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Abstract

A mass problem is a set of Turing oracles. If P and Q are mass
problems, we say that P is weakly reducible to Q if every member of Q
Turing computes a member of P . We say that P is strongly reducible to Q

if every member of Q Turing computes a member of P via a fixed Turing
functional. The weak degrees and strong degrees are the equivalence classes
of mass problems under weak and strong reducibility, respectively. We
focus on the countable distributive lattices Pw and Ps of weak and strong
degrees of mass problems given by nonempty Π0

1 subsets of 2ω. Using an
abstract Gödel/Rosser incompleteness property, we characterize the Π0

1

subsets of 2ω whose associated mass problems are of top degree in Pw and
Ps, respectively. Let R be the set of Turing oracles which are random in
the sense of Martin-Löf, and let r be the weak degree of R. We show that
r is a natural intermediate degree within Pw. Namely, we characterize r

as the unique largest weak degree of a Π0

1 subset of 2ω of positive measure.
Within Pw we show that r is meet irreducible, does not join to 1, and is
incomparable with all weak degrees of nonempty thin perfect Π0

1 subsets of
2ω. In addition, we present other natural examples of intermediate degrees
in Pw. We relate these examples to reverse mathematics, computational
complexity, and Gentzen-style proof theory.
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1 Introduction

Among the principal objects of study in recursion theory going back to the
seminal work of Turing [59] and Post [44] have been the upper semilattice DT of
all Turing degrees, i.e., degrees of unsolvability, and its countable sub-semilattice
RT consisting of the recursively enumerable Turing degrees, i.e., the Turing
degrees of recursively enumerable sets of positive integers. See for instance
Sacks [46], Rogers [45], Lerman [36], Soare [56], Odifreddi [42, 43].

A major difficulty or obstacle in the study ofRT has been the lack of natural
examples. Although it has long been known that RT is infinite and structurally
rich, to this day no specific, natural examples of recursively enumerable Turing
degrees are known, beyond the two original examples noted by Turing: 0′ = the
Turing degree of the Halting Problem, and 0 = the Turing degree of solvable
problems. Furthermore, 0′ and 0 are respectively the top and bottom elements
of RT . This lack of natural examples, although well known and a major source
of frustration, has almost never been discussed in print, but see Rogers [45,
Section 9.6]. In any case, the paucity of examples in RT is striking, because
it is well known that most other branches of mathematics are motivated and
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nurtured by a rich stock of natural examples. Clearly it ought to be of interest
to somehow overcome this deficiency in the study of RT .

In recent years it has emerged that there are some natural, important, well-
behaved degree structures, closely related to but different from RT , which do
not suffer from the above mentioned deficiency. Simpson 1999 [50, 51, 54] called
attention to the countable distributive lattices Pw and Ps of weak and strong
degrees of mass problems given by nonempty Π0

1 subsets of 2ω, and noted the
existence of specific, natural degrees which are intermediate between the top
and bottom elements of Pw and Ps. One of the natural intermediate degrees
noted by Simpson was the weak degree r of the set of Turing oracles which
are random in the sense of Martin-Löf [39]. The study of Pw and Ps has been
continued by Simpson [53, 49], Cenzer/Hinman [9], Simpson/Slaman [55], Binns
[3, 4, 5], Binns/Simpson [6], Terwijn [58].

The purpose of the present paper is to elucidate additional properties of
previously noted natural degrees in Pw and Ps, and to present some additional
natural degrees in Pw. Along the way we give a somewhat leisurely introduction
to mass problems in general, and to Pw and Ps in particular, and we review
other known results concerning Pw and Ps.

In a later paper [48] we shall exhibit a natural embedding of the countable
upper semilatticeRT into the countable distributive lattice Pw. This embedding
will be one-to-one and will preserve the top and bottom elements as well as the
partial order relation and least upper bound operation from RT . In this way we
shall see that Pw provides a satisfactory solution to several of the well known
difficulties concerning RT .

2 Recursion-theoretic preliminaries

In this section we establish notation concerning recursive functionals and Turing
degrees.

Throughout this paper we use standard recursion-theoretic notation and
concepts from Rogers [45] and Soare [56]. We write ω = {0, 1, 2, . . .} for the
set of natural numbers. We write ωω for the space of total functions from ω
into ω. We write 2ω for the subspace of ωω consisting of the total functions
from ω into {0, 1}. We sometimes identify a set A ⊆ ω with its characteristic
function χA ∈ 2ω given by χA(n) = 1 if n ∈ A, 0 if n /∈ A. For e, n,m ∈ ω
and f ∈ ωω we write {e}f(n) = m to mean that the Turing machine with
Gödel number e and oracle f and input n eventually halts with output m.
Furthermore, {e}f(n) ↓ means that {e}f(n) is defined, i.e., ∃m ({e}f(n) = m),
and {e}f(n) ↑ means that {e}f(n) is undefined, i.e., ¬∃m ({e}f(n) = m). In
the absence of an oracle f , we write simply {e}(n) = m, etc. For P ⊆ ωω we
consider recursive functionals Φ : P → ωω given by Φ(f)(n) = {e}f(n) for some
e ∈ ω and all f ∈ P and n ∈ ω. In particular, a function h : ω → ω is said
to be recursive or computable if there exists e ∈ ω such that h(n) = {e}(n)
for all n ∈ ω. (The terms “recursive” and “computable” are synonymous.) A
set A ⊆ ω is said to be recursively enumerable if it is the image of a recursive
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function, i.e., A = {m | ∃n (h(n) = m)} for some recursive h : ω → ω.
For f, g ∈ ωω we write f ≤T g to mean that f is Turing reducible to g,

i.e., ∃e ∀n (f(n) = {e}g(n)). The Turing degree of f , denoted degT (f), is the
set of all g such that f ≡T g, i.e., f ≤T g and g ≤T f . The set DT of
all Turing degrees is partially ordered by putting degT (f) ≤ degT (g) if and
only if f ≤T g. Under this partial ordering, the bottom element of DT is
0 = {f ∈ ωω | f is recursive}. It is known that DT has no top element. Within
DT , the least upper bound of degT (f) and degT (g) is given as degT (f ⊕ g)
where (f ⊕ g)(2n) = f(n) and (f ⊕ g)(2n + 1) = g(n) for all n ∈ ω. The
standard, natural example of a Turing degree > degT (f) is given by the Turing
jump operator, degT (f) 7→ degT (f)

′ = degT (f
′), where f ′ is (the characteristic

function of) the Halting Problem relative to f , Hf = {e | {e}f(0) ↓}. A Turing
degree is said to be recursively enumerable if it is degT (f) where f = χA is the
characteristic function of a recursively enumerable set A ⊆ ω. The set of all
recursively enumerable Turing degrees is denoted RT . Clearly RT is countable,
because there are only countably many recursively enumerable sets. It is known
that RT is closed under the least upper bound operation inherited from DT , and
that 0′ and 0 are the top and bottom elements of RT . Thus RT is a countable
upper semilattice with a top and bottom element.

3 Mass problems

A mass problem is a subset of ωω. The underlying idea here is to view a set
P ⊆ ωω as a “problem” with a “solution” that does not necessarily exist and is
not necessarily unique. The “solutions” of P are simply the members of P . In
the special case when P is a singleton set, the “solution” exists and is unique,
and the mass problem corresponds to a Turing degree.

In accordance with the conceptual scheme which was explained in the pre-
vious paragraph, one makes the following definitions.

Definition 3.1. Let P and Q be subsets of ωω. We say that P is weakly
reducible to Q, written P ≤w Q, if for all g ∈ Q there exists f ∈ P such that
f ≤T g. Conceptually this means that, given any “solution” of the mass problem
Q, we can use it as an oracle to compute a “solution” of the mass problem P .
The weak degree of P , written degw(P ), is the set of all Q such that P ≡w Q,
i.e., P ≤w Q and Q ≤w P . The set Dw of all weak degrees is partially ordered
by putting degw(P ) ≤ degw(Q) if and only if P ≤w Q.

Remark 3.2. The concept of weak reducibility goes back to Muchnik [41] and
has sometimes been called Muchnik reducibility.

Definition 3.3. We say that P is strongly reducible to Q, written P ≤s Q,
if there exists e ∈ ω such that for all g ∈ Q there exists f ∈ P such that
f(n) = {e}g(n) for all n ∈ ω. In other words, P ≤s Q if and only if there
exists a recursive functional Φ : Q → P . Note that strong reducibility is the
uniform variant of weak reducibility. Just as for weak degrees, the strong degree
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of P , written degs(P ), is the set of all Q such that P ≡s Q, i.e., P ≤s Q
and Q ≤s P . The set Ds of all strong degrees is partially ordered by putting
degs(P ) ≤ degs(Q) if and only if P ≤s Q.

Remark 3.4. The concept of strong reducibility goes back to Medvedev [40]
and has sometimes been called Medvedev reducibility.

Remark 3.5. Given P,Q ⊆ ωω, a recursive homeomorphism of P onto Q is
a recursive functional Φ : P → Q mapping P one-to-one onto Q such that
the inverse functional Φ−1 : Q → P is also recursive. In this case we say
that P and Q are recursively homeomorphic. In addition, let us say that P is
Turing degree isomorphic to Q if {degT (f) | f ∈ P} = {degT (g) | g ∈ Q}.
Clearly recursive homeomorphism of P and Q implies strong equivalence and
Turing degree isomorphism, either of which implies weak equivalence. No other
implications hold.

Theorem 3.6. Dw and Ds are distributive lattices. They have a bottom ele-
ment, denoted 0, and a top element, denoted ∞.

Proof. The least upper bound of degw(P ) and degw(Q) in Dw or in Ds is given
as degw(P ×Q) where

P ×Q = {f ⊕ g | f ∈ P and g ∈ Q}.

The greatest lower bound of degw(P ) and degw(Q) in Dw is degw(P ∪ Q), or
degw(P +Q) where

P +Q = {〈0〉af | f ∈ P} ∪ {〈1〉ag | g ∈ Q}.

The greatest lower bound of degs(P ) and degs(Q) in Ds is degs(P + Q). It is
straightforward to check distributivity. The bottom element of Dw and Ds is

0 = degw(ω
ω) = degs(ω

ω) = {P ⊆ ωω | ∃f (f ∈ P and f is recursive)}.

The top element of Dw and Ds is ∞ = {∅}, where ∅ denotes the empty set.

Remark 3.7. There are obvious, natural embeddings of DT into Dw and Ds

given by degT (f) 7→ degw({f}) and degT (f) 7→ degs({f}) respectively. Here
{f} is the singleton set whose only member is f ∈ ωω. These embeddings are
one-to-one and preserve 0 and the partial order relation and least upper bound
operation from DT .

Remark 3.8. There is an obvious lattice homomorphism of Ds onto Dw given
by degs(P ) 7→ degw(P ).

Remark 3.9. Dw is canonically isomorphic to the lattice of upward closed sub-
sets of DT under the set-theoretic operations of intersection and union. Namely,
for each P ⊆ ωω, the weak degree degw(P ) ∈ Dw gets mapped to the upward
closure of {degT (f) | f ∈ P} within DT . It follows that Dw is a complete dis-
tributive lattice. We do not know of an analogous set-theoretic representation
of Ds.

Remark 3.10. For a survey of general mass problems, see Sorbi [57].
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4 Recursively bounded Π0
1 sets

In this section we present some well known generalities concerning recursively
bounded Π0

1 sets and almost recursive functions. The reader is advised to skip
most of this section now, and refer to it later as needed.

Definition 4.1. A predicate R ⊆ ωω × ω is said to be recursive if

∃e ∀f ∀n ({e}f(n) = 1 if R(f, n), and {e}f(n) = 0 if ¬R(f, n)).

A set P ⊆ ωω is said to be Π0
1 if there exists a recursive predicate R ⊆ ωω × ω

such that P = {f | ∀nR(f, n)}.

Definition 4.2. A finite sequence of natural numbers σ = 〈σ(0), . . . , σ(k−1)〉 is
called a string of length k. We write lh(σ) = k. The set of all strings is denoted
ω<ω. If σ, τ are strings of length k, l respectively, then the concatenation

σaτ = 〈σ(0), . . . , σ(k − 1), τ(0), . . . , τ(l − 1)〉

is a string of length k + l. Note that σ ⊆ τ if and only if σaρ = τ for some ρ,
and this implies lh(σ) ≤ lh(τ). If σ is a string of length k, then for all f ∈ ωω

we have σaf ∈ ωω defined by (σaf)(i) = σ(i) for i < k, f(i−k) for i ≥ k. Note
that σ ⊂ f if and only if σag = f for some g ∈ ωω. A tree is a set T ⊆ ω<ω

such that, for all σ ⊆ τ ∈ T , σ ∈ T . A path through T is an f ∈ ωω such that
(∀σ ⊂ f) (σ ∈ T ). The set of all paths through T is denoted [T ]. We sometimes
identify a string σ with its Gödel number #(σ) ∈ ω. A tree T is said to be
recursive if {#(σ) | σ ∈ T } is recursive, and Π0

1 if {#(σ) | σ ∈ T } is Π0
1.

Theorem 4.3. P ⊆ ωω is Π0
1 if and only if P = [T ] for some recursive tree T .

Proof. If T is a recursive tree, we have [T ] = {f | ∀nR(f, n)} where R(f, n)
is the recursive predicate asserting that 〈f(0), . . . , f(n − 1)〉 ∈ T . Thus [T ] is
Π0

1. For the converse, assume that P is Π0
1 with index e, i.e., via the Turing

machine with Gödel number e. Thus for all f ∈ ωω we have f ∈ P if and only
if ∀n ({e}f(n) = 1), if and only if ∀n ({e}f(n) 6= 0). Let us write {e}σ(n) = m
to mean that {e}f(n) = m via a Turing machine computation using only oracle
information from σ ⊂ f and halting in ≤ lh(σ) steps. Note that the 4-place
relation {e}σ(n) = m and the 3-place relation {e}σ(n) ↓ are primitive recursive.
We have f ∈ P if and only if ∀n (∀σ ⊂ f) ({e}σ(n) 6= 0), if and only if (∀σ ⊂
f) (∀n ≤ lh(σ)) ({e}σ(n) 6= 0). Thus P = [T ] where T is the primitive recursive
tree consisting of all strings σ such that (∀n ≤ lh(σ)) ({e}σ(n) 6= 0).

Theorem 4.4. If P,Q ⊆ ωω are Π0
1 and Φ : P → ωω is a recursive functional,

then the preimage {f ∈ P | Φ(f) ∈ Q} is Π0
1.

Proof. By Theorem 4.3 let T be a recursive tree such that Q = [T ]. Let e be
an index of Φ, i.e., Φ(f)(n) = {e}f(n) for all f ∈ P and all n. Given f ∈ P , we
have Φ(f) ∈ Q if and only if for all σ ⊂ f and all τ /∈ T there exists n < lh(τ)
such that {e}σ(n) 6= τ(n). It follows that {f ∈ P | Φ(f) ∈ Q} is Π0

1.
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Definition 4.5. A set P ⊆ ωω is said to be recursively bounded if there exists
a recursive function h ∈ ωω such that f(n) < h(n) for all f ∈ P and n ∈ ω.

Remark 4.6. Any subset of a recursively bounded set is recursively bounded.
We shall be concerned with subsets of ωω which are recursively bounded and Π0

1.
In particular, 2ω is recursively bounded and Π0

1, and we are especially interested
in Π0

1 subsets of 2ω. As in Theorem 4.3, P is a Π0
1 subset of 2ω if and only if

P = [T ] for some recursive tree T ⊆ 2<ω. Here 2<ω denotes the set of all strings
of 0’s and 1’s. See also Theorem 4.10 and Corollary 4.11 below.

Theorem 4.7. Assume that P ⊆ ωω is recursively bounded Π0
1, and assume

that Φ : P → ωω is a recursive functional. Then the image {Φ(f) | f ∈ P}
is recursively bounded Π0

1. Moreover, there exists a total recursive functional
Φ∗ : ωω → ωω such that Φ∗ extends Φ, i.e., Φ∗(f) = Φ(f) for all f ∈ P .

Proof. The key to the proof is compactness. Let h ∈ ωω be a recursive function
such that ∀i (∀f ∈ P ) (f(i) < h(i)). Then P is a closed set in the product space

Qh =
∏

i∈ω

{0, 1, . . . , h(i)− 1} = {f ∈ ωω | ∀i (f(i) < h(i))}.

By general topology, Qh is compact. Let T be a recursive tree such that P = [T ].
Let e be an index of Φ, i.e., Φ(f)(n) = {e}f(n) for all f ∈ P and all n. Then
for each n there is a covering of Qh by clopen sets {f | σ ⊂ f} where σ is a
string such that either {e}σ(n) ↓ or σ /∈ T . By compactness of Qh, there exists
a finite subcovering. Since h and T are recursive, a particular finite subcovering
σ0
n, . . . , σ

kn

n can be found effectively. Put

h∗(n) = max
{
{e}σ

i

n(n) + 1
∣∣ i ≤ kn and σi

n ∈ T
}
.

Then h∗ : ω → ω is a recursive function, and Φ(f)(n) < h∗(n) for all f ∈ P
and all n. Thus {Φ(f) | f ∈ P} is recursively bounded. For all g ∈ ωω we
have g ∈ {Φ(f) | f ∈ P} if and only if there is no finite covering of Qh by
strings σ such that either {e}σ(n) ↓ and 6= g(n) for some n, or else σ /∈ T . Thus
{Φ(f) | f ∈ P} is Π0

1. We have now proved the first part of the lemma. To
prove the second part, define a recursive functional Φ∗ : ωω → ωω by putting
Φ∗(f)(n) = {e}σ

i

n(n) where i ≤ kn is minimal such that σi
n ⊂ f and σi

n ∈ T , or
Φ∗(f)(n) = 0 if no such i exists. Clearly Φ∗ is recursive and extends Φ.

Definition 4.8. In general, suppose that to each n ∈ ω we have effectively
associated a finite sequence of ordered pairs (σ0

n,m
0
n), . . . , (σ

kn

n ,mkn

n ) where σi
n ∈

ω<ω and mi
n ∈ ω for each i ≤ kn. Define a recursive functional Φ : ωω → ωω

by putting Φ(f)(n) = mi
n where i ≤ kn is minimal such that σi

n ⊂ f , or
Φ(f)(n) = 0 if no such i exists. Then Φ is called a truth table functional. For
f, g ∈ ωω we say that f is truth table reducible to g, written f ≤tt g, if there
exists a truth table functional Φ such that f = Φ(g). Rogers [45, Chapter 8 and
Section 9.6] provides general background on truth table reducibility.
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Corollary 4.9. Assume that P ⊆ ωω is recursively bounded Π0
1, and assume

that Φ : P → ωω is a recursive functional. Then Φ can be extended to a truth
table functional. In particular, Φ(f) ≤tt f for all f ∈ P .

Proof. In the proof of Theorem 4.7, note that Φ∗ is a truth table functional.

Theorem 4.10. Let P be a recursively bounded Π0
1 set. Then P is recursively

homeomorphic to a Π0
1 subset of 2ω.

Proof. Given a recursively bounded Π0
1 set P ⊆ ωω, put

P ∗ = {Gf | f ∈ P} ⊆ 2ω

where Gf = (the characteristic function of) {2m3n | f(m) = n}. Clearly f 7→
Gf is a recursive homeomorphism of P onto P ∗. By Theorem 4.7, P ∗ is Π0

1.

Corollary 4.11. The weak (strong) degrees of nonempty recursively bounded
Π0

1 sets are the same as the weak (strong) degrees of nonempty Π0
1 subsets of 2ω.

Proof. This is immediate from Theorem 4.10.

Definition 4.12. Given P ⊆ ωω, put

Ext(P ) = {σ | (∃f ∈ P ) (σ ⊂ f)} ⊆ ω<ω,

the set of extendible nodes of P . Note that Ext(P ) is a tree, and [Ext(P )] is the
topological closure of P in ωω. In particular, if P is Π0

1, then P = [Ext(P )].

Lemma 4.13. Let P be a recursively bounded Π0
1 set. Then Ext(P ) is Π0

1.

Proof. Let T be a recursive tree such that P = [T ]. Let h ∈ ωω be a recursive
function such that ∀n (∀f ∈ P ) (f(n) < h(n)). As in the proof of Theorem 4.7,
consider the compact space Qh = {g | ∀n (g(n) < h(n))}. For each σ ∈ ω<ω, we
have σ /∈ Ext(P ) if and only if Qh is covered by clopen sets {g | τ ⊂ g} such that
either τ /∈ T or τ is incompatible with σ. In this case, compactness of Qh implies
the existence of a finite subcovering. Moreover, since h and T are recursive,
such a finite subcovering can be found effectively. Thus {#(σ) | σ /∈ Ext(P )} is
recursively enumerable, i.e., Σ0

1. It follows that Ext(P ) is Π
0
1.

Definition 4.14. For P ⊆ ωω, an isolated point of P is an f ∈ P such that, for
some string τ , f is the unique g ∈ P such that τ ⊂ g. We say that P is perfect
if P has no isolated points.

Theorem 4.15. Let P be a recursively bounded Π0
1 set. If f is an isolated point

of P , then f is recursive.

Proof. By Theorem 4.10 we may assume that P is a Π0
1 subset of 2ω. Let

τ ∈ 2<ω be such that f is the unique g ∈ P such that τ ⊂ g. Then, for all σ ⊇ τ
in 2<ω, we have σ ⊂ f if and only if σ ∈ Ext(P ). By Lemma 4.13, Ext(P ) is
Π0

1, hence A = 2<ω \ Ext(P ) is recursively enumerable. Now, given σ ∈ 2<ω

of length n, we have σ ⊂ f if and only if ρ ∈ A for all ρ ∈ 2<ω of length n
other than σ. Since {ρ ∈ 2<ω | lh(ρ) = n} is of cardinality 2n, it follows that
{σ | σ ⊂ f} is recursively enumerable, so f is recursive.
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Corollary 4.16. Let P be a recursively bounded Π0
1 set. If the weak or strong

degree of P is > 0, then P is perfect.

Proof. For any P ⊆ ωω, we have degw(P ) > 0 or degs(P ) > 0 if and only if P
has no recursive members. If P is recursively bounded Π0

1 and has no recursive
members, then by Theorem 4.15 P has no isolated points, i.e., P is perfect.

Definition 4.17. We say that g ∈ ωω is almost recursive if for all f ≤T g there
exists h ∈ ωω such that ∀n (f(n) < h(n)) and h is recursive. (Turing degrees
which contain almost recursive functions have been known in the literature as
hyperimmune-free Turing degrees.)

Theorem 4.18. Suppose g is almost recursive. Then for all f ≤T g we have
f ≤tt g, i.e., f is truth table reducible to g. In particular, f = Φ(g) for some
total recursive functional Φ : ωω → ωω.

Proof. Let e be such that f(n) = {e}g(n) for all n. Define f∗ ∈ ωω by f∗(n) =
the least k such that {e}τ(n) ↓ where τ = 〈g(0), . . . , g(k)〉. Clearly f∗ ≤T

g. Since g is almost recursive, there exists a recursive function h such that
∀n (f∗(n) < h(n)). Define Φ : ωω → ωω by putting Φ(g)(n) = {e}τ(n) where
τ = 〈g(0), . . . , g(h(n))〉, if {e}τ(n) ↓, and Φ(g)(n) = 0 otherwise, for all g ∈ ωω

and n ∈ ω. Then Φ is a truth table functional, and f = Φ(g).

We end this section with the Almost Recursive Basis Theorem.

Theorem 4.19. If P ⊆ ωω is nonempty, recursively bounded, and Π0
1, then

there exists g ∈ P such that g is almost recursive.

Proof. This is the Hyperimmune-Free Basis Theorem of Jockusch/Soare [26,
Theorem 2.4]. For completeness we present the proof here. Define inductively
a sequence of nonempty Π0

1 sets P = P0 ⊇ P1 ⊇ · · · ⊇ Pe ⊇ Pe+1 ⊇ · · ·
as follows. Put P0 = P . If ∃n (∃f ∈ Pe) ({e}f(n) ↑), fix such an n and put
Pe+1 = {f ∈ Pe | {e}f(n) ↑}. Otherwise, Theorem 4.7 gives us a recursive
function h = he such that ∀n (∀f ∈ Pe) ({e}f(n) < h(n)), and in this case we
put Pe+1 = Pe. By compactness,

⋂
∞

e=0 Pe is nonempty, so let g ∈
⋂

∞

e=0 Pe. By
construction, g is almost recursive.

5 The lattices Pw and Ps

In this section we introduce the lattices Pw and Ps which are the focus of this
paper.

Remark 5.1. There is a large recursion-theoretic literature concerning Tur-
ing degrees of members of Π0

1 subsets of ωω, and especially Turing degrees of
members of recursively bounded Π0

1 subsets of ωω. See for instance the classic
paper of Jockusch and Soare [26] and the survey article by Cenzer and Remmel
[10]. Mindful of this literature, we find it natural to view nonempty recursively
bounded Π0

1 sets as mass problems.
By Theorem 4.10 and Corollary 4.11, it suffices to consider Π0

1 subsets of 2ω.
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Definition 5.2. Pw (Ps) is the set of weak (strong) degrees of nonempty re-
cursively bounded Π0

1 sets. By Corollary 4.11, Pw (Ps) is the same as the set of
weak (strong) degrees of nonempty Π0

1 subsets of 2ω.

Theorem 5.3. Pw and Ps are countable distributive lattices with a top and
bottom element, denoted 1 and 0 respectively.

Proof. If P,Q ⊆ ωω are Π0
1 and recursively bounded, then so are P ∩ Q, P ∪

Q, P × Q, and P + Q. In particular, Pw and Ps are closed under the least
upper bound and greatest lower bound operations inherited from the distributive
lattices Dw and Ds, respectively. It follows that Pw and Ps are distributive
lattices. Clearly Pw and Ps are countable, because there are only countably
many Π0

1 subsets of 2ω. Clearly 0 = degw(2
ω) = degs(2

ω) is the bottom element
of Pw and of Ps. It remains to show that Pw and Ps have a top element. Let PA
be the set of completions of Peano Arithmetic. Identifying sentences with their
Gödel numbers, we may view PA as a Π0

1 subset of 2ω. Since Peano Arithmetic
is consistent, PA is nonempty. It is known that every nonempty Π0

1 subset of 2ω

is ≤s PA, hence ≤w PA. We shall obtain this result and much more in Section 6
below, but see Jockusch/Soare [26]. Let us use 1 ambiguously to denote either
degw(PA) or degs(PA). Thus 1 is the top element both of Pw and of Ps.

Remark 5.4. There is an obvious lattice homomorphism of Ps onto Pw given by
degs(P ) 7→ degw(P ). Simpson and Slaman [55] have shown that every nonzero
weak degree in Pw contains infinitely many strong degrees in Ps.

Remark 5.5. In the context of recursively bounded Π0
1 sets, there is reason to

view weak reducibility as the mass problem analog of Turing reducibility, while
strong reducibility is the mass problem analog of truth table reducibility. See
Rogers [45, Sections 8.3 and 9.6] and Simpson [54, Remark 3.12]. Namely, if
Q is recursively bounded Π0

1 and P ≤s Q, then by Corollary 4.9 the recursive
functional Φ : Q → P is given by truth tables, hence for each g ∈ Q there
exists f = Φ(g) ∈ P such that f ≤tt g, i.e., f is truth table reducible to g.
Thus we see that Pw is analogous to RT , the recursively enumerable Turing
degrees, while Ps is more closely analogous to Rtt, the recursively enumerable
truth table degrees.

Remark 5.6. It is known that the countable distributive lattices Pw and Ps

are structurally rich. Binns/Simpson [3, 6] have shown that every countable
distributive lattice is lattice embeddable in every nontrivial initial segment of
Pw. A similar conjecture for Ps remains open, although partial results in this
direction are known. Binns [3, 4] has obtained the Pw and Ps analogs of the
Sacks Splitting Theorem. Namely, for all b > 0 in Pw there exist b1,b2 < b

in Pw such that sup (b1,b2) = b, and similarly for Ps. Cenzer/Hinman [9]
have obtained the Ps analog of the Sacks Density Theorem. Namely, for all
a < b in Ps there exists c in Ps such that a < c < b. A similar conjecture
for Pw remains open. Binns [3, 4] has improved the result of Cenzer/Hinman
[9] by showing that for all a < b in Ps there exist b1,b2 < b in Ps such that
a < inf (b1,b2) < sup (b1,b2) = b. These structural results for Pw and Ps
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are proved by means of priority arguments. They invite comparison with the
older, known results for recursively enumerable Turing degrees, which were also
proved by priority arguments.

6 Weak and strong completeness

In this section we obtain additional information concerning sets which are of
weak or strong degree 1 in Pw or Ps, respectively. We show that, if P is a
nonempty recursively bounded Π0

1 set, then degw(P ) = 1 if and only if P is
Turing degree isomorphic to PA, and degs(P ) = 1 if and only if P is recursively
homeomorphic to PA.

By Theorem 4.10 and Corollary 4.11, it suffices to consider Π0
1 subsets of 2ω.

Definition 6.1. Let P be a nonempty recursively bounded Π0
1 set. P is weakly

complete if degw(P ) = 1, i.e., P ≥w Q for all nonempty Π0
1 sets Q ⊆ 2ω. P is

strongly complete if degs(P ) = 1, i.e., P ≥s Q for all nonempty Π0
1 sets Q ⊆ 2ω.

These notions have sometimes been referred to as Muchnik completeness and
Medvedev completeness, respectively.

Remark 6.2. We have seen in the proof of Theorem 5.3 that PA is strongly
complete, hence weakly complete. In addition, there are natural examples of re-
cursively bounded Π0

1 sets which are weakly complete but not strongly complete.
See Definition 7.9 and Remark 7.10 below.

Theorem 6.3. Let P and Q be nonempty Π0
1 subsets of 2ω.

1. If P and Q are strongly complete, then P is recursively homeomorphic to
Q.

2. If P is strongly complete, then we can find a recursive functional Φ : P →
Q which is onto Q, i.e., Q = {Φ(f) | f ∈ P}.

3. P is strongly complete if and only if P is productive, i.e., given an index
of a nonempty Π0

1 set P ′ ⊆ P we can effectively find a canonically indexed
clopen set U ⊆ 2ω such that both P ′ ∩ U and P ′ \ U are nonempty.

Proof. See Simpson [54, Section 3].

Corollary 6.4. Let P be a nonempty recursively bounded Π0
1 set. If P is

strongly complete, then the set of Turing degrees of members of P is upward
closed.

Proof. For any P , the set of Turing degrees of members of P × 2ω is obviously
upward closed. Now assume that P is strongly complete. Then clearly P × 2ω

is strongly complete. Hence, by Theorem 4.10 and part 1 of Theorem 6.3, P
and P ×2ω are recursively homeomorphic to each other. Since the set of Turing
degrees of members of P × 2ω is upward closed, it follows that the set of Turing
degrees of members of P is upward closed.

11



Corollary 6.5. Let P be a nonempty recursively bounded Π0
1 set. Then P is

strongly complete if and only if P is recursively homeomorphic to PA.

Proof. Recall that PA is the set of completions of Peano Arithmetic. By the
Gödel/Rosser Theorem for Peano Arithmetic, PA is productive. Hence, by
part 3 of Theorem 6.3, PA is strongly complete. Our corollary now follows by
Theorem 4.10 and part 1 of Theorem 6.3.

The next corollary is originally due to Robert M. Solovay.

Corollary 6.6. The set of Turing degrees of members of PA is upward closed.

Proof. This is immediate from Corollaries 6.4 and 6.5.

Remark 6.7. Instead of Peano Arithmetic, we could have used any consistent
recursively axiomatizable theory T which is effectively essentially incomplete,
i.e., has the property given by the Gödel/Rosser Theorem. The required prop-
erty of T is as follows. Given a consistent recursively axiomatizable theory T ′

extending T , we can effectively find a sentence ϕ in the language of T which is
independent of T ′, i.e., T ′ 6⊢ ϕ and T ′ 6⊢ ¬ϕ. Compare this with our notion of
productivity from part 3 of Theorem 6.3, which may be viewed as an abstract
Gödel/Rosser property for Π0

1 subsets of 2ω.

Theorem 6.8. Let P be a nonempty recursively bounded Π0
1 set. Then P is

weakly complete if and only if P is Turing degree isomorphic to PA.

Proof. By Corollary 6.5, PA is strongly complete. (This is the only property
of PA which we shall need.) Hence PA is weakly complete, so any P which is
Turing degree isomorphic to PA is weakly complete. For the converse, let P be
a nonempty Π0

1 subset of 2ω which is weakly complete. In particular PA ≤w P .
It follows by Corollary 6.6 that the Turing degrees of members of P are included
in the Turing degrees of members of PA.

In order to finish the proof of Theorem 6.8, we need the following lemma,
which exposes an interesting relationship between weak reducibility and strong
reducibility.

Lemma 6.9. Let P and Q be nonempty recursively bounded Π0
1 sets. If P ≤w Q,

then we can find a nonempty Π0
1 set Q ⊆ Q such that P ≤s Q.

Proof. By the Almost Recursive Basis Theorem 4.19, let g ∈ Q be almost re-
cursive. Since P ≤w Q, let f ∈ P be such that f ≤T g. By Theorem 4.18 we
can find a total recursive functional Φ : ωω → ωω such that f = Φ(g). Put
Q = {g ∈ Q | Φ(g) ∈ P}. By Theorem 4.4 we have that Q is a Π0

1 subset of Q.
Since f = Φ(g) ∈ P , we have g ∈ Q, hence Q is nonempty. Putting Φ = the
restriction of Φ to Q, we have Φ : Q→ P , so P ≤s Q.

Now, since our P is ≥w PA, apply Lemma 6.9 to get a nonempty Π0
1 set

P ⊆ P such that P ≥s PA. Since PA is strongly complete, P is strongly
complete. Hence, by Theorem 4.10 and part 1 of Theorem 6.3, P is recursively

12



homeomorphic to PA. It follows that P is Turing degree isomorphic to PA. We
now have {degT (f) | f ∈ P} ⊆ {degT (f) | f ∈ PA} = {degT (f) | f ∈ P} ⊆
{degT (f) | f ∈ P}, so P is Turing degree isomorphic to PA. This completes the
proof of Theorem 6.8.

Corollary 6.10. Let P and Q be nonempty recursively bounded Π0
1 sets. If P

and Q are weakly complete, then P is Turing degree isomorphic to Q.

Proof. By Theorem 6.8, P and Q are Turing degree isomorphic to PA, hence to
each other.

We can now strengthen Corollary 6.4 as follows.

Corollary 6.11. Let P be a nonempty recursively bounded Π0
1 set. If P is

weakly complete, then the set of Turing degrees of members of P is upward
closed.

Proof. This is immediate from Corollary 6.6 and Theorem 6.8.

7 Π0
1 sets of positive measure

Definition 7.1. The fair coin probability measure on 2ω is defined by

µ({f ∈ 2ω | f(n) = m}) =
1

2

for all m ∈ {0, 1} and n ∈ ω. A set P ⊆ 2ω is said to be of positive measure if
µ(P ) > 0.

In this section we prove a “non-helping” theorem for weak and strong degrees
of subsets of 2ω which are of positive measure.

Lemma 7.2. Let Fn, n ∈ ω be a sequence of finite subsets of ω of bounded
cardinality. Put

S =
∏

n∈ω Fn = {f ∈ ωω | ∀n (f(n) ∈ Fn)} ⊆ ωω.

Let P ⊆ 2ω be of positive measure. Let Q ⊆ ωω be arbitrary. If S ≤s P × Q,
then S ≤s Q.

Proof. We generalize an argument of Jockusch/Soare [26, Theorem 5.3]. Let
k ≥ 2 be such that, for all n, Fn is of cardinality < k. Our hypothesis concerning
P is that µ(P ) > 0. By measure theory, let V ⊇ P be an open set in 2ω such that
µ(V \P ) < µ(P )/4k. Let U ⊆ V be a clopen set such that µ(V \U) < µ(P )/4k.
It follows that µ(U \P ) < µ(U)/k. Note that µ(U) is a positive rational number.
Since S ≤s P × Q, let Φ be a recursive functional such that Φ(f ⊕ g) ∈ S
for all f ∈ P and g ∈ Q. Given g ∈ Q and n ∈ ω, we can effectively find
m = Ψ(g)(n) ∈ ω such that µ({f ∈ U | Φ(f ⊕g)(n) = m}) > µ(U)/k. It follows
that m ∈ Fn. Thus Ψ is a recursive functional, and Ψ(g) ∈ S for all g ∈ Q.
Hence S ≤s Q.
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Lemma 7.3. Same as Lemma 7.2 with strong reducibility, ≤s, replaced by weak
reducibility, ≤w.

Proof. Assume S ≤w P ×Q. Fix g ∈ Q. We have S ≤w P × {g}. By countable
additivity of µ, since there are only countably many recursive functionals, there
exists Pg ⊆ P such that µ(Pg) > 0 and S ≤s Pg ×{g}. By Lemma 7.2 it follows
that S ≤s {g}. This implies S ≤w Q, since g ∈ Q is arbitrary.

Definition 7.4. For A,B ⊆ ω we say that f ∈ 2ω separates A,B if f(n) = 1
for all n ∈ A, and f(n) = 0 for all n ∈ B. A nonempty Π0

1 set S ⊆ 2ω is said
to be separating if there exist recursively enumerable sets A,B ⊆ ω such that
S = {f ∈ 2ω | f separates A,B}. In this case we say that the weak degree
degw(S) and the strong degree degs(S) are separating.

Theorem 7.5. Let S, P,Q be Π0
1 subsets of 2ω. Assume that S is separating

and that P is of positive measure. Let s,p,q ∈ Pw be the weak degrees of S, P,Q
respectively. If s ≤ sup (p,q), then s ≤ q. The same holds for strong degrees.

Proof. It suffices to note that S is of the form required by Lemmas 7.2 and
7.3. Namely, S =

∏
n∈ω Fn where Fn = {1} if n ∈ A, {0} if n ∈ B, {0, 1}

otherwise.

Corollary 7.6. Let P and Q be nonempty Π0
1 subsets of 2ω. Assume that P is

of positive measure. Let p,q ∈ Pw be the weak degrees of P,Q respectively. If
q < 1, then sup (p,q) < 1. The same holds for strong degrees.

Proof. By Theorem 7.5, it suffices to note that 1 is separating. Namely, 1 is
the weak or strong degree of the Π0

1 set S = {f ∈ 2ω | f separates A,B} where
A = {n | {n}(n) = 0} and B = {n | {n}(n) = 1}. Or, we could take A and
B to be the set of Gödel numbers of provable and refutable sentences of Peano
Arithmetic. See also Jockusch/Soare [26] and Simpson [54, Section 3].

Corollary 7.7. Let P be a Π0
1 subset of 2ω of positive measure. Let p ∈ Pw be

the weak degree of P . Then p < 1. The same holds for strong degrees.

Proof. This follows from Corollary 7.6 by setting q = 0.

Remark 7.8. In [48] we shall give an example of a Π0
1 set Q ⊆ 2ω whose Turing

upward closure Q̂ = {f ∈ 2ω | (∃g ≤T f) (g ∈ Q)} is of positive measure yet
does not contain any Π0

1 set of positive measure.

Definition 7.9. Following Jockusch [25], for k ≥ 2 we define

DNRk = {f ∈ ωω | ∀n (f(n) < k and f(n) 6= {n}(n))}.

Thus DNRk is the set of k-bounded, diagonally nonrecursive functions. Note
that DNRk is recursively bounded and Π0

1.

Remark 7.10. By Jockusch [25, Theorem 5] each DNRk is weakly complete,
i.e., of weak degree 1. Let d∗

k ∈ Ps be the strong degree of DNRk. It is
well known (see also the proof of Corollary 7.6 above) that DNR2 is strongly
complete, i.e., d∗

2 = 1 in Ps. By Jockusch [25, Theorem 6] we have

14



1 = d∗

2 > d∗

3 > · · · > d∗

k > d∗

k+1 > · · ·

in Ps. See also Simpson [54, Remark 3.21].

We have the following new result.

Corollary 7.11. Let P and Q be Π0
1 subsets of 2ω. Assume that P is of

positive measure. Let p,q ∈ Ps be the strong degrees of P,Q respectively. For
each k ≥ 2, if d∗

k ≤ sup (p,q), then d∗

k ≤ q. In particular we have

1 = sup (p,d∗

2) > sup (p,d∗

3) > · · · > sup (p,d∗

k) > sup (p,d∗

k+1) > · · ·.

Proof. It suffices to note that DNRk is of the form required by Lemma 7.2.
Namely, DNRk =

∏
n∈ω Fn where Fn = {m < k | {n}(n) 6= m}.

Remark 7.12. In Corollary 7.11, we do not know whether it is necessarily the
case that d∗

3 ≥ p, or d∗

k ≥ p for all k ≥ 3.

8 Π0
1 sets of random reals

In this section we exhibit a particular degree r ∈ Pw and note some of its
degree-theoretic properties.

As in Section 7, let µ denote the fair coin probability measure on 2ω.

Definition 8.1. An effective null Gδ is a set S ⊆ 2ω of the form S =
⋂

n∈ω Un

where {Un}n∈ω is a recursive sequence of Σ0
1 subsets of 2ω with µ(Un) ≤ 1/2n

for all n. A point f ∈ 2ω is said to be random if f /∈ S for all effective null Gδ

sets S ⊆ 2ω.

Remark 8.2. The notion of randomness in Definition 8.1 is due to Martin-
Löf [39] and has been studied extensively. It appears to be the most general
and natural notion of algorithmic randomness for infinite sequences of 0’s and
1’s. It has also been called Martin-Löf randomness (Li/Vitányi [37, Section
2.5]), 1-randomness (Kurtz [28], Kautz [27]), and the NAP property (Kučera
[29, 30, 31, 32, 33, 34, 35]). It is closely related to Kolmogorov complexity (see
Li/Vitányi [37]).

The following theorem is well known. It says that the union of all effective
null Gδ sets is an effective null Gδ set.

Theorem 8.3. {f ∈ 2ω | f is not random} is an effective null Gδ set.

Proof. This result is essentially due to Martin-Löf [39]. See also Kučera [29,
Theorems 1 and 2]. For the sake of completeness, we present the proof here.
For each e ∈ ω define a Σ0

1 set Ve ⊆ 2ω as follows. Compute {e}(e). If {e}(e) is
undefined, Ve = the empty set. If {e}(e) = m, let Ve = the Σ0

1 subset of 2ω with
Σ0

1 index m enumerated so long as its measure is ≤ 1/2e. Put R =
⋃

∞

k=0 Rk

where Rk = 2ω \
⋃

∞

e=k+1 Ve. We have

µ(2ω \Rk) ≤
∞∑

e=k+1

µ(Ve) ≤
∞∑

e=k+1

1

2e
=

1

2k
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and Rk is uniformly Π0
1. Thus 2ω \ R =

⋂
∞

k=0(2
ω \ Rk) is an effective null Gδ

set. Hence every random f ∈ 2ω belongs to R. We claim that, conversely, every
f ∈ R is random. To see this, consider an effective null Gδ set S =

⋂
∞

n=0 Un,
where µ(Un) ≤ 1/2n. It suffices to show that R ∩ S = ∅. Given k ∈ ω, let
e ≥ k + 1 be such that, for all n, {e}(n) is a Σ0

1 index of Un. In particular,
{e}(e) is a Σ0

1 index of Ue. Since µ(Ue) ≤ 1/2e, it follows that Ve = Ue. Since
Rk is disjoint from Ve, it follows that Rk is disjoint from S. But k is arbitrary,
so R is disjoint from S. This completes the proof that R = {f ∈ 2ω | f is
random}.

Corollary 8.4. There exists a nonempty Π0
1 set

P ⊆ R = {f ∈ 2ω | f is random}.

Proof. Trivially any effective null Gδ set is Π0
2. In particular, by Theorem 8.3,

R is Σ0
2. Hence R is a union of Π0

1 sets. Let P be any one of these Π0
1 sets.

Alternatively, we could let P be any one of the sets Rk as in the proof of Theorem
8.3. Each of these sets is Π0

1.

Notation 8.5. We use the following notation for shifts: f (k)(n) = f(k + n).
Note that f 7→ f (k) is a mapping of 2ω into 2ω.

Lemma 8.6. For all f ∈ 2ω and k ∈ ω, f is random if and only if f (k) is
random.

Proof. The proof is straightforward.

The next lemma is an effective version of the Zero-One Law of probability
theory.

Lemma 8.7. Let f be random. Let P ⊆ 2ω be Π0
1 with µ(P ) > 0. Then

∃k (f (k) ∈ P ).

Proof. This is due to Kučera [29]. For completeness we present the proof here.
Let P be the set of paths through T , where T ⊆ 2<ω is a recursive tree. Put

T̃ = {σa〈i〉 | σ ∈ T, i ∈ {0, 1}, σa〈i〉 /∈ T }.

For n ≥ 1, put

T n = {τ1
a · · ·aτm

aσ | m < n, τ1, . . . , τm ∈ T̃ , σ ∈ T },

and let Pn = [T n], the set of paths through T n. We have

µ(Pn) = 1− (1 − µ(P ))n,

hence 2ω \
⋃

∞

n=1 P
n is an effective null Gδ set. Hence f ∈ Pn for some n. Hence

for some m < n and τ1, . . . , τm ∈ T̃ we have f = τ1
a · · ·aτm

ag where g ∈ P .
Putting k = length of τ1

a · · ·aτm, we have g = f (k).
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Lemma 8.8. Let f ∈ 2ω be random. Then for all Π0
1 sets P ⊆ 2ω, if f ∈ P

then µ(P ) > 0.

Proof. Since P is Π0
1, let P =

⋂
s Ps where Ps, s ∈ ω, is a recursive sequence of

canonically indexed clopen sets in 2ω with

P0 ⊇ P1 ⊇ · · · ⊇ Ps ⊇ Ps+1 ⊇ · · · .

Assume µ(P ) = 0. By countable additivity, lims µ(Ps) = 0. Define a recursive
function h : ω → ω by h(n) = least s such that µ(Ps) ≤ 1/2n. Putting
Un = Ph(n), we see that P =

⋂
n Un is an effective null Gδ set. Hence f /∈ P , a

contradiction.

Lemma 8.9. Let P and R be as in Corollary 8.4. Then µ(P ) > 0, and P ≡w R.

Proof. By Lemma 8.8 µ(P ) > 0, and by Lemma 8.7 (∀f ∈ R)∃k (f (k) ∈ P ).
Thus P ≤w R. On the other hand, since P ⊆ R, P ≥w R, so P ≡w R.

Theorem 8.10. Let r = degw(R) where R = {f ∈ 2ω | f is random}. Then r

can be characterized as the unique largest weak degree of a Π0
1 set P ⊆ 2ω such

that µ(P ) > 0.

Proof. By Lemma 8.7 we have that, for any Π0
1 set P ⊆ 2ω with µ(P ) > 0,

P ≤w R. By Corollary 8.4 let P ′ be a nonempty Π0
1 subset of R. By Lemma

8.9 we have µ(P ′) > 0 and P ′ ≡w R. This completes the proof.

Remark 8.11. Theorem 8.10 tells us that, among all weak degrees of Π0
1 sets

of positive measure, there exists a unique largest degree. Simpson/Slaman [55]
and independently Terwijn [58] have shown that, among all strong degrees of
Π0

1 sets of positive measure, there is no largest or even maximal degree.

We end this section by noting some additional properties of the particular
weak degree r which was defined in Theorem 8.10.

Theorem 8.12. Let r be the weak degree of R = {f ∈ 2ω | f is random}. Then:

1. r ∈ Pw, and 0 < r < 1.

2. For all q ∈ Pw, if q < 1 then sup (q, r) < 1.

3. For all q1,q2 ∈ Pw, if r ≥ inf (q1,q2) then either r ≥ q1 or r ≥ q2.

4. There is no separating s ∈ Pw such that 0 < s ≤ r.

Proof. Since R has no recursive members, r > 0. Theorem 8.10 implies that
r ∈ Pw and contains a Π0

1 subset of 2ω of positive measure. By Corollary 7.7
it follows that r < 1, completing the proof of part 1 of the theorem. Corollary
7.6 gives part 2. To prove part 3, let Q1, Q2 be Π0

1 subsets of 2ω of weak degree
q1,q2 respectively. We are assuming that R ≥w Q1∪Q2. By Corollary 8.4 let P
be a nonempty Π0

1 subset of R. Then P ≥w Q1∪Q2. By Lemma 6.9 we can find
a nonempty Π0

1 set P ⊆ P such that P ≥s Q1 ∪ Q2. Thus there is a recursive
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functional Φ : P → Q1 ∪ Q2. Put P 1 = P ∩ Φ−1(Q1) and P 2 = P ∩ Φ−1(Q2).
We have P = P 1 ∪ P 2, hence at least one of P 1 and P 2 is nonempty, say P 1.
Then P 1 ≥s Q1. Note also that P 1 is a Π0

1 subset of R, hence by Lemma 8.9
we have P 1 ≡w R. It follows that R ≥w Q1, and this proves part 3. Part 4 is a
consequence of Theorem 7.5.

Corollary 8.13. The weak degree r ∈ Pw is meet irreducible and does not join
to 1 in Pw.

Proof. This follows from parts 1, 2 and 3 of Theorem 8.12.

9 Thin Π0
1 subsets of 2ω

In this section we discuss an interesting class of degrees in Pw, each of which is
incomparable with the particular degree r ∈ Pw of Section 8.

We begin with some generalities concerning thin Π0
1 sets.

Definition 9.1. A Π0
1 set Q ⊆ ωω is said to be thin if, for all Π0

1 sets Q′ ⊆ Q,
the set-theoretic difference Q \Q′ is Π0

1.

Lemma 9.2. Let Q be a recursively bounded Π0
1 set. Then Q is thin if and only

if all Π0
1 subsets of Q are trivial, i.e., they are of the form

Q′ = {g ∈ Q | σ1 ⊂ g or · · · or σk ⊂ g}

for some finite set of strings σ1, . . . , σk.

Proof. If Q is any Π0
1 set, and if Q′ ⊆ Q is trivial, then clearly Q′ and Q\Q′ are

Π0
1. It remains to prove that ifQ is a recursively bounded Π0

1 set, and ifQ′ ⊆ Q is
such that Q′ and Q\Q′ are Π0

1, then Q
′ is trivial. To see this, let h be a recursive

function such that ∀n (∀g ∈ Q) (g(n) < h(n)). As in the proof of Theorem 4.7,
note that Q is a closed set in the compact space Qh = {g | ∀n (g(n) < h(n))}.
By Theorem 4.3, since Q′ and Q \ Q′ are Π0

1, let T
′ and T ′′ be recursive trees

such that Q′ = [T ′] and Q \ Q′ = [T ′′]. Then Qh is covered by clopen sets of
the form {g | τ ⊂ g} where either τ /∈ T ′ or τ /∈ T ′′. Let τ1, . . . , τl be a finite
subcovering. Let σ1, . . . , σk consist of those τi, 1 ≤ i ≤ l, such that τi /∈ T ′′.
Then Q′ = {g ∈ Q | σ1 ⊂ g or · · · or σk ⊂ g}, so Q′ is trivial.

Theorem 9.3. Let Q be a nonempty thin recursively bounded Π0
1 set. Then

f ∈ Q is isolated if and only if f is recursive. In particular, Q is perfect if and
only if and only if Q has no recursive members, i.e., degw(Q) > 0.

Proof. If f ∈ Q is isolated, then f is recursive by Theorem 4.15. Conversely,
suppose f ∈ Q is recursive. Then the singleton set {f} is a Π0

1 subset of Q.
Since Q is thin and recursively bounded Π0

1, by Lemma 9.2 there is a finite set
of strings σ1, . . . , σk such that f is the unique g ∈ Q such that σ1 ⊂ g or · · · or
σk ⊂ g. It follows that f is isolated. This proves the first part of the theorem.
The second part follows immediately.
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Lemma 9.4. Let Q be a thin recursively bounded Π0
1 set. Then:

1. Every Π0
1 subset of Q is thin and recursively bounded.

2. Let P = {Φ(g) | g ∈ Q} be the image of Q under a recursive functional
Φ : Q→ ωω. Then P is a thin recursively bounded Π0

1 set.

Proof. Part 1 is straightforward. For part 2, note first that, sinceQ is recursively
bounded and Π0

1, so is P , by Theorem 4.7. It remains to show that P is thin.
Given a Π0

1 set P ′ ⊆ P , let Q′ = {g ∈ Q | Φ(g) ∈ P ′} be the preimage of P ′. By
Theorem 4.4, Q′ is Π0

1. Since Q is thin, Q\Q′ is also Π0
1. It follows by Theorem

4.7 that P \ P ′ = {Φ(g) | g ∈ Q \Q′} is Π0
1. Since P

′ is an arbitrary Π0
1 subset

of P , we see that P is thin.

Theorem 9.5. If Q is a thin recursively bounded Π0
1 set, then Q is recursively

homeomorphic to a thin Π0
1 set Q∗ ⊆ 2ω. Moreover, Q is perfect if and only if

Q∗ is perfect.

Proof. This follows from Theorems 4.10 and 9.3 and part 2 of Lemma 9.4.

Remark 9.6. There is a large literature on thin perfect Π0
1 subsets of 2ω going

back to Martin/Pour-El [38]. See Downey/Jockusch/Stob [15, 16] and Cholak
et al [11]. Typically, thin perfect Π0

1 subsets of 2ω are constructed by means
of priority arguments. In this sense, thin perfect Π0

1 subsets of 2ω and their
weak and strong degrees are artificial or unnatural. In particular, thin perfect
Π0

1 subsets of 2ω have been used by Binns/Simpson [6] to embed countable
distributive lattices into Pw and Ps.

Remark 9.7. Let q = degw(Q) where Q is any nonempty thin perfect recur-
sively bounded Π0

1 set. Obviously q ∈ Pw. Let r = degw(R) where R = {f ∈
2ω | f is random}. We have seen in Theorem 8.10 that r ∈ Pw. Our goal in this
section is to prove Theorem 9.15, which says that q and r are incomparable,
i.e., q 6≤ r and r 6≤ q. By Theorem 9.5, it suffices to prove this in the special
case when Q is a nonempty thin perfect Π0

1 subset of 2ω.

Lemma 9.8. Let Q be a thin Π0
1 subset of 2ω. Then µ(Q) = 0.

Proof. For f, g ∈ 2ω we write f <lex g to mean that there exists j such that
(∀i < j) (f(i) = g(i)) and f(j) < g(j). Note that <lex is a linear ordering of 2ω,
the lexicographical ordering. For σ, τ ∈ 2<ω we write σ <lex τ to mean that there
exists j < min(lh(σ), lh(τ)) such that (∀i < j) (σ(i) = τ(i)) and σ(j) < τ(j).
Note that, for each n ∈ ω, the restriction of <lex to strings of length n is a linear
ordering, the lexicographical ordering.

Let Q be a thin Π0
1 subset of 2ω. Assume for a contradiction that µ(Q) > 0.

Fix p ∈ ω such that µ(Q) > 1/2p. Put T = Ext(Q) = {τ ∈ 2<ω | (∃g ∈ Q) (τ ⊂
g)}, the set of extendible nodes of Q. By Lemma 4.13 T is a Π0

1 tree, and
Q = [T ]. Define inductively a sequence of strings τn ∈ T , n ∈ ω, as follows:
τn = the lexicographically least τ ∈ T of length p + n + 1 such that τ >lex τm
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for all m < n. The existence of τn is assured by the fact that {g ∈ Q | τ0 ⊂ g or
· · · or τn−1 ⊂ g} is a lexicographically initial segment of Q of measure

n−1∑

m=0

µ({g ∈ Q | τm ⊂ g}) ≤
n−1∑

m=0

1

2p+m+1
<

1

2p
< µ(Q).

Put Q′ = {g ∈ Q | ¬ ∃n (τn ⊂ g)}. Thus Q′ is a lexicographically final segment
of Q. Moreover Q \ Q′ = {g ∈ Q | ∃n (τn ⊂ g)} is clearly not compact, hence
not of the form {g ∈ Q | σ1 ⊂ g or · · · or σk ⊂ g} where σ1, . . . , σk is a finite set
of strings. It follows that Q′ is also not of this form. In the next paragraph we
shall show that Q′ is a Π0

1 subset of Q. Hence Q is not thin, so our lemma will
be proved.

It remains to show that Q′ is Π0
1. Since T is Π0

1, let T
s, s ∈ ω be a recursive

sequence of recursive trees such that

T 0 ⊇ T 1 ⊇ · · · ⊇ T s ⊇ T s+1 ⊇ · · ·

and
⋂

∞

s=0 T
s = T . For each s define inductively τsn = the lexicographically least

τ ∈ T s of length p + n + 1 such that τ >lex τ
s
m for all m < n. The double

sequence τsn, n, s ∈ ω is recursive, and for each n we have

τ0n ≤lex τ
1
n ≤lex · · · ≤lex τ

s
n ≤lex τ

s+1
n ≤lex · · ·

and τn = lims τ
s
n. Since Q′ is a lexicographically final segment of Q = [T ], it

follows that

Q′ = {g ∈ Q | ¬ ∃n (τn ⊂ g)} = {g ∈ Q | ¬ ∃s ∃n (τsn ⊂ g)}.

Thus Q′ is Π0
1, and our lemma is proved.

Remark 9.9. We do not know the answer to the following question. If Q is
a thin perfect Π0

1 subset of 2ω, does it follow that the Turing upward closure

Q̂ = {f ∈ 2ω | (∃g ≤T f) (g ∈ Q)} is of measure 0?

Lemma 9.10. Let Q be a nonempty thin Π0
1 subset of 2ω. If f is random, and

if g ∈ Q is almost recursive, then f 6≤T g. In particular, R 6≤w Q.

Proof. Assume for a contradiction that f ∈ R and f ≤T g. Since g is almost
recursive, by Theorem 4.18 we have f ≤tt g, i.e., f = Φ(g) where Φ : 2ω → 2ω

is a total recursive functional. Since R is Σ0
2, let P be a Π0

1 subset of R such
that f ∈ P . Put Q = {g ∈ Q | Φ(g) ∈ P}. Then Q is a Π0

1 subset of Q. By
part 1 of Lemma 9.4, Q is thin. Note also that g ∈ Q, since Φ(g) = f ∈ P . Put
P = {Φ(g) | g ∈ Q}. Clearly P ⊆ P ⊆ R, and by Theorem 4.7 we have that P
is Π0

1. Moreover f = Φ(g) ∈ P , so P is nonempty, so by Lemma 8.8 we have
µ(P ) > 0. On the other hand, by part 2 of Lemma 9.4, P is thin, hence by
Lemma 9.8 we have µ(P ) = 0. This contradiction proves the first part of our
lemma. For the second part, since Q is nonempty, the Almost Recursive Basis
Theorem 4.19 gives g ∈ Q such that g is almost recursive. By the first part of
the lemma, f 6≤T g for all f ∈ R. It follows that R 6≤w Q.
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Lemma 9.11. Let f ∈ 2ω be random. If g ≤tt f is nonrecursive, then there
exists f ∈ 2ω such that f ≡T g and f is random.

Proof. This lemma has been stated by Demuth [14, Lemma 30]. The proof is
in Kautz’s thesis [27, Theorem IV.3.16].

Lemma 9.12. Let f ∈ 2ω be random and almost recursive. If g ≤T f is
nonrecursive, then there exists f ∈ 2ω such that f ≡T g and f is random.

Proof. This follows from Lemma 9.11 because, by Theorem 4.18, if f is almost
recursive then g ≤T f implies g ≤tt f .

Lemma 9.13. Let Q be a nonempty thin perfect Π0
1 subset of 2ω. If g ∈ Q, and

if f ∈ 2ω is random and almost recursive, then g 6≤T f . In particular Q 6≤w R,
and Q 6≤w P for all Π0

1 sets P ⊆ 2ω of positive measure.

Proof. Assume for a contradiction that g ∈ Q and g ≤T f . Since f is almost
recursive, g is almost recursive. Since f is random and almost recursive, Lemma
9.12 gives us f ≡T g such that f is random. This contradicts Lemma 9.10. The
first part of our lemma is now proved. For the second part, let P ⊆ 2ω be Π0

1 of
positive measure. Since R is Σ0

2 of measure 1, we can find a Π0
1 set P ′ ⊆ P ∩R

which is of positive measure. By the Almost Recursive Basis Theorem 4.19, let
f ∈ P ′ be almost recursive. By the first part of our lemma, we have g 6≤T f for
all g ∈ Q. Thus Q 6≤w P ′. It follows that Q 6≤w P and Q 6≤w R.

Summarizing, we have:

Lemma 9.14. Let f, g ∈ 2ω be almost recursive. Assume that f is random,
and assume that g ∈ Q where Q is a thin perfect Π0

1 subset of 2ω. Then f 6≤T g
and g 6≤T f , i.e., the Turing degrees of f and g are incomparable.

Proof. This is immediate from Lemmas 9.10 and 9.13.

Theorem 9.15. Let q = degw(Q) where Q is a nonempty thin perfect Π0
1 subset

of 2ω. Let r = degw(R) where R = {f ∈ 2ω | f is random}. Then q and r are
incomparable weak degrees in Pw.

Proof. Obviously q ∈ Pw. Theorem 8.10 implies that r ∈ Pw. By Lemma 9.10
we have r 6≤ q. By Lemma 9.13 we have q 6≤ r.

Corollary 9.16. There exist 0 < q < q∗ in Pw such that q is separating and
q∗ is not separating. Indeed, every separating s ∈ Pw which is ≤ q∗ is ≤ q.

Proof. By Martin/Pour-El [38] let Q ⊆ 2ω be a thin perfect Π0
1 set which is

separating. Put q = degw(Q) and q∗ = sup(q, r). By Theorem 9.15 we have
q < q∗. If s were separating and ≤ q∗ but not ≤ q, then this would contradict
Theorem 7.5.
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10 Some additional natural examples in Pw

In this section we present some additional natural examples in Pw, including
a hierarchy of weak degrees in Pw corresponding to the transfinite Ackermann
hierarchy from proof theory.

Definition 10.1. Put DNR = {f ∈ ωω | ∀n (f(n) 6= {n}(n))}, the set of
diagonally nonrecursive functions. The set of Turing degrees of members of
DNR has been studied by Jockusch [25]. Note that DNR is nonempty and
Π0

1. If h : ω → ω is a recursive function such that h(n) ≥ 2 for all n, put
DNRh = {f ∈ DNR | ∀n (f(n) < h(n))}, the set of h-bounded DNR functions.
In addition, put DNRREC =

⋃
{DNRh | h is recursive}, the set of recursively

bounded DNR functions.

Remark 10.2. Trivially

DNR ⊃ DNRREC ⊃ DNRh,

hence DNR ≤s DNRREC ≤s DNRh, hence DNR ≤w DNRREC ≤w DNRh.
According to Ambos-Spies et al [2, Theorems 1.8 and 1.9], we have strict in-
equalities

DNR <w DNRREC <w DNRh.

As in Section 8, let R be the set of random reals. An argument of Kurtz (see
Jockusch [25, Proposition 3]) shows that DNRh ≤w R provided h is such that∑

∞

n=0 1/h(n) <∞, for example h(n) = max(n2, 2).

Remark 10.3. Since DNRh is nonempty, recursively bounded, and Π0
1, we have

degs(DNRh) ∈ Ps and degw(DNRh) ∈ Pw. Although DNR and DNRREC are
not recursively bounded, it will be shown in Simpson [48] that degw(DNR) ∈ Pw

and degw(DNRREC) ∈ Pw. We do not know whether degs(DNR) ∈ Ps, or
whether degs(DNRREC) ∈ Ps. Put d = degw(DNR), dREC = degw(DNRREC),
dh = degw(DNRh), r = degw(R). Summarizing, we have the following result.

Theorem 10.4. In Pw we have

0 < d < dREC < dh < r < 1

for all sufficiently fast-growing recursive functions h : ω → ω.

Proof. This follows from part 1 of Theorem 8.12 plus the results of Ambos-
Spies et al [2] and Simpson [48] which were mentioned in Remarks 10.2 and 10.3
above.

Remark 10.5. Some of our natural weak degrees are closely related to cer-
tain formal systems which arise naturally in the foundations of mathematics.
Namely, the weak degrees 1, r, d correspond to the systems WKL0, WWKL0,
RCA0 +DNR respectively. Each of these subsystems of second order arithmetic
is of interest in connection with the well known foundational program of reverse
mathematics. See Simpson [52, Chapter IV and Section X.1], Yu/Simpson [61],
Brown/Giusto/Simpson [7], and Giusto/Simpson [23]. The standard reference
for reverse mathematics is Simpson [52].
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Remark 10.6. From the recursion-theoretic viewpoint, there are some subtle
issues concerning naturalness of the mass problems DNR, DNRREC, DNRh and
of their weak degrees d, dREC, dh. First, DNR, DNRREC, DNRh are not
invariant under recursive permutations of ω, and on this basis it is possible
to question their recursion-theoretic naturalness. (See also the discussion of
the recursion-theoretic Erlanger Programm in Rogers [45, Chapter 4].) On
the other hand, this objection clearly does not apply to the weak degrees d,
dREC, dh, because all weak and strong degrees are invariant under recursive
permutations of ω. Second, one may note that our definitions of DNR, DNRREC,
DNRh and their weak degrees d, dREC, dh depend upon a particular choice
of Gödel numbering of Turing machines, because the function n 7→ {n}(n)
is defined in terms of such a Gödel numbering. (See also the discussion of
acceptable Gödel numberings in Rogers [45].) We shall now present a method of
overcoming this objection. Our idea is to replace the particular partial recursive
function n 7→ {n}(n) by an arbitrary partial recursive function n 7→ ψ(n). This
will answer the objection, because the extensional concept “partial recursive
function” is independent of the choice of Gödel numbering.

Definition 10.7. Let D be the set of g ∈ ωω such that for all partial recursive
functions ψ there exists f ≤T g such that ∀n (f(n) 6= ψ(n)). Let DREC be
the set of g ∈ ωω such that for all partial recursive functions ψ there exists
f ≤T g such that ∀n (f(n) < h(n) and f(n) 6= ψ(n)) for some recursive function
h : ω → ω.

Remark 10.8. Using the S-m-n Theorem, it is easy to see that DNR ≡w D
and DNRREC ≡w DREC. (See also the proof of Theorem 10.10 below.) Thus the
weak degrees d and dREC are natural in the sense that they can be defined in
a way that does not depend on the choice of Gödel numbering. What about dh

where h is a fixed recursive function? Let Dh be the set of g ∈ ωω such that for all
partial recursive functions ψ there exists f ≤T g such that ∀n (f(n) < h(n) and
f(n) 6= ψ(n)). It is not clear that DNRh ≡w Dh for a fixed recursive function
h, but we have the following definition and theorem for classes of recursive
functions.

Definition 10.9. If C is a class of recursive functions, put DNRC =
⋃

h∈C DNRh.
Let DC be the set of g ∈ ωω such that for all partial recursive functions ψ there
exists f ≤T g such that ∀n (f(n) < h(n) and f(n) 6= ψ(n)) for some h ∈ C.

Theorem 10.10. If C is closed under composition with primitive recursive
functions, then DNRC ≡w DC . If there exists a uniform recursive enumeration
of C, then degw(DNRC) ∈ Pw.

Proof. Given g ∈ DC , let f ≤T g be as in the definition of DC for the particular
partial recursive function ψ(n) ≃ {n}(n). Clearly f ∈ DNRC , and this shows
that DNRC ≤w DC . Conversely, to show that DNRC ≥w DC , let f ∈ DNRC

be given, say f ∈ DNRh where h ∈ C. Given a partial recursive function ψ,
apply the S-m-n Theorem to get a primitive recursive function p : ω → ω such
that {p(n)}(p(n)) ≃ ψ(n) for all n. Then we have ∀n (f(p(n)) < h(p(n)) and
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f(p(n)) 6= ψ(n)). Moreover, the function n 7→ f(p(n)) is Turing reducible to
f , and the function n 7→ h(p(n)) belongs to C. Thus f ∈ DC . We have now
shown that DNRC ⊆ DC . It follows that DNRC ≥w DC , and we have proved
the first part of the theorem. To prove the second part, let hn, n ∈ ω be a
uniform recursive enumeration of C. Putting Pn = DNRhn

, we note that Pn is
uniformly recursively bounded and Π0

1. As in the proof of Theorem 4.10, put
P ∗

n = {Gf | f ∈ Pn}. Thus P ∗

n is a uniformly Π0
1 subset of 2ω which is uniformly

recursively homeomorphic to Pn. Put S∗ =
⋃

n P
∗

n . Then S∗ is a Σ0
2 subset of

2ω, and by construction S∗ is Turing degree isomorphic to
⋃

n Pn = DNRC . Now
apply Theorem 10.11 to find a Π0

1 set P ∗ ⊆ 2ω such that P ∗ is Turing degree
isomorphic to S∗. Then degw(DNRC) = degw(S

∗) = degw(P
∗) ∈ Pw.

Theorem 10.11. Let S be a Σ0
2 subset of 2ω. Then we can find a Π0

1 set P ⊆ 2ω

such that P is Turing degree isomorphic to S.

Proof. We may safely assume that S is nonempty. By hypothesis S =
⋃

n Pn

where Pn, n ∈ ω is a recursive sequence of nonempty Π0
1 subsets of 2ω. We

use a construction from Binns/Simpson [6, Definition 4.2]. Let Tn, n ∈ ω be a
recursive sequence of infinite recursive subtrees of 2<ω such that Pn = [Tn], the
set of paths through Tn. Put

T̃0 = {σa〈i〉 | σ ∈ T0, i ∈ {0, 1}, σa〈i〉 /∈ T0}.

We may safely assume that T̃0 is infinite. Note that the strings in T̃0 are pairwise
incompatible. Let τn, n ∈ ω be a one-to-one recursive enumeration of T̃0. Put
T = T0 ∪

⋃
n{τn

aσ | σ ∈ Tn}. Thus T is an infinite recursive subtree of 2<ω.
Let P = [T ], the set of paths through T . Thus P is a nonempty Π0

1 subset of
2ω. By construction we have P = P0 ∪

⋃
n{τn

af | f ∈ Pn}, hence P is Turing
degree isomorphic to

⋃
n Pn = S.

Remark 10.12. In the proof of Theorem 10.11, note that p = infn pn, where
p = degw(P ) and pn = degw(Pn). Thus the proof shows that Pw is closed
under effective infima.

Remark 10.13. If C is a class of recursive functions satisfying the hypotheses
of Theorem 10.10, put dC = degw(DNRC). We have seen that dC ∈ Pw and
that dC is natural in the sense that it can be defined in a way which does not
depend on the choice of Gödel numbering. Moreover, if C∗ ⊃ C is another such
class, then dC∗ ≤ dC , and according to Ambos-Spies et al [2, Theorem 1.9] we
have strict inequality dC∗ < dC provided C∗ contains a function which “grows
much faster than” all functions in C. There are many examples and problems
here.

Example 10.14. For each constructive ordinal α, let Cα be the class of re-
cursive functions obtained at levels < ω · (1 + α) of the transfinite Ackermann
hierarchy. (See for instance Wainer [60].) Thus C0 is the class of primitive
recursive functions, C1 is the class of functions which are primitive recursive
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relative to the Ackermann function, etc. Putting dα = dCα
we have a transfi-

nite descending sequence

d0 > d1 > · · · > dα > dα+1 > · · ·

in Pw. Moreover, if α is a limit ordinal, then dα = infβ<α dβ. Thus we see a
rich set of natural degrees in Pw which are related to subrecursive hierarchies
of the kind that arise in Gentzen-style proof theory.

Remark 10.15. Let us assume that we are using one of the standard Gödel
numberings of Turing machines which appear in the literature. Then the func-
tion p(n) in the proof of Theorem 10.10 can be chosen to be bounded by a linear
function. Therefore, instead of assuming that C is closed under composition
with primitive recursive functions, we could assume merely that for all h ∈ C
and c ≥ 1 there exists h∗c ∈ C such that h∗c(n) ≥ h(m) for all m ≤ c · (n+1). In
particular, we can take C to be various well known computational complexity
classes such as PTIME, EXPTIME, etc. For each such class, Theorem 10.10
shows that the weak degree dC ∈ Pw is natural in that its definition does not
depend on the choice of a standard Gödel numbering.

Example 10.16. In Pw we have

dPTIME > dEXPTIME > · · ·

etc. Thus we see a rich set of natural degrees in Pw which are related to
computational complexity.
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