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THE JOURNAL OF SYMBOLIC LOGIC 
Volume 47, Number 2, June 1982 

ON THE ROLE OF RAMSEY QUANTIFIERS 
IN FIRST ORDER ARITHMETIC1 

JAMES H. SCHMERL AND STEPHEN G. SIMPSON 

?0. Introduction. The purpose of this paper is to study a formal system PA(Q2) 
of first order Peano arithmetic, PA, augmented by a Ramsey quantifier Q2 which 
binds two free variables. The intended meaning of Q2xx'(p(x, x') is that there exists 
an infinite set X of natural numbers such that (p(a, a') holds for all a, a' e X such 
that a + a'. Such an X is called a witness set for Q2xx'q(px, x'). Our results would 
not be affected by the addition of further Ramsey quantifiers Q3, Q4, .... Here 
of course the intended meaning of Qkx1 ... X** p(Xl, ..., Xk) is that there exists an 
infinite set X such that (q(aj, ..., ak) holds for all k-element subsets {al, ..., a*} 
of X. 

Ramsey quantifiers were first introduced in a general model theoretic setting by 
Magidor and Malitz [13]. The system PA(Q2), or rather, a system essentially equiv- 
alent to it, was first defined and studied by Macintyre [12]. Some of Macintyre's 
results were obtained independently by Morgenstern [15]. The present paper is 
essentially self-contained, but all of our results have been directly inspired by those 
of Macintyre [12]. 

After some preliminaries in ?1, we begin in ?2 by giving a new completeness 
proof for PA(Q2). A by-product of our proof is that for every regular uncountable 
cardinal x, every consistent-extension of PA(Q2) has a K-like model in which all 
classes are definable. (By a class we mean a subset of the universe of the model, 
every initial segment of which is finite in the sense of the model.) 

Macintyre's original completeness proof for PA(Q2) relied on the general 
Magidor/Malitz results which in turn depended on Jensen's combinatorial prin- 
ciple 0. Our new completeness proof is quite simple and uses only well-known 
properties of the MacDowell/Specker construction. Thus, an additional by-pro- 
duct of our proof is that Macintyre's use of 0 is avoided. 

When Macintyre introduced the system PA(Q2), his stated purpose [12] was 
to strengthen PA in a natural way so as to eliminate the well-known incomplete- 
ness of PA with respect to finite combinatorics. He pointed out that, for instance, 
the Paris/Harrington [17] combinatorial principle Vklm 3n n * (m), although 
independent of PA, is a theorem of PA(Q2). Macintyre then went on to express 
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424 JAMES H. SCHMERL AND SrEPHEN G. SIMPSON 

his opinion [12] that no "second generation" of combinatorial principles, inde- 
pendent of PA(Q2), is likely to arise. 

In the light of Macintyre's concerns as just described, it would be of considerable 
interest to determine exactly the limits of PA(Q2) with respect to finite combina- 
torics. In particular, can we characterize the arithmetical consequences of PA(Q2) 
in a useful way? (By arithmetical we mean: expressible in the language of PA.) 

In ?3 we obtain an affirmative answer to this question. Namely, we show that 
the arithmetical consequences of PA(Q2) are the same as the arithmetical conse- 
quences of a certain well-known ([8], [5]) system of second order arithmetic, viz. 
ff -CAO, i.e. fl comprehension with restricted induction. 

From this result, it is obvious that not only the Paris/Harrington principle, but 
also the stronger combinatorial principles considered by Friedman, McAloon and 
Simpson [9] are all theorems of PA(Q2). This is because the usual proofs of these 
principles are straightforwardly formalizable in ff1-CAo. It is not at all clear how 
to formalize such proofs directly in PA(Q2). 

At the same time, our result in ?3 reduces the problem of finding a transparent 
combinatorial principle independent of PA(Q2) to the more manageable problem 
of finding such a principle independent of ff -CAO. 

A further consequence of our result in ?3 is of course the determination of the 
provable ordinals and provably recursive functions of PA(Q2). 

In ?4 we show that Ramsey quantifiers are effectively eliminable from Presburger 
arithmetic, i.e., the theory of the natural numbers under addition. This answers 
a question raised by L.P.D. van den Dries. 

We would like to thank Angus Macintyre for letting us see a draft of his paper 
[12]. 

?1. The system PA(Q2). The language of PA contains an infinite supply of num- 
ber variables u, v, w, x, y, z, ... intended to range over cl, the set of natural num- 
bers. The numerical terms are 0, 1, number variables, t1 + t2 and t1 . t2 where t1 
and t2 are numerical terms. The atomic formulae are t1 = t2 and t1 < t2 where 
t1 and t2 are numerical terms. The formulae of PA are built up from atomic for- 
mulae by means of propositional connectives A, V, -, -a, +- and number quanti- 
fiers Vx and 3x. A sentence is a formula with no free variables. The axioms of PA 
consist of the usual ordered semiring axioms for +, , 0, 1, < together with the 
induction scheme 

((O) A Vx[((x) -9 p(x + 1)] Vxp(x) 

for all formulae p(x) in the language of PA. 
Let 

M = <IMI, +, ,0, 1, <> 

be a model of PA, i.e. a structure in which all the axioms of PA are true. A set 
X c IMI is said to be bounded in M if there exists b E IMI such that a < b for all 
a e X. Given an infinite cardinal a, we say that M is K-like if IMI is of cardinality 
x and every bounded subset of IMI is of cardinality less than x. 

A set X c IMI is said to be M-finite if it is bounded and definable over M by a 
formula with parameters from IMI. By a class of M we mean a set X s IMI such 
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RAMSEY QUANTIFIERS IN FIRST ORDER ARITHMETIC 425 

that X n {a: a < b} is M-finite for all b e IMI. The set of all classes of M is denoted 
Class(M). 

The language of PA(Q2) consists of the language of PA augmented by a quanti- 
fier Q2 which binds two number variables. Thus, if (p is a formula and x and x' 
are number variables, then Q2xx'q is a formula in which x and x' do not occur 
freely. The intended meaning of Q2 is explained in the first paragraph of ?0. The 
axioms of PA(Q2) consist of the axioms of PA, the induction scheme for all for- 
mulae of the language of PA(Q2), and the following schemes: 

(1) Vxx'[p(x, x') -0 b(X, x')] A Q2xx'p(x, x') -+ Q2xx',(x, x'). 

(2) Q2xx'[O(x) A q(x, x')] 
-+ 3w{0(w) A Q2xx'[0(x) A (p(x, x') A w # x A q(w, x) A p(x, w)]}. 

(3) Vy 3x > yO(x) A Vxx'[x # x' A O(x) A 0(x') -4 p(x, x')] -+ Q2xx'9p(x, x'). 

The idea behind axiom scheme (2) is that if X is a witness set for Q2xx'qD, then X 
has a least element w and X\{w} is again a witness set for Q2xx'qD. These axioms 
are somewhat simpler than those implicit in Macintyre [12]. 

Let I be a set of sentences in the language of PA(Q2). We say that X is consistent 
with PA(Q2) if 0 = 1 is not deducible from X and the axioms of PA(Q2) by means 
of the usual Hilbert-style logical axioms and rules of inference (e.g. Enderton 
[4, p. 104]). By a theorem of PA(Q2) we mean of course a formula p in the language 
of PA(Q2) such that the negation of the universal closure of p is not consistent with 
PA(Q2). 

The following lemma says intuitively that if Q2xx'p holds then there exists a 
definable witness set for this fact. This lemma is essentially due to Macintyre [12]. 

1. 1 LEMMA. Given a formula- (x, x') in the language of PA(Q2), we can effectively 
write down aformula. W,(x) such that the following are theorems of PA(Q2): 

(4) Wp,(x) A Wp,(x') A x # x' -+ (x, x'); 

(5) Q2xx' (x, x') *-+ Vy3x > y W,(x). 

(Note that (x, x') may contain free variables other than those displayed. If 
this is the case, then W,,O(x) will also contain those free variables.) 

PROOF. Using the PA(Q2) induction scheme, define a sequence wo, w1, ... as fol- 
lows: wo = least w such that w is an element of some witness set for Q2xx'9, (x, x'); 
wn+1 = least w such that Vi < n (w # wj) and the finite set {wo, . . ., w,, w} is 
extendible to a witness set for Q2XX'qD(X, x'). Let Wp,(x) say that 3n(x = wj). For 
details of the construction of the formula Wp,(x), see Macintyre [12]. The proofs of 
(4) and (5) from (1), (2), and (3) are straightforward. 

We now discuss the semantics of PA(Q2). Let M be a model of PA and let Z be 
a set of sentences in the language of PA(Q2). We say that M strongly models 2 if 
the sentences of 2 are true in M when Q2XX'qD(X, x') is interpreted to mean that 
there exists an unbounded set X c IMI such that (p(a, a') holds for all a, a' E X 
such that a ? a'. Such an X is called a witness set. It is easy to see that any model 
M of PA strongly models all the axioms of PA(Q2) except possibly the PA(Q2) 
induction scheme. If, in addition, M strongly models the PA(Q2) induction scheme, 
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426 JAMES H. SCHMERL AND STEPHEN G. SIMPSON 

we call M a strong model of PA(Q2). Macintyre [12] showed that any strong model 
of PA(Q2) is K-like for some regular cardinal K. In ?2 below we shall prove the 
converse: any consistent set of sentences in the language of PA(Q2) has K-like 
strong models for every regular uncountable cardinal K. This result is essentially 
due to Macintyre [12] in the special case x = sl, assuming O . 

The following notion will be convenient for our purposes. A weak model is an 
ordered pair (M, q) where M is a model of PA and q is a subset of the power set of 

IMI. In a weak model, Q2XX'rp(X, x') is interpreted to mean that there exists an 
unbounded set X c IMI such that X e q and (p(a, b) whenever a, b E X and a + b. 
By a weak model of PA(Q2) we mean of course a weak model in which all the 
axioms of PA(Q2) are true. The completeness theorem of ordinary logic easily 
implies that any set of sentences consistent with the axioms of PA(Q2) has a count- 
able weak model. 

For any weak model (M, q) we denote by Def(M, q) the set of all X c IMI such 
that X is definable over (M, q) by a formula of PA(Q2) with parameters from IMl. 
Note that if (M, q) is a weak model of PA(Q2) then Def(M, q) c Class(M). The 
following lemma is an immediate consequence of Lemma 1.1. 

1.2 LEMMA. If (M, q) is a weak model of PA(Q2) then so is (M, q') where q' = 

Def(M, q). Furthermore (m, q) and (M, q') satisfy the same PA(Q2) sentences with 
parameters from IMI. 

Any strong model M may of course be identified with the weak model (M, q) 
where q = power set of IMl. We shall routinely make this identification. 

?2. Strong completeness theorem. The purpose of this section is to present our 

completeness proof for PA(Q2). We first need to discuss some properties of an 
iterated MacDowell/Specker construction. 

If M and N are models of PA, we say that N is an end extension of M if M is a 
submodel of N. and for all a < b E INI, if b E IMI then a E IMI. The MacDowell/ 
Specker theorem [11] says that every model of PA has a proper elementary end 
extension. We begin by sketching a proof of this theorem. 

Let <(pq(xo, ..., xxi): i < Cl> be an enumeration of all formulae of the language 
of PA with exactly the free variables shown. By Ramsey's theorem [19] formalized 
within PA, we can find a sequence of formulae <(0(x): i < cl> with only the free 

variable x, such that for each i < cl, PA proves 
(i) Vx(Oi+1(x) -OA) 

(ii) bfy3x > y~j(x); 
(iii) VFx[xo < ... < < A O(xo) A ... A0(xn,) -+(PAA 

V VFx[xo < ... < xfi A Oi(xO) A ... A Oi(Xni) -+ '(Pi)]. 
From this it follows that for each formula qp(u1, . . ., um, xl, ... x") with exactly the 
free variables shown, there exists i such that PA proves 

(iv) VU3v{Vf[v < x1 < ... < xx A O(xj) A ... A Oi(x.) -+ (p(U, 9)] 
v Vt[v < x1 < ... < x, A Oi(xj)A ... A Oi(x,) -+ -%(p(U, X)]). 

(To see this, let i be such that n5 = 2n and qpj(xo, , x2.) is the formula Vti < 

X&[(0(U X1, *.. *x *- X00 X) D(,xn+1 .. 
* 

X2A) -) 

Now let M be a model of PA. We define PM(x) to be the complete 1-type over 

MI generated by the complete diagram of M and the formulae 
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{Oi(x):i< <tw} U {a< x:aeIMI}. 

We can then construct an elementary extension M(c) of M where c realizes pM(x) 
and IMI U {c} generates M(c). It is not hard to see that M(c) is an end extension of 
M and is uniquely determined up to isomorphism over M. We call M(c) the cano- 
nical end extension of M. The above construction is implicit in a proof of the Mac- 
Dowell/Specker Theorem due to Morley (?7 of [16]). See also Theorem 3.9 of 
Mills [14]. 

Let X be a regular uncountable cardinal which is greater than the cardinality of 
M. We can iterate the above construction by letting <Me: t < Ix> be an elementary 
chain such that MO = M, Ma = Ue<a Me for all limit ordinals s < x, and for all 
t < a, Me+, = Me(ce) is the canonical end extension of Me. Clearly M, is a A-like 
elementary end extension of M. 

2.1 LEMMA. Suppose that M, satisfies Q2xx'O(x, x') where 0b is a formula of PA 
with parameters from IMJI. Then there exists a witness set for this fact which is 
definable over M, by a formula of PA with parameters from IMJI. 

PROOF. Note first that, for each a < X, M, is generated by IMIl U {ce: a < 
e < 4}. We may safely assume that the language of PA has been provided with 
a i-operator, so that each element of M, is of the form f(a, cc,, . . ., cq) where 
a,, .. ., am E IMaI, a < t1< ... < t, and f(ia xl, .. .,x") is an (m + n)-ary 1a-term. 

Next, observe that for each a < x, <ca: a < e < x>is a sequence of indiscer- 
nibles over IMal. By (ii) and (iv) this indiscernibility takes on the following strong 
form: if a e IMal and M, satisfies qp(a, cc1, ... ., cc), a < 1 <... < en, then there 
exist b e IMal and a formula 0(x) such that M, satisfies Vy3x > y 0(x) and 

VW[b < xl < ... < Xn A 0(xl) A * A 0(Xn) --+q(a, )]. 

Now, as in the hypothesis of the lemma, assume that M, satisfies Q2xx'qO(x, x'). 
Let X c IMEI be an unbounded witness set for this fact. Since M, is i-like, X has 
cardinality x. A simple counting argument shows that, for some m and n, there 
exist an (m + n)-ary a-termftu, x), an m-tuple a E IMeI, and an increasing sequence 
<ea: a < /C> of increasing n-tuples of elements of <cc: e < x>, such that f(a, ea) E 
Xandf(a, ea) < f(a, ca) for all a < < x. By the strong indiscernibility mentioned 
above, there exist b e IMJI and a formula 0(x) such that M, satisfies Vy3x > y 0(x) 
and 

Vx1... X2n[b < x1 < ..< X2n A 0(xl) A *** A 0(X2n) 
- 

0f(f(92, x19 f .)Xn) ffaq Xn+1 *.. * X2n))]- 

Let g(b, z) be a pi-term denoting the zth element of {x: b < xA0(x)}. Let Y be 
the set of all elements of IMJI of the form f(a, g(b, nz + 1), . . ., g(b, nz + n)). 

Clearly Y is a witness set for Q2xx'O(x, x'). This proves the lemma. 

We shall need the generalization of the above to a theory PA* which is just 
PA with countably many extra predicates Uj, i < co. The language of PA* is the 

language of PA augmented by new atomic formulae t E Uj where i < co and t 

is a numerical term. The axioms of PA* are those of PA plus the induction scheme 

for all formulae in the language of PA*. The set of all formulae is still countable 

so the notion of canonical end extension can be defined for models of PA*. Once 
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this has been done, the statement of Lemma 2.1 and its proof go through un- 
changed for PA*. 

2.2 THEOREM. Let K be a regular uncountable cardinal. Let (M, q) be a weak 
model of PA(Q2) of cardinality less than x. Then there exists a c-like strong model 
N which is a PA(Q2) elementary end extension of (M, q). 

PROOF. Let <Ui: i < cl> be an enumeration of the subsets of IMI which are 
PA(Q2) definable over (M, q) without parameters. Let M* be the model of PA* 
obtained from M by adjoining the U, as extra predicates. Let M,* be the Kth iterated 
canonical end extension of M*. Thus MA* is a i-like elementary end extension 
of M*. Let N be the reduct of MA* to a model of PA. 

To see that N is as desired, consider the theory PA*(Q2) with countably many 
extra predicates. Clearly (M*, q) is a weak model of PA*(Q2). We claim that the 
quantifier Q2 can be eliminated in the following sense: for each formula qD(tU) in 
the language of PA*(Q2) with only the free variables shown, there exists a formula 

x(u) in the language of PA* with the same free variables, such that both (M*, q) 
and M,* satisfy Vu[iq(ui) - x(u)]. Clearly this claim will complete the proof of 
the theorem. 

We prove the claim by induction of the complexity of qp(Ut). The only nontrivial 
case is when q(i) is of the form Q2xx'sb( u, x, x'). We may assume inductively that 

sb is in the language of PA*. By Lemma 1.1 applied to PA*(Q2), there exists a 
formula WV(ut, x) such that 

x # x' A Wo(ui, x) A WJ(u-, x') -k 0(ui, x, x') 

and 

Q2XX'b(-u, x, x') *-+ y3x > y WO(u, x) 

are theorems of PA*(Q2). Introduce a pairing function 

(u, v) = J(u + v)(u + v + 1) + u 

and nested pairing functions (u1) = ul, (ul, .., t9mi, Um+l) = ((U1. ... um), Um+) 

Let i be such that Uj is the set of all (a, d) E IM*I such that (M*, q) satisfies 

Wo(a, d). Let x(u) be the PA* formula Vy3x > y (ii, x) e Uj. Trivially (M*, q) 
satisfies Vtu[(pu) *-- x(u)]. It remains only to show that M,;* also satisfies this 
sentence. 

Trivially M* satisfies the PA* sentence 

Vtubxx'[x # x' A (ti, x) E Uj A (ii, x') E Ui -+ 0(ui, x, x')]. 

Since M,;* is a PA* elementary extension of M*, it follows that M,;* also satisfies 
it. Hence M,* satisfies Vtu[x(u) -+(u)]. 

Conversely, suppose that a E j M&*1 and M* satisfies (qa), i.e. Q2xx'q(a, x, x'). 
By Lemma 2.1 applied to PA*, there exists a formula O(P, x) in the language 
of PA* such that M,.* satisfies rj(a) where j(Ui) is the formula 

3vfVy3x > y 0(9, x) A Vxx'[x # x' A 0(9, x) A 0(9, x') 0(ui, x, x')]}. 

Clearly (M*, q) satisfies Vi[7(Ui) --+ q(U)]. Hence M* satisfies Vii[7(Ui) -x(u)] 
The latter sentence belongs to the language of PA*, so M,* also satisfies it. Hence 

M,* satisfies x(a). This completes the proof of the theorem. 
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A slight modification of the proof shows that one can obtain 2k nonisomorphic 
models with the properties mentioned. This answers a question of Macintyre [12]. 

For the following corollaries, assume that 2 is a set of sentences in the language 
of PA(Q2) such that 2 includes the axioms of PA(Q2). 

2.3 COROLLARY (COMPLETENESS). I is consistent if and only if 2 has a strong 
model. 

2.4 COROLLARY (COMPACTNESS). If every finite subset of I has a strong model, 
then I has a strong model; in fact, I has c-like strong models for every regular 
uncountable cardinal x. 

Both corollaries are immediate from Theorem 2.2 and the fact that 2 is con- 
sistent if and only if it has a countable weak model. 

The particular strong models which were constructed above have a further 
property which may be of some interest: 

2.5 THEOREM. Let N be one of the c-like strong models constructed in the proof 
of Theorem 2.2. Then Class(N) = Def(N), i.e. every class of N is definable over N 
by a PA(Q2) formula with parameters from INI. 

PROOF. The proof of Theorem 2.2 shows that X E Def(N) if and only if X is 
definable over M.* by a PA* formula with parameters from IMI. Since trivially 
Class(N) = Class(M*), the desired conclusion follows from Theorem 1.5 of 
Schmerl [20]. 

?3. 111 comprehension. In this section we present our characterization of the 
arithmetical sentences which are provable in PA(Q2). 

We need to consider formal systems in the language of second order arithmetic. 
This language contains number variables u, v, x, y, ... intended to range over 
co, and set variables X, Y, . . . intended to range over subsets of w. The numerical 
terms of the language are as for PA. The atomic formulae are as for PA with 
the addition of a new kind of atomic formula t E X where t is a numerical term 
and X is a set variable. Formulae are built up from atomic formulae by means 
of propositional connectives, number quantifiers, and set quantifiers VX and 
3X. A formula is said to be arithmetical if it contains no set quantifiers (but may 
contain free set variables). A sentence is a formula with no free variables. 

The axioms of our basic system, A CAO, are as follows: the usual ordered semiring 
axioms for +, *, ., 1, <; the induction axiom 0 E X A Vu(u E X -u + 1 E X) 

Vu(u E X); and comprehension axioms 3XVu(u E X s+o (p) where sp is any arith- 
metical formula in which X does not occur freely. Clearly every theorem of PA 
is a theorem of ACAo. 

A formula is said to be ff if it is of the form V Yq where SD is arithmetical. The 
system Mf-CA0 consists of ACA0 plus comprehension axioms 3X Vu(u E X VYqD) 
where so is any arithmetical formula in which X does not occur freely. 

The purpose of this section is to show that there is a close relationship of mutual 
interpretability between the systems PA(Q2) and Hfl-CAO. In particular, these super- 
ficially quite different looking systems will be seen to prove exactly the same arith- 
metical sentences. (An arithmetical sentence is of course just a sentence in the 
language of PA. Note that the language of PA is just the common part of the lan- 
guage of PA(Q2) and the language of second order arithmetic.) 

This content downloaded from 146.186.134.137 on Thu, 11 Jul 2013 10:30:19 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp
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This mutual interpretability result is interesting because the system Hl}-CAo 
has already been studied extensively by logicians. For instance, it is known that the 
minimum n-model of If -CAo can be characterized as the smallest nonempty set 
of subsets of w closed under relative recursiveness and hyperjump; in other words, 
as P(cw) n L.., where ca,, is the limit of the first co admissible ordinals (see [10, p. 
26, Example (4)]). In addition, detailed information of a proof theoretical nature 
is available concerning f 1-CAo. Friedman [8] has shown that f 1-CAo proves the 
same 111 sentences as the formal system ID<@ of iterated inductive definitions. Fefer- 
man [5] and Zucker [22] have computed exactly the provable ordinals and provably 
recursive functions of ID'@. See also the remarks after Corollary 3.8. 

The system Hll-CAo is also known to be extremely interesting from the viewpoint 
of the foundations of mathematics. For instance, Friedman [8] has shown that 
Hf -CAo is just strong enough to formalize many of the usual arguments concerning 
Borel sets, etc., which depend on having a good theory of countable ordinals. For 
this reason, Hll-CAO is one of the four or five systems of second order arithmetic 
considered by Friedman [7]. He proposes to use these systems as benchmarks by 
which to calibrate the intrinsic proof theoretical strength of mathematical texts. 
See also Feferman [6] and Simpson [21]. 

Our first goal is to show that every weak model of PA(Q2) gives rise to a model 
of Hl -CA0. By a model of any theory T v ACA0 we mean of course an ordered 
pair (M, s) such that M is a model of PA, s is a subset of the powerset of IMI, and 
all the axioms of T are true when set variables are interpreted as ranging over s. 
Clearly every model M of PA can be expanded to a model (M, s) of ACAo. (Just 
let s consist of the subsets of IMI which are definable over M by formulae with 
parameters from IMj.) From this it follows that ACAO is a conservative extension 
of PA. 

We assume that the usual pairing function (u, v) = J(u + v)(u + v + 1) + u 
and the usual coding of finite sequences (e.g. via the Chinese remainder theorem) 
have been formalized within PA. Recall that a functionf: cl) co can be coded as 
a set X c co where X = {(u, f(u)): u Eica)}. For f: c) - cl) and x Eicl) we denote by 
f[x] the code of the finite sequence <f(u): u < x>. We assume that these codings 
have been formalized within ACAo. 

We shall need the following well-known formal version of the Kleene normal 
form theorem for 21 relations. 

3.1 LEMMA. Given an arithmetical formula qp(Y), we can find an arithmetical for- 
mula 0(y) such that 

3 Y(pY) -+3f fxob(f[x]) 

is a theorem of A CAO. 
PROOF. Let 

Vx,3y, ... VXk3Yk OKk, y, Y) 

be the prenex normal form of 'p( Y). We say that gi: coi co, 1 < i < k, are Skolem 
functions for Y if Vx 0(x, g(x), Y). By arithmetical comprehension, so(Y) if and only 
if there exist Skolem functions for Y. Hence 3 Yrp(Y) if and only if 3Y3kVt 
0(xg(x), Y). Each of the quantifier strings 3 Y3g and Vb can be collapsed into a 
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single quantifier by means of the pairing function. This gives the desired result. 
We are now ready to prove 
3.2 LEMMA. Let (M, q) be a weak model of PA(Q2). Then (M, Def(M, q)) is a 

model of fl-CAO. 
PROOF. By Lemma 1.2 we may safely assume that q = Def(M, q). Since the lan- 

guage of PA(Q2) includes the language of PA, it is clear that (M, q) is a model of 
ACAo. In order to show that (M, q) is a model of Hlf-CAo, suppose that 

X = {a e IMI: (M, q) satisfies 3 Y~p(a, Y)} 

where (p(u, Y) is arithmetical with parameters from (M, q). It suffices to show that 
X e q. By Lemma 3.1, let 0b(u, y) be arithmetical with parameters from (M, q) such 
that ACAo proves 

3 Yq(u, Y).+-+ 3f Vxb(u, f[x]). 

Let us write v < w to mean that the finite sequence coded by v is an initial seg- 
ment of the finite sequence coded by w. Then, for each a E ]MI, we have the follow- 
ing chain of implications: 

a E X +-* (M, q) satisfies 3 Yp(a, Y) 

(M, 'q) satisfies 3f Vx0(a, f[xJ) 

(M, q) satisfies Q2vw[yb(a, v) A (v< w V w < v)]. 

The last formula can be construed as belonging to the language. of PA(Q2). Hence 
Xe Def(M, q) = q. This proves the lemma. 

Conversely, we have 
3.3 LEMMA. Let (M, s) be a model of Hff-CAO. Then (M, s) is a weak model of 

PA(Q2). 

PROOF. In order to show that (M, s) is a weak model of PA(Q2), it suffices to show 
that Def(M, s) c s. Let 0 be the empty set and for each k e w) let Q(k+l) be the hyper- 
jump of 0(k), i.e. the complete 1ff set relative to 0(k), as defined within (M, s). Thus 
0(k) ES for all k e c. We shall actually show that for any PA(Q2) formula 

(P(u19 . . ., uj) with exactly the free variables shown, the n-ary relation Rq, c IMIn 
defined by qp is satisfied in (M, s) to be arithmetical in 0(k) for some k E W. (In fact k 
may be taken to be the number of occurrences of Q2 in p(Ui).) We proceed by induc- 
tion on the complexity of (u~). The only nontrivial case is when 5(U~) is of the form 
Q2xx'Ib(u, x, x'). Clearly (M, s) satisfies Q2xx'Ob(a, x, x') if and only if there exists 
X e s such that X is unbounded in M and Ro(d, c, d) for all c, d E X such that 
c + d. Thus Rq, is C1 in R0. Hence, if R, is arithmetical in 0(k), R, is recursive in 
0(k+l). This completes the proof. 

Let us say in accordance with Lemma 1.2 that a weak model (M, q) of PA(Q2) 
is reduced if q Def(M, q). Let us say that a model (M, s) of Hlf-CAo is reduced 
if for all X e s there exists k e co such that X is satisfied in (M, s) to be recursive in 
0(k). Combining the proofs of Lemmas 3.2 and 3.3, we obtain immediately: 

3.4 THEOREM. The reduced weak models of PA(Q2) are the same as the reduced 
models of Hf-CAO. 

From this point of view, a number of the results about PA(Q2) obtained by 
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Macintyre [12] are obvious. For instance, the existence of a truth definition for 
arithmetic in PA(Q2) is immediate from Lemma 3.2 since the usual construction 
of a satisfaction set for arithmetic is directly formalizable in ffl-CAO. Similarly, 
Macintyre's "Ramsey scheme" follows at once from Ramsey's theorem [19] for- 
malized within 111-CAO. The reader may have noticed also the close resemblance 
between the proof of Macintyre's key Lemma 1.1 and that of the Kleene basis 
theorem. Our original proof of Theorem 2.2 (not the proof presented in this paper) 
used the Kleene basis theorem in place of Lemma 1.1. 

In another direction, the iterated MacDowell-Specker construction of ?2 may 
be combined with Lemmas 3.2 and 3.3 to yield model theoretical information about 
fl1-CAo. Thus we have 

3.5 COROLLARY. For any regular uncountable cardinal X, there exists a c-like 
model N of PA such that (N, Class(N)) is a (reduced)model of 1Il-CAO. 

PROOF. Let N be any one of the x-like strong models constructed in the proof of 
Theorem 2.2. The desired conclusion is immediate from Theorems 2.5 and 3.4. 

We do not know whether Corollary 3.5 continues to hold with 11 -CAO replaced 
by, for instance, A1-CA0 or 11f-CAO or full comprehension. 

On the proof theoretical side, we have the following main result. 
3.6 THEOREM. Let a be an arithmetical sentence. Then a is a theorem of PA(Q2) 

if and only if it is a theorem of 11-CAO. 
PROOF. Immediate from Lemmas 3.2 and 3.3. 
3.7 COROLLARY. The combinatorial principles of Paris and Harrington [17] and 

Friedman, McAloon and Simpson [9] are provable in PA(Q2). 
PROOF. Immediate from Theorem 3.6 since the usual proofs of these arithmetical 

sentences are directly formalizable in 111-CAO. 
3.8 COROLLARY. The provably recursive ordinals of PA(Q2) are precisely the or- 

dinals less than the Bachmann ordinal 09,,,0. The provably recursive functions of 
PA(Q2) are precisely the 09,,-recursive functions. 

PROOF. Immediate from Theorem 3.6 and the known results for 111-CAO and 
ID<@ (Friedman [8], Feferman [5], Zucker [22]). 

Note. Further proof-theoretic information concerning 111-CAO and theories of 
iterated inductive definitions may be found in a paper by S. Feferman and W. Sieg 
entitled: Proof theoretic equivalences between classical and constructive theories for 
analysis. This paper will appear in Iterated inductive definitions and subsystems of 
analysis: Recent Proof-theoretical Studies, to be published as a volume of Springer 
Lecture Notes in Mathematics. 

The earliest proof theoretical analysis of 111-CAO was given by Takeuti [28]. Per- 
haps the most accessible source of basic information on the proof theory of ff -CAO 
and the ordinal 09,, is Schfitte [27]. 

Recently the ordinal 0Q.O has emerged as being of interest in connection with 
subrecursive hierarchies. Namely, if <A(x): x < cl> is a canonically chosen funda- 
mental sequence for a countable limit ordinal A, one defines number-theoretic 
functions Go(x) = 0, Ga+i(x) = Ga(x) + 1, GA(x) = G(X) (x) and Fo(x) = 2x, 

Fa+i(X) = Fa(x), Fj(x) = F, (x) (x). Then 09,, can be characterized as the first place 
where the "slow-growing" Ga hierarchy catches up to the "fast-growing" 
(Grzegorczyk/Wainer) Fa hierarchy; in other words, 09,, = least a > 0 such that 
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Fa is elementary recursive in Ga. This result is due to Girard [25]; see also Aczel 
[23], Cichon and Wainer [24], and Schmerl [26]. Thus one may characterize the prov- 
ably recursive functions of f 1-CAo as the computable functions with running time 
dominated by some Fa, a < OQ.0, or equivalently by some Ga, a < OQ0.. 

?4. Presburger arithmetic. It is clear from the results of ?3 that the theory of 
arithmetic with Ramsey quantifiers is far from decidable. In fact, the truth set 
for this language is recursively isomorphic to the set 0 6) = {(n, k): n E 0(k) } of 
Jockusch and Simpson [10, p. 26, Example (4)]; here 0(k) is the kth hyperjump of 
the empty set. 

It turns out that for Presburger arithmetic the situation is quite different. By 
Presburger arithmetic we mean of course the complete first-order theory 

PRA = Th(<w, +, 0, 1, <>) 

of arithmetic without multiplication. It is well known that PRA is decidable; in 
fact, PRA has a very simple set of axioms all of which are provable in PA. The 
purpose of this section is to show that Ramsey quantifiers Q2, Q3, . .. can be ef- 
fectively eliminated from formulae of PRA. As a corollary we obtain decidability 
of Presburger arithmetic with Ramsey quantifiers. 

In any model of PRA we introduce a strong semantics for the Ramsey quanti- 
fiers Q2, Q3, . . . as before: QkX1 ... Xk* means that there exists an unbounded set 
X such that 0 holds for all k-element subsets {x1, . . ., Xk} of X. 

4.1 THEOREM. Given a formula 0 in the language of PRA with Ramsey quantifiers, 
we can effectively find a first order formula b in the language of PRA, such that 0 
and 0b are equivalent in all models of PRA. 

PROOF. It will be convenient to work not with the Ramsey quantifiers Q2, Q3, 

... but instead with the closely related ordered Ramsey quantifiers Q2, Q3j. 
The semantics of the ordered Ramsey quantifiers are that QokX1 ... x holds if 
and only if there exists an unbounded set X such that 0 holds for all ordered k- 
tuples x1 < * < Xk of elements of X. Such an X is called a witness set for 0. 
Note that Qk is uniformly definable in terms of Qk. Thus it will suffice to prove the 
theorem for ordered Ramsey quantifiers in place of Ramsey quantifiers. 

Let the language of PRA be augmented with binary relation symbols m m > 
2. The intended meaning of x m y is that x is congruent to y modulo m. These 
new relations are of course definable in PRA. In view of the well-known quantifier 
elimination theorem for PRA (Presburger [18]; see also ?3.2 of Enderton [4]), 
it suffices to prove the theorem only for 0 of the form Qox1* ... Xk0(Xl, ... ., Xk 

Yl, .. ., yn) where 0 is a quantifier-free formula in the augmented language. Thus 
0 is a Boolean combination of atomic subformulae each of which looks like one 
of the following: 

(1) a1x1 + + akxk = bly + * +bnyn + c, 
(2) a1x1 + + akxk > blyl + + bnyn + c, 

(3) ajxj + + akXk -m blyi + + bnYn + c, 
where a,, ..., ak, b1, ..., by c are integers (positive, negative, or zero). 

Clearly any subformula of the form (1) may be eliminated in favor of subfor- 
mulae of the form (2). Furthermore, any subformula having the form (2) with some 

This content downloaded from 146.186.134.137 on Thu, 11 Jul 2013 10:30:19 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


434 JAMES H. SCHMERL AND STEPHEN G. SIMPSON 

a, # 0 may be eliminated in the following manner. Letj be such that a, # 0 = aj+j 
= aj+2 = ... = a*. If aj > 0 (respectively, aj < 0) then any unbounded set X 
may be pared down to an unbounded witness set for (2) (respectively, the negation 
of (2)). Thus (2) may be replaced by a formula which is either identically true or 
identically false. Finally, any subformula in which a, = = ak = 0 may safely 
be ignored. 

The preceding paragraph permits us to assume that each nontrivial atomic sub- 
formula of q is a congruence of the form (3). Let M be the least common multiple 
of the moduli m of these congruences. By the pigeonhole principle, any unbounded 
witness set for 0 will have an unbounded subset all of whose elements belong to a 
single residue class modulo M. Hence 

QOX1 
... Xk +(X1, . ,Xk, Y11 .. * Y. A) 

is equivalent to 

M 

VO(x, * . ,Xs Y19 .. A n). 
x=l 

The latter formula is quantifier free and so the proof is complete. 
4.2 COROLLARY. The theory of arithmetic without multiplication but with Ramsey 

quantifiers Q2, Q3, ... is decidable. 
PROOF. Given a sentence or in this language, we can effectively find an equivalent 

quantifier free sentence .b in the augmented language of Presburger arithmetic. 
It is easy to decide the truth of 0b. 

Other results concerning theories which admit elimination of Ramsey quanti- 
fiers may be found in Baldwin and Kueker [1], Baudisch [2], and Cowles [3]. 
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