FACTORIZATION OF POLYNOMIALS AND $\boldsymbol{\Sigma}_{1}^{0}$ INDUCTION*

Stephen G. SIMPSON
Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA

Rick L. SMITH
Department of Mathematics, University of Florida, Gainesville, FL 32611, USA

Communicated by A. Nerode
Received 19 March 1985

0. Introduction (for algebraists)

In the body of this paper we use the apparatus of mathematical logic to investigate the role of induction in algebraic reasoning. We show that a surprisingly strong form of induction is needed in order to prove certain very basic and simple algebraic lemmas.

The purpose of this section is to explain one of our results in an intuitive way making no use of mathematical logic. We shall construct a 'counterexample' to the assertion that every polynomial over a field has an irreducible factor. The polynomial occurring in our 'counterexample' is the cyclotomic polynomial $x^{2^{n}}+1$ where $n=2^{1000}$.

Let I be the set of positive integers i having the property that i grains of sand do not constitute a heap of sand. Obviously 1 belongs to I. Furthermore, it is impossible to change a non-heap into a heap by adding one grain of sand. Thus for any $i \in I$ we see that $i+1$ also belongs to I. On the other hand $n=2^{1000}$ clearly does not belong to I. (This counterexample to induction was known to the ancient Greeks as the paradox of the heap.) For each $i \in I$ let K_{i} be the splitting field of $x^{2^{i}}+1$ over the rational field $\mathbb{Q}=K_{0}$. Let K be the union of the tower $K_{0} \subseteq K_{1} \subseteq \cdots \subseteq K_{i} \subseteq \cdots(i \in I)$. Thus K is a countable field.

We claim that $x^{2^{n}}+1$ has no irreducible factor over the field K. Suppose that $p(x)$ were such a factor. There must be an $i \in I$ such that all the coefficients of $p(x)$ belong to K_{i}. Thus $p(x)=x^{2^{n-1}}-\alpha$ where $\alpha^{2^{i}}+1=0$. But then $p(x)$ factors in K_{i+1} as $\left(x^{2^{n-i-1}}+\beta\right)\left(x^{2^{n-i-1}}-\beta\right)$ where $\beta=\sqrt{\alpha}$. This is a contradiction since $K_{i+1} \subseteq K$.

In Section 3 below we convert the above line of reasoning into a rigorous

[^0]argument. We show that a certain strong form of induction (known as Σ_{1}^{0} induction) is necessary for any proof of the following lemma: every polynomial over a countable field has an irreducible factor. On the other hand, it was shown in [1] that this same form of induction is sufficient for the development of a certain large portion of countable algebra. Combining these results we have a precise characterization of what form of induction is needed for that portion of algebra.

1. Introduction (for logicians)

In [1] familiar theorems of countable algebra were classified according to the set existence axioms which are needed to prove them. Many theorems of countable algebra turned out in [1] to be equivalent to such axioms, the equivalence being provable over the weak base theory RCA_{0}. In the present work, we consider refinements of the results of [1] which are obtained by weakening the base theory.

All of the formal theories in [1] and in the present paper are in the language of second order arithmetic. The theory RCA_{0} consists of addition, multiplication, Δ_{1}^{0} comprehension and Σ_{1}^{0} induction. The presence of Σ_{1}^{0} induction allows one to define functions from natural numbers to natural numbers by primitive recursion. In particular $\mathbf{R C A}_{0}$ proves the existence of the $\operatorname{exponential}$ function $\exp (m, n)=$ m^{n}.

In the present paper, we study the weaker system RCA_{0}^{*} consisting of addition, mutiplication, exponentiation, Δ_{1}^{0} comprehension, and Σ_{0}^{0} induction. Thus $\mathbf{R C A}_{0}$ is equivalent to RCA_{0}^{*} plus Σ_{1}^{0} induction. It is known that RCA_{0}^{*} is properly weaker than RCA_{0}. It turns out that some but not all of the results of [1] which were proved in RCA_{0} can be proved in RCA_{0}^{*}. For instance, it appears that RCA_{0}^{*} is sufficient to prove Theorems $3.5,4.1,4.4,4.5,5.4$, and 6.4 of [1]. The proofs would be essentially the same as in [1] except that Lemma 1.5 of [1] must be replaced by Lemma 2.4 below. We do not know whether Theorems 2.5, 2.12, 3.1, 3.3, and 4.3 of [1] are provable in RCA_{0}^{*}. Lemma 2.4 of [1] is definitely not provable in RCA_{0}^{*}.

Our main purpose in the present paper is to show that RCA_{0}^{*} is not strong enough to prove certain basic lemmas about polynomials in one variable over a countable field. Specifically, let $f(x)$ be any polynomial with integer coefficients in one variable, and let K be any countable field. We show that RCA_{0}^{*} is not strong enough to prove any of the following assertions:
(1) $f(x)$ has at least one factor over K which is irreducible over K.
(2) $f(x)$ has a factorization into polynomials over K each of which is irreducible over K.
(3) The set of roots of $f(x)$ in K is finite.

Furthermore, we show that each of the assertions (1), (2) and (3) is equivalent
over RCA_{0}^{*} to Σ_{1}^{0} induction. Thus no theory in the language of second-order arithmetic, which contains RCA_{0}^{*} but does not contain RCA_{0}, can suffice to prove these assertions.

The results which we have just described constitute a contribution to the program of Reverse Mathematics as described in [1], [2], [3] and [4]. The purpose of Reverse Mathematics is to determine which set existence axioms are needed to prove specific theorems of ordinary mathematics. In the present paper, the ordinary mathematical theorems which we have in mind are assertions (1), (2) and (3) above. The set existence axiom which we have in mind is bounded Σ_{1}^{0} comprehension, i.e. the scheme

$$
\forall m \exists X \forall i(i \in X \leftrightarrow(i<m \wedge \phi(i)))
$$

where $\phi(i)$ is any Σ_{1}^{0} formula in which X does not occur. We shall show in Section 2 that bounded Σ_{1}^{0} comprehension is equivalent to Σ_{1}^{0} induction.

In an unpublished abstract [5], Friedman has announced another result of the above type. Namely, according to Friedman, Σ_{1}^{0} induction is equivalent to the assertion that every finitely generated vector space over the rational numbers (or over any countable field) has a basis. We do not know of any other results of this type, in which theorems of ordinary mathematics are equivalent to Σ_{1}^{0} induction. However, we suspect that there are many such results waiting to be discovered.

2. The formal system $\mathbf{R C A}_{0}^{*}$

The language of RCA_{0}^{*} is the language of second-order arithmetic augmented by a binary function symbol exp denoting exponentiation. There are number variables i, j, k, m, n, \ldots and set variables X, Y, Z, \ldots The number variables are intended to range over the set ω of natural numbers, while the set variables are intended to range over subsets of ω. Numerical terms are the number variables, the constant symbols 0 and 1 , and $t_{1}+t_{2}, t_{1} \cdot t_{2}, t_{1}^{t_{2}}\left(=\exp \left(t_{1}, t_{2}\right)\right)$ where t_{1} and t_{2} are numerical terms. Atomic formulas are $t_{1} \doteq t_{2}, t_{1}<t_{2}$, and $t_{1} \in X$ where t_{1} and t_{2} are numerical terms. Formulas are built up from atomic formulas by means of propositional connectives, number quantifiers $\forall n$ and $\exists n$, and set quantifiers $\forall X$ and $\exists X$.

The axioms of RCA_{0}^{*} include the following basic axioms:

$$
\begin{array}{ll}
m+1 \neq 0, & m \cdot(n+1)=m \cdot n+m \\
m+1=n+1 \rightarrow m=n, & m^{0}=1, \\
m+0=m, & m^{n+1}=m^{n} \cdot m, \\
m+(n+1)=(m+n)+1, & \sim m<0, \\
m \cdot 0=0, & m<n+1 \leftrightarrow(m=n \vee m<n) .
\end{array}
$$

If t is any numerical term and ϕ is any formula, we write $(\forall m<t) \phi$ (respectively $(\exists m<t) \phi$) as an abbreviation for $\forall m(m<t \rightarrow \phi)$ (respectively $\exists m(m<t \wedge$ ϕ)). The quantifiers $\forall m<t$ and $\exists m<t$ are known as bounded number quantifiers. A formula is called Σ_{0}^{0} if it is built up from atomic formulas, propositional connectives, and bounded number quantifiers. A formula is called Σ_{1}^{0} (respectively Π_{1}^{0}) if it has the form $\exists m \phi$ (respectively $\forall m \phi$) where ϕ is Σ_{0}^{0}. For $k=0,1, \Sigma_{k}^{0}$ induction is the scheme

$$
(\phi(0) \wedge \forall n(\phi(n) \rightarrow \phi(n+1))) \rightarrow \forall n \phi(n)
$$

where ϕ is Σ_{k}^{0}. Also Σ_{k}^{0} comprehension is the scheme

$$
\exists X \forall n(n \in X \leftrightarrow \phi(n))
$$

where ϕ is Σ_{k}^{0} and X does not occur in ϕ. Finally Δ_{1}^{0} comprehension is the scheme

$$
\forall n(\phi(n) \leftrightarrow \psi(n)) \rightarrow \exists X \forall n(n \in X \leftrightarrow \phi(n))
$$

where ϕ is Σ_{1}^{0}, ψ is Π_{1}^{0}, and X does not occur in ϕ.
The system RCA_{0}^{*} consists of the basic axioms plus Δ_{1}^{0} comprehension plus Σ_{0}^{0} induction. The system RCA_{0} consists of the basic axioms plus Δ_{1}^{0} comprehension plus Σ_{1}^{0} induction. Trivially RCA_{0} is equivalent to RCA_{0}^{*} plus Σ_{1}^{0} induction.

We now sketch a development of some results about sets and functions within RCA_{0}^{*}. Ordered pairs of natural numbers are encoded as $(m, n)=(m+n)^{2}+m$. We use \mathbb{N} to denote the set of all natural numbers as defined within (any model of) RCA_{0}^{*}. For any sets X and Y we write $X \times Y=\{(m, n): m \in X \wedge n \in Y\}$. Also N^{k} is the set of all (natural numbers which are codes for) sequences of natural numbers of length k. Functions $f: X \rightarrow Y$ are identified with sets of (codes for) ordered pairs. The following lemma says that the universe of total functions is closed under Kleene's μ-operator.
2.1. Lemma $\left(\mathrm{RCA}_{0}^{*}\right)$. Suppose that $g: \mathbb{N}^{k} \times \mathbb{N} \rightarrow \mathbb{N}$ has the property that $\forall m \exists n(g(m, n)=0)$. Then there is a unique function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ defined by $f(m)=$ least n such that $g(m, n)=0$.

Proof. Immediate by Δ_{1}^{0} comprehension.
The next lemma says that the universe is closed under bounded primitive recursion.
2.2. Lemma $\left(\mathrm{RCA}_{0}^{*}\right)$. Suppose $g: \mathbb{N}^{k} \rightarrow \mathbb{N}, b: \mathbb{N} \times \mathbb{N}^{k} \rightarrow \mathbb{N}, h: \mathbb{N} \times \mathbb{N} \times \mathbb{N}^{k} \rightarrow \mathbb{N}$. Then there is a unique function $f: \mathbb{N} \times \mathbb{N}^{k} \rightarrow \mathbb{N}$ defined by $f(0, m)=g(m)$ and $f(n+1, m)=\min (b(n, m), h(f(n, m), n, m))$.

Proof. Fix $m \in \mathbb{N}^{k}$ and put $b(n)=b(n, m)$. We first prove the lemma under the assumption that b is monotone, i.e. $b(i) \leqslant b(j)$ whenever $i \leqslant j$. Put $c(n)=b(n)^{n}$.

Then each function from $\{0,1, \ldots, n-1\}$ into $\{0,1, \ldots, b(n-1)\}$ is encoded by a unique integer less than $c(n)$. Using Σ_{0}^{0} induction and Δ_{1}^{0} comprehension we can prove by induction on n that the sequence

$$
\langle f(1, m), f(2, m), \ldots, f(n, m)\rangle
$$

is encoded by some integer less than $c(n)$. Then f itself exists by Δ_{1}^{0} comprehension.

Suppose now that b is not monotone. Using the special case of the lemma which has already been proved, define a function $j: \mathbb{N} \rightarrow \mathbb{N}$ by $j(0)=0, j(n+1)=$ $j(n)$ if $b(n+1) \leqslant b(j(n)), j(n+1)=n+1$ otherwise. By Δ_{1}^{0} comprehension define $b^{\prime}(n)=b(j(n))=\max \{b(i): i \leqslant n\}$. Then b^{\prime} is monotone and we can repeat the previous argument using $c^{\prime}(n)=b^{\prime}(n)^{n}$ instead of $c(n)$. This completes the proof of Lemma 2.2.

A set X is bounded if $\exists n \forall m(m \in X \rightarrow m<n)$. Let $\left\langle p_{m}: m \in \mathbb{N}\right\rangle$ be the enumeration of the prime numbers in increasing order. A set X is finite if it is encoded by a single number, i.e. if $\exists n \forall m\left(m \in X \leftrightarrow p_{m}\right.$ divides n).
2.3. Lemma (RCA_{0}^{*}). Every bounded set is finite.

Proof. Given X, use bounded primitive recursion to define $f: \mathbb{N} \rightarrow \mathbb{N}$ by $f(0)=1$, $f(m+1)=f(m) \cdot p_{m}$ if $m \in X, f(m+1)=f(m)$ if $m \notin X$. Thus $f(n)=\Pi\left\{p_{m}: m<\right.$ $n \wedge m \in X\}$. If X is bounded by n, then X is encoded by $f(n)$.
2.4. Lemma (RCA_{0}^{*}). Let $\phi(n)$ be any Σ_{1}^{0} formula. There exist a set $X \subseteq \mathbb{N}$ and a one-to-one function $f: X \rightarrow \mathbb{N}$ such that $\forall n(\phi(n) \leftrightarrow \exists m(m \in X \wedge f(m)=n)$).

Proof. Let $\phi(n)=\exists j \theta(j, n)$ where θ is Σ_{0}^{0}. By Σ_{0}^{0} comprehension let $X=$ $\{(j, n): \theta(j, n) \wedge \sim(\exists i<j) \theta(i, n)\}$. Define $f: X \rightarrow N$ by $f((j, n))=n$.
2.5. Lemma $\left(\mathrm{RCA}_{0}^{*}\right)$. The following are pairwise equivalent:
(a) Σ_{1}^{0} induction.
(b) The universe of total functions is closed under primitive recursion.
(c) For any infinite set X there exists a principal function $\pi_{X}: \mathbb{N} \rightarrow X$ which enumerates the elements of X in increasing order.
(d) Bounded Σ_{1}^{0} comprehension.
(e) If $\phi(i)$ is Σ_{1}^{0} and $\forall i(\phi(i) \rightarrow i<n)$ and $\forall i \forall j((\phi(j) \wedge i<j) \rightarrow \phi(i))$, then $\exists m \forall i(\phi(i) \leftrightarrow i<m)$.

Proof. The implications (a) to (b) to (c) to (d) are proved in [1]. The implication from (d) to (e) is obvious. To prove that (e) implies Σ_{1}^{0} induction, assume $\psi(0) \wedge \forall k(\psi(k) \rightarrow \psi(k+1)) \wedge \sim \psi(n)$ where ψ is Σ_{1}^{0}. Put $\phi(i)=\exists k(i \leqslant k<$ $n \wedge \psi(k))$. Then by (e) there exists m such that $\forall i(\phi(i) \leftrightarrow i<m)$. Then $\psi(m) \wedge \sim(m+1)$, a contradiction. This completes the proof.

In order to orient the reader, we shall now give an example of a model of RCA_{0}^{*} in which Σ_{1}^{0} induction fails. For more results on models of RCA_{0}^{*}, see Section 4 below.
2.6. Example. Let M be any nonstandard model of first-order Peano arithmetic. Let $a \in|M|$ be any nonstandard integer and define a sequence $b_{0}=a, b_{n+1}=b_{n}^{b_{n}}$, $n \in \omega$. Let $|I|$ be the set of all $b \in|M|$ such that $b<^{M} b_{n}$ for some $n \in \omega$. Clearly $|I|$ is a proper initial segment of $|M|$. Let I be the submodel of M whose universe is $|I|$. Then I is a model of the first-order part of RCA_{0}^{*}. If we let the set variables range over subsets of $|I|$ of the form $X \cap|I|$ where X is M-finite, then I becomes a model of RCA_{0}^{*}. Note that the set of standard integers is a proper Σ_{1}^{0} initial segment of I, so we have an explicit failure of 2.5(e).

3. Algebra in RCA^{*}

A countable field is a set $F \subseteq \mathbb{N}$ with operations,,$+- \cdot$ defined on F and constants 0,1 where the usual field axioms are satisfied. A Σ_{1}^{0} formula $\phi(v)$ defines a Σ_{1}^{0} subfield of F if $\phi(0)$ and $\phi(1)$ hold and $\forall x(\phi(x) \rightarrow x \in F)$ and $\forall x, y((\phi(x) \wedge \phi(y) \wedge y \neq 0) \rightarrow(\phi(x+y) \wedge \phi(x-y) \wedge \phi(x \cdot y) \wedge \phi(x \div y)))$. These definitions can be extended in the obvious way to algebraic structures other than fields. The next lemma is useful in showing that many results in [1] which were proved in RCA_{0} can be proved in RCA_{0}^{*}.
3.1. Lemma (RCA_{0}^{*}). Let F be a countable field and suppose that $\phi(v)$ defines a Σ_{1}^{0} subfield of F. Then there is a field K and a monomorphism $f: K \rightarrow F$ such that $\forall x(\phi(x) \leftrightarrow \exists y \in K(f(y)=x))$. Thus, every Σ_{1}^{0} subfield is the range of a monomorphism.

Proof. By Lemma 2.4 there is a set X and a one-to-one $f: X \rightarrow F$ such that $\forall x(\phi(x) \leftrightarrow \exists y \in X(f(y)=x))$. Define field operations on X in the unique way so that f is a monomorphism.

Other, more common, methods of constructing fields are also available to us. For example, given a ring R and indeterminates x_{0}, x_{1}, \ldots we may construct the polynomial ring $R\left[x_{0}, x_{1}, \ldots\right]$ or, if R is a domain, we have the rational functions $R\left(x_{0}, x_{1}, \ldots\right)$ over R. These constructions can be found in [9]. If R is a ring and I is an ideal of R, then R / I can be represented by a set of coset representatives where the least element of each coset is chosen.

While these constructions work well in RCA_{0}^{*}, other techniques require Σ_{1}^{0} induction. The troublesome techniques arise when we introduce the structure of the nature numbers into the field. This is done when we study polynomials of
arbitrary degree or when we define the 'characteristic homomorphism' $f: \mathbb{Z} \rightarrow F$ by $f(1)=1$. (Here \mathbb{Z} is the ring of integers.)

To illustrate, let us consider the characteristic homomorphism. We can define $\phi: \mathbb{N} \rightarrow F$ by the primitive recursion $\phi(0)=0$ and $\phi(n+1)=\phi(n)+1$. This is not a bounded primitive recursion, since the + on the right hand side is a field operation. Furthermore, the existence of a function ϕ which satisfies this recursion is equivalent to Σ_{1}^{0} induction. We capture this in the next definition and theorem.
3.2. Definition. A countable field F is an evaluation field if for each $n \in \mathbb{N}$ there is a function $E: \mathbb{Z}\left[x_{0}, \ldots, x_{n-1}\right] \times F^{n} \rightarrow F$ which satisfies these clauses for $\boldsymbol{a}=\left(a_{0}, \ldots, a_{n-1}\right)$:
(1) $E(0, a)=0$ and $E(1, a)=1$,
(2) $E\left(x_{i}, a\right)=a_{i}$,
(3) $E(f+g, a)=E(f, a)+E(g, a)$,
(4) $E(f \cdot g, a)=E(f, a) \cdot E(g, a)$.

We call E the evaluation function.
This definition can be made for other algebraic structures by evaluating arbitrary terms in the language of the structure.
3.3. Theorem (RCA_{0}^{*}). Σ_{1}^{0} induction is equivalent to the statement "Every countable field is an evaluation field".

Proof. Since an evaluation function E can be obtained by primitive recursion it is clear that Σ_{1}^{0} induction implies that every countable field is an evaluation field.

Suppose conversely, that Σ_{1}^{0} induction fails. By Lemma 2.5(e) there is an $n \in \mathbb{N}$ and a Σ_{1}^{0} formula $\phi(x)$ such that

$$
\forall x(\phi(x) \rightarrow x \leqslant n) \wedge \forall x, y(x<y \leqslant n \wedge \phi(y) \rightarrow \phi(x))
$$

but there is no $m \leqslant n$ with $\forall x(\phi(x) \leftrightarrow x \leqslant m)$. Notice that $\forall x(\phi(x) \rightarrow \phi(x+1))$, but we assume more by considering the formula $\psi(x) \leftrightarrow \exists z \leqslant n\left(\phi(z) \wedge x \leqslant 2^{2^{z}}\right)$. We see that $\forall x, y((\psi(x) \wedge \psi(y)) \rightarrow(\psi(x+y) \wedge \psi(x \cdot y)))$, and there is no $m \leqslant 2^{2^{n}}$ such that $\forall x(x \leqslant m \leftrightarrow \psi(x))$. Thus we will assume that ϕ is closed under + and .
By Lemma 2.4 there is a set X and a one-to-one function $f: X \rightarrow \mathbb{N}$ such that $\forall x(\phi(x) \leftrightarrow \exists y \in X(f(y)=x))$. Through f, X acquires the structure of + , and $<$. By the usual algebraic constructions there is an ordered field F and an order-preserving monomorphism $g: X \rightarrow F$. The field F is minimal in the sense that if $h=g \circ f^{-1}$, then

$$
\forall x \in F \exists k(\phi(k) \wedge x \leqslant h(k)) .
$$

We claim that F is not an evaluation field. In fact, we claim that $p(x)=n \cdot x$
cannot be evaluated at $x=1$. If $n \cdot 1 \in F$, then there is a $k \leqslant n$ such that $\phi(k)$ and $n \cdot 1 \leqslant h(k)$. But $h^{-1}(n \cdot 1)=n$ so that $n=k$ and n is a maximal element for ϕ which is a contradiction.

We cannot expect a field to be an evaluation field when working in RCA_{0}^{*}, but many of our favorite fields are evaluation fields. We are taking special care to use only evaluation fields to prove our principal results about polynomials. The next few lemmas are to provide us with a stock of evaluation fields.

A ring with an evaluation function will be called an evaluation ring. We say a ring R has a sum and product if there are functions S and P on finite sequences of elements of R into R which satisfy these recurrence relations:

$$
S(\langle a\rangle)=a, \quad S\left(\left\langle a_{1}, \ldots, a_{n}, a_{n+1}\right\rangle\right)=S\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle\right)+a_{n+1}
$$

and

$$
P(\langle a\rangle)=a, \quad P\left(\left\langle a_{1}, \ldots, a_{n}, a_{n+1}\right\rangle\right)=P\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle\right) \cdot a_{n+1} .
$$

3.4. Lemma (RCA_{0}^{*}). If R has a sum and product, then R is an evaluation ring.

Proof. This is a simple substitution using Δ_{1}^{0} comprehension.
3.5. Lemma $\left(\mathrm{RCA}_{0}^{*}\right)$. The field of rational numbers, \mathbb{Q}, is an evaluation field.

Proof. First observe that \mathbb{N} has a sum and product by bounded primitive recursion. For example, we may obtain $P\left(\left\langle a_{0}, \ldots, a_{n}\right\rangle\right)=f\left(\left\langle a_{0}, \ldots, a_{n}\right\rangle, n\right)$ where f is given by

$$
\begin{aligned}
& f(m, 0)= \begin{cases}a, & \text { if } m=\langle a\rangle, \\
0, & \text { otherwise, },\end{cases} \\
& f(m, n+1)= \begin{cases}f(k, n) \cdot a, & \text { if } m=\langle k, a\rangle \text { and } k \text { has length } n+1, \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

$f(m, n)$ is bounded by m^{n}. A sum and product for \mathbb{Z} and \mathbb{Q} can now be easily defined.
3.6. Lemma $\left(\mathrm{RCA}_{0}^{*}\right)$. Let t_{0}, \ldots, t_{k} be indeterminates, then $\mathbb{Q}\left[t_{0}, \ldots, t_{k}\right]$ is an evaluation ring.

Proof. $\mathbb{Q}\left[t_{0}, \ldots, t_{k}\right]$ inherits a sum directly from \mathbb{Q}. As for the product, consider the coefficient c of a monomial $m=t_{0}^{i_{0}} \cdots t_{k}^{i_{k}}$ occurring in the product of f_{0}, \ldots, f_{n}. Now $c=\sum_{\sigma}\left(\prod_{i=0}^{n} \sigma(i)\right)$ where σ runs over all sequences with $\sigma(i)$ the coefficient of m_{i} occurring in f_{i} and $\Pi_{i=0}^{n} m_{i}=m$. Clearly, the set of these σ is bounded and hence, by Lemma 2.3, is finite. We may now apply the sum and product from \mathbb{Q} to obtain c. This can be done uniformly for all coefficients in the product of f_{0}, \ldots, f_{n}.
3.7. Lemma $\left(\mathrm{RCA}_{0}^{*}\right)$. Let $R=\mathbb{Q}\left[t_{0}, \ldots, t_{n}\right]$ and let M be a maximal ideal in R, then R / M is an evaluation field.

Proof. Immediate from Lemma 3.6 and the definition of R / M.

This concludes our discussion of evaluation fields. As mentioned above, our principal theorems will be proven using evaluation fields. We now show, with the aid of Σ_{1}^{0} induction, that the assertions (1), (2) and (3) given in the introduction hold.
3.8. Lemma (RCA_{0}). Let F be a countable field and $f(x) \in F[x]$. Then
(1) $f(x)$ has an irreducible factor.
(2) $f(x)$ has a finite factorization into irreducible polynomials over F.
(3) $f(x)$ has only finitely many roots in F.

Proof. Since (1) and (3) follow easily from (2) we need only prove (2). Define

$$
\phi(n) \leftrightarrow \exists m \geqslant n \exists g_{1}, \ldots, g_{m} \in F[x]\left(f(x)=g_{1}(x) \cdots g_{m}(x)\right) .
$$

Notice that $\forall n(\phi(n) \rightarrow n \leqslant \operatorname{deg}(f))$, so by Σ_{1}^{0} induction (in the form of Lemma 2.5(e)) there is an $m \leqslant \operatorname{deg}(f)$ such that $\forall n(\phi(n) \rightarrow n \leqslant m)$ and $\phi(m)$. Thus if $f(x)=g_{1}(x) \cdots g_{m}(x)$ each $g_{i}(x)$ is irreducible.

While we not particularly interested in the uniqueness of factorizations, we note that uniqueness can also be shown in RCA_{0}. These results can be extended to multivariate polynomials.
3.9. Theorem (RCA_{0}^{*}). The following are pairwise equivalent:
(a) Σ_{1}^{0} induction.
(b) For each countable field F and every polynomial $f(x) \in F[x], f(x)$ has only finitely many roots in F.
(c) Same as (b) with 'field' replaced by 'evaluation field'.

Proof. (a) implies (b) by Lemma 3.8 and (b) implies (c) trivially. We use Lemma $2.5(\mathrm{~d})$ to show (c) implies (a). Let $\phi(x)$ be a Σ_{1}^{0} formula and $n \in \mathbb{N}$. We want to show that $\{m \leqslant n: \phi(m)\}$ exists.

Let $R=\mathbb{Q}\left[t_{0}, \ldots, t_{n}\right]$ and $M=\left\langle t_{k}^{2}-p_{k}: k \leqslant n\right\rangle$ where p_{0}, p_{1}, \ldots is an enumeration of the primes. At this stage we have not yet shown that M exists and is maximal. We first show M is maximal by showing that every element of R has an inverse modulo M. Every element of R can be written as a \mathbb{Q}-linear combination of monomials $t_{i_{1}} \cdots t_{i_{k}}$, modulo M. Furthermore, we can write an
element in the form $a+b t_{k}$ where t_{k} does not occur in either a or b. We can now explicitly define the inverse by bounded primitive recursion, viz.

$$
\begin{aligned}
& i(a)=a^{-1} \quad \text { if } a \in \mathbb{Q} \text { and } a \neq 0, \\
& i\left(a+b t_{k}\right)= \begin{cases}i(a) \quad \text { if } a \neq 0 \text { and } b=0, \\
i\left(b p_{k}\right) t_{k} \quad \text { if } a=0 \text { and } b \neq 0, \\
a \cdot i\left(a^{2}-b^{2} p_{k}\right)-b \cdot i\left(a^{2}-b^{2} p_{k}\right) t_{k} & \text { if } a, b \neq 0 .\end{cases}
\end{aligned}
$$

It is easily checked by Σ_{0}^{0} induction that $\left(a+b t_{k}\right) \cdot i\left(a+b t_{k}\right)=1$ if a and b are not both 0 . Thus M is maximal. M exists by Δ_{1}^{0} comprehension, since $f \notin M \leftrightarrow \exists g \in R(f \cdot g-1 \in M)$. By Lemma $3.7 R / M$ is an evaluation field.

Let $\psi(x)$ be the Σ_{1}^{0} formula which asserts that x is in the subfield of R / M generated by those $t_{k}, k \leqslant n$ and $\phi(k)$. By Lemma 3.1 there is a field F and a monomorphism $g: F \rightarrow R / M$ such that $\psi(x) \leftrightarrow \exists y \in F(g(y)=x)$. The restriction of the evaluation function on R / M to F is an evaluation function on F.

Let $f(x)=\prod_{i=0}^{n}\left(x^{2}-p_{i}\right)$ and suppose that $\{\alpha \in F: f(\alpha)=0\}$ is finite. Thus $\left\{m \leqslant n: \exists \alpha \in F\left(f(\alpha)=0 \wedge g(\alpha)=p_{m}\right)\right\}$ is finite, but this is clearly the same as $\{m \leqslant n: \phi(m)\}$.
3.10. Theorem (RCA_{0}^{*}). The following are pairwise equivalent:
(a) Σ_{1}^{0} induction.
(b) For every countable field and every polynomial $f(x) \in F[x], f(x)$ has a finite factorization into irreducible polynomials over F.
(c) Same as (b) with 'field' replaced by 'evaluation field'.

Proof. We show (c) implies (a). Let F be the field constructed in Theorem 3.9. Suppose $f(x)=\prod_{i=0}^{n}\left(x^{2}-p_{i}\right)$ has a finite factorization into irreducibles, $f(x)=$ $g_{1}(x) \cdots g_{m}(x)$. Thus

$$
\{\alpha \in F: f(\alpha)=0\}=\left\{\alpha \in F: \exists i \leqslant m\left(x-\alpha=g_{i}(x)\right)\right\}
$$

is a finite set, and following the proof of Theorem 3.9 we see that Σ_{1}^{0} induction holds.
3.11. Theorem (RCA_{0}^{*}). The following are pairwise equivalent:
(a) Σ_{1}^{0} induction.
(b) For every countable field F and every polynomial $f(x) \in F[x], f(x)$ has an irreducible factor.
(c) Same as (b) with 'field' replaced by 'evaluation field'.

Proof. We show (c) implies (a) by using 2.5(e). Let $\phi(v)$ be Σ_{1}^{0} and $n \in \mathbb{N}$ and suppose that $\forall k<l \leqslant n(\phi(l) \rightarrow \phi(k)) \wedge \forall k(\phi(k) \rightarrow k \leqslant n)$. We want to find an $m \leqslant n$ such that $\forall k(\phi(k) \leftrightarrow k \leqslant m)$. The proof uses the splitting fields K_{m} of the
cyclotomic polynomials $g_{m}(x)=x^{2^{m}}+1$. The next lemma has the basic facts about these fields.
3.12. Lemma $\left(\mathrm{RCA}_{0}^{*}\right)$. For each $m \in \mathbb{N}$:
(1) K_{m} exists and is an evaluation field.
(2) If $l<m$, then $K_{l} \subset K_{m}$.
(3) $\left[K_{m}: \mathbb{Q}\right]=2^{m}$ and $\left[K_{n}: K_{m}\right]=2^{n-m}$.
(4) If $p(x) \in K_{m}[x]$ is an irreducible factor of $g_{n}(x)$, then $p(x)=x^{2^{n-m}}-\omega$ for some $\omega \in K_{m}$ a root of $g_{m}(x)$.

Proof. Let $R_{m}=\mathbb{Q}\left[t_{1}, \ldots, t_{m}\right]$ and M_{m} the ideal generated by $t_{1}^{2}+1, t_{2}^{2}-$ $t_{1}, \ldots, t_{m}^{2}-t_{m-1}$. Using the same methods as in Theorem 3.9 we see that M_{m} exists and is a maximal ideal. We claim $K_{m}=R_{m} / M_{m}$ is the splitting field of $g_{m}(x)$. By Lemma 3.7 K_{m} is an evaluation field.

For each $s \in 2^{m}$ we define $\omega_{s} \in K_{m}$, a root of $g_{m}(x)$. This is done by bounded primitive recursion. For $m=1, \omega_{0}=\sqrt{-1}=t_{1}$, and $\omega_{1}=-\omega_{0}$. If ω_{s} is defined, $\omega_{s 0}=\sqrt{\omega_{s}}$ and $\omega_{s 1}=-\sqrt{\omega_{s}}=-\omega_{s 0}$. By Σ_{0}^{0} induction, $\omega_{s} \in K_{m}$ if $s \in 2^{m}$ and $g_{m}\left(\omega_{s}\right)=0$. Furthermore, if $s \neq t$, then $\omega_{s} \neq \omega_{t}$, and $\omega_{s}=t_{m}$ if $s=(0, \ldots, 0) \in 2^{m}$. Now K_{m} is generated by t_{m}, contains all roots of $g_{m}(x)$, and hence K_{m} is the splitting field of $g_{m}(x)$. This proves (1) and (2).

Given $s, t \in 2^{m}$ we can define by bounded primitive recursion a \mathbb{Q} automorphism $\theta: K_{m} \rightarrow K_{m}$ such that $\theta\left(\omega_{s}\right)=\omega_{r}$. This is possible since $x^{2}-\omega_{s}$ is irreducible over K_{l} for $s \in 2^{l}$. By the classical Kronecker factorization algorithm [6, p. 82], t_{m} has an irreducible polynomial $h(x)$ over \mathbb{Q}. Since $h\left(\theta\left(t_{m}\right)\right)=0$, we see that $h(x)$ has 2^{n} distinct roots, and thus $h(x)=x^{2^{m}}+1$ and $\left[K_{m}: \mathbb{Q}\right]=2^{m}$. The standard proof shows that $\left[K_{n}: \mathbb{Q}\right]=\left[K_{n}: K_{m}\right] \cdot\left[K_{m}: \mathbb{Q}\right]$ so that $\left[K_{n}: K_{m}\right]=2^{n-m}$. This proves (3).

Let $\omega \in K_{m}$ be a root of $g_{m}(x)$, so that $\omega=\omega_{s}$ for some $s \in 2^{m}$. Now every root of $x^{2^{n-m}}-\omega$ in K_{n} is a root of $x^{2^{n}}+1$, so by counting, $x^{2^{n}}+1=\Pi_{s \in 2^{m}}\left(x^{2^{n-m}}-\omega_{s}\right)$. We claim that $x^{2^{n-m}}-\omega$ is irreducible. Let $v \in K_{n}$ be a root of $x^{2^{n-m}}-\omega$, then v is a root of $x^{2^{n}}+1$ and hence $\mathbb{Q}(v)=K_{n}$. Thus $x^{2^{n-m}}-\omega$ splits completely on the adjunction of a single root, it follows that $x^{2^{n-m}}-\omega$ is irreducible. This proves (4) and concludes the proof of Lemma 3.12.

Let $\psi(x) \leftrightarrow \exists m \leqslant n\left(\phi(m) \wedge x \in K_{m}\right)$. Clearly $\psi(x)$ defines a Σ_{1}^{0} subfield of K_{n}, so by Lemma 3.1 there is a field F and a monomorphism $f: F \rightarrow K_{n}$ such that $\forall x(\psi(x) \leftrightarrow \exists y \in F(f(y)=x))$. The restriction of the evaluation function on K_{n} is an evaluation function on F. Thus F is an evaluation field.

Suppose that $g_{n}(x)$ has an irreducible factor $p(x) \in F[x]$. We may assume that $p(x) \in K_{m}[x]$ for some $m \leqslant n$ where $\phi(m)$ holds. Also $p(x)$ is irreducible over $K_{m}[x]$, so by Lemma 3.12(4), $p(x)=x^{2^{n-m}}-\omega$ for some $\omega \in K_{m}$. Now if $\phi(m+1)$ holds, then $p(x)$ is irreducible over K_{m+1} also, and hence $p(x)=x^{2^{n-m-1}}-v$ for
some $v \in K_{m+1}$, which is impossible. Thus m is maximal and by Lemma 2.5(e), Σ_{1}^{0} induction holds.

4. Models of RCA_{0}^{*}

The purpose of this section is to study logical properties of the formal system RCA_{0}^{*}. Our method is to prove theorems concerning models of RCA_{0}^{*}. From these model-theoretic results we deduce proof-theoretic corollaries.

Let L_{2} be the language of RCA_{0}^{*}, i.e. the language of second-order arithmetic augmented by a binary function symbol $\exp (m, n)=m^{n}$. A model for L_{2} is an ordered 8-tuple

$$
M=\left(|M|, \mathscr{S}^{M},+^{M}, \cdot^{M}, \exp ^{M},<^{M}, 0^{M}, 1^{M}\right)
$$

where $|M|$ is a set; \mathscr{S}^{M} is a collection of subsets of $|M| ;+^{M}, .^{M}$, and $\exp ^{M}$ are functions from $|M| \times|M|$ into $|M| ;<^{M}$ is a subset of $|M| \times|M|$; and 0^{M} and 1^{M} are distinguished elements of $|M|$. Let T be any theory in the language L_{2}. We say the M satisfies T or is a model of T if the axioms of T are universally true in M when the number variables range over $|M|$, the set variables range over \mathscr{S}^{M}, and $+, \cdot, \exp ,<, 0,1$, are interpreted in the obvious way. All of the models we consider will satisfy the basic axioms plus Σ_{0}^{0} induction (cf. Section 2).

The first-order part of M is the ordered 7-tuple obtained from the ordered 8 -tuple M by omitting \mathscr{S}^{M}. We shall now characterize the first-order parts of models of RCA_{0}^{*}.

By Σ_{1}^{0} collection we mean the scheme

$$
\forall i \exists j \phi(i, j) \rightarrow \forall m \exists n \forall i<m \exists j<n \phi(i, j)
$$

where $\phi(i, j)$ is any Σ_{1}^{0} formula in which m and n do not occur.

4.1. Lemma. RCA_{0}^{*} proves Σ_{1}^{0} collection.

Proof. We reason in RCA_{0}^{*}. Assume $\forall i \exists j \phi(i, j)$. Let $\phi(i, j)=\exists k \theta(i, j, k)$ where θ is Σ_{0}^{0}. Write $(j, k)=(j+k)^{2}+j$. Using Σ_{0}^{0} induction and Δ_{1}^{0} comprehension, we get a function $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(i)=$ least (j, k) such that $\theta(i, j, k)$ holds. Using bounded primitive recursion, define $g: \mathbb{N} \rightarrow \mathbb{N}$ by $g(0)=f(0)$, $g(m+1)=g(m)$ if $f(m+1) \leqslant f(g(m)), g(m+1)=m+1$ otherwise. By Δ_{1}^{0} comprehension define $h(m)=f(g(m))+1=\max \{f(i)+1: i \leqslant m\}$. Then $\quad(\forall i<$ $m)(\exists(j, k)<h(m)) \theta(i, j, k)$ so clearly $(\forall i<m)(\exists j<n) \phi(i, j)$ with $n=h(m)$. This completes the proof.
4.2. Lemma. Let M be any model of the basic axioms plus Σ_{0}^{0} induction plus Σ_{1}^{0} collection. Then there exists a model M^{\prime} of RCA_{0}^{*} such that M is a submodel of M^{\prime} and has the same first order part.

Proof. Let M^{\prime} be the model with the same first-order part as M and $\mathscr{S}^{M^{\prime}}=$ $\Delta_{1}^{0}-\operatorname{Def}(M)=$ the set of all $X \subseteq|M|$ such that X is Δ_{1}^{0} definable over M allowing parameters from $|M| \cup \mathscr{P}^{M}$. Clearly $\mathscr{S}^{M} \subseteq \mathscr{S}^{M^{\prime}}$ so we need only verify that M^{\prime} satisfies Δ_{1}^{0} comprehension and Σ_{0}^{0} induction.

Let θ be any Σ_{0}^{0} formula with parameters from $|M| \cup \mathscr{S}^{M^{\prime}}$ and no free set variables. We claim that there exist a Σ_{1}^{0} formula Θ_{Σ} and a Π_{1}^{0} formula Θ_{Π} with parameters from $|M| \cup \mathscr{S}^{M}$ only, having the same free variables as θ and equivalent to θ over M^{\prime}. We define Θ_{Σ} and Θ_{Π} by recursion on the number of symbols in θ. If θ is $t_{1}=t_{2}$ or $t_{1}<t_{2}$ put $\Theta_{\Sigma}=\Theta_{\Pi}=\theta$. If θ is $t_{1} \in X$ put $\Theta_{\Sigma}=\phi\left(t_{1}\right)$ and $\Theta_{\Pi}=\psi\left(t_{1}\right)$ where ϕ and ψ are as in the Δ_{1}^{0} definition of the parameter $X \in \Delta_{1}^{0}-\operatorname{Def}(M)$. If $\theta=\sim \theta^{\prime}$ put $\Theta_{\Sigma}=\sim \Theta_{\Pi}^{\prime}$ and $\Theta_{\Pi}=\sim \Theta_{\Sigma}^{\prime}$. If $\theta=(\forall i<t) \theta^{\prime}$ put $\Theta_{\Sigma}=\exists n(\forall i<t)(\exists j<n) \theta^{\prime \prime}$ where $\Theta_{\Sigma}^{\prime}=\exists j \theta^{\prime \prime}$. If $\theta=\theta^{\prime} \wedge \theta^{\prime \prime}$ put $\Theta_{\Sigma}=\exists k\left((\exists i<k) \theta_{0}^{\prime} \wedge(\exists j<k) \theta_{0}^{\prime \prime}\right)$ where $\Theta_{\Sigma}^{\prime}=\exists i \theta_{0}^{\prime}$ and $\Theta_{\Sigma}^{\prime \prime}=\exists j \theta_{0}^{\prime \prime}$. The proof that Θ_{Σ} and Θ_{Π} are equivalent to θ over M^{\prime} is a straightforward application of Σ_{1}^{0} collection.

From the previous claim it follows easily that for any Σ_{1}^{0} (respectively Π_{1}^{0}) formula with parameters from $|M| \cup \mathscr{S}^{M^{\prime}}$ and no free set variables, there exists an equivalent Σ_{1}^{0} (respectively Π_{1}^{0}) formula with parameters from $|M| \cup \mathscr{S}^{M}$ only. Hence M^{\prime} satisfies Δ_{1}^{0} comprehension.

Now given $X \in \mathscr{S}^{M^{\prime}}$ let $\theta(i, j)$ and $\theta^{\prime}(i, j)$ be Σ_{0}^{0} formulas with parameters from $|M| \cup \mathscr{S}^{M}$ and no free variables except i and j, such that $X=\{a \in|M|: M$ satisfies $\exists j \theta(a, j)\}=\left\{a \in|M|: M\right.$ satisfies $\left.\forall j \theta^{\prime}(a, j)\right\}$. Then M satisfies $\forall i \exists j(\theta(i, j)$ $\left.\vee \sim \theta^{\prime}(i, j)\right)$. Hence by Σ_{1}^{0} collection M satisfies $\forall m \exists n(\forall i<m)(\exists j<n)(\theta(i, j)$ $\left.\vee \sim \theta^{\prime}(i, j)\right)$. For any such m and n we have $(\forall i<m)(i \in X \leftrightarrow(\exists j<n) \theta(i, j))$. By Σ_{0}^{0} induction in M it follows that if X is nonempty, then X has a least element. It is now clear that M^{\prime} satisfies Σ_{0}^{0} induction. This completes the proof of Lemma 4.2.

Let L_{1} be the language which is just like L_{2} except that the set variables are omitted. The first-order part of a theory T in L_{2} is the restriction of T to L_{1}.
4.3. Theorem. The first-order parts of models of RCA_{0}^{*} are precisely the models for L_{1} which satisfy the basic axioms plus Σ_{0}^{0} induction plus Σ_{1}^{0} collection. (In the terminology of [7] these are just the models of $B \Sigma_{1}+$ exp.)

Proof. Immediate from Lemma 4.1 and 4.2.

4.4. Corollary. The first-order part of RCA_{0}^{*} is just the theory in L_{1} whose axioms are the basic axioms, Σ_{0}^{0} induction, and Σ_{1}^{0} collection. (This is the theory $B \Sigma_{1}+\exp$ of [7].)

Proof. Immediate from Theorem 4.3 plus Gödel's completeness theorem.

We now consider the effect of adding weak König's lemma to RCA_{0}^{*}. It will turn out that this modification does not affect the first-order part of the theory.

Within RCA_{0}^{*} we define Seq_{2} to be the set of all (natural numbers which are codes for) finite sequences of elements of the set $\{0,1\}$. For any $X \subseteq \mathbb{N}$ and $n \in \mathbb{N}$ we define $X[n] \in \operatorname{Seq}_{2}$ to be the sequence $X[n]=\left\langle x_{0}, x_{1}, \ldots, x_{n-1}\right\rangle$ where $x_{i}=0$ if $i \notin X, x_{i}=1$ if $i \in X$. A tree is a set $T \subseteq$ Seq $_{2}$ such that every initial segment of an element of T is an element of T. A path through T is a set $X \subseteq N$ such that $X[n] \in T$ for all $n \in N$. Weak König's lemma is the assertion that for every infinite tree $T \subseteq \mathrm{Seq}_{2}$ there exists a path through T. Let WKL_{0}^{*} be the theory in L_{2} whose axioms are those of RCA_{0}^{*} plus weak König's lemma. (Similarly WKL_{0} consists of RCA $_{0}$ plus weak König's lemma. See [1], [2], [3], [4].)
4.5. Lemma. Let M be any countable model of RCA_{0}^{*}. Let $T \in \mathscr{G}^{M}$ be such that T is satisfied in M to be an infinite subtree of Seq_{2}. Then there exists a countable model M^{\prime} of RCA_{0}^{*} such that:
(i) M is a submodel of M^{\prime} with the same first-order part;
(ii) T is satisfied in M^{\prime} to have a path.

Proof. We use a generalization of a forcing construction due to Jockusch and Soare [8, Theorem 2.4]. Let \mathscr{T}^{M} be the set of all $T \in \mathscr{C}^{M}$ such that T is satisfied in M to be an infinite subtree of Seq_{2}. We say that $\mathscr{D} \subseteq \mathscr{T}^{M}$ is dense if ($\forall T \in \mathscr{T}^{M}$) $\left(\exists T^{\prime} \in \mathscr{D}\right)\left(T^{\prime} \subseteq T\right)$. We say that \mathscr{D} is definable if it is definable over M allowing parameters from $|M| \cup \mathscr{S}^{M}$. We say that $X \subseteq|M|$ is M-generic if for each definable $\mathscr{D} \subseteq \mathscr{T}^{M}$ there exists $T \in \mathscr{D}$ such that X is a path through T.
Suppose that X is M-generic. Let M^{\prime} be the model with the same first-order part as M and $\mathscr{C}^{M^{\prime}}=\mathscr{S}^{M} \cup\{X\}$. We claim that M^{\prime} satisfies Σ_{0}^{0} induction and Σ_{1}^{0} collection.
We now prove the claim. Σ_{0}^{0} induction is clear since $X[k] \in \operatorname{Seq}_{2}^{\mathcal{M}}$ for each $k \in|M|$. To prove Σ_{1}^{0} collection let $\phi(i, j)$ be a Σ_{1}^{0} formula with parameters from $|M| \cup \mathscr{S}^{M^{\prime}}$ and suppose that M^{\prime} satisfies $\forall i \exists j \phi(i, j)$. Write $\phi(i, j)$ in normal form as $\exists k \theta(i, j, X[k])$ where $\theta(i, j, \sigma)$ is Σ_{0}^{0} with parameters from $|M| \cup \mathscr{C}^{M}$ only. Let \mathscr{E} be the set of all $T \in \mathscr{T}^{M}$ such that M satisfies

$$
\exists i(\forall \tau \in T)(\forall j \leqslant \ln (\tau))(\forall k \leqslant \operatorname{lh}(\tau)) \sim \theta(i, j, \tau[k]) .
$$

Here $\operatorname{lh}(\tau)$ denotes the length of τ and $\tau[k]$ is the unique initial segment of τ of length k. Let \mathscr{D} be the set of all $T \in \mathscr{T}^{M}$ such that $T \in \mathscr{E} \vee \sim\left(\exists T^{\prime} \in \mathscr{E}\right)\left(T^{\prime} \subseteq T\right)$. Clearly \mathscr{D} is dense and definable so let $T \in \mathscr{D}$ be such that X is a path through T. Since $\forall i \exists j \exists k \theta(i, j, X[k])$ holds, we cannot have $T \in \mathscr{E}$. Hence there is no $T^{\prime} \in \mathscr{E}$ with $T^{\prime} \subseteq T$. For each $i \in|M|$ let T_{i} be the subtree of T consisting of all $\tau \in T$ such that $(\forall j \leqslant \operatorname{lh}(\tau))(\forall k \leqslant \operatorname{lh}(\tau)) \sim \theta(i, j, \tau[k])$. Since $T_{i} \notin \mathscr{E}$ we must have that T_{i} is satisfied in M to be finite. Thus M satisfies

$$
\forall i \exists n(\forall \tau \in T)(\ln (\tau)=n \rightarrow(\exists j<n)(\exists k<n) \theta(i, j, \tau[k])) .
$$

By Σ_{1}^{0} collection in M we get

$$
\forall m \exists n(\forall \tau \in T)(\operatorname{lh}(\tau)=n \rightarrow(\forall i<m)(\exists j<n)(\exists k<n) \theta(i, j, \tau[k]))
$$

In particular we have

$$
\forall m \exists n(\forall i<m)(\exists j<n)(\exists k<n) \theta(i, j, X[k])
$$

so M^{\prime} satisfies $\forall m \exists n(\forall i<m)(\exists j<n) \phi(i, j)$. Thus we have Σ_{1}^{0} collection in M^{\prime}. This proves our claim.

We shall now complete the proof of Lemma 4.5. Let $T \in \mathscr{T}^{M}$ be given. Using the countability of M, we can find an M-generic $X \subseteq|M|$ such that X is a path through T. Let M^{\prime} be as in our claim. By Lemma 4.2 we can find a model $M^{\prime \prime}$ of RCA_{0}^{*} such that M^{\prime} is a submodel of $M^{\prime \prime}$ and has the same first-order part. Then clearly $M^{\prime \prime}$ satisfies the conclusions of Lemma 4.5. This completes the proof.
4.6. Theorem. Let M be any countable model of RCA_{0}^{*}. Then there exists a countable model M^{\prime} of WKL_{0}^{*} such that M is a submodel of M^{\prime} and has the same first-order part.

Proof. Use Lemma 4.5 repeatedly to get a sequence of models $\left\langle M_{i}: i \in \omega\right\rangle$ such that $M_{0}=M$, each M_{i} is a submodel of M_{i+1} with the same first-order part, each M_{i} is a model of RCA_{0}^{*}, and for each $T \in \mathscr{T}^{M_{i}}$ there exists $j>i$ such that T is satisfied in M_{j} to have a path. Put $M^{\prime}=\bigcup\left\{M_{i}: i \in \omega\right\}$, i.e. M^{\prime} is the model with the same first-order part as M and $\mathscr{S}^{M^{\prime}}=\bigcup\left\{\mathscr{S}^{M_{i}}: i \in \omega\right\}$. Then clearly M^{\prime} is a model of $\mathbf{W K L}_{0}^{*}$. This completes the proof.

A formula is said to be arithmetical if it contains no set quantifiers. A formula is said to be Π_{1}^{1} if it is of the form $\forall X \phi$ with ϕ arithmetical. A sentence is a formula with no free variables.
4.7. Corollary. WKL_{0}^{*} is a conservative extension of RCA_{0}^{*} with respect to Π_{1}^{1} sentences. In other words, any Π_{1}^{1} sentence which is provable in WKL_{0}^{*} is already provable in RCA_{0}^{*}.

Proof. Suppose that the Π_{1}^{1} sentence $\forall X \phi$ is not provable in RCA_{0}^{*}. By Gödel's completeness theorem let M be a countable model of RCA_{0}^{*} plus $\exists X \sim \phi$. By Theorem 4.6, let M^{\prime} be a model of WKL_{0}^{*} such that M is a submodel of M^{\prime} with the same first-order part. By absoluteness M^{\prime} satisfies $\exists X \sim \phi$ so by the soundness theorem $\forall X \phi$ is not provable in WKL_{0}^{*}.

We now study the relationship between RCA_{0}^{*} and EFA. Here EFA is the theory in L_{1} consisting of the basic axioms plus Σ_{0}^{0} induction. (The acronym EFA stands for elementary function arithmetic. EFA is essentially just the theory I $\Sigma_{0}+\exp$ of [7].)

Let

$$
M=\left(|M|,+^{M}, \cdot^{M}, \exp ^{M},<^{M}, 0^{M}, 1^{M}\right)
$$

be any model of EFA. A proper initial segment of M is any set $|I| \subseteq|M|$ such that $\forall a \forall b\left(\left(a \in|M| \wedge b \in|I| \wedge a<^{M} b\right) \rightarrow a \in|I|\right)$ and $0^{M}, 1^{M} \in|I|$ and $\forall a \forall b((a, b \in$ $\left.|I|) \rightarrow\left(a+{ }^{M} b, a{ }^{M} b, \exp ^{M}(a, b) \in|I|\right)\right)$ and $|I| \neq|M|$. We may then consider the model

$$
I=\left(|I|,+^{I},,^{I}, \exp ^{I},<^{I}, 0^{I}, 1^{I}\right)
$$

where $0^{I}=0^{M}, 1^{T}=1^{M}$, and $+^{I},,^{I}$, $\exp ^{I}$ and $<^{I}$ are the restrictions to $|I|$ of $+^{M}$, .M, $\exp ^{M}$ and $<^{M}$ respectively. By absoluteness I is again a model of EFA. From Lemma 4.1 and Theorem 4.8 below it will follow that I is also a model of Σ_{1}^{0} collection.

A set $X \subseteq|I|$ is said to be M-coded if there exists an M-finite set X^{\prime} such that $X=X^{\prime} \cap|I|$. We may regard I as a model for L_{2} by defining \mathscr{S}^{I} to be the set of all M-coded subsets of $|I|$.

4.8. Theorem. Let M be any model of EFA and let

$$
I=\left(|I|, \mathscr{S}^{I},+^{I}, I^{I}, \exp ^{I},<^{I}, 0^{I}, 1^{I}\right)
$$

be as above where $|I|$ is any proper initial segment of $|M|$. Then I is a model of WKL ${ }_{0}^{*}$.

Proof. To see that I satisfies weak König's lemma, let $T \in \mathscr{S}^{I}$ be such that T is satisfied in I to be an infinite tree. Let T^{\prime} be an M-finite set such that $T=T^{\prime} \cap|I|$. By Σ_{0}^{0} induction in M let $\tau \in T^{\prime} \cap \mathrm{Seq}_{2}^{M}$ be of maximal length such that $(\forall n \leqslant \operatorname{lh}(\tau))\left(\tau[n] \in T^{\prime}\right)$. Clearly $\operatorname{lh}(\tau)>m$ for all $m \in|I|$. Put $X=\{m \in$ $|I|: \tau(m)=1\}$. Clearly X is an M-coded path through T. (This idea goes back to Scott and Tennenbaum; see [8].)

It remains to show that I satisfies Δ_{1}^{0} comprehension. Clearly I satisfies Σ_{0}^{0} comprehension. We shall now show that Δ_{1}^{0} comprehension follows from Σ_{0}^{0} comprehension plus weak König's lemma. Let $\phi(n)$ and $\psi(n)$ be Σ_{1}^{0} and Π_{1}^{0} respectively such that $\forall n(\phi(n) \leftrightarrow \psi(n))$. Let $\phi(n)=\exists j \theta_{1}(n, j)$ and $\psi(n)=\forall j \sim$ $\theta_{0}(n, j)$ where θ_{0} and θ_{1} are Σ_{0}^{0}. By Σ_{0}^{0} comprehension let T be the set of all $\tau \in \operatorname{Seq}_{2}$ such that

$$
(\forall n<\operatorname{lh}(\tau))(\forall j<\operatorname{lh}(\tau))(\forall i<2)\left(\theta_{i}(n, j) \rightarrow \tau(n)=i\right)
$$

Clearly T is an infinite tree. By weak König's lemma let X be a (unique) path through T. Then clearly $\forall n(n \in X \leftrightarrow \phi(n))$. Thus we have Δ_{1}^{0} comprehension. This completes the proof of Theorem 4.8.

A Π_{2}^{0} formula is a formula of the form $\forall i \exists j \theta$ where θ is Σ_{0}^{0}. A Π_{2}^{0} sentence is a Π_{2}^{0} formula with no free variables.
4.9. Corollary. WKL_{0}^{*} is a conservative extension of EFA for Π_{2}^{0} sentences. In other words, any Π_{2}^{0} sentence which is provable in WKL_{0}^{*} is already provable in EFA.

Proof. Suppose that we have a Π_{2}^{0} sentence $\forall i \exists j \theta(i, j)$ which is not provable in EFA. Form a theory consisting of EFA plus $\sim \exists j \theta(a, j)$ plus $b_{0}=a, b_{n+1}=b_{n}^{b_{n}}$, $b_{n}<c$ where $a, b_{n}(n \in \omega)$, and c are new constant symbols. By Gödel's compactness theorem, let M be a model of this theory. Let $|I|$ be the proper initial segment of $|M|$ consisting of all $b \in|M|$ such that $b<^{M} b_{n}$ for some $n \in \omega$. By Theorem 4.8, I is a model of WKL_{0}^{*}. Also $a^{M} \in|I|$ so by absoluteness I satisfies $\sim \exists j \theta(a, j)$. Thus $\forall i \exists j \theta(i, j)$ is not provable in $W_{K} L_{0}^{*}$. This proves Corollary 4.9.

Recall that the class of elementary recursive functions is the smallest class containing the initial functions and closed under composition and bounded primitive recursion. Equivalently, a recursive function $f(i)$ is elementary if its running time is dominated by some function of the form $F(i)=2(k, i)$ where $2(0, i)=i, 2(k+1, i)=2^{2(k, i)}, k \in \omega$.
4.10. Corollary. Suppose that WKL_{0}^{*} proves the sentence $\forall i \exists j \phi$ where ϕ is Σ_{1}^{0}. Then there exists an elementary recursive function $f(i)$ such that EFA proves $\forall i$ $(\exists j<f(i)) \phi$.

Proof. An easy variant of the proof of Corollary 4.9.
Remark. The results about $\mathrm{RCA}_{0}^{*}, \mathrm{WKL}_{0}^{*}$, and EFA, which we have presented in this section, are analogous to previously known results about $\mathrm{RCA}_{0}, \mathrm{WKL}_{0}$ and PRA (= primitive recursive arithmetic). Namely, the first-order part of RCA_{0} is Σ_{1}^{0} induction (Friedman); WKL_{0} is a conservative extension of RCA_{0} with respect to Π_{1}^{1} sentences (Harrington); and WKL_{0} is a conservative extension of PRA with respect to Π_{2}^{0} sentences (Parsons, Kirby, Paris, Friedman). For model-theoretic proofs of thse results see Simpson [4]. These proofs are originally due to Kirby and Paris [10], Friedman (unpublished), and Harrington (unpublished). See also Parsons [11]. Our proofs of Theorems 4.3, 4.6 and 4.8 are based on the model-theoretic methods of Kirby, Paris, Friedman, and Harrington.

References

[1] H. Friedman, S.G. Simpson, and R.L. Smith, Countable algebra and set existence axioms, Annals Pure Appl. Logic 25 (1983) 141-181; Addendum 27 (1985) 319-320.
[2] S.G. Simpson, Reverse Mathematics, in: A. Nerode and R. Shore, eds., Recursion Theory, Proc. Symp. Pure Math. 42 (Amer. Math. Soc., Providence, RI, 1985) 461-471.
[3] S.G. Simpson, Which set existence axioms are needed to prove the Cauchy/Peano theorem for ordinary differential equations?, J. Symbolic Logic 49 (1984) 361-380.
[4] S.G. Simpson, Subsystems of Second Order Arithmetic, in preparation.
[5] H. Friedman, Provable equivalents of induction I, manuscript, Ohio State University, July 14, 1982, 5 pp.; Postscript July 14, 1982, 1 page.
[6] B.L. van der Waerden, Modern Algebra, Vol. 1, (Ungar Pub. Co., New York, 1953).
[7] J.B. Paris and L.A.S. Kirby, Σ_{n}-Collection schemas in arithmetic, in: A. MacIntyre et al., eds., Logic Colloquium 77. (North-Holland, Amsterdam, 1978) 199-210.
[8] C.G. Jockusch, Jr. and R.I. Soare, Π_{1}^{0} classes and degrees of theories, Trans. Amer. Math. Soc. 173 (1972), 35-56.
[9] A. Fröhlich and J.C. Shepherdson, Effective procedures in field theory, Trans. Roy. Soc. London 248 (1956) 407-432.
[10] L. Kirby and J.B. Paris, Initial segments of models of Peano's axioms, in: Set Theory and Heirarchy Theory V, Lecture Notes in Math. 619 (Springer, Berlin, 1977) 211-226.
[11] C. Parsons, On a number theoretic choice schema and its relation to induction, in: J. Myhill et al., eds., Intuitionism and Proof Theory (North-Holland, Amsterdam, 1970) 459-473.

[^0]: * Research partially supported by NSF grants MCS-8107867 and MVS-8301622.

