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MINIMAL COVERS AND HYPERDEGREESf1 )

BY

STEPHEN G. SIMPSON

ABSTRACT. Every hyperdegree at or above that of Kleene's  O is the hy-

perjump and the supremum of two minimal hyperdegrees (Theorem 3.1).   There

is a nonempty   ~ZX   class of number-theoretic predicates each of which has mini-

mal hyperdegree (Theorem 4.7).   If  V = L  or a generic extension of L, then

there are arbitrarily large hyperdegrees which are not minimal over any hyper-

degree (Theorems 5.1, 5.2).   If  <?# exists, then there is a hyperdegree such that

every larger hyperdegree is minimal over some hyperdegree (Theorem 5.4).   Sev-

eral other theorems on hyperdegrees and degrees of nonconstructibility are pre-

sented.

1. Introduction. In this paper are proved several results concerning hyperde-

grees. The methods of proof in §§3 and 4 are based on the methods of Gandy

and Sacks [9].  In  §§5 and 7 some ideas of modern set theory are applied. The

significance of the results is discussed in  §6.

In this introductory section, the contents of the paper are summarized and

compared to some of the recent literature on Turing degrees. A Turing degree m

is said to be minimal if m > 0 and there is no Turing degree strictly between m

and 0.  S. B. Cooper [3], [4] has investigated minimal Turing degrees and has

proved the following two theorems.  Let 0' be the complete r.e. Turing degree.

(1) 0' is the supremum of two minimal Turing degrees. (2) Every Turing degree

> 0' is the jump of a minimal Turing degree. The proofs of (1) and (2) in-

volve delicate applications of the priority method.  In §3 below is proved a the-

orem for hyperdegrees which has as corollaries the hyperdegree analogs of (1)

and (2).  It is found that, once the basic techniques from Gandy-Sacks [9] have

been mastered, the proof of the hyperdegree analogs is much easier than the

proofs of (1) and (2).  In particular, the priority method is not used for the hy-

perdegree analogs.  Pursuant to Cooper's theorem (2), L. P. Sasso [28](2) has
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shown that not every minimal Turing degree m has m' = m U 0' where ' de-

notes Turing jump. (Sasso's proof does not use the priority method.) In §2 it

is observed that the analogous statement for hyperdegrees is false.

The results mentioned in the previous paragraph illustrate the general prin-

ciple that the behavior of the hyperdegrees is often less complicated than that of

the Turing degrees (with respect to both simplified methods of proof, and in-

creased regularity of structure). Another manifestation of the same phenomenon

is Spector's result [34] that the hyperdegree analog of the Friedberg-Muchnik

theorem [24, p. 163] is false.   A possible explanation for this phenomenon is

discussed in §6.

It is shown in §4 that there exists a nonempty 2}  class 717 of number-

theoretic predicates such that every element of 717 is of minimal hyperdegree.

(There does not seem to be anything analogous to 717 for Turing degrees.  See al-

so the discussion in §6.) The elements of 717 are made to have the following

strong independence property: If xx, ■ • •, xm,yx,- • -, yn are distinct elements

of 717 and if Kleene's O is not hyperarithmetic in either of the sequences (xx,

• • ; xm) and (yx, • • •, yn), then the hyperdegrees of these two sequences have

greatest lower bound zero.  In particular, any two distinct elements of 717 are hy-

perarithmetically incomparable. As a by-product, the following apparently new

theorem of point-set topology is obtained.  Let n be a positive integer, and let

B be a Borel set in «-dimensional Euclidean space. Then there exist perfect,

closed sets F,, • ■ -, Pn in  1-dimensional Euclidean space such that Px x • • • x

Pn is either a subset of 7? or disjoint from 7?.(3)

A Turing degree b is said to be a minimal cover if there is a Turing degree

a < b such that there is no Turing degree strictly between a and b. C. G.

Jockusch [12] proved that there exists a Turing degree b0 such that every

Turing degree above b0  is a minimal cover.  Jockusch's proof [12] had a fea-

ture which set it apart from the rest of current Turing degree theory; namely, it

used the power set axiom of ZFC (via the result of Paris [23] concerning Gale-

Stewart games).  This raised two questions (see also  [15]): (i) whether the hyper-

degree statement analogous to Jockusch's theorem is provable in ZFC (it is ob-

viously provable from the hypothesis of projective determinacy); (ii) whether

Jockusch's theorem is provable without the power set axiom.  In  §5 below it is

shown that the hyperdegree analog, though probably consistent with ZFC, is

false in a wide class of models of ZFC and hence not provable in ZFC.  This

answers question (i) in the negative.  Subsequently, Harrington and Kechris [39]

(3)By a different proof, the theorem can be sharpened as follows.   Let B  be an arbi-

trary subset of n-dimensional Euclidean space.   Suppose that  B  is nonmeager and has the

property of Baire.   Then the conclusion holds with Px  x • ■ ■ x P   C B.
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answered question (ii) by giving a new proof of Jockusch's theorem which does

not use the power set axiom and so is formalizable in analysis.

In  §7, some results on ¿-degrees (degrees of nonconstructibility) are stated

without proof. The paper ends with some open questions.

The theorems of this paper were mostly proved in February 1971, while the

author was a graduate student at the Massachusetts Institute of Technology under

the supervision of Professor Sacks. We thank Professors Kreisel and Sacks for

helpful discussions.  However, in fairness to Sacks, it should be noted that Sacks

attempted to dissuade the author from thinking about the matters discussed here.

2. Notation and preliminaries. All set-theoretical and logical notation is stan-

dard.  Lower case Greek letters a, ß, • • • are variables ranging over ordinals, ex-

cept co which always denotes the least infinite ordinal. Thus co = {0, 1, 2, • • •}

= the natural numbers.  Letters i, j, k, m, n, • • • are variables ranging over co.

A real is a subset of co.  Letters x, y, z, • • ' are variables ranging over reals.

The basic paper on relative hyperarithmeticity is Spector [34].  See also

Chapter 16 of Rogers [24].  Write x <A y if x is hyperarithmetic in v. Also

x <h y if x <h y A y £h x. Also A/(x) = the complete n{'*  subset of co =

the hyperjump of x. The least nonrecursive ordinal is denoted cjx. The least

ordinal not recursive in x is denoted co*. The following lemmas are well known

(see Rogers [24, pp. 415 and 421]).

Lemma 2.1. (i) x <h y —* cof < co^.

(ii) x <h y -* (coi < co? «-»■ hj(x) <„ y).

Lemma 2.2. Vx 3y(x <h y <h hj(x)).

We write A<2(x) = [y\x <A y A V <A x} = the hyperdegree of x. Lower

case boldface letters a, b, c, d, • • • are variables ranging over hyperdegrees (ex-

cept in the Introduction where they range over Turing degrees).  If a = hd(y)

and b = hd(y) then write a < b for x <h y, a < b for x <h y, a U b for

hd(x © v) where
x © y = {2/1/ Gx}U {2/ + 11/ e y},

and a' = hd(hj(x)). In particular 0 = Acf(0) = the hyperdegree of hyperarithme-

tic reals, and 0' = hd(hj(0)) = the hyperdegree of Kleene's O.

Say b is minimal over a if a < b and there is no hyperdegree c such

that a < c < b.  Also b is a minimal cover if it is minimal over some hyperde-

gree. Also b is minimal if it is minimal over 0.

Theorem 2.3. Let a be a hyperdegree.

(i) a' is not minimal over a.
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(ii) If b is minimal over a then b' = b U a'.

Proof. Part (i) is just a restatement of Lemma 2.2.  For part (ii), let

a = hd(x) and b = hd(y) and suppose b is minimal over a. Then x <A y and,

by 2.2, hj(x) <h y.  Hence, by 2.1, d\ = cof. Put z=y ® hj(x). Then, by

2.1, <J{ < o/v So, by 2.1 again, hj(y) <h z.  But z <A A/O) trivially.  So b'=

hd(hj(y)) = hd(z) = b U a.   D

The end of a proof is indicated by D.

The constructible hierarchy is defined by recursion on the ordinals as fol-

lows: L0 = {0}; La+X = {X C La\X is first-order definable over {La, G> al-

lowing parameters from La}; L^ = \J{La la < X} for limit ordinals X; L =

[J{La\a an ordinal}. This definition is relativized to any class U by modifying

the successor steps as follows: La+1(U) = {X C La(U)\X is first-order definable

over iLa(U), G, La(U) O U) allowing parameters from La(U)}. The following

characterization of relative hyperarithmeticity is well known (cf. Kleene [18],

Boolos-Putnam [2], and Barwise-Gandy-Moschovakis [1]):

x<hy<-*xGL     O).

This characterization will be used throughout the paper but especially in  §5.

Note that L  y(y) is the smallest admissible set containing co and y as elements.

In  §4 it is also useful to keep in mind that aset Z)C2"nLUi  is n}  if and

only if it is Sj  over 7,     ; see Barwise-Gandy-Moschovakis [1]. We sometimes

write La(xx, • • -, xm) for Z,a({(i, />l 1 < i < m A / G x¡}).

3. Pairs of minimal hyperdegrees. The space of all reals 2" = {x be C co} is

given the product topology where 2 = {0, 1} gets the discrete topology.  If T

is a closed subset of 2W, then the code of T is the real   \x(n)\x G T A n < co}

where x(n) = 2" • (X {2'+ x \i G x Pi «} + 1). Thus closed sets are coded by

reals, and a closed set is uniquely determined by its code.

As in Gandy-Sacks [9] and  §2 of Sacks [26], a condition is a perfect,

closed subset of 2W whose code is hyperarithmetic.  Letters F, Q,m • • are vari-

ables ranging over conditions.  Sets of conditions are classified as to definability

by means of the corresponding sets of codes. For instance, if D is a set of con-

ditions, then D is said to be II}  if and only if {code(F)IF G £>} is II}. The

set of all conditions is denoted P.  Let D be a subset of P. D is said to be

dense in P if for every F G P there exists QGD such that Q CP. D is said

to be definable if it is first-order definable over the structure {L^ , G).   As in

Lemma 2.8 of Sacks [26], it can be shown that D is definable if and only if it

is arithmetical in A/(0).  Areal x is said to meet D if ~$P(x GPGD), i.e.,

x G\Jd. A real x is said to be P-generic over ¿w    if x meets every dense,
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definable subset of P. The main theorem of Gandy-Sacks [9] is that if x is P-

generic over Lw    then x is of minimal hyperdegree.

Let £ bea subset of P x P. E is said to be dense in P x P if for every

<P, Q) G P x P there exists (P', Q')GE such that P' GP and Q' G Q.  The

notion of a pair of reals <x, y) being P x P-generic over Z,       is defined in the

obvious way.  It can be shown that if <x, v> is P x P-generic over L       then x

and y are of different minimal hyperdegrees and   {hd(0), hd(x), hd(y), hd(x) U

hd(y)) is an initial segment of the hyperdegrees.(4)  In particular 0' =£ hd(x) U

hd(y).  So the question arises whether there exist minimal hyperdegrees a and b

such that 0' < a U b. Theorem 3.1 below answers this question affirmatively.  In

the proof of Theorem 3.1, reals x, y are constructed such that x and v are

each P-generic over Z,       and are of different hyperdegrees, but the pair <x, y)

is not P x P-generic over Lw .

Theorem 3.1. Let c be a hyperdegree >0'.   Then there exist minimal hy-

perdegrees a azzcf b such that a U b = a' = b' = c.

Proof. We first introduce some special notation. For each condition P

put (P)0 = {x\nGxGP} and (P)x = {xlnGxGP} where zz is the least

natural number such that  3x 3 y(n GxGPAnGyGP). Note that (P)0 and

(P)i  are conditions, (P)0 U (P)x = P, and (P)0 <~\(P)X = 0.  For each condi-

tion P and natural number zzz put P[m] = ((• • '(P)0)0' ' *0)i  where there are

zzz O's. The point of this definition is to insure the following facts:

(i) P[zzz] is a condition, and P[zzz] GP;

(ii) m can be computed from the code of P and any element of P[zzi];

(iii) the code of P[m] can be computed from zzi and the code of P.

Adopt a metarecursive [19] indexing of conditions by natural numbers.

Then the set of indices is n}, and the relation  {{e, P)\e is an index of P} is

n}.  Let (Dn Izz < co> be a natural enumeration of the dense, definable sets of

conditions.  Such an enumeration has the property that the relation  {{e, ri> I e is

an index of an element of Dn] is hyperarithmetic in A/(0).

Let c be a hyperdegree >0', and let z be such that hd(z) = c.  Descend-

ing sequences of conditions (Pn Izz < co> and <Q„ Izz < co> will be defined. Put

P0 = Q0 = 2W = the trivial condition.  Suppose P2n and Q2n have been de-

fined. Let i be the least e such that e is an index of a condition PGDn

such that PGP2n. Put P2n+l =P and Q2n+X = Q2n[2i] if nGz,

Q2n[2i + 1] otherwise.  Let / be the least e such that e is an index of a con-

dition QGDn suchthat QÇQ2n+x. Put Q2n+2 = Q and P2n+2 =

(4)See also Thomason   [37]  where finite, distributive, initial segments of the hyperde-

grees are discussed.
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P2n+iW] if nGz,P2n+x[2j + 1] otherwise.

Let x, y respectively be the unique element of  C\{Pn In < co}, C\{Q„ I

n < co}   respectively.  Put a = hd(x) and b = hd(y). The construction insures

that x and .y are each P-generic over ¿     , so a and b are minimal by Gandy-

Sacks.  Let / g respectively be the sequence (of indices corresponding to) <F„ I

n < co>, (Qn \n < co> respectively.  Since A/(0) is hyperarithmetic in z, fand

g are hyperarithmetic in z.  On the other hand, z is hyperarithmetic in / by

(ii), and by (ii) and (iii) the pair (/ g) is hyperarithmetic in each of the pairs

be, y), (x, hj(0)), <y, A/(0)>.  So a U b = a U 0' = b U 0' = c. Moreover a U

0' = a' and b U 0' = b' by 2.3.  So Theorem 3.1 is proved.    D

Remarks. 1. Theorem 3.1 and its proof were inspired by  §1  of Spector

[35].

2. A corollary of Theorem 3.1 is that every hyperdegree >0' is the hyper-

degree of a hyperjump.  Earlier proofs of this corollary had been given by

Thomason  [36], Harrison  [10], and Gandy (unpublished).

3. It is probable that Cooper's methods in  [3], [4] will yield the theorem

for Turing degrees analogous to 3.1.

4. A 2} class of minimal hyperdegrees. As in §3, the set of all conditions

is denoted P. The goal of this section is to prove Theorem 4.7.

Lemma 4.1. There is a sequence {Da \a < co,> such that

(i) Va < Co, (Da is a dense subset of P);

(ii) the £>a's are uniformly Tl\, i.e., the relation {{x, a)\x is the code of

an element of Da} is ¿Zx over Lw ;

(iii) // x meets Da for each a < co, then for all y G Lw (x) either y G

LWl or x G 7,^00.

Proof. As in Gandy-Sacks [9] let  L be a ramified language appropriate

for describing Lw (x) where x is a real variable.  Let (ta(x) la < cox) be a

natural enumeration of the ranked  L-terms which denote reals. Thus 2" n

7,     (x) = {ta(x) I a < co,}.  For each a < co1  the relation  {{x, y)\ta(x) - y}

is hyperarithmetic, so the functions Xxta(x) are just the "effective Borel" func-

tions from 2"  into 2".

For each a < co,, let Da be the set of all conditions F such that the re-

striction of \xta(x) to F is either a constant function or one-one. The proof of

Lemma 8 of Gandy-Sacks [9] says that Da is dense. Moreover PGDa iff

Vx Vy(x G P A y G F — ta(x) = ta(y))

or
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Vx Vy(x GP A y GP A x±y-> ta(x) * ta(y))

so by inspection the Da's are uniformly flj.  So 4.1(i) and 4.1(h) are proved.

Now suppose x meets Da for each a < ux, and y G Z,     (x). Then y =

ta(x) for some a<co1.  Let PGDa  besuchthat xGP.  If Xxta(x) is con-

stant on P then we have

Vzz(zz e y «-»• \/z(z GP-+nG ta(z)))
and

Vzz(zz Gy+-+3z(zGP AnG ta(z)))

so y is A}; hence, by the Kleene-Souslin theorem [29, p. 185],y is hyperarith-

metic; hence y GLW . If Xxia(x) is one-one on P then we have

Sn(n 6x<-> Vz(z G P A ta(z) = y —*■ zz e z))

and
Vzz(zz G x <-» 3z(z G P A ra(z) = y A zz G z))

so x is A}  in y; hence xGZ     (y) by the Kleene-Souslin theorem relativized

to y. This proves 4.1(iii).    D

Technical Note. By a slight additional argument, the conclusion xGL     (y)

in 4.1(iii) can be strengthened to say that x GZ.     (y).

Write F"   for the Cartesian product P x • • • x P where there are zzz cop-

ies of P.  If E C Pm  then E is said to be dense in Pm  if for each <Pj, • • -,

Pm> G Pm  there exists (P'x, • ■ ; P'm) GE such that P\ x • • • x P'm GPX x

• • • x Px rm-

Let zzz be a positive integer, and B be a A} (equivalently, hyperarithmetic

or "effective Borel") subset of (2w)m. Let EB be the set of all <PX, • • -,

Pm> G Pm  such that either P, x • • • x Pm GB or Px x ■ • • x Pm n 5 = 0.

Sublemma 4.2. £■„ z's cfezzse zzz Pm.

Proof. Let  Lm  be the ramified language appropriate for describing

Lw (xx, • • ; xm) where xx, • • ; xm  axe real variables.  Let F be a ranked

sentence of Lm  such that

B = {<x,, • ■ -, xTO)IZWl(x,, • • -, xm)\= F}.

Then 4.2  is proved by induction on the rank of F. The details are omitted.

See the proof of Lemma 3 of Gandy-Sacks [9].   D

If xx, • ■ -, xm  are reals and E GPm, then <x,, • • -, xm> is said to meet

E if there exists (Px, • • -, Pm) G E such that (jcx, ■ ■ ; xm) GPX x ■ ■ ■ x Pm.

Lemma 4.3. There exist E™'n (1 < m < co, 1 < zz < co, a < coj) such that



52 S. G. SIMPSON

(i) E£'n is a dense subset of ?m+";

(ii) the E™'n,s are uniformly IIJ ;

(iii) if (x,, • • -, xm, v,, • • -, y„) meets E™,n for each a < co,, rAe«

L{jl(xx, • • ; xm) n IWlOi, • ' % J„) = ¿co,-

Proof. Let «rJC*,, • • -, xm), r"0p " ' %>'„)> la < <V be a natural

enumeration of the pairs <f, tn) where tm, t"  respectively is a ranked term

of Lm, Ln respectively which denotes a real.  Thus 2" n Lu (xx, • • ; xm) -

{t™(xx, ■ ■ ; xm)\a< co,} and similarly for n. Define E™'" to be the set of

all <F,, • • -, Pm, Qx, ■ • ; Qn) G Pm+"  such that (a) or (b) or (c) holds:

(a) the restriction of Xxj- • 'Xmt™(xlt • • ; xm) to F, x ••• x Fm  is a

constant function;

(b) the restriction of \yx- • •y„t^(yl, • • %yn) to f2i x * ' ' x Qn is a

constant function;

(c) the (restricted) functions mentioned in (a) and (b) have disjoint ranges.

The density of E™,n in pm+n will now be proved by means of a

splitting argument like the proofs of Lemmas 2 and 8 in Gandy-Sacks [9].  Let

<P,, • • -, Fm, Q,, • • -, Q„) be given. Suppose there is no (Pj, • • -, P'm, Q\,

• • ; Q'n) having property (c) and such that P[ x • • • x Q'n CPX x • • • x Qn.

Define conditions P% (1 < k < m, i < cj, / < 2l) so that F£° = Pk and

pj+1,2j ö pi+i,2j+i ç_pji and Pk+X-2' nF¿+1,2/+1 = 0. By 4.2 this can be

done so that for each i and all /,, • • -, fm < 2',PXX x • • • x Pmm  is either

contained in or disjoint from  {<x,, • • •, xm) \i G tm(xx, • ■ •, xm)}.  But, for

each i, the containment or disjointness is necessarily the same for all jx, • • ;

jm < 2', since otherwise property (c) could be obtained by an application of

4.2 to «2,, • • % Q„) and   {(yx, • • -, yn)\I E f£Oi,", ?„)}• Put P'k =

C\{ U {pk '/ < 2'} I ' < "}• This p'k is a (hyperarithmetically coded) condition

because of the uniformities inherent in the definition of iP'¿\i < co, / < 2').

Moreover <F¡, • • -, P'm) has property (a).

The proof of 4.3(f) has just been given.  Also 4.3(h) and 4.3(iii) are imme-

diate from the definition of the F™'"'s.  So Lemma 4.3 is proved.   D

A set of conditions I is said to be metafinite if the corresponding set of

codes is hyperarithmetic, i.e. an element of L^ . The terminology is meant to

suggest the use of inductive, metarecursive constructions involving metafinite sets

of conditions (cf. Kreisel-Sacks [19]). This idea will bear fruit in the proof of

Lemma 4.6.

Sublemma 4.4. Let I be a metafinite set of conditions.  Let <Em 11 <

m <cS> be such that Em is a dense subset of Pm, and the E^s are uniformly
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n{.  77zezz there exists a metafinite set of conditions I* such that

(i)(VPGZ)(3ßGZ*)OgP,

(ii)(Vßez*)(3PGZ)ocp,
(iii) if xx, • • ; xm are distinct elements of \Jl* then (xx, • • ; xm)

meets Em for each m, 1 < zzz < co.

N.B. \Jl* ■ {x I 3P(x G P G I*)}. Sublemma 4.4 can be proved by means

of a splitting argument which is omitted here.

Sublemma 4.5 (i) Let S be a nonempty 2}  class of reals.   Then

3x(xG5 A cof = "j).

(Ü) {xlcoj = COj}  is   2}.

Proof. Part (i) follows from Candy's basis theorem (Rogers [24, p. 420])

and Lemma 2.1. Part (ii) is in Sacks [27, p. 393].   D

Lemma 4.6. Let Eam (1 <zzz < co, a <wl) be such that Eam is a

dense subset of Pm, and the Eam's are uniformly fl{. Then there is a 2}

class of reals K such that

(i) 3x(xGK);

(ii) Vx(x GK —*■ cof = coi);

(iii) Vx(x GK —► x is not hyperarithmetic);

(iv) if xx, ■ ■ -, xm are distinct elements of K then (xx, • • -, xm) meets

Eam for each a < coj.

Proof. A metarecursive (i.e., AX(L^ ), cf. Barwise-Gandy-Moschovakis

[1] and Kreisel-Sacks [19]) sequence of metafinite sets of conditions (Zala<

coj) will be defined so as to have the following properties:

(a) If a < ß < co,  and PGIa then there exist Q0,QX G Iß such that

ß0C(P)0 and QXG(P)X.(5)

(b) If a < ß < co,   and xGQ G Iß then x G P for some P G Ia.

(c) If a < coj and xx,- • ; xm axe distinct elements of UZa+i then

<xx,-- ;xm) meets Eam.

The definition is begun by putting Z0 = {2e0}. Thus the trivial condition

is the unique element of Z0.  If Ia has been defined then Ia+X  is gotten as

follows.  First put

It= {(P)0\PGIa}U {(P)x\PGIa}.

Then put Ia+X = (I*)* where the * operation is as in Sublemma 4.4 taking

(s)The notation  (P)0, (P)x  was defined at the beginning of the proof of Theorem 3.1.
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I = I* and Em = Eam. Thus property (c) for a is assured, and properties

(a) and (b) hold up to a + 1  if they held up to a.

Now let X be a limit ordinal less than cot, and suppose that Ia has been

defined for each a < X.  It is safe to assume that properties (a) and (b) hold

for a<ß<X.  Let <L be the canonical, A X(LW ) well-ordering of Lu .  Let

<c*„lzz<co> be the <L -least co-sequence of ordinals such that a„<a„+i   and

X = U„<V For each condition P G (J{Ia \a < X} a condition P'c P will be

constructed by means of a splitting argument. Then Zx will be defined by Zx =

{P' IP G \J{Ia \a < X}}. Given P G [J{Ia \a < X}, let k = kP be the least zz

such that PGIa for some a < an. Define Pli (i < co, / < 2') as follows. Put

P00 = P.  If P'y has been defined, then by (a) there exist Q0 and Qx  in

Ia¡c+.   suchthat QQG(Pi% and QxG(Pi')x. Choose such ß0  and £?i  in

a metarecursive fashion, and put Pi+i<2/ m Q0 and p,+ l>2>+1 - Q1. Finally

PUt P'» f\{\J{?*\i<1?}\t.<ù>)

and define Ix as above. Clearly P' GP, and P' is a (hyperarithmetically coded)

condition because of the metarecursive uniformity in the construction of <P'' 1

i'<co, z<2'>. Also P' C niU4t+- '':< WJ so properties (a) and (b) con-

tinue to hold up to X.  So the definition of the Za's and the proof of (a), (b),

and (c) are complete.

Define J = C\i\JIJa< "J- To see that J is 2}, note that it is de-

fined explicitly by

J(x)~(Va<tox)Ba(x)

where the Za's are uniformly metafinite so the predicates

Ba(x)*-+(3PGIa)xGP

axe 2} (in fact Aj) uniformly in a<cor   To see that   /   is nonempty con-

sider an co-sequence of ordinals    <0„l« < co>    such that ßn < ßn+x    and

co, = U„iV Use (a) to pick a descending sequence of conditions P0 DPX D

• • • DPn D* * • such that Pn GIß . Then C\„P„ is an intersection of non-

empty compact sets, hence nonempty.  But C\nPn ÇJ in view of (b).

It is harmless to assume that no element of / is hyperarithmetic. This is

because, for each hyperarithmetic x, the set Dx = {Plx GP} is n}  and dense

in P.  Thus the Z>x's could have been included among the EaX's.

Now define K = J n {xlco, = ux}. Then 4.6(h), 4.6(iii), and 4.6(iv) are

obvious.  Also 4.6(i) follows from 4.5(f). That K is 2}  follows from 4.5(h). D

Technical Note. Sublemma 4.5 is well known. However, its application here

(in the passage from / to K in the proof of 4.6) is essential, for the following

reason.  Let (Ba la < coj> be any metarecursive sequence of (indices for) A\
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sets of reals.  A compactness theorem of Kreisel (later generalized by Barwise)

says that if, for each ß < coj, f]{Ba la < ß} has nonhyperarithmetic elements,

then so does C\{Ba la < a)x}. (This theorem could have been used to give an al-

ternative proof that / is nonempty.) A theorem of Friedman and Harrington (un-

published, but see [6]) says that if C\{Bala< ux} has nonhyperarithmetic ele-

ments, then it has an element x such that hd(x) = hd(hj(0)); hence co* > cox.

In particular J contains such an element. So the use of 4.5 is needed in order

to get K to have property 4.6(h).

Theorem 4.7. There exists a 2}  class of reals 717 such that

(i) 3x(xG7t7);

(ii) \/x(x G M —> hd(x) is minimal);

(iii) if xx,- • ; xm,yx,- • ; yn are distinct elements of 717 then

Lul(xi''"'xm)nLo}1(yi'" ''yn) = L^x- In particular, any two distinct

elements of M are hyperarithmetically incomparable.

Proof. Immediate from Lemmas 4.1, 4.3, 4.6, and the following characteri-

zation of minimal hyperdegrees: hd(x) is minimal iff co* = Wj  and x G L^

and for each y G LWl(x) either y G Lw 1  or x G Lwl(y).   D

Technical Notes. 1. Feferman and'Harrison [10] have shown that there

exists a nonempty, 2}  class of reals Q such that no element of Q is hyperarith-

metic, and any two distinct elements of Q are hyperarithmetically incomparable.

Then class Q does not have the stronger independence property 4.7(iii).  In fact,

if x and y are elements of  Q with co*®* = co,   then hd(x) and hd(y)

have no greatest lower bound., Furthermore, no element of Q has minimal hy-

perdegree.

2. It seems to be an open question whether there exists a 2}  class S

such that  3x(x G S Ax not hyperarithmetic) and   Vx V>(x G S A y G S —*

(¿xQy _ w^ This question has been raised by H. Friedman and the author, in-

dependently.

5. Upper segments of minimal covers. A hyperdegree b is said to be a min-

imal cover if there is a hyperdegree a < b such that there is no hyperdegree

strictly between a and b.  An upper segment of the hyperdegrees is a set of hy-

perdegrees of the form  {bib > b0} where b0 is a fixed hyperdegree.

ZFC is Zermelo-Fraenkel set theory plus the axiom of choice.  In general,

the results of this paper are stated and proved in ZFC. Let V be the universe

of set theory, and let L be the inner model of constructible sets (defined in  §2).

Godel has shown that ZFC + V = L is consistent (provided ZFC is, but this

does not seem problematic).
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Theorem 5.1. Assume  V = L.   Tlien there is no upper segment of mini-

mal covers in the hyperdegrees.

Proof. Let C = [xlx G L „}, i.e., C is the class of all reals x such that

x is constructible by an ordinal recursive in x. Clearly the Fa's of Boolos and

Putnam [2] are elements of C. Hence Vx G L 3y G L (x <h y A y G C) by

the Main Technical Lemma of [2]. So it will suffice to show that Vy GC(hd(y)

is not a minimal cover).   So, suppose x <h y G C.  Then y G L   v; hence

L   „ = L   „(v) since the latter is an admissible set. Hence xGL   v A y G
"í       "i ui

L    (x) so coi < co?.  Hence by 2.1  A/(x) <ft y, so by 2.2 hd(y) is not mini-
ui

mal over hd(x).    D

Remark. 1. The class C used above is of considerable interest to effective

descriptive set theorists.   It can be characterized as the maximum 11}   class of

reals having no perfect subclass.  More folklore on C can be found in Kechris

[17].
2. Theorem 5.1 extends an observation of Jockusch and Soare  [15, p. 858].

V is said to be a generic extension of L if there exist a partially ordered

set F and a subset G CP such that PGL, G is F-generic over L, and  V =

L(G).  For background on forcing and genericity the reader may consult

Shoenfield  [30].  Theorem 5.1 will now be generalized to a wide class of models

of ZFC.

Theorem 5.2. Assume that V is a generic extension of L. Then there is

no upper segment of minimal covers in the hyperdegrees.

Proof. Define a class of reals S by

y G S «-+ Vx(x <h y —* co* < œyx).

As in the proof of Theorem 5.1, it can be shown that y G S —► hd(y) is not a

minimal cover.  So Theorem 5.2 is reduced to the following lemma.

Lemma 5.3. Suppose x is a real in some generic extension of L.  Then

M* <hy£ S).

Proof. Suppose x G L(G) where G is F-generic over L. Let k be the

next cardinal after the cardinality of the powerset of F. Let V* be a generic

extension of V in which k is countable. The main theorem of Sacks [25](6)

reads as follows: Let a be a countable admissible ordinal greater than co; then

3 z(coz, = a A z G S). Applying Sacks' theorem in V*, find a real z such that

k < co*  and z G S.

(6)This theorem was announced in   [26].
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Now suppose the conclusion of Lemma 5.3 fails for x, i.e., there is no y

(in  V) such that x <ft y G S.  Let £ be a forcing term denoting x in L(G).

Let p G G force that x is a real and there is no real y such that x<h y G S.

Since k < co «, there exists G* G L   z(z) suchthat p G G* and G* is P-gen-
wx

eric over L.  Let x* be the real denoted by x in L(G*). Then x* <h z so

V* satisfies 3y(x* <ft y G S).  But the predicate y G 5 is easily seen to be

2j.  So by Shoenfield's absoluteness theorem [29, p. 319], L(G*) satisfies

3y(x* <ft y G S).  This is a contradiction.   D

Write x <ry to mean that x is Turing reducible to y, i.e., x is recursive

in y. Also write x =T y to mean x <r y A y <r x.  Consider the following

hypothetical statement.

Let A be a 2}  class of reals such that

(STD)     Vx Vy(x =T y G A —► x G 4)   and     Vx 3y(x <r y G .4).

Then   3x Vy(x <r y —► y G A).

This hypothetical statement STD is known in the literature as 2} Turing

degree determinateness.  It is known that STD can be proved from the hypothe-

tical statement that Ramsey cardinals exist (Martin [20], [21]).  It can be shown

that STD follows from the hypothetical statement that 0# exists.  (See Solovay

[33] and Martin-Solovay [22] for background material on 0#.)  It is an open

question whether the existence of 0# can be proved from STD.  It is well known

that STD is false assuming  V = L.  (See the proof of Theorem 5.1 and Remark

1 following it.)  So the situation regarding STD may be summarized as follows:

While STD is not provable from the currently accepted axioms of set theory, it

is provable from certain currently studied set-theoretical hypotheses.(7)

Theorem 5.4. Assume STD.   Then there is an upper segment of minimal

covers in the hyperdegrees.

Proof. The proof of Theorem 4.7 can be uniformly relativized. This yields

a 2}  relation M G2W x 2W  such that  Vx3yM(x, y) and   VxVy(Mx,y)—►

hd(y) is minimal over hd(x)).  So let A = {z 13x 3y(M(x, y) A z =T x © y)},

and apply STD.   D

Corollary 5.5. STD is inconsistent with V bang a generic extension of L.

Proof. By 5.2 and 5.4.   D

(7)Indeed, there exists a large body of (useless) statistical evidence that  ZFC + STD

may be consistent.   This evidence consists in the fact that a large number of people have

tried and failed to deduce a contradiction from (systems stronger than) ZFC + STD.
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Remark. The proof of Lemma 5.3 is adapted from H. Friedman's proof of

Theorem 1 of [7].  Recently, Corollary 5.5 has been proved independently by

Friedman [8].  The 2}  class used by Friedman has the virtue that its definition

is short and explicit, in contrast to the proof of Lemma 4.6.

6. Discussion. In this section we attempt to analyze the results of §§2, 3,

4, and 5 by putting them into perspective.  A superficial analysis was already at-

tempted in § 1 where hyperdegrees were compared with Turing degrees. Pre-

cisely the structures H = (H,<:H,jH) and V = (D,<D,jD) were considered

and their first-order theories compared,/) (77) being the set of all Turing degrees

(hyperdegrees) and ^D,jD 0^/>/#) respectively the usual partial ordering and

(hyper) jump operation.  Striking first-order differences between V and ff have

been known for a long time (more such differences were pointed out in  §1), so

the analogy between V and H is far from perfect.

Recent work has established a much more powerful analogy between V =

Vu and the structures Va = <Da,<a,Ja> (or Vca = <Dca, <ca,jcJ) for each

admissible ordinal a, where Da (Dca) is the set of all a-degrees (a-calculability

degrees), <a (<cot) is the partial ordering induced by relative a-recursiveness (a-

calculability), and ja (jca) is the a-jump (a-calculability jump) operation [41],

[42].  (One may also want to enrich all these structures by adding relations cor-

responding to "recursively enumerable in.") The hyperdegrees are embedded here

as a substructure since, for a = cox  and x, y C co, x <A y if and only if x is

a-calculable from y, and the a-calculability jump of x is virtually the same thing

as the hyperjump of x [19].  On the other hand, co is an a-finite set, and not

every a-calculability degree contains a subset of co.  From this point of view it

is entirely reasonable to expect the theory of H to be independent of and simp-

ler than that of Vca since only subsets of co are considered, just as the theory

of Turing degrees of subsets of a fixed 6-element set is much simpler than the

theory of the full structure p.  In support one has the vague feeling that the

proofs of 2.3, 3.1, and 4.7 depend heavily on the fact that co is a-finite.  (A

precise explication of this vague feeling would be welcome.) All this should not

be interpreted as saying that H is less interesting than Vca. It is true that close

analogies between H and V are not to be expected, but we regard ff as having

independent interest.

There are some worthwhile open questions regarding Theorem 4.7 and its

analysis in terms of metarecursion theory (i.e., a-recursion theory with a = co¡

[19]). Jockusch and Soare [13] attempt an analogy between TT\ classes and

Turing degrees on the one hand, and 2}  classes and hyperdegrees on the other.

If one takes this analogy seriously, then 4.7 comes as an unpleasant surprise since
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by [13] every nonempty IT j  class of reals contains an r.e. Turing degree, and

no r.e. Turing degree is minimal. (However, Cooper's methods [4] can be used

to construct a perfect tree T recursive in the Turing degree 0' such that every

path through T is of minimal Turing degree m with m' = m U 0'. Also, it

seems at least plausible that the methods of Jockusch and Soare [14], [16] will

produce a n^ class of at least two reals such that if a and b are the Turing de-

grees of two distinct elements of the class then a > 0 and b > 0 and a O b =

0.) In contrast, from the point of view of metarecursion theory, 4.7 is not at all

surprising since only subsets of co are being considered.  So the question is, do

the elements of M in 4.7 have minimal metadegree or metacalculability degree

(among all subsets of coj)?  If not, what is the correct metarecursive analog of

the theorem [13] that every nonempty IIo class of reals has an element of non-

minimal Turing degree? We thank G. Kreisel for raising these questions.

It is also useful to look at 4.7 in the context of subsystems of analysis.  The

proof of 4.7 is obviously rather complicated and in particular constitutes a refine-

ment of Gandy-Sacks [9]. What is not so obvious is how to analyze the nature

of the refinement, i.e., how to formulate a precise sense in which 4.7 is a refine-

ment. To this end, consider the formal system BI discussed by H. Friedman

[38].  Clearly BI is strong enough to formalize the elements of hyperdegree theo-

ry, e.g., to prove A} = HYP and that nonhyperarithmetic reals exist.  But BI

is not strong enough to prove that A/(0) exists. Hence the contents of [9] can-

not be formalized in BI. Nevertheless, it turns out that the existence of a mini-

mal hyperdegree is provable in BI, and the most direct way to see this is to for-

malize the proof of 4.7 within BI. The point here is that, in BI, one has to go

through the complications of 4.7 in order merely to prove the existence of a min-

imal hyperdegree. (Minor technical point: in the proof of 4.6 in BI, one must

replace the use of (ßn Izz < co) by an application of the Kreisel-Barwise compact-

ness theorem; see the Technical Note following the proof of 4.6.)  So 4.7 is seen

to be a genuine refinement, inasmuch as the construction of a minimal hyperde-

gree via 4.7 can, but the Gandy-Sacks [9] construction cannot, be formalized in

BI.

There is one corollary of § 5 which seems to deserve mention. This is the

existence of a first-order sentence which is true in the structure {H, <w> if V =

L or a generic extension of L, and false in (H, <H) if STD holds.  In particu-

lar this implies that the first-order theory of H is probably not absolute. We

have to say probably here because STD is not known to be consistent with ZFC.

It leaves open whether the word "probably" can be removed.  It also leaves open

whether the first-order theory of V is absolute. These questions will be answered

elsewhere.  Some other questions which remain open are listed in  §7.



60 S. G. SIMPSON

7. Appendix: ¿-degrees and open questions. There has not been a systema-

tic effort to extend the theorems of this paper to notions of degree other than

Turing degree and hyperdegree.  Nevertheless, in this section, we indicate briefly

how some of the theorems extend to degrees of nonconstructibility, or ¿-degrees

as they will be called here.

Write x <L y  if x is constructible from y, i.e., x G L(y). Z-degrees were

introduced by Sacks [26] who proved that if tt2   is countable then there exists

a minimal Z-degree.  This result was improved by Jensen [11] who at the same

time obtained the following analog of 4.7:

Theorem 7.1. There is a Tl\ relation M Ç2W x 2"  such that

(i)   Vxfttf(x) countable -*■ 3yM(x, y));

(ii) Vx Vy(Af(x, y) —► the L-degree of y is minimal over the L-degree

of x);

(iii) if yx,- • ; ym,zx,- ■ -, zn are distinct elements of {y \M(x, y)} rAezz

¿Cvi> * ' '• ym) n U?\t ■ ■ : z„) = £(*)•

Jensen's relation M has the further interesting property that if zzz > 0 and

yi, ' • ; ym  are distinct elements of {y lM(x, y)} then L(yx, • • ; ym) is a

generic extension of L(x). This is in contrast to Technical Note 2 following the

proof of Theorem 4.7.

We now consider the problem of how to extend the auxiliary notions of

hyperdegree theory (such as A/(x) and co*) to ¿.-degree theory. This should of

course be done in such a way as to preserve the basic properties, e.g., those ex-

pressed in Lemmas 2.1 and 2.2.  A number of people including the author seem

to have come to the independent conclusion that Solovay's sharp operation [33]

should play the role for Z-degrees that the hyperjump operation plays for hyper-

degrees.  So for the rest of this section we shall assume that   Vx(x# exists).

Then we have the following analogs of 2.2 and 3.1.

Theorem 7.2. Vx3y(x <L y <L x#).

Theorem 7.3. Suppose x# <L y.   Then there exist zx and z2 whose

L-degrees are minimal over the L-degree of x, and such that zx =L z*=L zx®

z2 =l y-

Note that the relation  {<x, y>ly = x*} is Xl\. The following analog of

the Gandy basis theorem is due to Harrington and Kechris [40]:

Theorem 1.4. Let AG2W  be Xl\ in x, and suppose 3y(y G A A x#=£Ly).

TTzezz  3y(yGA A y* <L x#).
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In Theorems 7.2, 7.3, and 7.4, the sharp operation was taken as the correct

analog of the hyperjump operation.  It is not so clear how to assign ordinals to

¿-degrees in analogy with the assignment co*  for hyperdegrees. Minimal require-

ments on such an assignment are

(x<Ly^\x<-r,y;

(*) I
{x<Ly-+ (X* < X* «-* x# <L y).

Recently Kunen has proved the following theorem (of ZFC): Suppose there exists

a weakly compact(8) cardinal k suchthat (k+)l(-x^ < k+; then x# exists.

(Here k+  denotes the next cardinal after k.) FromthistheoremofKunen.it

follows that the assignment X*= (N^)^** satisfies (*).  (Here Ht  always de-

notes the Nj  of V.) But it is not clear that this assignment of ordinals is the

most natural one satisfying (*).  These last two observations are due to A. S.

Kechris.

At any rate, the mere existence of an assignment satisfying (*) yields the

following result (cf. the proof of Theorem 2.3):

Theorem 7.5. x <L y —> (x* <L y V y#=Ly ® x#).

We end the paper with some open questions.

Question 1. Do there exist two transitive models of ZFC such that 7172

is a generic extension of Mx  and there is an elementary difference between the

partial orderings of hyperdegrees in 717!  and 7172?

Question 2. Do there exist two transitive models of ZFC such that 717,

and 7kf2 have the same ordinals and there is an elementary difference between

the partial orderings of Turing degrees in 717,   and 7172?

(We conjecture that the answers to Question 1 and Question 2 are affirma-

tive.  In fact, we conjecture that (provably in ZFC) the elementary theory of

the partial ordering of Turing degrees or hyperdegrees is recursively isomorphic

to the truth set of second-order arithmetic.)

Question 3. Is there a 2}  class of reals S such that S has a nonhypera-

rithmetic element, and 601®^ = cot  for all x, y G S?

Question 4. Is 2}  hyperdegree determinateness consistent with V being

a generic extension of LI

Question 5 (Sacks [26]).  Does every countable set of hyperdegrees have

a minimal upper bound?

Question 6 (Friedman). Does there exist a real x such that hd(x) is mini-

(8)Weak compactness is taken to imply strong inaccessibility.
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mal and  {x} = A O 7,    (x) for some arithmetical 4 C2U?  If we had such a

real x then Lu (x) would be an co-model for the independence of the Kleene-

Souslin theorem from hyperarithmetic analysis.

Added in proof (April 10, 1975). Recently we have established the conjec-

ture stated after Question 2, thus answering Questions 1 and 2 affirmatively.

Friedman and Harrington have answered Question 3 negatively. We strongly sus-

pect that Question 4 has a negative answer.  Questions 5 and 6 remain open.
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