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Abstract

We investigate the reverse-mathematical status of several theorems to
the effect that the natural number system is second-order categorical. One
of our results is as follows. Define a system to be a triple A, i, f such that
A is a set and i ∈ A and f : A → A. A subset X ⊆ A is said to be
inductive if i ∈ X and ∀a (a ∈ X ⇒ f(a) ∈ X). The system A, i, f is
said to be inductive if the only inductive subset of A is A itself. Define a
Peano system to be an inductive system such that f is one-to-one and i /∈
the range of f . The standard example of a Peano system is N, 0, S where
N = {0, 1, 2, . . . , n, . . .} = the set of natural numbers and S : N → N is
given by S(n) = n+1 for all n ∈ N. Consider the statement that all Peano
systems are isomorphic to N, 0, S. We prove that this statement is logically
equivalent to WKL0 over RCA

∗
0 . From this and similar equivalences we

draw some foundational/philosophical consequences.
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1 Introduction

Reverse mathematics1 is a well known [18, 20] research direction in the foun-
dations of mathematics. The goal of reverse mathematics is to pinpoint the
weakest set-existence axioms which are needed in order to prove specific theo-
rems of core mathematics. Such investigations are most fruitfully carried out in
the context of subsystems of second-order arithmetic [18]. In that context it fre-
quently happens that the weakest axioms needed to prove a particular theorem
are logically equivalent to the theorem, over a weak base theory. For example,
the well known theorem that every uncountable closed set in Euclidean space
contains a perfect subset is logically equivalent to ATR0 over the weak base
theory RCA0 [18, Theorem V.5.5].

A key theorem in rigorous core mathematics is the categoricity of the natural
number system. Stated more precisely and in 20th-century language, the Peano

Categoricity Theorem [14, Theorem 2.7.1] asserts that any two Peano systems
are isomorphic. The Peano Categoricity Theorem was originally proved by
Dedekind in 1888 [4, Satz 132], [5, Theorem 132] as a highlight of his rigorous,
set-theoretical development [3, 4, 5] of the natural number system N and the
real number system R.

In this paper we investigate the reverse-mathematical and proof-theoretical
status of the Peano Categoricity Theorem and related theorems. One of our
results is as follows.

The Peano Categoricity Theorem is equivalent to WKL0

over the standard weak base theory RCA0.
(1)

1A crucial role in the development of reverse mathematics was played by H. Friedman
[7, 8]. We thank the referee for strongly suggesting that we include this historical comment.
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Here RCA0 and WKL0 are familiar [18, 20] subsystems of second-order arith-
metic. Namely, RCA0 consists of ∆0

1 comprehension plus Σ0
1 induction, and

WKL0 consists of RCA0 plus Weak König’s Lemma.
Our result (1) offers further confirmation of a point made by Väänänen2 in

a recent talk based on his recent paper [22]. Väänanen observed that various
second-order categoricity theorems can be proved without resorting to the full
strength of second-order logic. Clearly (1) bears this out, because WKL0 is a
relatively weak3 subsystem of second-order arithmetic, much weaker than ACA0

and in fact Π0
2-equivalent to Primitive Recursive Arithmetic [18, §IX.3]. Since

by (1) the Peano Categoricity Theorem is provable in WKL0, it follows that the
Peano Categoricity Theorem is finitistically reducible in the sense of Simpson’s
partial realization [17, 19] (see also [1]) of Hilbert’s Program [9].

As a refinement of (1) we obtain the following stronger result.

The Peano Categoricity Theorem is equivalent to WKL0

not only over RCA0 but over the much weaker base theory RCA
∗
0 .

(2)

Recall from Simpson [18, §X.4] and Simpson/Smith [21] that RCA∗0 is RCA0 with
Σ0

1 induction weakened to ∆0
1 induction plus natural number exponentiation,

i.e., the assertion that mn exists for all m,n ∈ N. It is known that RCA
∗
0 is

Π0
2-equivalent to Elementary Function Arithmetic [21], hence much weaker than

RCA0 and WKL0 which are Π0
2-equivalent to Primitive Recursive Arithmetic [18,

§IX.3].
Our stronger result (2) provides some foundational or philosophical insight

concerning Dedekind’s construction of the natural number system [4, 5]. Recall
that Dedekind’s key technical lemma, the “Satz der Definition durch Induc-
tion,” is a straightforward embodiment4 of the idea of primitive recursion. But
at the same time, according to (2), the Peano Categoricity Theorem itself re-

quires primitive recursion. Thus (2) constitutes further evidence that primitive
recursion is indeed the heart of the matter.

The plan of this paper is as follows. In §2 we prove (1). In §3 we prove (2).
In §4 we investigate the reverse-mathematical status of certain variants of the
Peano Categoricity Theorem, replacing the Peano system N, 0, S by the ordered
system N, 0, < or the ordered Peano system N, 0, <, S. In §5 we summarize our
results and state some open questions.

2 The role of Weak König’s Lemma

Recall from [18] that RCA0 is the subsystem of second-order arithmetic consist-
ing of ∆0

1 comprehension and Σ0
1 induction. Within RCA0 one may freely use

primitive recursion and minimization to define functions g : Nk → N where N

2We thank Jouko Väänänen for raising the question which is answered by (1).
3By the strength of a theory T we mean the set of Π0

1
sentences which are provable in T .

4Dedekind’s “Satz der Definition durch Induction” [4, Satz 126] [5, Theorem 126] may be
restated in 20th-century language [14, Theorem 2.2.1] as follows. For any system A, i, f there
is a unique function Φ : N → A such that Φ(0) = i and Φ(n+ 1) = f(Φ(n)) for all n ∈ N.
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is the set of natural numbers [18, §II.3]. Recall also [18] that WKL0 consists
of RCA0 plus Weak König’s Lemma, i.e., the statement that every infinite tree
T ⊆ {0, 1}<N =

⋃

n∈N
{0, 1}n has an infinite path.

The purpose of this section is to show that the Peano Categoricity Theorem
is equivalent to Weak König’s Lemma, the equivalence being provable in RCA0.

Definition 2.1. Within RCA0 we make the following definitions. A system is
a triple A, i, f such that A ⊆ N and i ∈ A and f : A → A. A Peano system is a
system A, i, f such that i /∈ rng(f) and f is one-to-one and

(∀X ⊆ A) ((i ∈ X and ∀a (a ∈ X ⇒ f(a) ∈ X)) ⇒ X = A).

The standard example of a Peano system is N, 0, S with S : N → N defined by
S(n) = n + 1. A Peano system A, i, f is said to be isomorphic to N if there
exists a bijection Φ : A → N such that Φ(i) = 0 and Φ(f(a)) = Φ(a) + 1 for all
a ∈ A. A Peano system A, i, f is said to be almost isomorphic to N if for each
a ∈ A there exists n ∈ N such that fn(i) = a.

Lemma 2.2. The following is provable in RCA0. If a Peano system is almost
isomorphic to N, it is isomorphic to N.

Proof. We reason in RCA0. Let A, i, f be a system. As in [18, §II.3] use Σ0
1

induction to prove that for all n ∈ N, fn(i) exists and fn(i) ∈ A. Use ∆0
1

comprehension to prove the existence of the function n 7→ fn(i) : N → A.
Assume now that A, i, f is a Peano system which is almost isomorphic to N.
Use ∆0

1 comprehension to prove the existence of the function Φ : A → N given
by Φ(a) = min{n | fn(i) = a} for all a ∈ A. Clearly Φ(i) = 0 and Φ(f(a)) =
Φ(a)+1 for all a ∈ A, hence Φ is one-to-one. Moreover, because A, i, f is almost
isomorphic to N, Φ is onto N. Thus Φ maps A, i, f isomorphically onto N.

Theorem 2.3. The following are equivalent over RCA0.

1. WKL0.

2. Every Peano system is isomorphic to N.

Proof. We first prove 1 ⇒ 2. Reasoning in WKL0, let A, i, f be a Peano system.
Recall that A ⊆ N. By Lemma 2.2 it suffices to show that for each a ∈ A there
exists n ∈ N such that fn(i) = a. Assume for a contradiction that c ∈ A and
fn(i) 6= c for all n ∈ N. Let T be the set of all t ∈ {0, 1}<N such that

(i < lh(t) and c < lh(t)) ⇒ t(i) 6= t(c)

and

(∀a, b < lh(t)) (f(a) = b ⇒ t(a) = t(b)).

Clearly T is a tree. We claim that T is infinite. To see this, let n ∈ N be
given. Define t : {0, . . . , n − 1} → {0, 1} by letting t(a) = 1 if there exists a
finite sequence a0, . . . , ak of elements of {0, . . . , n − 1} such that i = a0 and
f(a0) = a1 and f(a1) = a2 and . . . and f(ak−1) = ak = a. If a ∈ {0, . . . , n− 1}
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and no such finite sequence exists, let t(a) = 0. Clearly t ∈ T and lh(t) = n so
our claim is proved. By Weak König’s Lemma let h be an infinite path in T .
Letting X = {a ∈ A | h(a) = h(i)} we see that i ∈ X and f(X) ⊆ X and c /∈ X
contradicting our assumption that A, i, f is a Peano system.

Next we prove (¬ 1) ⇒ (¬ 2). Reasoning in RCA0, assume ¬ 1 and let T ⊆
{0, 1}<N be an infinite tree with no infinite path. Then

T ′ = T ∪ {〈1, . . . , 1
︸ ︷︷ ︸

n

〉 | n ∈ N}

is a tree with exactly one infinite path. Consider the lexicographic ordering
of T ′. The empty sequence 〈〉 is the first element of T ′, and T is an initial
segment of T ′, and each t ∈ T ′ has an immediate successor in T ′, and the
immediate successor of t is of the form ta〈0〉 or ta〈1〉 or 〈t(0), . . . , t(m − 1), 1〉
where m < lh(t) and t(m) = 0. Use ∆0

1 comprehension to prove the existence
of the function f : T ′ → T ′ defined by f(t) = the immediate successor of t.

We claim that T has a last element under the lexicographic ordering of T ′.
If not, then f(T ) ⊆ T and we can use bounded primitive recursion to obtain
the “rightmost” infinite path p in T . Namely, define p : N → {0, 1} by

p(n) =

{

1 if 〈p(0), . . . , p(n− 1), 1〉 ∈ T,

0 otherwise.

Clearly 〈p(0), . . . , p(n − 1)〉 ∈ T implies 〈p(0), . . . , p(n− 1), p(n)〉 ∈ T , because
otherwise the immediate successor of 〈p(0), . . . , p(n− 1)〉 would be of the form
〈p(0), . . . , p(m−1), 1〉 = f(〈p(0), . . . , p(n−1)〉) ∈ T where m < n and p(m) = 0,
contradicting the definition of p(m). Since 〈〉 ∈ T , it follows by ∆0

1 induction
that 〈p(0), . . . , p(n)〉 ∈ T for all n ∈ N, i.e., p is an infinite path in T . This
contradiction proves our claim.

By the previous claim, let t1 be the last element of T under the lexicographic
ordering of T ′. Note that T ′ = T ∪ {fn(t1) | n ∈ N}.

We now claim that T ′, 〈〉, f is a Peano system. If not, let X ⊆ T ′ be such
that 〈〉 ∈ X and f(X) ⊆ X and X 6= T ′. If T ⊆ X then in particular t1 ∈ X
so by bounded primitive recursion we have fn(t1) ∈ X for all n ∈ N, hence
X = T ′, a contradiction. Thus T * X , so fix t2 ∈ T \X and let Y = {t ∈ T | t
precedes t2 in the lexicographic ordering of T }. Then 〈〉 ∈ Y and f(Y ) ⊆ Y ⊆ T
so as above we can use bounded primitive recursion to prove the existence of an
infinite path q in T . Namely, define q : N → {0, 1} by

q(n) =

{

1 if 〈q(0), . . . , q(n− 1), 1〉 ∈ Y,

0 otherwise.

Clearly 〈q(0), . . . , q(n − 1)〉 ∈ Y implies 〈q(0), . . . , q(n− 1), q(n)〉 ∈ Y , because
otherwise the immediate successor of 〈q(0), . . . , q(n− 1)〉 would be of the form
〈q(0), . . . , q(m−1), 1〉 = f(〈q(0), . . . , q(n−1)〉) ∈ Y where m < n and q(m) = 0,
contradicting the definition of q(m). Since 〈〉 ∈ Y , it follows by ∆0

1 induction
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that 〈q(0), . . . , q(n)〉 ∈ Y for all n ∈ N, but also Y ⊆ T so q is an infinite path
in T . This contradiction proves our claim.

Because T is an infinite initial segment of T ′, the Peano system T ′, 〈〉, f
cannot be isomorphic to N. We have now proved ¬ 2, Q.E.D.

3 The role of Σ0
1 induction

Recall from [18, §X.4] and [21] that RCA0 consists of RCA∗0 plus Σ0
1 induction.

In particular RCA
∗
0 is weaker5 than RCA0 and does not support the full use of

primitive recursion. However, RCA∗0 does support the use of bounded primitive
recursion, as well as minimization [21]. Recall also [21] that WKL

∗
0 consists of

RCA
∗
0 plus Weak König’s Lemma.

The purpose of this section is to refine the results of the previous section,
using the base theory RCA

∗
0 instead of RCA0. We prove within RCA

∗
0 that

Weak König’s Lemma and Σ0
1 induction are equivalent to certain statements

about Peano systems. As a consequence we show that RCA
∗
0 can replace RCA0

in the statement of Theorem 2.3.

Definition 3.1. Within RCA
∗
0 we repeat Definition 2.1. Note however that

RCA
∗
0 is not strong enough to prove that fn(i) exists for all n ∈ N and all systems

A, i, f . Consequently, the notion of a Peano system being almost isomorphic to
N must be understood somewhat differently. Explicitly, a Peano system A, i, f
is now said to be almost isomorphic to N if for each a ∈ A there exists a finite
sequence 〈a0, a1, . . . , an〉 such that a0 = i and an = a and am+1 = f(am) for all
m < n, in which case we define fn(i) = a.

Lemma 3.2. The following are equivalent over RCA
∗
0 .

1. RCA0.

2. Every Peano system which is almost isomorphic to N is isomorphic to N.

3. For each infinite set C ⊆ N there exists a one-to-one function g : N → C.

4. Each infinite subset of N includes finite sets of arbitrarily large cardinality.

Proof. We reason within RCA
∗
0 . Recall that, within RCA

∗
0 , a set C ⊆ N is

defined to be infinite if it is unbounded, i.e., ∀n ∃c (n < c and c ∈ C), and finite

if it is bounded. One can prove in RCA
∗
0 that a set is infinite if and only if it

is nonempty and has no greatest element. One can also prove in RCA
∗
0 that

each finite set F has a cardinality, i.e., a unique n ∈ N such that there exists a
one-to-one correspondence between F and {1, . . . , n}.

The implication 1 ⇒ 2 has already been proved as Lemma 2.2. To prove
2 ⇒ 3, let C be an infinite subset of N and apply 2 to the Peano system C, c0, νC
where c0 is the least element of C and νC : C → C is given by νC(c) = the least
c′ ∈ C such that c′ > c.

5See footnote 3.
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The implication 3 ⇒ 4 is easily proved by means of Σ0
1 bounding [21]. To

prove 4 ⇒ 1 we must prove that 4 implies Σ0
1 induction. Let ϕ(n) be a Σ0

1

formula such that ϕ(0) and ∀n (ϕ(n) ⇒ ϕ(n+1)) hold. Write ϕ(n) ≡ ∃k θ(k, n)
where θ(k, n) is a Σ0

0 formula. Use ∆0
1 comprehension to prove the existence of

the set C consisting of all (codes for) finite sequences s = 〈k0, k1, . . . , kn〉 such
that (∀m ≤ n) (θ(km,m) and ¬ (∃k < km) θ(k,m)) holds. Our assumptions
ϕ(0) and ∀n (ϕ(n) ⇒ ϕ(n+1)) imply that C has a least element but no greatest
element, hence C is infinite. Now, given n ∈ N, apply 4 to get a finite set F ⊂ C
of cardinality > n. Because lh : C → N is one-to-one, there exists s ∈ F such
that lh(s) > n. Since lh(s) > n and s ∈ C it follows that θ(kn, n) holds, hence
ϕ(n) holds. This proves ∀nϕ(n), Q.E.D.

Lemma 3.3. The following are equivalent over RCA
∗
0 .

1. WKL
∗
0 .

2. Every Peano system is almost isomorphic to N.

Proof. Our proof of Theorem 2.3 establishes this result.

Theorem 3.4. The following are equivalent over RCA
∗
0 .

1. WKL0.

2. Every Peano system is isomorphic to N.

Proof. Combine Lemmas 3.2 and 3.3.

4 Other categoricity theorems

The Peano Categoricity Theorem may be viewed as a second-order characteri-
zation of the natural number system N up to isomorphism using the language
consisting of the constant 0 ∈ N and the successor function S : N → N defined
by S(n) = n + 1. It is also possible to study second-order characterizations
of N in terms of other languages. In this section we consider two languages
which include the order relation < on N. The two languages which we con-
sider are 0, S,< and 0, <. We prove that various categoricity theorems for N
are equivalent over RCA∗0 to various subsystems of second-order arithmetic. The
subsystems which we consider are RCA0, WKL0, WKL

∗
0 , ACA0, ADS0, and PFO

∗
0 .

Here ACA0 is the well known [18] system consisting of RCA0 plus arithmetical
comprehension, ADS0 is the known [10, 2] system consisting of RCA0 plus the
ascending/descending sequence principle, and PFO

∗
0 is a new system which we

introduce.

Definition 4.1. Within RCA
∗
0 we make the following definitions.

1. A successor system is a triple A, i, f such that A ⊆ N and i ∈ A and
f : A → A is one-to-one and i /∈ rng(f). A successor system is said to be
inductive if (∀X ⊆ A) ((i ∈ X and ∀a (a ∈ X ⇒ f(a) ∈ X)) ⇒ X = A).
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Note that an inductive successor system is the same thing as a Peano
system.

2. An ordered system is a triple A, i,≺ such that A ⊆ N and ≺ is a linear
ordering of A and i is the first element of A with respect to ≺ and for each
a ∈ A there exists a′ ∈ A such that a ≺ a′ and there is no b such that
a ≺ b ≺ a′. Thus a′ is the immediate successor of a with respect to ≺.
Note that the successor function a 7→ a′ : A → A is not assumed to exist.

3. Let A, i,≺ be an ordered system. We say that A, i,≺ is inductive if

(∀X ⊆ A) ((i ∈ X and ∀a (a ∈ X ⇒ a′ ∈ X)) ⇒ X = A).

A set X ⊆ A is said to be ≺-bounded if (∃c ∈ A) (∀a ∈ X) (a ≺ c). We
say that A, i,≺ is strongly inductive (see Proposition 4.2 below) if each
nonempty ≺-bounded subset of A has a first element and a last element
with respect to ≺. We say that A, i,≺ is isomorphic to N if there exists
Φ : A → N which is one-to-one and onto N such that Φ(i) = 0 and
Φ(a′) = Φ(a) + 1 for all a ∈ A. We say that A, i,≺ is almost isomorphic

to N if for each c ∈ A the initial segment {a ∈ A | a ≺ c} is finite.

4. An ordered successor system is a quadruple A, i,≺, f such that A, i,≺ is
an ordered system and A, i, f is a successor system and f(a) = a′ for each
a ∈ A.

5. Let A, i,≺, f be an ordered successor system. We say that A, i,≺, f is
inductive if A, i,≺ is inductive, or equivalently, if A, i, f is inductive. We
say that A, i,≺, f is strongly inductive if A, i,≺ is strongly inductive. We
say that A, i,≺, f is isomorphic to N if A, i, f is isomorphic to N, or equiv-
alently, if A, i,≺ is isomorphic to N. We say that A, i,≺, f is almost

isomorphic to N if A, i, f is almost isomorphic to N, or equivalently, if
A, i,≺ is almost isomorphic to N.

Proposition 4.2. It is provable in RCA
∗
0 that every strongly inductive ordered

system is inductive.

Proof. Let A, i,≺ be a strongly inductive ordered system and suppose that
X ⊆ A and i ∈ X and ∀a (a ∈ X ⇒ a′ ∈ X). It suffices to prove that X = A. If
not, let c ∈ A be such that c /∈ X . Then Y = {a ∈ X | a ≺ c} is ≺-bounded and
nonempty, so let a1 be the last element of Y with respect to ≺. Then a1 ∈ X
and a′1 /∈ X , a contradiction.

Theorem 4.3. The following are pairwise equivalent over RCA
∗
0 .

1. RCA0.

2. Every strongly inductive ordered successor system is isomorphic to N.

3. Every inductive successor system which is almost isomorphic to N is iso-
morphic to N.

8



4. Every strongly inductive ordered successor system which is almost isomor-
phic to N is isomorphic to N.

Proof. The equivalence 1 ⇔ 3 has already been proved as Lemma 3.2. The
implications 2 ⇒ 4 and 3 ⇒ 4 are trivial, and the proof of Lemma 3.2 establishes
4 ⇒ 1. It remains to prove 1 ⇒ 2. Reasoning in RCA0, let A, i,≺, f be a strongly
inductive ordered successor system. By ∆0

1 comprehension we have g : A → N
and h : N → A defined by g(a) = min{k | a < fk(a)} and h(0) = i and
h(n + 1) = fg(h(n))(h(n)). Since h(n) < h(n + 1) for all n, we can use ∆0

1

comprehension to prove that X = rng(h) exists. Since h(n) ≺ h(n + 1) for all
n, we see that X is cofinal in A,≺. For any a = h(n) ∈ X we have fm(i) = a
where m =

∑

k<n g(h(k)). It follows that A, i, f is almost isomorphic to N.
Hence by Lemma 2.2 A, i, f is isomorphic to N. This completes the proof.

Theorem 4.4. The following are pairwise equivalent over RCA
∗
0 .

1. WKL
∗
0 .

2. Every inductive successor system is almost isomorphic to N.

3. Every inductive ordered successor system is almost isomorphic to N.

Proof. Our proof of Theorem 2.3 establishes this result.

Theorem 4.5. The following are pairwise equivalent over RCA
∗
0 .

1. WKL0.

2. Every inductive successor system is isomorphic to N.

3. Every inductive ordered successor system is isomorphic to N.

Proof. The equivalence 1 ⇔ 2 is Theorem 3.4. The implication 2 ⇒ 3 is trivial.
To prove 3 ⇒ 1, note that 3 ⇒ RCA0 by Theorem 4.3, and 3 ⇒ Weak König’s
Lemma by the proof of Theorem 2.3.

Theorem 4.6. The following are pairwise equivalent over RCA0.

1. ACA0.

2. Every inductive ordered system is isomorphic to N.

3. Every strongly inductive ordered system which is almost isomorphic to N
is isomorphic to N.

4. For every strongly inductive ordered system A, i,≺ which is almost iso-
morphic to N, there exists f : A → A such that A, i,≺, f is an ordered
successor system.

9



Proof. To prove 1 ⇒ 2 we reason in ACA0. Given an inductive ordered system
A, i,≺, use arithmetical comprehension to prove the existence of Ψ : N → A
such that Ψ(0) = i and Ψ(n + 1) = Ψ(n)′ for all n ∈ N. By arithmetical
comprehension the set rng(Ψ) exists, and then the inductive property implies
that rng(Ψ) = A. Thus Ψ is an isomorphism of N onto A, i,≺ and we have 2.

The implications 2 ⇒ 3 and 3 ⇒ 4 are trivial.
To prove 4 ⇒ 1 we reason in RCA0 and assume 4. Let g : N → N be a

one-to-one function. Define a linear ordering <g of N by letting m <g n if and
only if g(m) < g(n). Using bounded Σ0

1 comprehension [18, Theorem II.3.9], we
can easily check that N has a first element i with respect to <g and that N, i, <g

is a strongly inductive ordered system which is almost isomorphic to N. By 4
let f : N → N be such that N, i, <g, f is an ordered successor system, i.e., for all
j ∈ N, f(j) = the immediate successor of j with respect to <g. We then have
∀j (∃n ≤ j) (fn(i) = j), hence

∀m ((∃j (g(j) = m)) ⇔ (∃n ≤ m) (g(fn(i)) = m)) ,

so the range of g exists by ∆0
1 comprehension using f and g as parameters. We

have now shown that rng(g) exists for all one-to-one functions g : N → N. By
[18, Lemma III.1.3] this implies ACA0, Q.E.D.

Theorem 4.7. The following are pairwise equivalent over RCA
∗
0 .

1. ACA0.

2. Every inductive ordered system is isomorphic to N.

3. Every strongly inductive ordered system which is almost isomorphic to N
is isomorphic to N.

Proof. This follows from Theorems 4.3 and 4.6.

Our next goal is to determine the reverse-mathematical and proof-theoretical
status of the statement that every inductive ordered system is almost isomorphic
to N. To this end we present Definition 4.8 and Lemmas 4.9 and 4.10 leading
to Theorem 4.11.

Definition 4.8. Within RCA
∗
0 we make the following definitions (see also [10,

Definition 2.3]). Let L be an infinite linear ordering in which each non-first
element has an immediate predecessor and each non-last element has an imme-
diate successor. We say that L is ω-like if each element of L has finitely many
predecessors. We say that L is ω∗-like if each element of L has finitely many
successors. We say that L is ω + ω∗-like if L is not ω-like or ω∗-like and each
element of L has finitely many predecessors or finitely many successors. If L
is ω + ω∗-like, the ω-part of L is the set consisting of all elements of L with
finitely many predecessors, provided this set exists. The ω∗-part of L is defined
similarly. Note that the ω-part of L exists if and only if the ω∗-part of L exists.
Let OOP be the statement that the ω-part of every ω + ω∗-like linear ordering
exists. We write OOP0 = RCA0 +OOP and OOP

∗
0 = RCA

∗
0 +OOP.
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Lemma 4.9. OOP0 and OOP
∗
0 are equivalent over RCA

∗
0 .

Proof. It suffices to show that Σ0
1 induction is provable in OOP

∗
0 . Reasoning in

RCA
∗
0 , suppose Σ0

1 induction fails. By Lemma 3.2 let C be an infinite subset of N
which does not have arbitrarily large finite subsets. Let c0 be the least element
of C. Since C is unbounded, we may safely assume that C has no subset of
cardinality c0. For each n let f(n) be cardinality of {c ∈ C | c < n}. Note that
f(n) < c0 for all n. Let L = N and define <L on L by letting m <L n if and only
if m < n ≤ c0 or c0 < m < n or m < f(n). In other words, for each pair c, c′ of
successive elements of C we are inserting the interval {n | c < n ≤ c′} between
f(c) and f(c′) = f(c) + 1. Thus L is an ω + ω∗-like linear ordering. By OOP
let B be the ω∗-part of L. Then B = {n ≤ c0 | C has no subset of cardinality
n} and B has a least element, which is clearly impossible, Q.E.D.

Lemma 4.10. OOP0 is equivalent to ACA0 over RCA0.

Proof. Clearly arithmetical comprehension implies OOP, so it remains to show
that OOP0 proves arithmetical comprehension. By [18, Lemma III.1.3] it suffices
to show that OOP0 proves Σ0

1 comprehension. Reasoning in OOP0 and letting
ϕ(m) be a Σ0

1 formula, we shall prove the existence of the set {m | ϕ(m)}. Write
ϕ(m) ≡ ∃k θ(k,m) where θ(k,m) is Σ0

0. Let Ds = {m < s | (∃k < s) θ(k,m)}.
Thus Ds, s = 0, 1, 2, . . . is a nondecreasing sequence of finite sets such that
∀m (ϕ(m) ⇔ ∃s (m ∈ Ds)).

Using bounded primitive recursion [21] we shall define an increasing sequence
of finite linear orderings Ls, <s, s = 0, 1, 2, . . .. Actually we shall have L2s =
{0, 1, . . . , s− 1} so there will be a linear ordering L,<L where L =

⋃

s Ls = N
and <L=

⋃

s <s. We shall also define a sequence of partitions Ls = As ∪ Bs

such that (∀u ∈ As) (∀v ∈ Bs) (u <s v). We shall also have (∀u ∈ As) (∀v ∈
As) (u <s v ⇔ u < v) and ∀s (Bs ⊆ Bs+1). Except for trivial cases, L will be
ω + ω∗-like with ω-part A = lims As and ω∗-part B = lims Bs =

⋃

s Bs. In
addition we shall define a function f : L → N with this property:

If u1,s < · · · < uk,s are the elements of A2s in increasing
order, then f(u1,s) < · · · < f(uk,s) are the first |A2s| elements
of N \Ds in increasing order.

(3)

Taking the limit as s goes to infinity, we shall have:

If u1 < u2 < · · · are the elements of A in increasing order,
then f(u1) < f(u2) < · · · are the elements of N \

⋃

s Ds in
increasing order.

(4)

In particular our Σ0
1 formula ϕ(m) ≡ ∃s (m ∈ Ds) will be equivalent to the Π0

1

formula ∀u (u ∈ A ⇒ f(u) 6= m), and the existence of {m | ϕ(m)} will then
follow by ∆0

1 comprehension.
The inductive construction of L is as follows.
Stage 0. Let L0 = <0 = A0 = B0 = the empty set.
Stage 2s+ 1. Let L2s+1 = L2s ∪ {s} and insert s between A2s and B2s, i.e.,

<2s+1 = <2s∪{〈u, s〉 | u ∈ A2s}∪{〈s, v〉 | v ∈ B2s}. Let A2s+1 = A2s∪{s} and

11



let B2s+1 = B2s. Let f(s) = the (|A2s|+ 1)-st element of N \Ds in increasing
order. Our inductive hypothesis (3) implies that u1,s < · · · < uk,s < s are the
elements of A2s+1 in increasing order and f(u1,s) < · · · < f(uk,s) < f(s) are
the first |A2s+1| elements of N \Ds in increasing order.

Stage 2s + 2. Let L2s+2 = L2s+1 and <2s+2 = <2s+1. Case 1: If there
exists u ∈ A2s+1 such that f(u) ∈ Ds+1, let a be the least such u and let
A2s+2 = {u ∈ A2s+1 | u < a} and B2s+2 = L2s+2 \A2s+2. Case 2: If no such u
exists, let A2s+2 = A2s+1 and B2s+2 = B2s+1. In either case it is clear that (3)
continues to hold with s replaced by s+ 1.

We may safely assume that Case 1 holds at infinitely many stages, because
otherwise there would be a stage t such that ∀m (ϕ(m) ⇔ ¬ (∃s > t) (∃u ∈
As) (f(u) = m)), hence {m | ϕ(m)} would exist by ∆0

1 comprehension. Since
Case 1 holds infinitely often, we have Bs $ Bs+1 for infinitely many s.

We may safely assume that ¬ϕ(n) holds for infinitely many n. Let n be such
that ¬ϕ(n) holds. By bounded Σ0

1 comprehension [18, Theorem II.3.9], the set
{m < n | ϕ(m)} exists and is finite, so by Σ0

1 bounding [21] let s be such that
(∀m < n) (ϕ(m) ⇔ m ∈ Ds). Then f(u) = n for some u ∈ A2s+2n, and then
u ∈ At for all t ≥ 2s+ 2n. Since ¬ϕ(n) holds for infinitely many n, it follows
that lims |As| = ∞.

It is now clear that L is ω + ω∗-like with ω-part A = lims As and ω∗-
part B =

⋃

s Bs. It is also clear that (4) holds, so {m | ϕ(m)} exists by ∆0
1

comprehension. This completes the proof.

Theorem 4.11. The following are pairwise equivalent over RCA
∗
0 .

1. ACA0.

2. OOP
∗
0

3. Every inductive ordered system is almost isomorphic to N.

Proof. The equivalence 1 ⇔ 2 follows from Lemmas 4.9 and 4.10. The impli-
cation 1 ⇒ 3 is clear from Theorem 4.6. It remains to prove 3 ⇒ 2. Let L be
ω+ω∗-like such that the ω-part of L does not exist. Let i be the first element of
L, let A be the disjoint union of L and N, and extend the given linear ordering
of L and the standard ordering < of N to a linear ordering ≺ of A with u ≺ n
for all u ∈ L and all n ∈ N. Then A, i,≺ is an ordered system. Let X ⊆ A
be such that i ∈ X and ∀a (a ∈ X ⇒ a′ ∈ X). If L * X , fix c ∈ L \ X and
let Y = {a ∈ X | a ≺ c} = {u ∈ X | u <L c}. Then Y is the ω-part of L, a
contradiction. Thus L ⊆ X , and from this it follows that X = A. Thus A, i,≺ is
an inductive ordered system. It follows by 3 that L is finite. This contradiction
completes the proof.

Remark 4.12. We thank Richard Shore [16] for showing us a proof of Lemma
4.10. We have modified that proof to obtain our proof above. Our construction
yields the following recursion-theoretical results:

1. There exists a recursive linear ordering L of type ω + ω∗ such that the
halting problem is Turing reducible to the ω-part of L.
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2. Given a recursively enumerable Turing degree b, there exists a recursive
linear ordering L of type ω + ω∗ such that the ω-part of L is retraceable
and the ω∗-part of L is recursively enumerable of degree b.

Subsequently Carl Jockusch [13] noted that these results are easily deduced from
his 1968 paper [12]. Namely, 1 is implicit in [12, Theorem 5.2], and 2 follows
from [12, Theorem 3.2, Corollary 3.3] plus the following characterization [13]:

3. A recursively enumerable set is the ω-part of a recursive linear ordering
of type ω + ω∗ if and only if it is recursive or simple and semirecursive.

We now end this section by commenting on the reverse-mathematical and
proof-theoretical status of the statement that every strongly inductive ordered
system is almost isomorphic to N.

Definition 4.13. Within RCA
∗
0 we define a countable linear ordering L to be

pseudofinite if every nonempty subset of L has a first element and a last element.
Let PFO be the statement that every countable pseudofinite linear ordering is
finite. We write PFO0 = RCA0 + PFO and PFO

∗
0 = RCA

∗
0 + PFO.

Theorem 4.14. The following are equivalent over RCA∗0 .

1. PFO
∗
0 .

2. Every strongly inductive ordered system is almost isomorphic to N.

Proof. We reason in RCA
∗
0 . To prove 1 ⇒ 2, assume PFO and let A, i,≺ be a

strongly inductive ordered system. For each c ∈ A the initial segment {a ∈ A |
a ≺ c} is pseudofinite, hence finite, so A, i,≺ is almost isomorphic to N. Thus
PFO ⇒ 2, i.e., 1 ⇒ 2. To prove 2 ⇒ 1, assume that L is a pseudofinite linear
ordering. Let i be the first element of L. Let A be the disjoint union of L and
N. Extend the given linear ordering of L and the standard ordering < of N to
a linear ordering ≺ of A with a ≺ n for all a ∈ L and all n ∈ N. Then A, i,≺
is a strongly inductive ordered system. It follows by 2 that L is finite. Thus
2 ⇒ PFO, i.e., 2 ⇒ 1, Q.E.D.

Definition 4.15. Within RCA
∗
0 let ADS be the ascending/descending sequence

principle of Hirschfeldt/Shore [10]: every countably infinite linear ordering L
has an infinite ascending sequence or an infinite descending sequence. Here an
infinite ascending sequence is defined to be a function s : N → L such that
s(n) <L s(n + 1) holds for all n ∈ N, and an infinite descending sequence is
defined to be a function s : N → L such that s(n) >L s(n + 1) holds for all
n ∈ N. We write ADS0 = RCA0 +ADS and ADS

∗
0 = RCA

∗
0 +ADS.

Theorem 4.16. The following are equivalent over RCA0.

1. ADS0.

2. Every strongly inductive ordered system is almost isomorphic to N.
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Proof. The proof of [10, Proposition 2.4] shows that our system PFO0 (Defini-
tion 4.13) is equivalent to ADS0. Using this observation, Theorem 4.16 follows
immediately from Theorem 4.14.

Remark 4.17.

1. In view of Theorems 4.14 and 4.16, it is natural to ask whether PFO
∗
0 is

equivalent to ADS
∗
0 . It turns out that this is not the case. Indeed, we shall

now show that PFO
∗
0 is proof-theoretically much weaker6 than ADS

∗
0 .

2. On the one hand, it is clear from Lemma 3.2 that ADS∗0 proves Σ0
1 induc-

tion. Thus ADS
∗
0 is equivalent to ADS0. Moreover, Chong/Slaman/Yang

[2] have shown that ADS0 is Π1
1-equivalent to RCA0 +Σ0

2 bounding, hence
Π0

3-equivalent to RCA0. Thus ADS
∗
0 has the same strength as RCA0.

3. On the other hand, Yokoyama [23] has shown that WKL
∗
0 + {RT(k, l) |

k, l ≥ 2} is Π0
2-equivalent to RCA

∗
0 . Here RT stands for Ramsey’s The-

orem. Moreover, by Theorem 4.19 below, RCA∗0 + RT(2, 2) proves PFO.
Thus PFO

∗
0 has the same strength as RCA

∗
0 and is therefore much weaker

than RCA0. We conjecture that PFO
∗
0 is Π1

1-equivalent to RCA
∗
0 .

Definition 4.18. For X ⊆ N write [X ]2 = {(a, b) | a ∈ X, b ∈ X, a < b}.
Within RCA

∗
0 let RT(2, 2) be the statement that for all p : [N]2 → {0, 1} there

exists X ⊆ N which is infinite and homogeneous, i.e., [X ]2 ⊆ p−1({0}) or [X ]2 ⊆
p−1({1}). Following [10, §5] we define p : [N]2 → {0, 1} to be transitive if
for all a, b, c with a < b < c, p(a, b) = p(b, c) = 0 implies p(a, c) = 0, and
p(a, b) = p(b, c) = 1 implies p(a, c) = 1. Within RCA

∗
0 let TRT(2, 2) be the

statement that for all transitive p : [N]2 → {0, 1} there exists X ⊆ N which is
infinite and homogeneous. Note that TRT(2, 2) is a special case of RT(2, 2).

Theorem 4.19. PFO is equivalent to TRT(2, 2) over RCA
∗
0 .

Proof. We reason in RCA
∗
0 . First, assume PFO and let p : [N]2 → {0, 1} be

transitive. For a, b ∈ N define a <L b if ((a < b and p(a, b) = 1) or (a > b and
p(a, b) = 0)). Clearly N, <L is an infinite linear ordering. By PFO let X ⊆ N
be such that, with respect to <L, either X has no first element or X has no last
element. If X has no first element, Y = {b ∈ X | (∀a < b) (a ∈ X ⇒ a >L b)}
is infinite and [Y ]2 ⊆ p−1({0}). Similarly, if X has no last element, Y = {b ∈
X | (∀a < b) (a ∈ X ⇒ a <L b)} is infinite and [Y ]2 ⊆ p−1({1}). We have now
proved TRT(2, 2) assuming PFO.

Conversely, assume TRT(2, 2) and let L,<L be a countably infinite linear
ordering. We may safely assume that L ⊆ N. Using ∆0

1 comprehension, define
g : N → L by g(a) = the least j > a such that j ∈ L, and then define a <∗

L b
if (g(a) <L g(b) or (g(a) = g(b) and a < b)). Clearly N, <∗

L is an infinite
linear ordering. Define p : [N]2 → {0, 1} by letting p(a, b) = 1 if and only if
a <∗

L b. Then p is transitive, so by TRT(2, 2) let X be an infinite homogeneous
set for p. Then Y = {j ∈ L | (∃a < j) (g(a) = j)} is an infinite subset of L.

6See footnote 3.
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Moreover, if [X ]2 ⊆ p−1({0}) then Y has no first element with respect to <L,
and if [X ]2 ⊆ p−1({1}) then Y has no last element with respect to <L. Thus L
is not pseudofinite. This completes the proof.

Remark 4.20. Since ADS is equivalent to PFO over RCA0, Theorem 4.19
implies that ADS is equivalent to TRT(2, 2) over RCA0. The latter equivalence
is originally due to Hirschfeldt/Shore [10, Theorem 5.3]. Our Theorem 4.19
answers a question which was posed by the referee.

5 Summary and open questions

RCA0 isomorphic
almost isomorphic
implies isomorphic

almost isomorphic

i.s.s. WKL0, 3.4 RCA0, 3.2 WKL0, 3.3

i.o.s. ACA0, 4.7 ACA0, 4.7 ACA0, 4.11

s.i.o.s. ACA0, 4.7 ACA0, 4.7 ADS0, 4.16, 4.17

i.o.s.s. WKL0, 4.5 RCA0, 4.3 WKL0, 4.4

s.i.o.s.s. RCA0, 4.3 RCA0, 4.3 RCA0, 4.3

Table 1: Summary of equivalences over RCA0.

RCA
∗
0 isomorphic

almost isomorphic
implies isomorphic

almost isomorphic

i.s.s. WKL0, 3.4 RCA0, 3.2 WKL
∗
0 , 3.3

i.o.s. ACA0, 4.7 ACA0, 4.7 ACA0, 4.11

s.i.o.s. ACA0, 4.7 ACA0, 4.7 PFO
∗
0 , 4.14, 4.17, 5.1

i.o.s.s. WKL0, 4.5 RCA0, 4.3 WKL
∗
0 , 4.4

s.i.o.s.s. RCA0, 4.3 RCA0, 4.3 ?????, 5.2

Table 2: Summary of equivalences over RCA
∗
0 .

Tables 1 and 2 are a summary of our results. Abbreviations are used. For
example, s.i.o.s.s. is an abbreviation for “strongly inductive ordered successor
system.” Recall also that an i.s.s. or inductive successor system is the same
thing as a Peano system. Each entry in Table 1 or 2 stands for one of our
results concerning the reverse-mathematical status of a categoricity theorem for
N. As an example, the entry PFO

∗
0 , 4.14, 4.17, 5.1 in Table 2 means that RCA∗0

proves PFO
∗
0 ⇔ every strongly inductive ordered system is almost isomorphic

to N, with references to Theorem 4.14 and Remark 4.17 and Question 5.1.
We now state some open questions which are relevant to Table 2.

Question 5.1. Is PFO
∗
0 Π1

1-equivalent to RCA
∗
0 ? See Remark 4.17.
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Question 5.2. What is the reverse-mathematical status of the statement that
every strongly inductive ordered successor system is almost isomorphic to N?
We do not know whether this statement is provable in RCA

∗
0 . By Table 2 it is

provable in each of the systems RCA0 and PFO
∗
0 and WKL

∗
0 .

Question 5.3. Does there exist a second-order characterization of N which is
provable in RCA

∗
0 ? More precisely, does RCA

∗
0 prove the existence of a second-

order sentence or set of sentences T such that N, 0, S is a second-order model
of T and all second-order models of T are isomorphic to N, 0, S? One may
also consider the same question with RCA

∗
0 replaced by systems which are Π0

2-
equivalent to RCA

∗
0 .
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