O), 
g(m + 1)=g(m) if f (m  + 1)<~f(g(m)), g(m + 1 )=m + 1 otherwise. By A ° com- 
prehension define h(m) =f(g(m))  + 1 = max{f(/) + 1 :i ~< m}. Then ('¢i < 
m)(3(j ,  k) < h(m))O(i, j, k) so clearly (Vi < m)(3j < n)dp(i, j) with n = h(m). 
This completes the proof. [] 

4.2. [,emma. Let M be any model of  the basic axioms plus Z~o induction plus Z~ 
collection. Then there exists a model M' of  RCA~ such that M is a submodel of  M' 
and has the same first order part. 
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Proof. Let M'  be the model with the same first-order part as M and 3"M'= 
A ° - Def(M) = the set of all X ~_ IM] such that X is A ° definable over M allowing 
parameters from IMI U ,y~a. Clearly ,yM~_ S~M' so we need only verify that M'  
satisfies A ° comprehension and 2~o induction. 

Let 0 be any Z~o formula with parameters from [MI O b "M' and no free set 
variables. We claim that there exist a ~ formula Or and a ~ formula On with 
parameters from IM[ U b °'u only, having the same free variables as 0 and 
equivalent to 0 over M'.  We define Oz and On by recursion on the number of 
symbols in 0. If 0 is tx=t2 or t~<t2 put O z = O n = 0 .  If 0 is t l e X  put 
Or = ¢p(tl) and On = ~/'(t0 where ~ and ~/, are as in the A ° definition of the 
parameter X e A ° - Def(M). If 0 = --- 0' put Or = ~ 'Ok and On = -O~.  If 
0 = (Vi < t) 0 '  put Or = =in (Vi < t) (=l] < n) 0" where O'~ = =lj 0 " . I f 0  = 0' ^ 0" 

= ' O'z-=iiOo and O~==ij~. The put Or =lk ((=ii<k) OoA(=l j<k)~)  where ' -  ' 
proof that O6 and On are equivalent to 0 over M'  is a straightforward application 
of Z~I collection. 

From the previous claim it follows easily that for any ~ (respectively F/~) 
formula with parameters from IM[ u ~u,  and no free set variables, there exists an 
equivalent ~ (respectively //~1) formula with parameters from [M[ U b ~M only. 
Hence M'  satisfies A ° comprehension. 

Now given X e ,Yu' let O(i, j) and O'(i, ]) be ~0 formulas with parameters from 
[M[ O ,yM and no free variables except i and ], such that X = {a e [M I :M satisfies 

=ij O(a, j)} -- (a • IMI :M satisfies Vj O'(a, y)}. Then g satisfies Vi =ij (0(i, j) 
v ~O'(i, ])). Hence by ~ collection M satisfies Vm =in (Vi < m) (=ij < n) (0(i, j) 
v ~O'(i, j)). For any such m and n we have (Vi < m) (i • X*-* (=lj < n) 0(i, j)). By 
~0 induction in M it follows that if X is nonempty, then X has a least element. 
It is now clear that M'  satisfies ~o induction. This completes the proof of 
Lemma 4.2. [] 

Let L1 be the language which is just like L2 except that the set variables are 
omitted. The first-order part of  a theory T in L2 is the restriction of T to L:. 

4.3. Theorem. The first-order parts of models of RCA~ are precisely the models 
for L1 which satisfy the basic axioms plus ~oo induction plus ~ collection. (In the 
terminology of [7] these are just the models of B~'I + exp.) 

ProoL Immediate from Lemma 4.1 and 4.2. [] 

4.4. Corollary. The first-order part of RCA~/s just the theory in L1 whose axioms 
are the basic axioms, ~o induction, and ~ collection. (This is the theory 
B271 + exp of [7].) 

ProoL Immediate from Theorem 4.3 plus Gtders  completeness theorem. [] 
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We now consider the effect of adding weak K6nig's lemma to RCA~. It will 
turn out that this modification does not affect the first-order part of the theory. 

Within RCA~ we define Seq2 to be the set of all (natural numbers which are 
codes for) finite sequences of elements of the set {0, 1}. For any X_c ~ and n • 
we define X[n] • Seq2 to be the sequence X[n] = (Xo, x~, . . . , x,_~) where xi = 0 
if i ¢ X, x~ = 1 if i • X. A tree is a set T ~_ Seq2 such that every initial segment of 
an element of T is an element of T. A path through T is a set X_c N such that 
X[n] • T for all n ~ N. Weak K6nig's lemma is the assertion that for every infinite 
tree T _c Seq2 there exists a path through T. Let WKL~ be tile theory in L2 whose 
axioms are those of RCA~ plus weak K~inig's lemma. (Similarly WKLo consists of 
RCAo plus weak K6nig's lemma. See [1], [2], [3], [4].) 

4.5. Lemma. Let  M be any countable model o f  RCA~. Let  T e 5 ~M be such that T 
is satisfied in M to be an infinite subtree o f  Seq2. Then there exists a countable 
model M '  o f  RCA~ such that: 

(i) M is a submodel  o f  M'  with the same first-order part; 
(ii) T is satisfied in M '  to have a path. 

Proof. We use a generalization of a forcing construction due to Jockusch and 
Soare [8, Theorem 2.4]. Let ffM be the set of all T • ff~4 such that T is satisfied in 
M to be an infinite subtree of Scq2. We say that ~ _ ffM is dense if (VT • ffM) 
(3T'  • ~ )  (T'  ~ T). We say that ~ is definable if it is definable over M allowing 
parameters from IM[ O ffM. We say that X ~_ [M I is M-generic if for each 
definable ~ _ ~ r~ there exists T • ~ such that X is a path through T. 

Suppose that X is M-generic. Let M' be the model with the same first-order 
part as M and ffM' = ff~ O {X}. We claim that M' satisfies Z~o induction and 
collection. 

We now prove the claim. Z0 induction is clear since X[k] • Seq2 M for each 
k • IMI. To prove ~ collection let @(i, j) be a ~ formula with parameters from 
[M[ O b ~M' and suppose that M'  satisfies Vi 3j @(i, j). Write @(i, j) in normal form 
as 3 k  O(i, j, X[k]) where O(i, j, o) is Z~o with parameters from [M[ U ffM only. Let 

be the set of all T • ~yM such that M satisfies 

3i (Vz • T) (Vj ~< lh(r)) (Vk ~< lh(z)) - O(i, j, ~[k]). 

Here lh(z) denotes the length of • and r[k] is the unique initial segment of r of 
length k. Let ~ be the set of all T • ffM such that T • ~g v - ( 3 T '  • ~) (T' _~ T). 
Clearly fi) is dense and definable so let T • ~ be such that X is a path through T. 
Since Vi :lj 3 k  O(i, j, X[k]) holds, we cannot have T • ~. Hence there is no 
T' • ~ with T' _c T. For each i • IM[ let T~ be the subtree of T consisting of all 

• T such that (Vj <~ lh(z)) (Vk ~< lh(r)) - O(i, j, z[k]). Since T/~ ~g we must have 
that T~ is satisfied in M to be finite. Thus M satisfies 

Vi 3n (Vz • T) (lh(l:) = n---, (3j < n )  (3k < n )  O(i, j, l:[k])). 
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By ~ collection in M we get 

Vm :In (V~ e T)(lh(~) = n-.-~(Vi <m) (:Ij <n) (:Ik <n) O(i, j, z[k])). 

In particular we have 

Vm :In (Vi < m )  (3] < n )  (:ik < n )  O(i, j, X[k]) 

so M'  satisfies Vm :In (Vi < m) (:Ij < n) tp(i, j). Thus we have ~ collection in M'. 
This proves our claim. 

We shall now complete the proof of Lemma 4.5. Let T e 3 "M be given. Using 
the countability of M, we can find an M-generic X _  IMI such that X is a path 
through T. Let M'  be as in our claim. By Lemma 4.2 we can find a model M" of 
RCA~ such that M'  is a submodel of M" and has the same first-order part. Then 
clearly M" satisfies the conclusions of Lemma 4.5. This completes the proof. [] 

4.6. Theorem. Let M be any countable model of  RCA~. Then there exists a 
countable model M' o f  ~ such that M is a submodel of  M' and has the same 
first-order part. 

Proof. Use Lemma 4.5 repeatedly to get a sequence of models (M~:i ~ to) such 
that M0 = M, each Mi is a submodel of Mi+l with the same first-order part, each 
M~ is a model of RCA~, and for each T ~ 3 "M, there exists j > i such that T is 
satisfied in Mj to have a path. Put M'  = U {M~ :i 6 to}, i.e. M' is the model with 
the same first-order part as M and ~ ' =  LJ {3 'M' :i e to). Then dearly M'  is a 
model of WKL~. This completes the proof. [] 

A formula is said to be arithmetical if it contains no set quantifiers. A formula is 
said to be H~ if it is of the form VX ~p with tp arithmetical. A sentence is a formula 
with no free variables. 

4.7. Corollary. WKI~  is a conservative extension of  RCA~ with respect to HI 
sentences. In other words, any Fl~ sentence which is provable in WKL~ is already 
provable in RCA~. 

Proof. Suppose that the H~ sentence VX ¢ is not provable in RCA~. By G6del's 
completeness theorem let M be a countable model of RCA~ plus : I X - ¢ .  By 
Theorem 4.6, let M'  be a model of WKL~ such that M is a submodel of M'  with 
the same first-order part. By absoluteness M' satisfies =lX-tp so by the soundness 
theorem VX ~ is not provable in WKL~. [] 

We now study the relationship between RCA~ and EFA. Here EFA is the 
theory in L1 consisting of the basic axioms plus ~0 induction. (The acronym EFA 
stands for elementary function arithmetic. EFA is essentially just the theory 
IZo + exp of [7].) 
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Let 

n - (IMI, + ~, "~, exp ~, <M, 0 ~, 1~') 
be any model of EFA. A proper initial segment of M is any set [I] ~_ IM I such that 
VaVb((a~lMl^b~lIl^a<~b)--,a~lII) and 0 ~, 1M ~lII and VaVb((a,b~ 
III)-~ (a +~b ,  a-Mb, expM(a, b) ~ III)) and II[ :~ IMI. We may then consider the 
model 

I =  (]I], +t, 3, exp 1, <1, 0 I, 11) 

where 0 ] = 0 M, I r = 1 u, and +~, d, expl and <z are the restrictions to II[ of +M, 
.u, expU and < u  respectively. By absoluteness I is again a model of EFA. From 
Lemma 4.1 and Theorem 4.8 below it will follow that I is also a model of 
collection. 

A set X ~ II[ is said to be M-coded if there exists an M-finite set X '  such that 
X = X'  n ]1 I. We may regard I as a model for L2 by defining ~1 to be the set of all 
M-coded subsets of III. 

4.8. Theorem. Let M be any model of  EFA and let 

I =  ([II, ~ ,  +1, .I exp,, <x  0 ~, 11) 

be as above where [1[ is any proper initial segment of [M[. 
W K ~  . 

Then I is a model of 

Proof. To see that I satisfies weak K6nig's lemma, let T e ~ be such that T is 
satisfied in I to be an infinite tree. Let T'  be an M-finite set such that 
T = T' n [I[. By ~ induction in M let ~ ~ T' n Seq2 M be of maximal length such 
that (Vn~<lh(r)) ( r [ n ] e T ' ) .  Clearly l h ( z ) > m  for all me[I[.  Put X = { m e  
]I] : r(m) -'- 1}. Clearly X is an M-coded path through T. (This idea goes back to 
Scott and Tennenbaum; see [8].) 

It remains to show that I satisfies A1 ° comprehension. Clearly I satisfies ~0 
comprehension. We shall now show that A ° comprehension follows from ~o 
comprehension plus weak K6nig's lemma. Let O(n) and ~p(n) be ~ and 
respectively such that Vn (dp(n)~-, ~p(n)). Let O ( n ) -  :lj 01(n, ]) and ~p(n) = Vj 
O0(n, ]) where 00 and 01 are 2~0. By ~0 comprehension let T be the set of all 

E Seq2 such that 

(Vn < lh(t))  (Vj < lh(~)) (Vi <2)(O,(n, j)-..* r(n) = i). 

Clearly T is an infinite tree. By weak K6nig's lemma let X be a (unique) path 
through T. Then clearly Vn (n ~X*.-,~(n)).  Thus we have A ° comprehension. 
This completes the proof of Theorem 4.8. [] 

A I~2 formula is a formula of the form Vi 3j  0 where 0 is ,~00. A ~ sentence is a 
/~2 formula with no free variables. 
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4.9. Corollary. ~ is a conservative extension of EFA for ~ sentences. In 
other words, any ~ sentence which is provable in ~ is already provable in 
EFA. 

Proof. Suppose that we have a ~ sentence Vi 3] 0(i, j) which is not provable in 
EFA. Form a theory consisting of EFA plus .--3j O(a, j) plus bo = a, bn+l = b~ ~, 
b, < c  where a, b,, (n • to), and c are new constant symbols. By G6del's 
compactness theorem, let M be a model of this theory. Let [I[ be the proper 
initial segment of [M[ consisting of all b • [M[ such that b <Ub,, for some n • to. 
By Theorem 4.8, I is a model of WKL~. Also a U •  [I[ so by absoluteness I 
satisfies -:]j O(a, j). Thus Vi :lj O(i, j) is not provable in WKI.~. This proves 
Corollary 4.9. [] 

Recall that the class of elementary recursive functions is the smallest class 
containing the initial functions and closed under composition and bounded 
primitive recursion. Equivalently, a reeursive function f(i) is elementary if its 
running time is dominated by some function of the form F(i)= 2(k, i) where 
2(0, i) = i, 2(k + 1, i) = 2 2(~'i), k e to. 

4.10. Corollary. Suppose that WKL~ proves the sentence Vi =tj dp where dp is ~ .  
Then there exists an elementary recursive function f(i) such that EFA proves Vi 
(=lj < f(i)) dp. 

Proof. An easy variant of the proof of Corollary 4.9. [] 

Remark. The results about RCA~, WKI.~, and EFA, which we have presented 
in this section, are analogous to previously known results about RCAo, WKLo 
and PRA ( =  primitive recursive arithmetic). Namely, the first-order part of 
RCAo is ~ induction (Friedman); WKLo is a conservative extension of RCAo 
with respect to H x sentences (Harrington); and WKLo is a conservative extension 
of PRA with respect to /~2 sentences (Parsons, Kirby, Paris, Friedman). For 
model-theoretic proofs of thse results see Simpson [4]. These proofs are originally 
due to Kirby and Paris [10], Friedman (unpublished), and Harrington (unpubl- 
ished). See also Parsons [11]. Our proofs of Theorems 4.3, 4.6 and 4.8 are based 
on the model-theoretic methods of Kirby, Pads, Friedman, and Harrington. 
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