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Abstract. We continue the work of [14, 3, 1, 19, 16, 4, 12, 11, 20]
investigating the strength of set existence axioms needed for sepa-
rable Banach space theory. We show that the separation theorem
for open convex sets is equivalent to WKL0 over RCA0. We show
that the separation theorem for separably closed convex sets is
equivalent to ACA0 over RCA0. Our strategy for proving these ge-
ometrical Hahn–Banach theorems is to reduce to the finite-dimen-
sional case by means of a compactness argument.

1. Introduction

Let A and B be convex sets in a Banach space X. We say that A
and B are separated if there is a bounded linear functional F : X → R
and a real number α such that F (x) < α for all x ∈ A, and F (x) ≥ α
for all x ∈ B. We say that A and B are strictly separated if in addition
F (x) > α for all x ∈ B.

There are several well-known theorems of Banach space theory to
the effect that any two disjoint convex sets satisfying certain condi-
tions can be separated or strictly separated. A good reference for such
theorems is Conway [6]. The purpose of this paper is to consider the
question of which set existence axioms are needed to prove such theo-
rems. We study this question in the context of subsystems of second
order arithmetic.

The subsystems of second order arithmetic that are relevant here are
ACA0, RCA0, and above all WKL0. ACA0 is the system with arithmetical
comprehension and arithmetical induction; it is conservative over first-
order Peano arithmetic. RCA0 is the much weaker system with only
∆0

1 comprehension and Σ0
1 induction; it may be viewed as a formalized

version of recursive mathematics. WKL0 consists of RCA0 plus an addi-
tional set existence axiom known as Weak König’s Lemma. WKL0 and
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RCA0 are conservative over arithmetic with Σ0
1 induction [9, 18, 20],

hence much weaker than ACA0 in terms of proof-theoretic strength.
Moreover, WKL0 and RCA0 are conservative over primitive recursive
arithmetic for Π0

2 sentences [7, 18, 20]. The foundational significance
of this result is that any mathematical theorem provable in WKL0 is
finitistically reducible [19].

The main new result of this paper is that the basic separation the-
orem for convex sets in separable Banach spaces is provable in WKL0;
see Theorem 3.1 below. It follows that the basic separation theorem
is finitistically reducible. This provides further confirmation of the
well-known significance of WKL0 with respect to Hilbert’s program of
finitistic reductionism [19].

As a byproduct of our work on separation theorems in WKL0, we
present new proofs of the closely related Hahn–Banach and extended
Hahn–Banach theorems in WKL0; see Section 4 below. These new
proofs are more transparent than the ones that have appeared previ-
ously [3, 16, 20, 12].

We also obtain reversals in the sense of Reverse Mathematics. We
show that the basic separation theorem is logically equivalent to WKL0

over RCA0; see Theorem 4.4 below. Thus Weak König’s Lemma is
seen to be logically indispensable for the development of this portion
of functional analysis. In addition, we show that another separation
theorem requires stronger set existence axioms, in that it is equivalent
to ACA0 over RCA0; see Theorem 5.1 below.

One aspect of this paper may be of interest to readers who are famil-
iar with Banach spaces but do not share our concern with foundational
issues. Namely, we present a novel and elegant proof of the various sep-
aration and Hahn–Banach theorems. Our approach is to reduce to the
finite-dimensional Euclidean case by means of a straightforward com-
pactness argument. A similar proof strategy has been used previously
(see  Loś/Ryll-Nardzewski [13]) but is apparently not widely known.
We thank Ward Henson for bringing [13] to our attention.

2. Preliminaries

The prerequisite for a thorough understanding of this paper is famil-
iarity with the basics of separable Banach space theory as developed
in RCA0. This material has been presented in several places: [3, §§2-5],
[4, §1], [12, §4], [20, §II.10]. We briefly review some of the concepts
that we shall need.

Within RCA0, a (code for a) complete separable metric space X = Â
is defined to be a countable set A ⊆ N together with a function d :
A×A→ R satisfying d(a, a) = 0, d(a, b) = d(b, a), and d(a, b)+d(b, c) ≥
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d(a, c). A (code for a) point of X is defined to be a sequence x = 〈an〉n∈N
of elements of A such that ∀m∀n(m < n → d(am, an) ≤ 1/2m). We
extend d from A to X in the obvious way. For x, y ∈ X we define x = y
to mean that d(x, y) = 0.

Within RCA0, (a code for) an open set in X is defined to be a se-
quence of ordered pairs U = 〈(am, rm)〉m∈N where am ∈ A and rm ∈ Q,
the rational numbers. We write x ∈ U to mean that d(am, x) < rm for
some m ∈ N. A closed set C ⊆ X is defined to be the complement of
an open set U , i.e., ∀x ∈ X(x ∈ C ↔ x /∈ U).

It will sometimes be necessary to consider a slightly different notion.
A (code for a) separably closed set K = S ⊆ X is defined to be a
countable sequence of points S ⊆ X. We write x ∈ K to mean that
for all ε > 0 there exists y ∈ S such that d(x, y) < ε. It is provable in
ACA0 (but not in weaker systems) that for every separably closed set K
there exists an equivalent closed set C, i.e., ∀x ∈ X(x ∈ C ↔ x ∈ K).
For further details on separably closed sets, see [2, 3, 4].

Within RCA0, a compact set K ⊆ X is defined to be a separably
closed set such that there exists a sequence of finite sequences of points
xni ∈ K, i ≤ kn, n ∈ N, such that for all n ∈ N and all x ∈ K there
exists i ≤ kn with d(x, xni) < 1/2n. The sequence of positive integers
kn, n ∈ N, is also required to exist. It is provable in RCA0 that compact
sets are closed and located [8]. It is provable in WKL0 that compact
sets have the Heine–Borel covering property, i.e., any covering of K by
a sequence of open sets has a finite subcovering.

Within RCA0, a (code for a) separable Banach space X = Â is defined
to be a countable pseudonormed vector space A over Q. With d(a, b) =
‖a − b‖, X is a complete separable metric space and has the usual
structure of a Banach space over R. A bounded linear functional F :
X → R may be defined as a continuous function which is linear. The
equivalence of continuity and boundedness is provable in RCA0. We
write ‖F‖ ≤ α to mean that |F (x)| ≤ α‖x‖ for all x ∈ X.

3. Separation in WKL0

The purpose of this section is to prove the following theorem.

Theorem 3.1. The following is provable in WKL0. Let X be a sepa-
rable Banach space. Let A be an open convex set in X, and let B be a
separably closed convex set in X. If A and B are disjoint, then A and
B can be separated.

Remark 3.2. Theorem 3.1 verifies a conjecture that appeared in [11],
page 61. A special case of this result had been conjectured earlier in
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[12], page 4246. Corollary 5.1.2 of [11] (see also Lemma 4.10 of [12]) is
essentially our present Theorem 3.1 with WKL0 replaced by ACA0.

Toward the proof of Theorem 3.1, we first prove a separation result
for finite-dimensional Euclidean spaces.

Lemma 3.3. The following is provable in WKL0. Let A and B be
compact convex sets in Rn. If A and B are disjoint, then A and B can
be strictly separated.

Proof. For x, y ∈ Rn we denote by x · y the dot product of x and y.
The norm on Rn is given by ‖x‖2 = x · x. We imitate the argument of
Lemma 3.1 of [5].

Put C = B − A = {y − x | x ∈ A, y ∈ B}. Then C is a compact
convex set in Rn. Since A ∩ B = ∅, we have 0 /∈ C. The function
z 7→ ‖z‖ is continuous on C, so it follows in WKL0 that there exists
c ∈ C of minimum norm, i.e., 0 < ‖c‖ ≤ ‖z‖ for all z ∈ C.

We claim that ‖c‖2 ≤ c · z for all z ∈ C. Suppose not. Let z ∈ C
be such that ‖c‖2 − c · z = ε > 0. Consider w = tz + (1 − t)c where
0 < t ≤ 1. Since C is convex, we have w ∈ C, hence 0 < ‖c‖ ≤ ‖w‖.
Expansion of ‖w‖2 = w · w gives

‖w‖2 = ‖c‖2 + t2(‖z‖2 − ‖c‖2)− 2t(1− t)ε

and from this it follows that t(‖z‖2 − ‖c‖2) ≥ 2(1− t)ε. Now set

t =
ε

‖z‖2 − ‖c‖2 + 2ε

and note that 0 < t ≤ 1/2. With this t we have

t(‖z‖2 − ‖c‖2) = ε− 2εt < 2ε− 2εt = 2(1− t)ε ,

a contradiction. This proves our claim.
Define F : Rn → R by F (z) = c · z. Since c ∈ C = B − A, we may

fix a ∈ A and b ∈ B such that c = b− a. Using our claim, it is easy to
show that F (x) ≤ F (a) < F (b) ≤ F (y) for all x ∈ A and y ∈ B. Thus
A and B are strictly separated.

In order to reduce Theorem 3.1 to the finite-dimensional Euclidean
case, we need some technical lemmas.

Lemma 3.4. The following is provable in WKL0. Let X and K be
complete separable metric spaces. Assume that K is compact. If C ⊆
X ×K is closed, then

{x ∈ X | (x, y) ∈ C for some y ∈ K}
is closed.
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Proof. Reasoning in WKL0, put V = (X ×K) \ C and

U = {x ∈ X | (x, y) ∈ V for all y ∈ K} .

We shall prove that U is open.
Since V is open, there is a sequence of open balls B((am, bm), rm),

(am, bm) ∈ X ×K, rm ∈ Q, m ∈ N, such that

V =

∞⋃
m=0

B((am, bm), rm) .

Since K is compact, there is a sequence of points yni ∈ K, i ≤ kn,
n ∈ N, such that K =

⋃
i≤kn B(yi,n, 1/2n) for each n.

We claim that

∃n ∀i ≤ kn ∃m d((am, bm), (x, yni)) + 1/2n < rm(1)

is a necessary and sufficient condition for x ∈ U . Obviously (1) is
sufficient since it implies {x}×K ⊆

⋃
i≤kn B((x, yni), 1/2n) ⊆ V whence

x ∈ U . For the necessity, let x ∈ U be given. Then {x} × K ⊆⋃∞
m=0 B((am, bm), rm). By Heine–Borel compactness of K in WKL0 it

follows that {x} × K ⊆
⋃k
m=0 B((am, bm), qm) for some k ∈ N and

finite sequence qm ∈ Q, m ≤ k, qm < rm. Let n be such that 1/2n <
minm≤k(rm − qm). Then for each i ≤ kn there exists m ≤ k such that
d((am, bm), (x, yni)) < qm, hence d((am, bm), (x, yni))+ 1/2n < rm. This
gives condition (1) and our claim is proved.

Since the condition (1) is Σ0
1, it follows by Lemma II.5.7 of [20] that

U ⊆ X is open. Therefore, the complementary set is closed. This
proves our lemma.

Lemma 3.5. The following is provable in WKL0. Let X be a separable
Banach space. Fix n ≥ 1 and let Y =

⋃n
m=1 Xm be the space of all finite

sequences of elements of X of length ≤ n. Then

{s ∈ Y | s is linearly independent}

is an open set in Y .

Proof. Consider the compact space K =
⋃n
m=1 Km where

Km = {〈α1, . . . , αm〉 | |α1|+ · · ·+ |αm| = 1} .

Here the αi’s are real numbers. Note that s = 〈x1, . . . , xm〉 ∈ Y is
linearly dependent if and only if α1x1 + · · · + αmxm = 0 for some
〈α1, . . . , αm〉 ∈ K. Hence by Lemma 3.4 the set of all such s is closed.
It follows that the complementary set is open.
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Lemma 3.6. The following is provable in WKL0. Let K be a compact
metric space, and let 〈Cj〉j∈N be a sequence of nonempty closed sets in

K. Then there exists a sequence of points 〈xj〉j∈N such that xj ∈ Cj

for all j.

Proof. Since K is compact, there is a sequence of points xni ∈ K,
i ≤ kn, n ∈ N, such that K =

⋃
i≤kn B(xin, 1/2n) for each n ∈ N. Let

S be the bounded tree consisting of all finite sequences σ ∈ N<N such
that σ(n) ≤ kn for all n < the length of σ. Construct a sequence of trees
Tj ⊆ S, j ∈ N, such that for each j there is a one-to-one correspondence
between infinite paths g in Tj and points x ∈ Cj, the correspondence
being given by x = limn xng(n). For details of the construction of the
Tj’s, see Section IV.1 of [20].

Let (−,−) : N × N → N be a primitive recursive pairing function
which is onto and monotone in both arguments. Let T =

⊕
j∈N Tj be

the interleaved tree, defined by putting τ ∈ T if and only if τj ∈ Tj
for all j, where τj(n) = τ((j, n)). Note that T is a bounded tree, the
bounding function h : N → N being given by h((j, n)) = kn + 1. In
order to show that T is infinite, we prove that for all m there exists
τ ∈ T of length m such that for all j and all n ≥ length of τj , τj has
at least one extension of length n in Tj . This Π0

1 statement is easily
proved by Π0

1 induction on m, using the fact that each of the Tj ’s is
infinite.

Since T is an infinite bounded tree, it follows by Bounded König’s
Lemma in WKL0 (see Section IV.1 of [20]) that T has an infinite path,
f . Then for each j we have an infinite path fj in Tj given by fj(n) =
f((j, n)). Thus we obtain a sequence of points 〈xj〉j∈N where xj =
limn xnfj(n) is a point of Cj.

Lemma 3.7. The following is provable in WKL0. Let X be a separable
Banach space, and let x1, . . . , xn be a finite set of elements of X. Then
there is a closed subspace X ′ = span(x1, . . . , xn) ⊆ X consisting of all
linear combinations of x1, . . . , xn. Moreover, there exists a finite set

xi1 , . . . , xim , 1 ≤ i1 < · · · < im ≤ n ,

which is a basis of X ′, i.e., each element of X ′ is uniquely a linear
combination of xi1 , . . . , xim.

Proof. We first prove that X ′ has a basis. By lemma 3.5, the set
of all linearly independent s ∈

⋃n
m=0 Xm is open. By bounded Σ0

1

comprehension in WKL0, it follows that

I = {I ⊆ {1, . . . , n} | {xi | i ∈ I} is linearly independent}
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is a finite set of subsets of {1, . . . , n}. Let M = {i1, . . . , im} be a
maximal element of I. Then clearly each of x1, . . . , xn is a linear com-
bination of xi1 , . . . , xim . Moreover, we can apply Lemma 3.6 to obtain
a double sequence of coefficients αij, i = 1, . . . , n, j = 0, 1, . . . , m, such
that

|αi0|+ |αi1|+ · · ·+ |αim| = 1

and

αi0xi + αi1xi1 + · · ·+ αimxim = 0

for each i = 1, . . . , n. Obviously αi0 6= 0 so we may put βij = −αij/αi0
to obtain

xi = βi1xi1 + · · ·+ βimxim

for each i = 1, . . . , n. With this it is clear that every linear combination
of x1, . . . , xn is uniquely a linear combination of xi1 , . . . , xim .

It remains to prove that X ′ is a closed subspace of X. As a code for
X ′ we may use Qn identifying 〈q1, . . . , qn〉 ∈ Qn with q1x1+· · ·+qnxn ∈
X. Thus X ′ is a subspace of X. The fact that X ′ is closed follows easily
from Lemma 3.5.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Reasoning within WKL0, let X, A, B be as in
the hypotheses of Theorem 3.1. We need to prove that A and B can
be separated. Since A is open, we may safely assume that

{x ∈ X | ‖x‖ ≤ 1} ⊆ A .

With this assumption, reasoning in WKL0, our goal will be to prove
the existence of a bounded linear functional F : X → R such that
F (x) ≤ 1 for all x ∈ A, and F (x) ≥ 1 for all x ∈ B; these properties
easily imply that F (x) < 1 for all x ∈ A. Observe also that any such
F will necessarily have ‖F‖ ≤ 1.

Since X is a separable Banach space, there exists a countable vector
space D over the rational field Q such that D ⊆ X and D is dense
in X. Since B is separably closed, there exists a countable sequence
S ⊆ B such that S is dense in B. We may safely assume that S ⊆ D.
With this assumption, consider the compact product space

K =
∏
d∈D

[−‖d‖, ‖d‖ ] .

Note that any bounded linear functional F : X → R with ‖F‖ ≤ 1
may be identified with a point of K in an obvious way, namely F =
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〈F (d)〉d∈D. Thus our goal may be expressed as follows: to prove that
there exists a point 〈αd〉d∈D ∈ K satisfying the conditions

1. αd ≤ 1 for all d ∈ D ∩ A;
2. αd ≥ 1 for all d ∈ S;
3. αd = q1αd1 + q2αd2 for all d, d1, d2 ∈ D and q1, q2 ∈ Q such that

d = q1d1 + q2d2.

Let Φ be this countable set of Π0
1 conditions. By Heine–Borel compact-

ness of K in WKL0, it suffices to show that each finite subset of Φ is
satisfied by some point of K.

Suppose we are given a finite set of conditions Φ′ ⊆ Φ. Let a1, . . . , am
be the elements of D∩A that are mentioned in Φ′. Let b1, . . . , bn be the
elements of S that are mentioned in Φ′. Let d1, . . . , dk be the nonzero
elements of D that are mentioned in Φ′. By Lemma 3.7, let X ′ be
the finite-dimensional subspace of X spanned by d1, . . . , dk. Let A′ be
the convex hull of a1, . . . , am,±d1/‖d1‖, . . . ,±dk/‖dk‖. Let B′ be the
convex hull of b1, . . . , bn. Note that A′ ⊆ A ∩ X ′ and B′ ⊆ B ∩ X ′;
hence A′ ∩ B′ = ∅. Moreover A′ and B′ are compact. By Lemmas
3.7 and 3.3, there exists a bounded linear functional F ′ : X ′ → R
such that F ′(x) ≤ 1 for all x ∈ A′, and F ′(x) ≥ 1 for all x ∈ B′. In
particular F ′(±di/‖di‖) ≤ 1 for all i = 1, . . . , k; hence |F ′(di)| ≤ ‖di‖.
Put α′d = F ′(d) for d = d1, . . . , dk, and α′d = 0 for d ∈ D \ {d1, . . . , dk}.
Then 〈α′d〉d∈D is a point of K which satisfies Φ′. This completes the
proof.

Remark 3.8. Our proof of a separation theorem in WKL0 (Theorem
3.1) was accomplished by means of a reduction to the finite-dimensional
Euclidean case using a compactness argument. This proof technique is
not entirely new (see [13]) but does not seem to be widely known.

4. Reversal via Hahn–Banach

Let X be a separable Banach space. Consider the following state-
ments:

SEP1: (First Separation) Let A be an open convex set in X, let B
be a separably closed convex set in X, and assume A ∩ B = ∅.
Then A and B can be separated.

SEP2: (Second Separation) Let A and B be open convex sets in X
such that A ∩ B = ∅. Then A and B can be strictly separated.

SEP3: (Third Separation) Let A and B be separably closed, convex
sets in X such that A ∩ B = ∅. Assume also that A is compact.
Then A and B can be strictly separated.

HB: (Hahn–Banach) Let S be a subspace of X, and let f : S → R
be a bounded linear functional with ‖f‖ ≤ α on S. Then there



SEPARATION AND WEAK KÖNIG’S LEMMA 9

exists a bounded linear functional F : X → R such that F extends
f and ‖F‖ ≤ α on X.

EHB: (Extended Hahn–Banach) Let p : X → R be a continuous
sublinear functional. Let S be a subspace of X, and let f : S → R
be a bounded linear functional such that f(x) ≤ p(x) for all x ∈ S.
Then there exists a bounded linear functional F : X → R such
that F extends f and F (x) ≤ p(x) for all x ∈ X.

It is known [3, 12] that EHB and HB are equivalent to WKL0 over RCA0.
We are now going to prove that SEP1 and SEP2 are also equivalent to
WKL0 over RCA0; see Theorem 4.4 below. In the next section we shall
prove that SEP3 is equivalent to ACA0, hence properly stronger than
WKL0, over RCA0; see Theorem 5.1 below.

Lemma 4.1. It is provable in RCA0 that SEP1 implies SEP2.

Proof. Reasoning in RCA0, assume SEP1 and let A and B be disjoint,
open, convex sets. Let B′ be the separable closure of B. Clearly B′ is
convex and A ∩B′ = ∅. By SEP1, let F and α be such that F < α on
A and F ≥ α on B′. It follows that F > α on B. Thus we have SEP2.
This completes the proof.

Lemma 4.2. It is provable in RCA0 that SEP2 implies EHB.

Proof. Reasoning in RCA0, assume SEP2 and let p, S, and f be as in
the hypotheses of EHB. Let A be the convex hull of

{x ∈ S | f(x) < 1} ∪ {y ∈ X | p(y) < 1} ,

and let B be the convex hull of

{x ∈ S | f(x) > 1} ∪ {y ∈ X | −p(−y) > 1} .

Clearly A and B are open.
We claim that A and B are disjoint. If not, then for some 0 ≤ α ≤ 1,

0 ≤ β ≤ 1, x1 ∈ S, y1 ∈ X, x2 ∈ S, y2 ∈ X we have f(x1) < 1,
p(y1) < 1, f(x2) > 1, −p(−y2) > 1, and

(1− α)x1 + αy1 = (1− β)x2 + βy2 .

Note that αy1 − βy2 ∈ S. Hence

f(αy1 − βy2) ≤ p(αy1 − βy2)

≤ αp(y1) + βp(−y2)

≤ α− β ,
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yet on the other hand we have

f(αy1 − βy2) = f((1− β)x2 − (1− α)x1)

= (1− β)f(x2)− (1− α)f(x1)

≥ (1− β)− (1− α)

= α− β ,

hence f(αy1−βy2) = α−β. Since at least one of the above inequalities
must be strict, we obtain a contradiction. This proves our claim.

By SEP2, there exists a bounded linear functional F : X → R such
that F (x) < 1 for all x ∈ A, and F (x) > 1 for all x ∈ B. Clearly F
extends f . It remains to show that F (y) ≤ p(y) for all y ∈ X. Suppose
not, say p(y) < F (y). If F (y) > 0, then for a suitably chosen r > 0
we have p(ry) < 1 < F (ry), a contradiction. If F (y) ≤ 0, then for a
suitably chosen r > 0 we have p(ry) < −1 < F (ry). Putting z = −ry
we get −p(−z) > 1 > F (z), again a contradiction. This completes the
proof.

Lemma 4.3. It is provable in RCA0 that EHB implies HB.

Proof. HB is a special case of EHB with p(x) = α‖x‖.

Theorem 4.4. The following statements are pairwise equivalent over
RCA0.

1. SEP1, the first separation theorem.
2. SEP2, the second separation theorem.
3. EHB, the extended Hahn–Banach theorem.
4. HB, the Hahn–Banach theorem.
5. WKL0.

Proof. Lemmas 4.1, 4.2, 4.3 give the implications SEP1 ⇒ SEP2 and
SEP2 ⇒ EHB and EHB ⇒ HB. The equivalence HB ⇔ WKL0 is the
main result of [3]; see also [14] and [16] and Chapter IV of [20]. Theorem
3.1 gives the implication WKL0⇒ SEP1. This completes the proof.

Corollary 4.5. The extended Hahn–Banach theorem, EHB, is prov-
able in WKL0.

Remark 4.6. Corollary 4.5 has been stated in the literature; see The-
orem 4.9 of [12]. However, the proof given above is new. In addition,
the proof given above contains full details, while the proof in [12] was
presented in a very sketchy way.

Corollary 4.7. The Hahn–Banach theorem, HB, is provable in WKL0.
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Remark 4.8. Corollary 4.7 has been proved several times in the lit-
erature; see [3] and [16] and Chapter IV of [20]. The proof given here
is new and, from some points of view, more perspicuous.

Remark 4.9. Hatzikiriakou [10] has shown that that an algebraic sep-
aration theorem for countable vector spaces over Q is equivalent to
WKL0 over RCA0. This result may be compared to our Theorem 4.4.
We do not see any easy way of deducing our result from that of [10] or
vice versa, but the comparison is interesting.

5. Separation and ACA0

Theorem 5.1. The following statements are pairwise equivalent over
RCA0.

1. ACA0.
2. SEP3, the third separation theorem.
3. Let A and B be disjoint, bounded, separably closed, convex sets

in R2. Assume also that A is compact. Then A and B can be
separated.

Proof. Reasoning in ACA0, let A and B satisfy the hypotheses of SEP3.
In ACA0, separably closed implies closed (see [2]), so B is closed. Hence
we can use Heine–Borel compactness of A to find δ > 0 such that
‖x − y‖ > δ for all x ∈ A and y ∈ B. Let B(0, δ/2) be the open
ball of radius δ/2 centered at 0. Then A′ = A + B(0, δ/2) and B′ =
B + B(0, δ/2) are disjoint open convex sets. By SEP2 we can strictly
separate A′ and B′. This proves SEP3 in ACA0.

Trivially SEP3 implies statement 5.1.3.
It remains to prove that statement 5.1.3 implies ACA0 over RCA0.

Reasoning in RCA0, assume that ACA0 fails. Then there exists a
bounded increasing sequence of rational numbers an, n ∈ N, such that
supn an does not exist. (See Chapter III of [20].) We may safely as-
sume 0 < an < 1. Let A = [0, 1] × {0}, and let B be the separably
closed convex hull of the points (an, 1/n), n ≥ 1. Note that A and
B are bounded, separably closed, convex sets in R2. Moreover A is
compact, and clearly A and B cannot be separated. Thus we have a
counterexample to 5.1.3, once we show that A and B are disjoint.

To show that A and B are disjoint, let S be the countable set con-
sisting of all rational convex combinations of points (an, 1/n), n ≥ 1.
Thus B is the separable closure of S.
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We claim: for all n ≥ 1 there exists εn > 0 such that for all (x, y) ∈ S,
if x < an then y > εn. To see this, note that

(x, y) =

k∑
i=1

qi

(
ani,

1

ni

)
where

∑k
i=0 qi = 1, qi > 0, qi ∈ Q. Thus x =

∑k
i=0 qiani . Putting

r =
∑
{qi | ni ≤ n} we have

an > x ≥ ra1 + (1− r)an+1 ,

hence

r >
an+1 − an
an+1 − a1

> 0 .

Furthermore

y =

k∑
i=0

qi
1

ni
≥ r · 1

n
.

Therefore we put

εn =
an+1 − an
an+1 − a1

· 1
n

and our claim is proved.
Now if (x, 0) ∈ A∩B, we clearly have x < an for some n. Since S is

dense in B, let (x′, y′) ∈ S be such that

|x− x′| , |y′| < min(an+1 − an, εn+1) .

Then x′ < an+1 and y′ < εn+1, a contradiction. Thus A and B are
disjoint. This completes the proof.

Remark 5.2. A modification of the above argument shows that ACA0

is equivalent over RCA0 to the following even weaker-sounding state-
ment: if A and B are disjoint, bounded, separably closed, convex sets
in R2, and if A is compact, then there exists an open set U such that
A ⊆ U and U ∩ B = ∅.
Remark 5.3. In the functional analysis literature, separation results
such as SEP1, SEP2, and SEP3 are sometimes referred to as “geomet-
rical forms of the Hahn–Banach theorem.” It is therefore of interest to
perform a detailed comparison of these separation results with the (non-
geometrical) Hahn–Banach and extended Hahn–Banach theorems. Our
results in this paper shed some light on the logical or foundational as-
pect of such a comparison. We note that, although SEP1 and SEP2 are
logically equivalent to HB and EHB over RCA0 (Theorem 4.4), SEP3
is logically stronger (Theorem 5.1). Moreover, even though SEP2 and
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EHB turn out to be equivalent in this sense, we were unable to find
a direct proof of this fact; the proof that we found is highly indirect,
via WKL0. Thus we conclude that, from our foundational standpoint,
it is somewhat inaccurate to view the separation theorems as trivial
variants of the Hahn–Banach or extended Hahn–Banach theorems.
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