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Abstract

Let d be a positive integer. Let G be the additive monoid N
d or the

additive group Z
d. Let A be a finite set of symbols. The shift action

of G on AG is given by Sg(x)(h) = x(g + h) for all g, h ∈ G and all
x ∈ AG. A G-subshift is defined to be a nonempty closed set X ⊆ AG

such that Sg(x) ∈ X for all g ∈ G and all x ∈ X. Given a G-subshift
X, the topological entropy ent(X) is defined as usual [31]. The standard
metric on AG is defined by ρ(x, y) = 2−|Fn| where n is as large as possible
such that x↾Fn = y↾Fn. Here Fn = {0, 1, . . . , n}d if G = N

d, and Fn =
{−n, . . . ,−1, 0, 1, . . . , n}d if G = Z

d. For any X ⊆ AG the Hausdorff
dimension dim(X) and the effective Hausdorff dimension effdim(X) are
defined as usual [15, 26, 27] with respect to the standard metric. It is well
known that effdim(X) = supx∈X lim infn K(x↾Fn)/|Fn| where K denotes
Kolmogorov complexity [10]. If X is a G-subshift, we prove that ent(X) =
dim(X) = effdim(X), and ent(X) ≥ lim supn K(x↾Fn)/|Fn| for all x ∈ X,
and ent(X) = limn K(x↾Fn)/|Fn| for some x ∈ X.
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1 Introduction

The purpose of this paper is to elucidate a close relationship among three dis-
parate concepts which are known to play a large role in three diverse branches
of contemporary mathematics. The concepts are:

entropy, Hausdorff dimension, Kolmogorov complexity.

Some relationships among these concepts are well known; see for instance [5,
25, 39]. Nevertheless, it seems to us that the full depth of the relationships has
been insufficiently appreciated. Below we prove that, in an important special
case, all three concepts coincide.

Here is a brief overview of the above-mentioned concepts.

1. Hausdorff dimension is a basic concept in metric geometry. See for in-
stance the original paper by Hausdorff [15] and the classic treatise by C.
A. Rogers [29]. To any set X in a metric space one assigns a nonnega-
tive real number dim(X) = the Hausdorff dimension of X . In the case
of smooth sets such as algebraic curves and surfaces, the Hausdorff di-
mension is a nonnegative integer and coincides with other familiar notions
of dimension from algebra, differential geometry, etc. For example, the
Hausdorff dimension of a smooth surface in n-dimensional space is 2. On
the other hand, Hausdorff dimension applies also to non-smooth sets with
nonintegral dimension, e.g., fractals and Julia sets [11].

2. Kolmogorov complexity plays an important role in information theory
[8, 32], theoretical computer science [19, 37], and recursion/computability
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theory [10, 22]. To each finite mathematical object τ one assigns a non-
negative integer K(τ) = the complexity of τ . Roughly speaking, K(τ) is
the length in bits of the shortest computer program which describes τ . In
this sense K(τ) measures the “amount of information” which is inherent
in τ .

3. Entropy is an important concept in dynamical systems theory [9]. Clas-
sically, a dynamical system consists of a set X together with a map-
ping T : X → X and one studies the long-term behavior of the orbits
〈T n(x) | n = 0, 1, 2, . . .〉 for each x ∈ X . More generally, one considers
an action T of a group or semigroup G on a set X , and then the orbit of
x ∈ X is 〈T g(x) | g ∈ G〉. The entropy of the system X,T is a nonnegative
real number which has a rather complicated definition but is intended to
quantify the “exponential growth rate” of the system.

An especially useful class of dynamical systems are the symbolic systems,
a.k.a., subshifts [16, 20, 33, 34]. Given a finite set of symbols A, one
defines the shift action of G on AG as usual. A subshift is then defined to
be a closed, shift-invariant subset of AG. These symbolic systems play a
large role in general dynamical systems theory, because for any dynamical
system X,T one can consider partitions π : X → A and then the behavior
of an orbit 〈T g(x) | g ∈ G〉 is reflected by the behavior of its “symbolic
trace,” 〈π(T g(x)) | g ∈ G〉, which is a point in AG.

Our main results in this paper are Theorems 4.2 and 5.3 below. They say
the following. Let d be a positive integer, let G be the additive monoid N

d or
the additive group Z

d, let A be a finite set of symbols, and let X ⊆ AG be
a subshift. Then, the entropy of X is equal to the Hausdorff dimension of X
with respect to the standard metric on AG. Moreover, the entropy of X has
a sharp characterization in terms of the Kolmogorov complexity of the finite
configurations which occur in the orbits of X .

In connection with the characterization of entropy in terms of Kolmogorov
complexity, it is interesting to note that both of these concepts originated with
A. N. Kolmogorov, but in different contexts [35, 18].

2 How this paper came about

This paper is an outcome of my reading and collaboration over the past several
years. Here are some personal comments on that process.

It began with my study of Bowen’s alternative definition of topological en-
tropy [3, pages 125–126]. Obviously Bowen’s definition resembles the standard
definition of Hausdorff dimension in a metric space, and this led me to consider
the following question:

Given a subshift X , what is the precise relationship between the
topological entropy of X and the Hausdorff dimension of X?
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Specifically, let A be a finite set of symbols. From [3, Proposition 1] it was
clear to me that the topological entropy of a one-sided subshift X ⊆ AN is equal
to the Hausdorff dimension of X with respect to the standard metric. And
eventually I learned that this result appears explicitly in Furstenberg 1967 [12,
Proposition III.1]. But what about other kinds of subshifts on A? For instance,

what about the two-sided case, i.e., subshifts in AZ or AZ
d

or more generally
AG where G is a countable amenable group [38]? And what about the general

one-sided case, i.e., subshifts in AN
d

or more generally AG where G is countable
amenable semigroup, whatever that may mean?

During February, March and April of 2010 I discussed these issues with sev-
eral colleagues: John Clemens, Vaughn Climenhaga [7, Example 4.1], Manfred
Denker [9], Michael Hochman [16], Anatole Katok [17], Daniel Mauldin, Yakov
Pesin [25], Jan Reimann [26], Alexander Shen [37], Daniel Thompson, Jean-Paul
Thouvenot [17]. All of these discussions were extremely helpful. In particular,
Hochman and Mauldin provided several ideas which play an essential role in
this paper.

3 Background

In this section we present some background material concerning symbolic dy-
namics, entropy, Hausdorff dimension, and Kolmogorov complexity. All of the
concepts and results in this section are well known.

We write

N = {0, 1, 2, . . .} = {the nonnegative integers}

and

Z = {. . . ,−2,−1, 0, 1, 2, . . .} = {the integers}.

Throughout this paper, let G be the additive monoid N
d or the additive group

Z
d where d is a fixed positive integer. An action of G on a set X is a mapping

T : G×X → X such that T e(x) = x and T g(T h(x)) = T g+h(x) for all g, h ∈ G
and all x ∈ X . Here e is the identity element of G. It is useful to write G in
a specific1 way as the union of a sequence of finite sets, namely G =

⋃∞
n=0 Fn

where Fn = {0, 1, . . . , n}d if G = N
d, and Fn = {−n, . . . ,−1, 0, 1, . . . , n}d if

G = Z
d. In particular we have F0 = {0}d = {e}. We also write F−1 = ∅ = the

empty set. For any finite set F we write |F | = the cardinality of F . For any
function Φ we write dom(Φ) = the domain of Φ, and rng(Φ) = the range of Φ,
and

Φ :⊆ X → Y

meaning that Φ is a function with dom(Φ) ⊆ X and rng(Φ) ⊆ Y . Apart from
this, all of our set-theoretic notation is standard.

1In particular, the sequence Fn with n = 0, 1, 2, . . . is a Følner sequence for G.
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3.1 Topological entropy

We endow G with the discrete topology. Let X be a nonempty compact set in
a topological space, and let T : G×X → X be a continuous action of G on X .
The ordered pair X,T is called a compact dynamical system. We now define the
topological entropy of X,T .

An open cover of X is a set U of open sets such that X ⊆
⋃

U . In this case
we write

C(X,U) = min{|F| | F ⊆ U , X ⊆
⋃

F}.

Note that C(X,U) is a positive integer. If U and V are open covers of X , then

sup(U ,V) = {U ∩ V | U ∈ U , V ∈ V}

is again an open cover of X , and

C(X, sup(U ,V)) ≤ C(X,U)C(X,V).

For each g ∈ G and each open cover U of X , we have another open cover
Ug = (T g)−1(U) = {(T g)−1(U) | U ∈ U}. Hence, for each finite set F ⊂ G
we have an open cover UF = sup{Ug | g ∈ F}. Let us write C(X,T,U , F ) =
C(X,UF ). Note that C(X,Ug) ≤ C(X,U), hence C(X,UF ) ≤ C(X,U)|F |,
hence log2 C(X,T,U , F ) ≤ |F | log2 C(X,U). We define

ent(X,T,U) = lim
n→∞

log2 C(X,T,U , Fn)

|Fn|
(1)

and
ent(X,T ) = sup{ent(X,T,U) | U is an open cover of X} .

The nonnegative real number ent(X,T ) is known as the topological entropy2 of
X,T . It measures what might be called the “asymptotic exponential growth
rate” of X,T . See for instance [9, 21, 31].

Lemma 3.1. The limit in equation (1) exists.

Proof. Let us write Cn = C(X,T,U , Fn). Clearly Cm ≤ Cn whenever m ≤ n.

Moreover, it is easy to see that Cnk ≤ Ckd

n for all positive integers k. We are
trying to prove that log2 Cn/|Fn| approaches a limit as n → ∞. Assume G = Z

d,
so that |Fn| = (2n + 1)d. (The case G = N

d is similar, with |Fn| = (n + 1)d.)
Fix a positive integer m. Given n ≥ m, let k be a positive integer such that

mk ≤ n < m(k + 1). We have |Fn| ≥ |Fmk| and

|Fmk|

kd|Fm|
=

(

2mk + 1

2mk + k

)d

>

(

2m

2m + 1

)d

2Instead of log2 we could use logb for any fixed b > 1, for instance b = e or b = 10. The
base b = 2 is convenient for information theory, where entropy is measured in bits.
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and log2 Cn ≤ log2 Cm(k+1) ≤ (k + 1)d log2 Cm, hence

log2 Cn

|Fn|
≤

(k + 1)d log2 Cm

|Fmk|
≤

(k + 1)d log2 Cm

kd|Fm|

(

2m + 1

2m

)d

.

As n → ∞ we have k → ∞, hence

lim sup
n→∞

log2 Cn

|Fn|
≤

log2 Cm

|Fm|

(

2m + 1

2m

)d

,

and this holds for all m, hence

lim sup
n→∞

log2 Cn

|Fn|
≤ lim inf

m→∞

log2 Cm

|Fm|
.

In other words, limn→∞ log2 Cn/|Fn| exists, Q.E.D.

Let U and V be open covers of X . We say that U refines V if each U ∈ U is
included in some V ∈ V . Obviously this implies C(X,U) ≥ C(X,V), and it is
also easy to see that ent(X,T,U) ≥ ent(X,T,V).

Lemma 3.2. For each m we have ent(X,T,UFm) = ent(X,T,U).

Proof. Clearly UFm refines U , hence ent(X,T,UFm) ≥ ent(X,T,U). For all
n we have Fm+n = Fm + Fn, hence UFm+n ⊆ (UFm)Fn , hence UFm+n refines
(UFm)Fn , hence C(X,UFm+n) ≥ C(X, (UFm)Fn), hence C(X,T,U , Fm+n) ≥
C(X,T,UFm , Fn), hence

log2 C(X,T,U , Fm+n)

|Fn|
≥

log2 C(X,T,UFm , Fn)

|Fn|
,

hence
log2 C(X,T,U , Fm+n)

|Fm+n|
·
|Fm+n|

|Fn|
≥

log2 C(X,T,UFm , Fn)

|Fn|
.

Taking the limit as n → ∞ and noting that

lim
n→∞

|Fm+n|

|Fn|
= 1 ,

we see that ent(X,T,U) ≥ ent(X,T,UFm). This completes the proof.

Let U be an open cover of X . We say that U is a topological generator if for
each open cover V of X there exists m such that UFm refines V . The following
theorem says that we can use a topological generator to compute ent(X,T ).

Theorem 3.3. If U is a topological generator, then ent(X,T ) = ent(X,T,U).

Proof. Let V be an open cover of X . Since U is a topological generator, let m
be such that UFm refines V . Then ent(X,T,UFm) ≥ ent(X,T,V), so by Lemma
3.2 we have ent(X,T,U) ≥ ent(X,T,V). Thus ent(X,T,U) = ent(X,T ).
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3.2 Symbolic dynamics

An important class of dynamical systems are the symbolic dynamical systems,
also known as subshifts. We now present some background material on subshifts.
See also [20, §13.10] and [4, 16, 33, 34].

As before, let d be a positive integer, and let G be the additive monoid N
d or

the additive group Z
d. Let A be a nonempty finite set of symbols. We endow A

with the discrete topology. Let AG = {x | x : G → A}. We endow AG with the
product topology. Note that each x ∈ AG is a function from G to A. For each
finite set F ⊂ G and each x ∈ AG let x↾F be the restriction of x to F . Thus
AF = {x↾F | x ∈ AG}. For each σ ∈ AF we write dom(σ) = F and |σ| = |F |
and JσK = {x ∈ AG | x↾F = σ}. Note that JσK is a nonempty clopen set in AG,
and {JσK | σ ∈ AF } is a pairwise disjoint covering of AG. Let A∗ =

⋃∞
n=0 A

Fn

and note that {JσK | σ ∈ A∗} is a basis for the topology of AG. For any T ⊆ A∗

we write JT K =
⋃

σ∈T JσK. Thus JT K is an open set in AG.
The shift action of G on AG is the mapping S : G × AG → AG given by

Sg(x)(h) = x(g + h) for all g, h ∈ G and all x ∈ AG. Thus AG, S is a compact
dynamical system, known as the full shift. Since F0 = {0}d is a singleton
set, there is an obvious one-to-one correspondence between AF0 and A, so we
identify AF0 with A. The canonical open covering of AG is U = U(A,G) =
{JaK | a ∈ A}. For each finite set F ⊂ G we have UF = {JσK | σ ∈ AF }.
By compactness of AG it follows that U is a topological generator. Moreover
C(AG, S,U , F ) = C(AG,UF ) = |UF | = |AF | = |A||F |, so by Theorem 3.3 we
have ent(AG, S) = ent(AG, S,U) = log2 |A|.

A set X ⊆ AG is said to be shift-invariant if Sg(x) ∈ X for all g ∈ G and
all x ∈ X . A subshift is a nonempty, closed, shift-invariant subset of AG. Each
subshift X ⊆ AG gives rise to a compact dynamical system X,S↾G × X . We
write ent(X) = ent(X,S↾G×X), etc. Since UF is a pairwise disjoint covering
of AG, we have C(X,U , F ) = C(X,UF ) = |X↾F | where X↾F = {x↾F | x ∈ X}.
Since U is a topological generator, it follows by Theorem 3.3 that

ent(X) = lim
n→∞

log2 |X↾Fn|

|Fn|
. (2)

Lemma 3.4. We have

lim
n→∞

|X↾Fn|2
−s|Fn| =

{

0 if s > ent(X) ,

∞ if s < ent(X) .

Proof. First suppose s > ent(X). Fix ǫ > 0 such that s− ǫ > ent(X). Equation
(2) implies that for all sufficiently large n we have (s − ǫ)|Fn| > log2 |X↾Fn|,
hence |X↾Fn|2−|Fn|s < 2−ǫ|Fn|. Letting n → ∞ we have |Fn| → ∞, hence
limn→∞ |X↾Fn|2−s|Fn| = 0.

Next, suppose s < ent(X). Fix ǫ > 0 such that s + ǫ < ent(X). Equation
(2) implies that for all sufficiently large n we have (s + ǫ)|Fn| < log2 |X↾Fn|,
hence |X↾Fn|2−|Fn|s > 2ǫ|Fn|. Letting n → ∞ we have |Fn| → ∞, hence
limn→∞ |X↾Fn|2−s|Fn| = ∞.
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3.3 Hausdorff dimension

Let X be a set in a metric space. The s-dimensional Hausdorff measure of X
is defined as

µs(X) = lim
ǫ→0

inf
E

∑

E∈E

diam(E)s

where diam(E) is the diameter of E. Here E ranges over coverings of X with
the property that diam(E) ≤ ǫ for all E ∈ E . The Hausdorff dimension of X is

dim(X) = inf{s | µs(X) = 0}.

Hausdorff measures and Hausdorff dimension have been widely studied, e.g., in
connection with the geometry of fractals [11, 15, 29].

We now define what we mean by the Hausdorff dimension of a subshift. The
standard metric on AG is given by ρ(x, y) = 2−|Fn| where n = −1, 0, 1, 2, . . . is
as large as possible such that x↾Fn = y↾Fn. (Recall that F−1 = ∅.) Clearly
the standard metric on AG induces the product topology on AG. Moreover,
the standard metric is an ultrametric, i.e., ρ(x, y) ≤ max(ρ(x, z), ρ(y, z)) for all
x, y, z. For any set X ⊆ AG we define dim(X) = the Hausdorff dimension of X
with respect to the standard metric on AG.

Lemma 3.5. For all subshifts X ⊆ AG we have ent(X) ≥ dim(X).

Proof. For each E ⊆ AG we have diam(E) ≤ 2−|Fn| if and only if E ⊆ JσK for
some σ ∈ AFn . Therefore, in the definition of µs(X) and dim(X) for an arbitrary
set X ⊆ AG, we may safely assume that each E is a basic open set, i.e., E = JσK
for some σ ∈ A∗. Moreover, for each σ ∈ A∗ we have diam(JσK) = 2−|σ|.

Assume now that X is a subshift, and suppose s > ent(X). By Lemma 3.4
we have

lim
n→∞

|X↾Fn|2
−|Fn|s = 0 . (3)

But for each n we have X ⊆
⋃

x∈XJx↾FnK and diam(Jx↾FnK) = 2−|Fn|, so (3)
implies that µs(X) = 0, hence s ≥ dim(X). Since this holds for all s > ent(X),
it follows that ent(X) ≥ dim(X).

Remark 3.6. In §4 we shall prove that for all subshifts X ⊆ AG, ent(X) =
dim(X). In other words, the topological entropy of a subshift is equal to its
Hausdorff dimension with respect to the standard metric. While the special
case G = N is due to Furstenberg [12, Proposition III.1], the general result for
G = N

d or G = Z
d appears to be new.

3.4 Kolmogorov complexity

We now present some background material on Kolmogorov complexity.
As in §3.2 let A∗ =

⋃∞
n=0 A

Fn . In addition let {0, 1}∗ be the set of finite
sequences of 0’s and 1’s. For each Turing machine M and each finite sequence
α ∈ {0, 1}∗, let M(α) be the run of M with input α. A function
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Φ :⊆ {0, 1}∗ → A∗

is said to be partial computable if there exists a Turing machine M such that
for all α ∈ {0, 1}∗, α ∈ dom(Φ) if and only if M(α) eventually halts, in which
case it halts with output Φ(α). For each such Φ and each ξ ∈ A∗ let

KΦ(ξ) = min({|α| | Φ(α) = ξ} ∪ {∞}) .

A partial computable function Ψ :⊆ {0, 1}∗ → A∗ is said to be universal if for
each partial computable function Φ :⊆ {0, 1}∗ → A∗ there exists a constant c
such that for all ξ ∈ A∗ we have KΨ(ξ) ≤ KΦ(ξ) + c. The existence of such a
universal function is easily proved. Fix such a universal function Ψ. For each
ξ ∈ A∗ we define the Kolmogorov complexity of ξ to be K(ξ) = KΨ(ξ). Note
that K(ξ) is well defined up to an additive constant, i.e., up to ±O(1). Here
“well defined” means that K(ξ) is independent of the choice of Ψ.

Remark 3.7. Actually the complexity notion K defined above is only one of
several variant notions, denoted in [37] as KP, KS, KM, KA, KD. These variants
are useful in many contexts [10]. However, for our purposes in this paper, the
differences among them are immaterial.

3.5 Effective Hausdorff dimension

We now present some background material concerning the effective or com-
putable variant of Hausdorff dimension. Throughout this paper the words “ef-
fective” and “computable” refer to Turing’s theory of computability and un-
solvability [30, 36].

A Polish space is a complete separable metric space. An effectively presented

Polish space consists of a Polish space Z, ρ together with a mapping Φ : N →
Z such that rng(Φ) is dense in Z, ρ and the real-valued function (m,n) 7→
ρ(Φ(m),Φ(n)) : N× N → [0,∞) is computable. In this case we define the basic

open sets of Z, ρ,Φ to be those of the form

B(n, r) = {x ∈ Z | ρ(Φ(n), x) < r}

where r is a positive rational number and n ∈ N. A sequence of basic open sets
Bi, i = 1, 2, . . . is said to be computable if there exist computable sequences ni,
ri, i = 1, 2, . . . such that Bi = B(ni, ri) for all i. A set X ⊆ Z is said to be
effectively closed if its complement Z \ X is effectively open, i.e., Z \ X = ∅
or Z \ X =

⋃∞
i=1 Bi where Bi, i = 1, 2, . . . is a computable sequence of basic

open sets. We say that X is effectively compact if it is effectively closed and
effectively totally bounded, i.e., there exists a computable function f : N → N

such that X ⊆
⋃f(i)

n=1 B(n, 2−i) for each i.
Let s be a positive real number. We say that X is effectively s-null if there

exists a computable double sequence of basic open sets Bij , i, j = 1, 2, . . .,
such that X ⊆

⋃∞
j=1 Bij and

∑∞
j=1 diam(Bij)

s ≤ 2−i for each i. The effective

Hausdorff dimension of X is defined as

effdim(X) = inf{s | X is effectively s-null} .
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Note that, although the Hausdorff dimension of a singleton point {x} is always
0, there may be no computable way to “observe” this, so the effective Hausdorff
dimension of a noncomputable point may be > 0. In fact, for any set X one has

effdim(X) = sup
x∈X

effdim({x}) . (4)

On the other hand, it is known that effdim(X) = dim(X) provided X is effec-
tively compact. See for instance [10, Chapter 13] and [26, 27, 28].

The above definitions and remarks apply to the effectively compact, effec-
tively presented3 Polish space AG with the standard metric as defined in §3.3. In
particular we have effdim(X) = dim(X) for all effectively closed sets X ⊆ AG.
In §5 below we shall prove that effdim(X) = dim(X) for all subshifts X ⊆ AG.
This result holds even if X is not effectively closed.

For arbitrary subsets of AG, the following theorem exhibits a relationship
between effective Hausdorff dimension and Kolmogorov complexity. We shall
see in Theorem 5.3 that the relationship is even closer when X is a subshift.

Theorem 3.8 (Mayordomo’s Theorem). For any set X ⊆ AG we have

effdim(X) = sup
x∈X

lim inf
n→∞

K(x↾Fn)

|Fn|
.

Proof. This follows from (4) together with [10, Theorem 13.3.4].

3.6 Measure-theoretic entropy

We now present some background material on measure-theoretic entropy. We
state two important theorems without proof but with references to the literature.

Let X,µ be a probability space. An action T : G × X → X is said to
be measure-preserving if µ((T g)−1(P )) = µ(P ) for each g ∈ G and each µ-
measurable set P ⊆ X . In this case the ordered triple X,T, µ is called a measure-

theoretic dynamical system. We now proceed to define the measure-theoretic
entropy of X,T, µ.

A measurable partition of X is a finite set P of pairwise disjoint µ-measurable
subsets of X such that X =

⋃

P . In this case we write

H(X,µ,P) = −
∑

P∈P

µ(P ) log2 µ(P ) .

If P and Q are measurable partitions of X , then

sup(P ,Q) = {P ∩Q | P ∈ P , Q ∈ Q}

3Our Φ for AG is obtained as follows. Let # : A∗ → N be a standard Gödel numbering

of A∗. In other words, for each σ ∈ A∗ let #(σ) be a numerical code for σ from which σ
can be effectively recovered. Let a be a fixed symbol in A. Define Φ : N → AG by letting
Φ(#(σ)) = xσ ∈ AG where xσ ∈ JσK and xσ(g) = a for all g ∈ G \ dom(σ).
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is again a measurable partition of X , and it can be shown [9, 10.4(d)] that

H(X,µ, sup(P ,Q)) ≤ H(X,µ,P) + H(X,µ,Q) . (5)

For each g ∈ G and each measurable partition P of X , we have another measur-
able partition Pg = (T g)−1(P) = {(T g)−1(P ) | P ∈ P}. Hence, for each finite
set F ⊂ G we have a measurable partition PF = sup{Pg | g ∈ F}. Let us write
H(X,T, µ,P , F ) = H(X,µ,PF ). It follows from (5) that H(X,T, µ,P , F ) ≤
|F |H(X,µ,P). We define

ent(X,T, µ,P) = lim
n→∞

H(X,T, µ,P , Fn)

|Fn|
(6)

and

ent(X,T, µ) = sup{ent(X,T, µ,P) | P is a measurable partition of X}.

It can be proved that the limit in (6) exists. The nonnegative real number
ent(X,T, µ) is known as the measure-theoretic entropy of X,T, µ. It plays an
important role in ergodic theory. See for instance [9, 21, 24].

Let X,T, µ be a measure-theoretic dynamical system. A set P ⊆ X is said
to be G-invariant if (T g)−1(P ) ⊆ P for all g ∈ G. The system X,T, µ is said to
be ergodic if for every G-invariant µ-measurable set P ⊆ X we have µ(P ) = 0
or µ(P ) = 1.

Now let d be a positive integer, let G = N
d or Zd, let A be a nonempty finite

set of symbols, and let X ⊆ AG be a subshift. A Borel probability measure µ on
X is said to be shift-invariant if µ((Sg)−1(P )) = µ(P ) for each g ∈ G and each
Borel set P ⊆ X . In this case X,S, µ is a measure-theoretic dynamical system,
and we write H(X,µ,P) = H(X,S, µ,P), ent(X,µ) = ent(X,S, µ), etc. As in
§3.2 it can be shown that ent(X,µ) = ent(X,µ,P) where P is the canonical

measurable partition of X , namely P = {JaK ∩X | a ∈ A}.
In the case of an ergodic subshift, there is the following suggestive charac-

terization of measure-theoretic entropy.

Theorem 3.9 (Shannon/McMillan/Breiman). Let X ⊆ AG be a subshift, and
let µ be an ergodic, shift-invariant, probability measure on X . Then for µ-almost
all x ∈ X we have

ent(X,µ) = lim
n→∞

log2 µ(Jx↾FnK)

−|Fn|
.

Proof. See [23].

We end this section by noting a significant relationship between topological
entropy and measure-theoretic entropy.

Theorem 3.10 (Variational Principle). For any subshift X ⊆ AG we have

ent(X) = max
µ

ent(X,µ)

where µ ranges over ergodic, shift-invariant, probability measures on X .

Proof. See [21] and [9, §§16–20].

11



4 Entropy = dimension

As in §3 let d be a positive integer, let G = N
d or G = Z

d, let A be a finite
set of symbols, and let X ⊆ AG be a subshift. The purpose of this section is to
prove that ent(X) = dim(X). The special case G = N is due to Furstenberg [12,
Proposition III.1]. However, the general result for G = N

d or G = Z
d appears

to be new.
As a warm-up for our proof of the general result, we first present Fursten-

berg’s proof of the special case G = N.

Theorem 4.1 (Furstenberg 1967). Let X ⊆ AN be a one-sided subshift. Then
ent(X) = dim(X).

Proof. By Lemma 3.5 we have ent(X) ≥ dim(X). To prove ent(X) ≤ dim(X)
it suffices to prove ent(X) ≤ s for all s such that µs(X) = 0. Since µs(X) = 0
let E be such that X ⊆

⋃

E and
∑

E∈E diam(E)s < 1. As noted in §3.3, we may
safely assume that each E ∈ E is of the form E = JσK where σ ∈ A∗, so that
diam(E) = 2−|σ|. By compactness we may assume that E is finite. Let us write
E = {JσK | σ ∈ I} where I ⊂ A∗ is finite. Let m = max{|σ| | σ ∈ I}. From

∑

σ∈I

2−|σ|s =
∑

E∈E

diam(E)s < 1

it follows that

∑

σ1,...,σk

2−(|σ1|+···+|σk|)s =

∞
∑

k=1

(

∑

σ∈I

2−|σ|s

)k

= M < ∞

where the first sum is taken over all nonempty finite sequences σ1, . . . , σk ∈ I.
The previous paragraph applies to any subshift. We now bring in the special

assumption G = N. Because G = N and Fn = {0, 1, . . . , n}, each x ∈ AG is an
infinite sequence of symbols in A, and each σ ∈ A∗ =

⋃∞
n=0 A

Fn is a nonempty
finite sequence of symbols in A. Thus, given x ∈ X , we can recursively define an
infinite sequence σ1, . . . , σk, . . . ∈ I such that S|σ1|+···+|σk−1|(x) ∈ JσkK for all k,
and then x = σ1

a · · ·aσk
a · · · where a denotes concatenation of finite sequences.

Now, given n ≥ 0, let k be as small as possible such that x↾Fn ⊆ σ1
a · · ·aσk.

We then have
|Fn| ≤ |σ1| + · · · + |σk| < |Fn| + m (7)

and Jx↾FnK ⊇ Jσ1
a · · ·aσkK. Since the sets JξK for ξ ∈ X↾Fn are pairwise

disjoint, it follows that |X↾Fn| is less than or equal to the number of finite
sequences σ1, . . . , σk ∈ I such that (7) holds. For each such finite sequence we
have 2−|Fn|s < 2ms2−(|σ1|+···+|σk|)s, so by summing over all such finite sequences
we obtain |X↾Fn|2−|Fn|s < 2msM . Thus |X↾Fn|2−|Fn|s is bounded as n → ∞.
It follows by Lemma 3.4 that ent(X) ≤ s, Q.E.D.

We now generalize Furstenberg’s result.
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Theorem 4.2. Let G = N
d or G = Z

d where d is a positive integer. Let A
be a finite nonempty set of symbols, and let X ⊆ AG be a subshift. Then
ent(X) = dim(X).

Proof. By Lemma 3.5 we have ent(X) ≥ dim(X). To prove ent(X) ≤ dim(X)
it suffices to prove ent(X) ≤ s for all s such that µs(X) = 0. Using µs(X) = 0
and the compactness of X , we can find finite sets Il ⊂ A∗ for l = 1, 2, . . . such
that X ⊆

⋃

σ∈Il
JσK and

∑

σ∈Il
2−|σ|s < 2−l and |σ| << |τ | for all σ ∈ Il and all

τ ∈ Il+1. Let I∞ =
⋃∞

l=1 Il. We have

∑

σ∈I∞

2−|σ|s <
∞
∑

l=1

2−l = 1

hence
∑

σ1,...,σk

2−(|σ1|+···+|σk|)s =

∞
∑

k=1

(

∑

σ∈I∞

2−|σ|s

)k

= M < ∞

where the first sum is taken over all nonempty finite sequences σ1, . . . , σk ∈ I∞.
For all σ ∈ A∗ and all g ∈ G, let σg = the g-translate of σ, i.e., dom(σg) =

{g+h | h ∈ dom(σ)} and σg(g+h) = σ(h) for all h ∈ dom(σ). Note that |σg| =
|σ| and JσgK = JσKg = (Sg)−1(JσK). Since X is a subshift and X ⊆

⋃

σ∈Il
JσK

for all l, we have

∀l (∀g ∈ G) (∀x ∈ X) (∃σ ∈ Il) (x ∈ JσgK).

Let J∞ =
⋃∞

l=1 Jl where Jl = {σg | σ ∈ Il, g ∈ G}.

Lemma 4.3. Let ǫ > 0 be given. For all sufficiently large n and each x ∈ X ,
we can find a pairwise disjoint set L ⊂ J∞ such that

⋃

L ⊆ x↾Fn and |
⋃

L| >
(1 − ǫ)|Fn| and |L| < ǫ|Fn|.

Proof. The proof may be viewed as a discrete analog of the classical proof of
the Vitali Covering Lemma. Given an “extremely large” configuration x↾Fn,
we begin by filling in as much of x↾Fn as possible with pairwise disjoint “very
very large” configurations from J∞. After that, we fill in the gaps with pairwise
disjoint “very large” configurations from J∞. After that, we fill in the remaining
gaps with pairwise disjoint “large” configurations from J∞. Et cetera.

Specifically, let l be so large that (1− (1/4)d)l < ǫ and 1 < ǫ|σ| for all σ ∈ Il,
and let n be so large that n >> |σ| for all σ ∈ I2l−1. Given x ∈ X , let ξ = x↾Fn

and let K1 = {τ ∈ J2l−1 | τ ⊂ ξ}. Note that |
⋃

K1| ≥ (3/4)d|ξ|, because
|τ | << n for all τ ∈ J2l−1. Let L1 ⊆ K1 be pairwise disjoint4 such that |

⋃

L1| ≥
|
⋃

K1|/3d. It follows that |
⋃

L1| ≥ |ξ|/4d, hence |ξ \
⋃

L1| ≤ (1− (1/4)d)|ξ|. If
|ξ \

⋃

L1| ≤ (1− (1/4)d)2|ξ|, let L2 = K2 = ∅. Otherwise, let K2 = {τ ∈ J2l−2 |
τ ⊂ ξ \

⋃

L1} and note that |
⋃

K2| ≥ (3/4)d|ξ \
⋃

L1|, because |τ | << |υ| for all

4Here are the details. Define L1 = {υj | j = 1, 2, . . .} where υj ∈ K1 is chosen inductively
so that υi ∩ υj = ∅ for all i < j and |υj | is as large as possible. Then for all τ ∈ K1 there
exists υ ∈ L1 such that τ ∩υ 6= ∅ and |τ | ≤ |υ|. From this it follows that |

⋃
L1| ≥ |

⋃
K1|/3d.
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τ ∈ J2l−2 and all υ ∈ L1. As before let L2 ⊆ K2 be pairwise disjoint such that
|
⋃

L2| ≥ |
⋃

K2|/3d. It follows as before that |ξ \
⋃

(L1∪L2)| ≤ (1−(1/4)d)2|ξ|.
Continuing in this fashion for l steps, we obtain L1 ⊆ J2l−1 and L2 ⊆ J2l−2 and
. . . and Ll ⊆ Jl such that |ξ \

⋃

(L1 ∪ · · · ∪ Ll)| ≤ (1 − (1/4)d)l|ξ|. Finally let
L = L1∪· · ·∪Ll. By construction L is pairwise disjoint and

⋃

L ⊆ ξ. Moreover
|ξ \
⋃

L| ≤ (1− (1/4)d)l|ξ| < ǫ|ξ| = ǫ|Fn|, hence |
⋃

L| > (1− ǫ)|ξ| = (1− ǫ)|Fn|.
For each τ ∈ L we have 1 < ǫ|τ |, hence |L| < ǫ|

⋃

L| ≤ ǫ|Fn|. This proves
Lemma 4.3.

Lemma 4.4. Let ǫ and n be as in Lemma 4.3. Then |X↾Fn| is less than or
equal to (|A|+1)2ǫ|Fn| times the number of sequences σ1, . . . , σk ∈ I∞ such that
|σ1| + · · · + |σk| ≤ |Fn|.

Proof. The idea of the proof is that, by Lemma 4.3, each x↾Fn ∈ X↾Fn is almost
entirely covered by a finite sequence of pairwise disjoint translates of elements
of I∞. These elements of I∞ can be used to give a concise description of x↾Fn.

Given x ∈ X let L = {τ1, . . . , τk} be as in the conclusion of Lemma 4.3.
For each i = 1, . . . , k let σi ∈ I∞ be such that τi = σg

i for some g ∈ G. Since

τ1, . . . , τk are pairwise disjoint and
⋃k

i=1 τi =
⋃

L ⊆ x↾Fn, we have |σ1| + · · · +
|σk| = |τ1|+ · · ·+ |τk| ≤ |Fn|. Let <lex be the lexicographical ordering of Fn. For
each i = 1, . . . , k let gi = the least element of dom(τi) ⊆ Fn with respect to <lex.
Reordering τ1, . . . , τk as necessary, we may assume that g1 <lex · · · <lex gk. Let
U = Fn \

⋃k
i=1 dom(τi), and let V = U ∪ {g1, . . . , gk}. By Lemma 4.3 we have

|U | = |Fn| − |
⋃

L| < ǫ|Fn| and k = |L| < ǫ|Fn|, hence |V | = |U |+ k ≤ m where
m = 2⌊ǫ|Fn|⌋. For each j = 1, . . . ,m define aj ∈ A ∪ {0} as follows. If j ≤ |V |
let g be the jth element of V with respect to <lex. If g ∈ U , let aj = x(g).
Otherwise, let aj = 0. Clearly x↾Fn can be recovered from the pair of sequences
a1, . . . , am and σ1, . . . , σk. This proves Lemma 4.4.

To prove Theorem 4.2, let ǫ and n be as in Lemmas 4.3 and 4.4. Because
|σ1|+ · · ·+ |σk| ≤ |Fn| implies 2−|Fn|s ≤ 2−(|σ1|+···+|σk|)s, it follows from Lemma
4.4 and the definition of M that

|X↾Fn|2
−|Fn|s < (|A| + 1)2ǫ|Fn|M ,

i.e.,
|X↾Fn|2

−|Fn|(s+2ǫ log2(|A|+1)) < M .

Thus |X↾Fn|2−|Fn|(s+2ǫ log2(|A|+1)) is bounded as n goes to infinity, so by Lemma
3.4 we have ent(X) ≤ s + 2ǫ log2(|A| + 1). And this holds for all ǫ > 0, so
ent(X) ≤ s. The proof of Theorem 4.2 is now complete.

5 Dimension = complexity

As before let d be a positive integer, let G = N
d or G = Z

d, let A be a finite
set of symbols, and let X ⊆ AG be a subshift. In this section we prove that
the Hausdorff dimension of X is equal to the effective Hausdorff dimension of
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X . In addition we obtain a sharp characterization of dim(X) in terms of the
Kolmogorov complexity of finite pieces of the individual orbits of X , i.e., in
terms of K(x↾Fn) for x ∈ X and n = 1, 2, . . .. Our results apply even when X
is not effectively closed.

Lemma 5.1. For all x ∈ X we have

lim sup
n→∞

K(x↾Fn)

|Fn|
≤ ent(X) . (8)

Proof. Fix a positive integer m. Given n ≥ m, let k be a positive integer such
that mk ≤ n < m(k+ 1). Partitioning Fm(k+1) into (k+ 1)d blocks of size |Fm|,

we see that |X↾Fn| ≤ (k + 1)d|X↾Fm| and there is a constant c independent of
n such that K(x↾Fn) ≤ (k + 1)d log2 |X↾Fm| + 2 log2 n + c for all x ∈ X . Thus

K(x↾Fn)

|Fn|
≤

(k + 1)d log2 |X↾Fm| + 2 log2 n + c

kd|Fm|
→

log2 |X↾Fm|

|Fm|

as n → ∞. Since this holds for all m, we now see that (8) follows from (2).

Lemma 5.2. For some x ∈ X we have

lim
n→∞

K(x↾Fn)

|Fn|
= ent(X) . (9)

Proof. By the Variational Principle 3.10 let µ be an ergodic, shift-invariant,
probability measure on X such that ent(X,µ) = ent(X). Fix s < ent(X). Let

Dn =
{

ξ ∈ AFn

∣

∣ K(ξ) < |Fn|s
}

.

Clearly |Dn| ≤ 2|Fn|s. Fix ǫ > 0 such that s + ǫ < ent(X), and let

Tn = {ξ ∈ AFn | µ(JξK) < 2−|Fn|(s+ǫ)} .

The Shannon/McMillan/Breiman Theorem 3.9 tell us that for µ-almost all x ∈
X and all sufficiently large n we have

log2 µ(Jx↾FnK)

−|Fn|
> s + ǫ ,

i.e., x↾Fn ∈ Tn, i.e., x ∈ JTnK. On the other hand, for each n we have

µ(JDnK ∩ JTnK) = µ(JDn ∩ TnK) ≤ 2|Fn|s2−|Fn|(s+ǫ) = 2−|Fn|ǫ

and so
∞
∑

n=1

µ(JDnK ∩ JTnK) < ∞ .

Thus the Borel/Cantelli Lemma tells us that, for µ-almost all x and all suffi-
ciently large n, x /∈ JDnK∩ JTnK. But then it follows that, for µ-almost all x and
all sufficiently large n, x /∈ JDnK, i.e., x↾Fn /∈ Dn, i.e., K(x↾Fn) ≥ |Fn|s. Since
this holds for all s < ent(X), we now see that (9) holds for µ-almost all x ∈ X .
This completes the proof.
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Theorem 5.3. Let G = N
d or G = Z

d where d is a positive integer. Let A be
a finite set of symbols, and let X ⊆ AG be a subshift. Then

ent(X) = dim(X) = effdim(X) .

Moreover

dim(X) ≥ lim sup
n→∞

K(x↾Fn)

|Fn|

for all x ∈ X , and

dim(X) = lim
n→∞

K(x↾Fn)

|Fn|

for some x ∈ X .

Proof. This follows from Theorems 3.8 and 4.2 and Lemmas 5.1 and 5.2.

Questions 5.4.

1. Can we find an “elementary” or “direct” proof of Lemma 5.2? I.e., a proof
which does not use measure-theoretic entropy?

2. Is it possible to generalize Theorems 4.2 and 5.3 so as to apply to wider
classes of groups or semigroups? For example, do Theorems 4.2 and 5.3
continue to hold if G is an amenable group [38]?

3. Is it possible to generalize Theorems 4.2 and 5.3 so as to apply to scaled
entropy and scaled Hausdorff dimension? For example, what about

lim inf
n→∞

K(x↾Fn)
√

|Fn|
?
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