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Abstract

We present some ideas in furtherance of objectivity in mathemat-
ics. We call for closer integration of mathematics with the rest of
human knowledge. We note some insights which can be drawn from
current research programs in the foundations of mathematics.
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This paper is the text of my talk at a conference on philosophy of math-
ematics at New York University, April 3–5, 2009. I wish to thank the
NYU Philosophy graduate students and particularly Justin Clarke-Doane
and Shieva Kleinschmidt for their attention to detail in organizing the con-
ference. It was exciting to address a wonderful audience at a great urban
university in the greatest city in the world.

1 Objectivity and Objectivism

I am a mathematician, not a philosopher. However, as a mathematician and
a human being, I have always had the greatest respect for philosophy, and I
have always recognized the need for philosophical guidance.

My thinking is largely informed by a particular philosophical system:

Objectivism (with a capital “O”).

A key reference for me is Leonard Peikoff’s treatise [4]. By the way, Peikoff
obtained his Ph.D. degree in Philosophy here at New York University in 1964.
His thesis advisor was Sidney Hook.

For those not familiar with Objectivism, let me say that it is a coherent,
integrated, philosophical system which encompasses the five main branches
of philosophy: metaphysics, epistemology, ethics, politics, aesthetics.

As the name “Objectivism” suggests, the concept of objectivity plays a
central role in the system. Because objectivity is an epistemological concept,
let me say a little about the Objectivist epistemology. Of course, my brief
account of the Objectivist epistemology cannot be fully understood outside
the context of certain other aspects of Objectivism which I do not plan to
discuss here.

The main point is that Objectivist epistemology calls for a close relation-
ship between existence (the reality which is “out there”) and consciousness

(a volitional process that takes place within the human mind).

1. According to Objectivism, knowledge (i.e., human, conceptual knowl-
edge) is “grasp of an object by means of an active, reality-based process
which is chosen by the subject.”

2. According to Objectivism, objectivity is a specific kind of relationship
between reality (“out there”) and consciousness (“in here”).
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3. All knowledge is contextual, i.e., it must be understood within a context.
Moreover, the ultimate context is the totality of human knowledge.
Thererore, all of human knowledge must be integrated into a coherent
system. Compartmentalization is strongly discouraged (more about
this later).

4. In integrating human knowledge into a coherent whole, the method of
integration is logic, defined as “the art of non-contradictory identifica-
tion.” Here “identification” refers to the conceptual grasp of an object
or entity in reality.

5. All knowledge is hierarchical. Concepts must be justified or validated
by reference to earlier concepts, which are based on still earlier con-
cepts, etc., all the way down to the perceptual roots. This validation
process is called reduction.

We may contrast Objectivism with two other types of philosophy: intrin-
sicism (e.g., Plato, Augustine) and subjectivism (e.g., Kant, Dewey).

1. To their credit, the intrinsicists recognize that knowledge must con-
form to reality. However, intrinsicism goes overboard by denying the
active or volitional nature of consciousness. According to intrinsicism,
the process of acquiring knowlege is essentially passive. It consists of
“revelation” (Judeo-Christian theology) or “remembering” (Plato) or
“intuition,” not volitional activity. The operative factor is existence

rather than consciousness.

2. To their credit, the subjectivists recognize that revelation is not a valid
means of cognition. However, subjectivism goes too far by insisting
that concepts are not based on reality but rather are created solely
out of the resources of our own minds. There are several versions of
subjectivism. In the personal version, each individual creates his own
universe. In the social or collective version, concepts and facts are
created by a group. In all versions of subjectivism, the operative factor
is consciousness rather than existence.

Objectivism strikes a balance by emphasizing a close relationship between
existence and consciousness. Each of these two factors is operative. Their
close relationship is summarized in a slogan:

“Existence is identity; consciousness is identification.”
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2 Mathematics as part of human knowledge

A major problem in universities and in society generally is compartmental-

ization. Compartmentalization is a kind of overspecialization in which one
regards one’s own specialty as an isolated subject, unrelated to the rest of
human knowledge. Thus, the teachings of one university department (e.g.,
the English department) may flatly contradict those of another (e.g., the
business school) and this kind of situation is regarded as normal.

Compartmentalization can sometimes exist within a single individual.
An example is the conservative economist who advocates the profit motive
in economics and the Sermon on the Mount in church. Another example
is the legislator who calls for strict government control of political advocacy
and commercial activity, while at the same time paying lip service to freedom
of speech and association.

Here I wish to focus on compartmentalization in the university context,
with which I am very familiar.

I am a professor of mathematics at a large state university, Penn State. At
our main campus in the appropriately named Happy Valley in Pennsylvania,
there are more than 40,000 undergraduate students as well as thousands of
graduate students and postdocs.

At the Pennsylvania State University as at most other large universi-
ties, much of the research activity is mathematical in nature. Mathematics,
statistics, and large-scale computer simulations are heavily used as research
tools. This applies to the majority of academic divisions of the university:
not only physical sciences and engineering, but also biological sciences, agri-
culture, business, social sciences, earth sciences, materials science, medicine,
and even humanities. In addition Penn State has an Applied Research Lab-
oratory which performs classified, defense-related research and has a huge
annual budget. There also, mathematics is heavily used.

What is interesting is that our Department of Mathematics is largely unin-
volved in this kind of activity. When mathematicians and non-mathematicians
try to collaborate, both sides are often frustrated by “communication diffi-
culties” or “failure to find common ground,” due largely to lack of a common
vocabulary and conceptual framework. To me this widespread frustration
suggests a failure of integration.

As an aside, we can see the detrimental effects of a lack of mathematics
in public affairs. Basic mathematical and statistical knowledge is astonish-
ingly rare among the voting public. Lack of quantitative understanding of
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relative benefits and relative risks may stifle innovation. “A trillion is the
new billion,” and angry mobs with pitchforks may lose sight of the decimal
point.

But, back to the university context. From interactions with mathemati-
cians and non-mathematicians at Penn State and elsewhere, I see a need for
greater integration of mathematics with the rest of human knowledge. We
need to somehow overcome the compartmentalization which isolates mathe-
matics from application areas.

Philosophy is the branch of knowledge that deals with the widest possible
abstractions – concepts such as justice, friendship, and objectivity. Therefore,
only philosophy can act as the ultimate integrator of human knowledge. A
crucial task for philosophers of mathematics is to provide general principles
which can guide both mathematicians and users of mathematics.

Some of the most pressing issues involve mathematical modeling. By a
mathematical model I mean an abstract mathematical structure M (e.g., a
system of differential equations) together with a claimed relationship between
M and a real-world situation R (e.g., a weather system). Typically, the
mathematician designs the structure M , and the non-mathematician decides
which assumptions (e.g., initial conditions) are to be fed into M and how to
interpret the results in R. Such models are used extensively in engineering,
finance, economics, climate studies, etc.

Some currently relevant questions about mathematical modeling are as
follows. What are the appropriate uses of quantitative financial models in
terms of risk and reward? Would it be ethical to incorporate the prospect
of government bailouts into such models? What are appropriate limitations
on the role of mathematical modeling in climate studies? Under what cir-
cumstances is it ethically appropriate to base public policy on such models?
Etc., etc.

By nature such questions are highly interdisciplinary and require a broad
perspective. Therefore, it seems reasonable to think that such questions may
be a proper object of study for philosophers of mathematics. It would be
wonderful if philosophers could provide a valid framework or standard for
answering such questions. Of course, it goes without saying that this kind
of philosophical activity would have to be based on a coherent philosophical
system including an integrated view of human knowledge as a whole and the
role of mathematics within it.
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3 Set theory and the unity of mathematics

As is well known, mathematicians tend to group themselves into research
specialties: analysis, algebra, number theory, geometry, topology, combina-
torics, ordinary differential equations, partial differential equations, mathe-
matical logic, etc. Each of these groups holds its own conferences, edits its
own journals, writes letters of recommendation for its own members, etc.
Furthermore, among these groups there is frequent and occasionally bitter
rivalry with respect to academic hiring, research professorships, awards, etc.

As an antidote to this kind of fragmentation, high-level mathematicians
frequently express an interest in promoting the unity of mathematics. An
11th commandment for mathematicians has been proposed:

“Thou shalt not criticize any branch of mathematics.”

A variant reads as follows:

“All mathematics is difficult; all mathematics is interesting.”

Partly as a result of such considerations, research programs which com-
bine several branches of mathematics are highly valued. Examples of such
programs are algebraic topology, geometric functional analysis, algebraic ge-
ometry, geometric group theory, etc. Such programs are regarded as valuable
partly because they draw together two or more research sub-communities
within the larger mathematical community.

As regards the unity of mathematics, set theory has made at least one
crucial contribution. Namely, the well known formalism of ZFC, Zermelo-
Fraenkel set theory (based on classical first-order logic and including the
Axiom of Choice) is a huge achievement. The ZFC formalism provides two
extremely important benefits for mathematics as a whole: a common frame-
work, and a common standard of rigor.

1. ZFC provides the orthodox, commonly accepted framework for virtu-
ally all of contemporary mathematics. Indeed, advanced undergraduate
textbooks in almost all branches of mathematics frequently include ei-
ther an appendix or an introductory chapter outlining the common
set-theoretic notions: sets, functions, union, intersection, Cartesian
product, etc.

2. The ZFC framework is sufficiently simple and elegant so that all math-
ematicians can easily gain a working knowledge of it. There is only
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one basic concept: sets. The axioms of ZFC consist of easily under-
stood, plausible, self-evident assumptions concerning the universe of
sets. Moreover, the ZFC framework is flexible and far-reaching; within
it one can easily and quickly construct isomorphs of all familiar mathe-
matical structures including the natural number system, the real num-
ber system, Euclidean spaces, manifolds, topological spaces, Hilbert
space, operator algebras, etc.

3. Among mathematicians, there is little or no controversy about what
it would mean to rigorously prove a mathematical theorem. All such
questions are answered by saying that the proof must be formalizable
in ZFC, i.e., deducible from the axioms of ZFC using standard logical
axioms and rules. In his talk yesterday, Professor Gaifman gave an ad-
mirably detailed description of how this ZFC-based verification process
works in practice.

It is noteworthy that similarly clear standards of rigor do not currently
exist in other sciences such as physics, economics, or philosophy.

4. Mathematicians are highly appreciative of the existence of a common
framework and standard of rigor such as ZFC provides.

For instance, there is currently little or no controversy surrounding the
Axiom of Choice such as took place in the early 20th century. Virtually
all mathematicians are happy and relieved to know that this and similar
controversies have been laid to rest.

5. This comfortable situation allows “working mathematicians” to get on
with their research, secure in the belief that they will not be undercut by
some obscure foundational brouhaha. Mathematicians appreciate ZFC

because it seems to relieve them of the need to bother with foundational
questions.

On the other hand, mathematicians have some justifiable reservations
about set-theoretic foundations. The existence of a variety of models of ZFC
(the set-theoretic “multiverse”) is somewhat unsettling, at least for those
mathematicians who take foundations seriously. Some mathematicians deal
with this kind of uncertainty by asserting that questions such as the Con-
tinuum Hypothesis and large cardinals are unlikely to impinge on their own
branch of mathematics, or at least their own research within that branch.
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Some mathematicians even make a point of avoiding higher set theory, for
fear of running into such scary monsters. (Of course we mathematical logi-
cians know or strongly suspect that they are whistling in the dark.)

Even worse, when we contemplate the philosophical task which was out-
lined in Section 2 above, the program of set-theoretic foundations based on
systems such as ZFC seems unhelpful to say the least. There seems to be no
clear path toward integration of set theory with the rest of human knowledge.
Infinite sets and the cumulative hierarchy present a stumbling block. It is
completely unclear how to reduce a concept such as ℵω to referents in “the
real world out there.” We have no idea whatsoever of how to understand
the Continuum Hypothesis as a question about “the real world out there.”
What in “the real world out there” are the set theorists talking about? The
answer seems unclear, and nobody can agree on how to proceed.

Thus it emerges that the program of set-theoretic foundations, useful
though it has been in promoting the unity of mathematics and defining a
standard of mathematical rigor, appears to stand as an obstacle in the way
of a highly desirable unification of mathematics with the rest of human knowl-
edge.

Indeed, by encouraging the mathematical community to live in relative
complacency with respect to foundational issues, the program of set-theoretic
foundations may actually be leading us away from fundamental tasks which
are clearly of great philosophical importance. The unity of mathematics is
valuable, but the unity of human knowledge would be much more valuable.

4 Set-theoretic realism

4.1 An epistemological question

Some high-level set theorists such as Gödel, Martin, Steel, and Woodin, as
well as some high-level philosophers of mathematics such as Maddy, have ad-
vocated a philosophical position known as set-theoretic realism or Platonism.
According to this program, set theory refers to certain definite, undeniable
aspects of reality. For instance, cardinals such as ℵω are thought to exist in
a certain domain of reality, and the Continuum Hypothesis is thought to be
a meaningful statement about that domain.

An epistemological question which remains is:

How can we acquire knowledge of the set-theoretic reality?
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We briefly consider three contemporary answers to this question.

4.2 The intrinsicist answer

One answer is that the set-theoretic reality is a non-spatial, non-temporal,
irreducible kind of reality which reveals itself by means of pure intuition. I
have no response to this, except to say that it seems to express an intrinsicist
viewpoint which is obviously incompatible with the requirement of objectivity
as I understand it.

4.3 The “testable consequences” answer

Another answer to our epistemological question says that the higher set-
theoretic reality, although not directly observable, may reveal itself by means
of “testable” logical consequences in the concrete mathematical realm. For
instance, by Matiyasevich’s Theorem, the consistency of a large cardinal
axiom can be recast as a number-theoretic statement to the effect that a
certain Diophantine equation has no solution in the integers. The resulting
justification process for large cardinals is said to be analogous to how the
atomic theory of matter was originally discovered and verified, long before
it became possible to observe individual atoms directly under an electron
microscope.

I find this “testable consequences” viewpoint more appealing than the
purely intrinsicist viewpoint, because it gives an active role to a human cog-
nitive process, namely, the study of concrete mathematical problems such
as Diophantine equations. Higher set theory is to be justified or reduced or
“miniaturized” in terms of its applications to down-to-earth mathematical
problems.

The major difficulty that I see with the “testable consequences” program
involves its implemention. For instance, the Diophantine equations which
have been produced in the manner outlined above are messy and complex
and have thousands of terms. No number theorist would seriously study
such an equation. Thus, the value of such equations for number theory
seems remarkably tenuous. By contrast, the atomic theory from its incep-
tion produced a powerful stream of striking consequences in chemistry and
other fields of knowledge. These consequences greatly improved the human
standard of living.
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Attempting to overcome the implementation difficulty, set-theorists have
worked very hard for many years trying to uncover consequences of higher set
theory and large cardinals which are not only down-to-earth but also math-

ematically appealing and perhaps even useful in applications. I am thinking
of the impressive results of Martin, Steel and Woodin [2] on projective deter-
minacy,1 and of Harvey Friedman (unpublished) on Boolean relation theory.

And yet, appealing as they may be, these consequences of large cardinal
axioms remain quite remote from standard mathematical practice, especially
in application areas. Partly for this reason, they have not led to an upsurge
of interest in higher set theory and large cardinals within the mathematical
community beyond set theory. Indeed, considering all the hard work that
has already gone into this research direction, the prospect of serious impact
in core mathematics or in mathematical application areas seems even more
unlikely than before.

4.4 The Thin Realist answer

Another answer to our epistemological question is Maddy’s current philos-
ophy of Thin Realism [3] (in contrast to her earlier Robust Realism, i.e.,
pure intrinsicism). According to Thin Realism, set theory is in a very strong
epistemological position, simply because it is deeply embedded in the “fabric
of mathematical fruitfulness.” Here again I have my doubts, for the same
reasons as above.

Maddy even goes so far as to compare large cardinals to tables and chairs,
and set theory skeptics to evil daemon theorists. In other words,

large cardinals

set theory skepticism
=

tables and chairs

evil daemon theories
.

Indeed, according to Maddy, our knowledge of set theory ismore reliable than
our knowledge of tables and chairs, because sense perceptions are subject to
skeptical doubts which cannot possibly apply to the “fabric of mathematical
fruitfulness.”

1However, Hugh Woodin notes that this research on projective determinacy was moti-
vated not by the “testable consequences” program, but rather by the desire to answer some
long-standing structural questions in the branch of mathematics known as descriptive set

theory (the study of projective sets in Euclidean space, going back to Souslin and Lusin).
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My view is that, instead of comparing large cardinals to tables and chairs,
it seems more appropriate to compare set theory to religion. In other words,

large cardinals

set theory skepticism
=

gods and devils

religious skepticism
.

The point of my analogy is that both set theory and religious faith can claim
to be in a “strong” position vis a vis skeptics, to the extent that they avoid
dependence on underlying facts of reality which can be questioned. In my
view, such claims must be rejected on grounds of their lack of objectivity.

Nevertheless, I applaud Maddy’s “Second Philosopher” for her earnest
attempt to apply standard scientific or epistemological criteria following the
lead of other sciences such as biology. It would be very desirable to flesh
this out into a full-scale integration of mathematics with the rest of human
knowledge.

5 Insights from reverse mathematics

For many years I have been involved in a foundational research program
known as reverse mathematics. The purpose of reverse mathematics is to
classify core mathematical theorems according to the set existence axioms
which are needed to prove them. Frequently it turns out that a core math-
ematical theorem is logically equivalent to the weakest such set existence
axiom. Hence the name “reverse mathematics.” The program has revealed
an interesting logical structure within core mathematics. In particular, a
large number of core mathematical theorems fall into a small number of
logical equivalence classes. Moreover, the set existence axioms which arise
in this way are naturally arranged in a hierarchy corresponding roughly to
Gödel’s hierarchy of consistency strengths. The basic reference on reverse
mathematics is my book [6]. Table 1 is from my recent paper [7].

I believe that many results of reverse mathematics are potentially useful
for answering certain questions and evaluating certain programs in the phi-
losophy of mathematics. As regards objectivity in mathematics, I see two
insights to be drawn:

1. A series of reverse mathematics case studies has shown that the bulk of
core mathematical theorems falls at the lowest levels of the hierarchy:
WKL0 and below. The full strength of first-order arithmetic appears
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WKL0 (weak König’s lemma)

RCA0 (recursive comprehension)
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...

Table 1: Some benchmarks in the Gödel hierarchy.
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often but not nearly so often as WKL0. The higher levels up to Π1

2
-CA0

appear sometimes but rarely. For details see [6] and [7].

To me this strongly suggests that higher set theory is, in a sense, largely
irrelevant to core mathematical practice. Thus the program of set-
theoretic foundations is once again called into question.

2. It is known that the lowest levels of the Gödel hierarchy (see Table
1) are conservative over PRA (primitive recursive arithmetic) for Π0

2

sentences. This result combined with reverse mathematics is the basis
of some rather strong partial realizations of Hilbert’s program of fini-
tistic reductionism, as outlined in my paper [5]. The upshot is that a
large portion of core mathematics, sufficient for applications, can be
validated by reference to principles which are finitistically provable. It
seems to me that these results may open a path toward objectivity in
mathematics.

6 Wider cultural significance?

Throughout history we see various trends in the philosophy of mathematics,
and we see various trends in the culture at large. Are there parallels here?
The intrinsicist/subjectivist dichotomy, to which I alluded earlier, may pro-
vide some clues.

Clearly mathematics played a large role in the philosophy of Plato and
Aristotle and in the Renaissance, the Enlightenment, and the 19th century.
However, let us skip ahead to the 20th century.

A thoroughly subjectivistic philosophy of mathematics was Brouwer’s In-
tuitionism. According to Brouwer, mathematics consists of constructions
which are performed in the mind of a “creative subject,” with no neces-
sary relation to reality. Surely there is a parallel with the subjectivism and
collectivism of the early 20th century.

On the intrincist side, consider the rise of religious fundamentalism in the
late 20th century: Islamic fundamentalism in the Muslim world, Christian
and Jewish fundamentalism in the west, Hindu fundamentalism in India.
Could it be that the late 20th century trend toward set-theoretic realism
parallels the worldwide rise of religious fundamentalism? This could make
an interesting topic of dinner conversation this evening . . . .
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