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Abstract

A well known fact is that every Lebesgue measurable set is regular,

i.e., it includes an Fσ set of the same measure. We analyze this fact from

a metamathematical or foundational standpoint. We study a family of

Muchnik degrees corresponding to measure-theoretic regularity at all lev-

els of the effective Borel hierarchy. We prove some new results concerning

Nies’s notion of LR-reducibility. We build some ω-models of RCA0 which

are relevant for the reverse mathematics of measure-theoretic regularity.
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1 Introduction

Measure-theoretic regularity

Let S be a set in Euclidean space. Recall from classical analysis that S is said
to be Fσ if and only if S is the union of a countable sequence of closed sets. In
other words, S =

⋃∞
i=0 Ci where each Ci is a closed set. Recall also that the

Borel sets are the smallest family of sets which includes the closed sets and is
closed under countable unions and complementation. It is well known that the
Borel sets are arranged in a transfinite hierarchy according to how many times
the countable union operation is iterated. It is well known that all Borel sets
are measurable in the sense of Lebesgue.

A basic and well known theorem of measure theory reads as follows:

Theorem 1.1. Every measurable set includes an Fσ set of the same measure.

A variant theorem of measure theory is:

Theorem 1.2. Every Borel set includes an Fσ set of the same measure.

In this sense one sometimes says that Lebesgue measure is regular, or that
Borel sets are regular with respect to Lebesgue measure. See for instance Halmos
[15, Section 52]. This phenomenon is known as as measure-theoretic regularity.

Thr purpose of this paper is to calibrate the strength of Theorems 1.1 and
1.2 and their variants from a foundational standpoint. Roughly speaking, we
quantify the “descriptive complexity” or “logical strength” of the Fσ sets which
are needed in order to implement measure-theoretic regularity at various levels
of the Borel hierarchy.

Our work in this paper contributes to two major streams of research in the
foundations of mathematics: degrees of unsolvability and reverse mathematics.
The purpose of this introductory section is to present the relevant background
on degree theory, reverse mathematics, and measure-theoretic regularity.

Degrees of unsolvability

Degrees of unsolvability are a well known and highly developed research area
which grew out of a fundamental discovery due to Turing 1936 [54]: the halting
problem for Turing machines is algorithmically unsolvable. As is well known,
Turing’s example of an unsolvable mathematical problem was the first such
example, and as such it revolutionized the foundations of mathematics. Subse-
quent research was motivated by the desire to discover additional examples of
unsolvable mathematical problems and to quantify their unsolvability by classi-
fying them according to the “amount” or degree of unsolvability which is inher-
ent in them. See for instance Post 1944 [31] and Kleene/Post 1954 [20]. Later
research during the period 1960–1990 was motivated by structural and method-
ological questions concerning various degree structures. Some classical treatises
from this period are Sacks [33], Rogers [32], Shoenfield [36], Lerman [22], Soare
[52], Odifreddi [29, 30].
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The classical theory of degrees of unsolvability was concerned mainly with
decision problems and their Turing degrees. A more recent trend has been to fo-
cus instead on mass problems and their Muchnik degrees. This modern direction
in degrees of unsolvability has turned out to be especially fruitful for applications
to various topics in the foundations of mathematics. Among these topics are
reverse mathematics, intuitionism, algorithmic randomness, Kolmogorov com-
plexity, resource bounded computational complexity, subrecursive hierarchies,
and unsolvable mathematical problems. See in particular our recent papers
[9, 41, 43, 44, 45, 46, 50] and our forthcoming treatise [51]. We emphasize that
the study of mass problems offers a path along which the study of degrees of
unsolvability can return to and reconnect with its roots in the foundations of
mathematics.

In this paper we are concerned with two particular degree structures, Dw

and Ew, which are defined as follows.

Definition 1.3. For our purposes, a Turing oracle is a point in the Baire space,
NN, or the Cantor space, 2N. A mass problem is a set of Turing oracles. Let P
and Q be mass problems. We say that P is weakly reducible to Q, abbreviated
P ≤w Q, if for each Y ∈ Q there exists X ∈ P such that X is computable
using Y as a Turing oracle. The motivation behind this definition is that the
set P is identified with the “problem” of finding at least one element of P .
Thus P is “reducible” to Q if and only if each “solution” of Q can be used as
a Turing oracle to compute a “solution” of P . We define a weak degree to be
an equivalence class of mass problems under weak reducibility, i.e., under the
equivalence relation P ≤w Q andQ ≤w P . The weak degree of the mass problem
P is denoted degw(P ). Weak degrees are also known as Muchnik degrees. The
set of all weak degrees is partially ordered by letting degw(P ) ≤ degw(Q) if and
only if P ≤w Q. We define Dw to be the partial ordering of all weak degrees.
Writing p = degw(P ) and q = degw(Q), the lattice operations in Dw are given
by inf(p,q) = degw(P ∪Q) and sup(p,q) = degw(P ×Q).

Definition 1.4. A mass problem P is said to be effectively closed if it is Π0
1,

i.e., P is the complement of the union of a computable list of basic open sets
in NN. We define Ew to be the set of weak degrees associated with nonempty,
effectively closed sets in the Cantor space, 2N. Thus Ew is a sublattice of Dw.
Note that our restriction to the Cantor space is essential. We use 1 and 0 to
denote the top and bottom degrees in Ew.

Remark 1.5. Historically, the study of mass problems and Dw originated in
considerations of Kolmogorov [21], Medvedev [24], and Muchnik [25] concerning
the so-called “intuitionistic calculus of problems” [21]. In particular Muchnik
[25] showed that Dw is a complete Brouwerian lattice. Some recent papers on
Ew are [2, 4, 9, 41, 43, 44, 45, 46]. In these papers Ew is often denoted Pw.
Lemma 6.4 below implies that Ew includes a large and significant part of Dw.
For additional historical references see [45].

In this paper we study certain mass problems associated with measure-
theoretic regularity. Several of our results may be summarized as follows. To
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each level of the effective Borel hierarchy we associate a specific, natural degree
of unsolvability in Dw. Namely, for each recursive ordinal number α let bα be
the Muchnik degree associated with the problem of “regularizing” sets at level
α+ 2 of the effective Borel hierarchy. Thus we have

bα = degw({Y | every Σ0
α+2 set includes a Σ0,Y

2 set of the same measure}).

It turns out that the Muchnik degrees inf(bα,1) belong to Ew and are distinct
from one another. In this way we obtain a mathematically natural embedding
of the hyperarithmetical hierarchy into Ew. This embedding is different from,
and foundationally more relevant than, the one in [9, Section 4]. The details of
our new embedding are in Section 6 below.

Reverse mathematics

Reverse mathematics is a well known, highly developed research program in
the foundations of mathematics. The purpose of reverse mathematics is to
classify specific mathematical theorems up to logical equivalence according to
the strength of the set existence axioms which are needed to prove them. These
axioms are embodied in certain formal, deductive systems. The most important
formal systems for reverse mathematics are the so-called “Big Five”: RCA0,
WKL0, ACA0, ATR0, Π

1
1-CA0, corresponding to Chapters II–VI of [40, 47]. The

standard reference for reverse mathematics is Simpson [40, 47]. See also our
recent survey in [49].

The present paper includes a contribution to the reverse mathematics of
measure theory. In order to place this contribution in context, we now briefly
outline the previous research in this area.

The first wave of research in the reverse mathematics of measure theory
dealt with additivity properties and was centered around the system WWKL0.
This was initiated in the 1980s by Yu [55] and continued in Yu/Simpson [60],
Yu [56, 57, 58, 59], and Brown/Giusto/Simpson [5]. Recall the principal axiom
of WKL0, which says that any tree T containing bitstrings of length n for each
n ∈ N has an infinite path. The principal axiom of WWKL0 is weaker. It
says that T has an infinite path provided ∃ǫ ∀n (|T ∩ 2n|/2n > ǫ > 0), i.e., the
fraction of bitstrings of length n belonging to T is bounded away from 0. It
was shown in the 1980s and 1990s that WWKL0 is necessary and sufficient in
order to prove many basic principles of measure theory, including a version of
countable additivity and a version of the Vitali Covering Lemma. Subsequently
it was noticed that WWKL0 is closely related to algorithmic randomness in the
sense of Martin-Löf [23, 28, 11, 48]. Indeed, the principal axiom of WWKL0

turned out to be equivalent over RCA0 to the statement

∀X ∃Y (Y is Martin-Löf random relative to X).

See also our summary in [40, 47, Section X.1]. Later Simpson [38, 39, 41]
developed the relationship to mass problems. For instance, the Muchnik degree

r = degw({X | X is Martin-Löf random})

4



was the first example of a specific, natural degree in Ew other than 0 and 1.
The second wave dealing with measure-theoretic regularity was initiated in

2002 by Dobrinen/Simpson [10] and was centered around our notion of almost
everywhere domination. In [10] we defined a Turing oracle Y to be almost ev-

erywhere dominating if for all Turing oracles X except a set of measure 0, every
function f : N → N which is computable using X is dominated by a function
g : N → N which is computable using Y . In [10] and [18] it emerged that Y is
almost everywhere dominating if and only if Y suffices to “regularize” every set
at level 3 of the effective Borel hierarchy. In addition, a close connection with
Nies’s notion of LR-reducibility was discovered. Thus Y is almost everywhere
dominating if and only if every Σ0

3 set includes a Σ0,Y
2 set of the same measure,

if and only if 0′ ≤LR Y . Here 0′ denotes the halting problem for Turing ma-
chines. See Dobrinen/Simpson [10], Binns/Kjos-Hanssen/Lerman/Solomon [3],
Cholak/Greenberg/Miller [7], Kjos-Hanssen [17], Kjos-Hanssen/Miller/Solomon
[18], and our exposition in [42]. The relationship between almost everywhere
domination and mass problems was developed in Kjos-Hanssen [17] and Simpson
[44]. In particular, it was shown that the Muchnik degree inf(b,1) where

b = degw({Y | Y is almost everywhere dominating})

belongs to Ew and is incomparable with r.
In this paper we continue and expand the second wave. Namely, we general-

ize the theory of almost everywhere domination from 0′ to the entire hyperarith-
metical hierarchy, with corresponding applications to the metamathematics of
measure-theoretic regularity. The details of this generalization are in Sections
3 and 4 and 6 below. In particular, our Theorems 4.11 and 6.6 for arbitrary
recursive ordinals α were first proved in [10] and [18] for the special case α = 1.

In addition, we use our results concerning degrees of unsolvability to build
models of RCA0 which are relevant for the reverse mathematics of measure-
theoretic regularity. We obtain models M1, M2, M3, M4 satisfying RCA0 +
¬WWKL0 and WWKL0 + ¬WKL0 and WKL0 + ¬ACA0 and ACA0 + ¬ATR0

respectively such that each of these models satisfies a kind of measure-theoretic
regularity at all levels of the Borel hierarchy. The details are in Section 7 below.

2 Notation and preliminaries

In this section we briefly review some well known concepts and notation from
recursion theory.

Definition 2.1 (Baire space, Cantor space). We use standard recursion-theoretic
notation from Rogers [32]. We use letters such as i, j, k, l,m, n, . . . to de-
note natural numbers. We use N to denote the set of natural numbers, N =
{0, 1, 2, . . . , n, . . .}. We use letters such as I, J, . . . to denote subsets of N. We
use R to denote the set of real numbers. We use NN to denote the Baire

space, NN = {X | X : N → N}. We use 2N to denote the Cantor space,
2N = {0, 1}N = {X | X : N → {0, 1}}. We use letters such asX,Y, Z,A,B,C, . . .
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to denote Turing oracles, i.e., points of the Baire space. We use letters such as
P,Q,R, S, . . . to denote mass problems, i.e., subsets of the Baire space. Note
also that the Cantor space is a subspace of the Baire space.

Definition 2.2 (Π0
1 predicates, Σ0

3 predicates). A predicate R ⊆ (NN)k ×Nl is
said to be recursive if and only if its characteristic function χR : (NN)k ×Nl →
{0, 1} is Turing computable. For X ∈ NN we say that R is X-recursive or recur-
sive relative to X if χR is Turing computable using the oracle X . A predicate
P ⊆ (NN)k ×Nl is said to be Π0

1 if and only if there exists a recursive predicate

R ⊆ (NN)k × Nl+1 such that P (−,−) ≡ ∀nR(−,−, n). We say that P is Π0,X
1

if there exists an X-recursive predicate R such that P (−,−) ≡ ∀nR(−,−, n).
A predicate S ⊆ (NN)k × Nl is said to be Σ0

3 if and only if there exists a recur-
sive predicate R ⊆ (NN)k×Nl+3 such that S(−,−) ≡ ∃k ∀m ∃nR(−,−, k,m, n).
Other levels of the arithmetical hierarchy are defined similarly. See [32, Chapters
14 and 15] and Definition 3.1 below. A set I ⊆ N is X-recursively enumerable,

abbreviated X-r.e., if and only if I is Σ0,X
1 , i.e., I = {i | ∃nR(i, n)} for some

X-recursive predicate R ⊆ N2.

Definition 2.3 (strings and bitstrings). A string is a finite sequence of natural
numbers. A bitstring is a string of 0’s and 1’s. We use letters such as σ, τ, . . .
to denote strings and bitstrings. Let |σ| be the length of σ. The domain of
σ is a finite initial segment of N, denoted dom(σ) = {n | n < |σ|}. We have
σ = 〈i0, i1, . . . , i|σ|−1〉 where in = σ(n). The range of σ is a finite subset of N,
denoted rng(σ) = {σ(n) | n < |σ|}. Let σaτ be the concatenation, σ followed
by τ . Thus |σaτ | = |σ|+ |τ | and rng(σaτ) = rng(σ) ∪ rng(τ). For X ∈ NN and
s ∈ N let X ↾ s = 〈X(0), X(1), . . . , X(s − 1)〉, a string of length s. We write
σ ⊂ X if and only if σ = X ↾ |σ|. We write σ ⊆ τ if and only if σ = τ or σ is a
proper initial segment of τ .

Definition 2.4 (oracle computations). For e, n, i ∈ N we write ϕ
(1)
e (n) ↓= i if

and only if the Turing machine with Gödel number e and input n eventually

halts with output i. ForX ∈ NN we write ϕ
(1),X
e (n) ↓= i if and only if the Turing

machine with Gödel number e and input n using X as an oracle eventually halts

with output i. We write ϕ
(1),X
e (n) ↓ if and only if ϕ

(1),X
e (n) ↓= i for some i,

otherwise ϕ
(1),X
e (n) ↑. For s ∈ N we write ϕ

(1),X↾s
e,s (n) ↓= i if and only if the

Turing machine with Gödel number e and input n using X as an oracle halts
in < s steps with output i using only oracle information from X ↾ s. For a

string σ we write ϕ
(1),σ
e,s (n) ↓= i if and only if ϕ

(1),X↾s
e,s (n) ↓= i where σ = X ↾ s.

Note that the 5-place predicate ϕ
(1),σ
e,s (n) ↓= i is recursive, and ϕ

(1),X
e (n) ↓= i

if and only if ϕ
(1),X↾s
e,s (n) ↓= i for some s. We write WX

e = {n | ϕ
(1),X
e (n) ↓}

and WX
e,s = {n | ϕ

(1),X↾s
e,s (n) ↓}. Note that WX

e =
⋃∞

s=0W
X
e,s, and WX

e for
e = 0, 1, 2, . . . is a uniform recursive enumeration of all of the X-r.e. sets.

Definition 2.5 (Turing reducibility, Muchnik reducibility). We say that X is

recursive if X is Turing computable, i.e., ∃e ∀n (ϕ
(1)
e (n) ↓= X(n)). We say

that X is Turing reducible to Y , abbreviated X ≤T Y , if X is Y -recursive,
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i.e., ∃e ∀n (ϕ
(1),Y
e (n) ↓= X(n)). We say that X and Y are Turing equivalent if

X ≤T Y and Y ≤T X . We sometimes use 0 to denote the constant function
0 ∈ NN, i.e., 0(n) = 0 for all n ∈ N. Thus X is recursive if and only if X ≤T 0.
The pairing function ⊕ : NN ×NN → NN is defined by (X ⊕ Y )(2n) = X(n) and
(X⊕Y )(2n+1) = Y (n). Thus X⊕Y ≤T Z if and only if X ≤T Z and Y ≤T Z.
For P,Q ⊆ NN we say that P is weakly reducible to Q, abbreviated P ≤w Q,
if for all Y ∈ Q there exists X ∈ P such that X ≤T Y . Weak reducibility is
also known as Muchnik reducibility. See also Definitions 1.3 and 1.4 above. We
write P ×Q = {X ⊕ Y | X ∈ P and Y ∈ Q}. Thus P ×Q ≤w S if and only if
P ≤w S and Q ≤w S.

Definition 2.6 (the Turing jump operator). We define an operator X 7→ X ′ :
NN → NN by

X ′(n) =

{

ϕ
(1),X
n (n) + 1 if ϕ

(1),X
n (n) ↓,

0 otherwise.

Remark 2.7. Note that our version of the Turing jump operator in Definition
2.6 is somewhat unusual. Of course, our X ′ is uniformly Turing equivalent to
the usual Turing jump of X as defined for instance in Rogers [32]. An advantage
of ourX 7→ X ′ over the usual Turing jump operator is expressed in the following
lemma. See also Simpson [42, Remark 8.7] and Cole/Simpson [9, Lemma 2.5].

Lemma 2.8. If X ∈ NN is a Π0
1 singleton, then so is X ′. More generally, if

P ⊆ NN is Π0
1 then so is P ′ = {X ′ | X ∈ P}.

Proof. If ϕ
(1),X
n (n) ↓ let ψX(n) = the least s such that ϕ

(1),X↾s
n,s (n) ↓. By the

S-m-n Theorem let p(n) be a recursive function such that X ′(p(n)) = ψX(n)+1

if ϕ
(1),X
n (n) ↓, and X ′(p(n)) = 0 otherwise, for all X and all n. Let q(n)

be a recursive function such that X ′(q(n)) = X(n) + 1, for all X and all n.

Since P is Π0
1, fix an e such that P = {X | ϕ

(1),X
e (e) ↑}. Then Z ∈ P ′

if and only if (a) ϕ
(1),〈Z(q(0))−1,Z(q(1))−1,...,Z(q(s−1))−1〉
e,s (e) ↑ for all s, and (b)

for all n either Z(n) = 0 and ϕ
(1),〈Z(q(0))−1,Z(q(1))−1,...,Z(q(s−1))−1〉
n,s (n) ↑ for all

s, or Z(n) > 0 and Z(p(n)) > 0 and Z(p(n)) − 1 = the least s such that

ϕ
(1),〈Z(q(0))−1,Z(q(1))−1,...,Z(q(s−1))−1〉
n,s (n) ↓= Z(n)− 1. Thus P ′ is Π0

1.

Definition 2.9 (recursive ordinals, hyperarithmetical hierarchy). A recursive

ordinal is an ordinal number which is the order type of a recursive well ordering
of a subset of N. The least nonrecursive ordinal is denoted ωCK

1 . More generally,
an ordinal is said to be X-recursive if it is the order type of an X-recursive well
ordering of a subset of N. The least ordinal which is not X-recursive is denoted
ωX
1 . We use letters such as α, β, . . . to denote ordinals. Given an X-recursive

ordinal α, it is possible to iterate the Turing jump operator α times starting with
X . The resulting oracle X(α) is well defined up to Turing equivalence. Thus we
have X(0) = X , X(1) = X ′, X(2) = X ′′, . . . , X(α), X(α+1), . . . . This transfinite
sequence of oracles is known as the hyperarithmetical hierarchy relative to X .
See for instance Sacks [34, Part A] and Simpson [40, 47, Section VIII.3].
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Definition 2.10 (Π0
1 singletons, Σ0

3 singletons). A Π0
1 singleton is any X ∈ NN

such that the one-element set {X} is Π0
1. More generally, given a Turing oracle

A, a Π0,A
1 singleton is any X ∈ NN such that {X} is Π0,A

1 . Similarly we can

define what we mean by a Σ0
3 singleton and a Σ0,A

3 singleton. It is well known

that X(α) for each α < ωX
1 is a Σ0,X

3 singleton. Also, every Σ0
3 singleton is

Turing equivalent to a Π0
1 singleton. See for instance the first paragraph of the

proof of Lemma 4.6 below.

Definition 2.11 (diagonal nonrecursiveness, PA-completeness). We say that
X ∈ NN is diagonally nonrecursive, abbreviated DNR, if there is no n such that

ϕ
(1)
n (n) ↓= X(n). We sometimes write

DNR = {X ∈ NN | X is diagonally nonrecursive}.

Let PA be the set of all complete, consistent extensions of first-order Peano
Arithmetic. It is well known that PA is Muchnik equivalent to DNR ∩ 2N.
Given X ∈ NN let PAX be the set of all complete, consistent extensions of
first-order Peano arithmetic with an additional 1-place function symbol X and
additional axioms X(n) = m for all n,m ∈ N such that X(n) = m. We say that
Y is PA-complete over X if PAX ≤w {Y }. By the Kleene Basis Theorem [19,
Theorem 38*, pages 401–402] we know that X ′ is PA-complete over X .

Definition 2.12 (Martin-Löf randomness). The fair coin measure is the count-
ably additive Borel measure µ on 2N defined by µ(Nσ) = 1/2|σ| for all bitstrings

σ. Here Nσ = {X ∈ 2N | σ ⊂ X}. Letting Ue = {Z ∈ 2N | ϕ
(1),Z
e (e) ↓},

we say that Z ∈ 2N is Martin-Löf random if Z /∈
⋂∞

n=0 Up(n) whenever p(n)
is a recursive function such that µ(Up(n)) ≤ 1/2n for all n. More generally,

letting UX
e = {Z ∈ 2N | ϕ

(1),X⊕Z
e (e) ↓}, we say that Z is Martin-Löf random

relative to X if Z /∈
⋂∞

n=0 U
X
p(n) whenever p(n) is a recursive function such that

µ(UX
p(n)) ≤ 1/2n for all n. For much more information on Martin-Löf’s concept

of randomness, see Nies [28] and Downey/Hirschfeldt [11] and Simpson [48].

3 Measure-theoretic regularity

In this section we review and generalize a well known result concerning measure-
theoretic regularity in the effective Borel hierarchy. We also review some related
recent results concerning LR-reducibility.

Definition 3.1 (The effective Borel hierarchy). Given a Turing oracle X and
an X-recursive ordinal α < ωX

1 , we define what it means for a set S ⊆ 2N to

be Σ0,X
α or Π0,X

α . For α = 0 we define Σ0,X
0 = Π0,X

0 = the class of clopen sets
in 2N. Recall that S ⊆ 2N is clopen if and only if it is the union of a finite
sequence of basic open sets. Such sets are recursively indexed in an obvious
way. For successor ordinals, we define S to be Σ0,X

α+1 if and only if S =
⋃∞

i=0 Pi

where each Pi is Π
0,X
α via an index which is X-recursive as a function of i. In

this case an index of S consists of an X-recursive index of such a function plus
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an X-recursive notation for α. We define P to be Π0,X
α if and only if 2N \ P is

Σ0,X
α . For limit ordinals α we define Σ0,X

α =
⋃

β<α Σ0,X
β .

Remark 3.2 (lightface versus boldface). (1) Let α be a recursive ordinal. A
set S ⊆ 2N is said to be Σ0

α or lightface Σ0
α if and only if S is Σ0,0

α . This special
case X = 0 is known as the lightface Borel hierarchy. By diagonalization one
can construct a Σ0

α+1 set which is neither Σ0,X
α nor Π0,X

α for any X . (2) Let α
be a countable ordinal. A set S ⊆ 2N is said to be boldface Σ0

α or at level α of

the Borel hierarchy if and only if S is Σ0,X
α for some X . It is well known that

each Borel set is boldface Σ0
α for some countable ordinal α. It is well known

that S is Fσ if and only if S is boldface Σ0
2.

We now discuss measure-theoretic regularity in the effective Borel hierarchy.
We refer to the fair coin measure, Definition 2.12.

Theorem 3.3. Let α be an X-recursive ordinal. Every Σ0,X
α+2 subset of 2N

includes a Σ0,X(α)

2 set of the same measure. Conversely, every Σ0,X(α)

2 set is

Σ0,X
α+2.

Proof. For finite ordinals α = n < ω, this result is due to Kautz [16, Lemma
II.1.3]. The generalization to arbitrary X-recursive ordinals α is routine.

The next definition is due to Nies [26, Section 8].

Definition 3.4 (LR-reducibility). Let X and Y be Turing oracles. We write
X ≤LR Y if and only if every Z ∈ 2N which is Martin-Löf random relative to Y
is Martin-Löf random relative to X . Note that X ≤T Y implies X ≤LR Y , but
the converse does not hold.

Theorem 3.5. The following are pairwise equivalent.

1. X ≤LR Y .

2. Every Π0,X
1 subset of 2N of positive measure includes a Π0,Y

1 set of positive

measure.

3. Given ǫ > 0 and a Π0,X
1 set P ⊆ 2N, we can find a Π0,Y

1 set Q ⊆ P such

that µ(P \Q) < ǫ.

Proof. This result is due to Kjos-Hanssen [17]. See also our exposition in [42,
Theorem 4.6].

Theorem 3.6. The following are pairwise equivalent.

1. X ≤LR Y and X ≤T Y
′.

2. Every Π0,X
1 subset of 2N includes a Σ0,Y

2 set of the same measure.

3. Every Σ0,X
2 subset of 2N includes a Σ0,Y

2 set of the same measure.
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Proof. This result is due to Kjos-Hanssen/Miller/Solomon [18]. See also our
exposition in [42, Theorem 5.13, Remark 7.1].

Remark 3.7. Theorems 3.3 and 3.5 and 3.6 imply a close relationship between
measure-theoretic regularity and LR-reducibility. A sharper version of this rela-
tionship will be stated in Theorem 4.11 below. In order to prove Theorem 4.11
we shall need another result on LR-reducibility, namely, Theorem 4.9 below.

4 LR-reducibility

In this section we prove a new result concerning LR-reducibility. Namely,

X(α) ≤LR Y implies X(α+1) ≤T X ⊕ Y ′.

We then use this result to sharpen the relationship between LR-reducibility and
measure-theoretic regularity.

There are several equivalent characterizations of LR-reducibility. We shall
rely on the characterization in Theorem 4.3 below.

Definition 4.1 (computable measures). Let µ : N → R+ be any computable
function from the natural numbers to the positive real numbers. We extend µ
to a computable measure on N by defining µ(I) =

∑

i∈I µ(i) for all I ⊆ N.

The next definition is due to Nies [26, Section 8].

Definition 4.2 (LK-reducibility). We write X ≤LK Y if and only if KY (i) ≤
KX(i) + O(1) for all i. In other words, there exists a constant c such that
KY (i) ≤ KX(i)+c for all i. Here KX denotes prefix-free Kolmogorov complexity
relative to the Turing oracle X .

Theorem 4.3. The following are pairwise equivalent.

1. X ≤LR Y .

2. X ≤LK Y .

3. For each computable measure µ and X-r.e. set I such that µ(I) <∞, we

can find a Y -r.e. set J such that µ(J) <∞ and I ⊆ J .

Proof. This result is due to Kjos-Hanssen/Miller/Solomon [18]. See also our
exposition in [42].

The next definition and lemma are due to Nies [27] and Simpson [42, Defi-
nition 8.3, Lemma 8.4].

Definition 4.4 (jump-traceability). Recall Definition 2.6 where we defined the
Turing jump operator X 7→ X ′ in a somewhat unusual manner. We say that
X is weakly jump-traceable by Y if there exists a total recursive function p(n)
such that ∀n (X ′(n) ∈ WY

p(n) and WY
p(n) is finite). We say that X is jump-

traceable by Y if there exist total recursive functions p(n) and q(n) such that
∀n (X ′(n) ∈WY

p(n) and |WY
p(n)| ≤ q(n)). Here q(n) is called a bounding function.
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Lemma 4.5. If X ≤LR Y then X is jump-traceable by Y with bounding function

q(n) = 2c+n for some constant c.

Proof. Consider the X-r.e. set I = {(n, i) | X ′(n) = i or i = 0}. Clearly
∑

(n,i)∈I 1/2
n ≤ 4 < ∞. By Theorem 4.3 let J be a Y -r.e. set such that

∑

(n,j)∈J 1/2n < ∞ and I ⊆ J . Let p(n) be a recursive function such that

WY
p(n) = {j | (n, j) ∈ J}. Let c be such that

∑

(n,j)∈J 1/2n ≤ 2c. It follows

easily that |WY
p(n)| ≤ 2c+n, Q.E.D.

We view the next lemma and theorem as vast generalizations of [42, Lemma
8.5, Theorem 8.8].

Lemma 4.6. Assume that A ≤T X and that X is a Σ0,A
3 singleton. If X is

weakly jump-traceable by Y , then X ′ ≤T A⊕ Y ′.

Proof. Since X is a Σ0,A
3 singleton, let R(Z, k,m, n) be an A-recursive predicate

such that X is the unique Z satisfying ∃k ∀m ∃nR(Z, k,m, n). Fix a k satisfying
∀m ∃nR(X, k,m, n). Define f : N → N by letting f(m) = the least n satisfying

R(X, k,m, n). Then X⊕f is a Π0,A
1 singleton, being the unique Z⊕g satisfying

∀m (g(m) = the least n satisfying R(Z, k,m, n)). MoreoverX⊕f ≤T X⊕A ≤T

X , hence X ⊕ f is weakly jump-traceable by Y . Thus, replacing X by X ⊕ f ,
we may safely assume that X is a Π0,A

1 singleton.

Since X is a Π0,A
1 singleton, it follows by Lemma 2.8 relativized to A that

X ′ is a Π0,A
1 singleton. Let Q(Z) be a Π0,A

1 predicate such that X ′ is the unique
Z satisfying Q(Z). Since X is weakly jump-traceable by Y , let Fn = WY

p(n)

where p(n) is as in Definition 4.4. Then Fn for n = 0, 1, 2, . . . is a Y ′-recursive
sequence of finite sets, and X ′(n) ∈ Fn for all n. Thus

{Z | Q(Z) and ∀n (Z(n) ∈ Fn)}

is a Y ′-recursively bounded Π0,A
1 set whose only member is X ′. It follows that

X ′ ≤T A⊕ Y ′, Q.E.D.

Theorem 4.7. Assume that A ≤T X and that X is a Σ0,A
3 singleton. Then

X ≤LR Y implies X ′ ≤T A⊕ Y ′.

Proof. This is immediate from Lemmas 4.5 and 4.6.

Corollary 4.8. Let X be a Σ0
3 singleton. Then X ≤LR Y implies X ′ ≤T Y

′.

Proof. This is the special case A = 0 of Theorem 4.7.

Theorem 4.9. For each α < ωX
1 , X(α) ≤LR Y implies X(α+1) ≤T X ⊕ Y ′.

Proof. This follows from Theorem 4.7 plus the well known fact that X(α) is a
Σ0,X

3 singleton. For a proof of this fact, see any textbook of hyperarithmeti-
cal theory, e.g., Ash/Knight [1], Rogers [32, Chapter 16], Sacks [34, Part A],
Shoenfield [35, Sections 7.8–7.11], Simpson [40, 47, Section VIII.3].
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Corollary 4.10. For each α < ωCK
1 , 0(α) ≤LR Y implies 0(α+1) ≤T Y

′.

Proof. This is the special case X = 0 of Theorem 4.9.

Our sharp theorem concerning measure-theoretic regularity reads as follows.

Theorem 4.11. For each α < ωX
1 the following are pairwise equivalent.

1. X(α) ≤LR Y and X ≤T Y
′.

2. Every Π0,X(α)

1 subset of 2N includes a Σ0,Y
2 set of the same measure.

3. Every Σ0,X(α)

2 subset of 2N includes a Σ0,Y
2 set of the same measure.

4. Every Π0,X
α+1 subset of 2N includes a Σ0,Y

2 set of the same measure.

5. Every Σ0,X
α+2 subset of 2N includes a Σ0,Y

2 set of the same measure.

Proof. By Theorems 3.3 and 3.6, each of conditions 2 through 5 is equivalent
to the conjunction of X(α) ≤LR Y and X(α) ≤T Y ′. But then by Theorem 4.9
we can weaken X(α) ≤T Y ′ to X ≤T Y ′. Thus condition 5 is equivalent to
condition 1, Q.E.D.

Corollary 4.12. For each α < ωCK
1 the following are pairwise equivalent.

1. 0(α) ≤LR Y .

2. Every Π0,0(α)

1 subset of 2N includes a Σ0,Y
2 set of the same measure.

3. Every Σ0,0(α)

2 subset of 2N includes a Σ0,Y
2 set of the same measure.

4. Every Π0
α+1 subset of 2N includes a Σ0,Y

2 set of the same measure.

5. Every Σ0
α+2 subset of 2N includes a Σ0,Y

2 set of the same measure.

Proof. This is the special case X = 0 of Theorem 4.11.

5 DNR avoidance and cone avoidance

We say that Y avoids DNR if DNR �w {Y }. We say that Y avoids the cone

above A if A �T Y . The purpose of this section is to extend, generalize, and sim-
plify the results of Section 4 of Cholak/Greenberg/Miller [7] concerning almost
everywhere domination, DNR avoidance, and cone avoidance.

Theorem 5.1. Given X we can find Y such that X ≤LR Y and Y ′ ≤T X
′ and

DNR �w {Y }.

Proof. We shall use the following characterization of LR-reducibility.
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Lemma 5.2. Given X, we can find a particular computable measure µ and a

particular X-r.e. set I such that the following holds. For all Y , X ≤LR Y if

and only if there exists a Y -r.e. set J such that µ(J) <∞ and I ⊆ J .

Proof. Let µ(I) =
∑

(n,i)∈I 1/2
n and I = {(n, i) | n ≥ KX(i)}. Here we are

identifying N with N × N. Clearly µ(I) ≤ 2 < ∞. Let J be Y -r.e. such that
µ(J) <∞ and I ⊆ J . Let c be such that µ(J) ≤ 2c. Then

∑

(n,j)∈J 1/2c+n ≤ 1,

so by the Kraft/Chaitin Lemma [42, Corollary 10.6] relative to Y , we can find a
prefix-free Y -machine M such that for each (n, j) ∈ J there exists a bitstring σ
such that |σ| = c+ n and M(σ) = j. Thus KY (j) ≤ n+O(1) for all (n, j) ∈ J .
Since I ⊆ J , it follows that KY (j) ≤ KX(j) + O(1) for all j. In other words,
X ≤LK Y . Our lemma now follows from Theorem 4.3.

In order to prove Theorem 5.1 it will suffice to prove the following lemma.

Lemma 5.3. Let µ be a computable measure. Given X and I such that I is

X-r.e. and µ(I) <∞, we can find Y and J such that J is Y -r.e. and µ(J) <∞
and I ⊆ J and Y ′ ≤T X

′ and DNR �w {Y }.

Proof. Let µ be a computable measure and let I be X-r.e. such that µ(I) <∞.
We define a forcing condition to be an ordered pair p = (τp, ap) where τp is a
string, ap is a rational number, and µ(I ∪ rng(τp)) < ap. Our forcing conditions
are partially ordered by letting q ≥ p if and only if τq ⊇ τp and aq ≤ ap. Our
proof of Lemma 5.3 is based on the following sublemma.

Sublemma 5.4. Given a forcing condition p, we can find a forcing condition

p∗ ≥ p and a recursively enumerable set T such that

{τq | q ≥ p∗} ⊆ T ⊆ {τq | q ≥ p}.

Moreover, given p we can find p∗ and a recursive index for T using only the

oracle X ′.

Proof. Given p, let ǫ > 0 be a rational number such that

µ(I ∪ rng(τp)) + ǫ < ap .

Let a∗ be a rational number such that

µ(I ∪ rng(τp)) < a∗ < µ(I ∪ rng(τp)) +
ǫ

2
.

Let F be a finite subset of I such that µ(I \ F ) < ǫ/2. Let τ∗ = τpaσ where
σ is a string such that rng(σ) = F . Because I is X-r.e., we can find ǫ and a∗

and τ∗ using X ′ as an oracle. Since I ∪ rng(τ∗) = I ∪ rng(τp), it is clear that
p∗ = (τ∗, a∗) is a forcing condition and p∗ ≥ p. Let

T = {τ ⊇ τ∗ | µ(rng(τ) \ rng(τ∗)) < ǫ} .

Clearly T is r.e. and we can find an r.e. index for T using X ′ as an oracle. It
remains to prove two claims: T ⊆ {τq | q ≥ p} and {τq | q ≥ p∗} ⊆ T .
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To prove the first claim, assume τ ∈ T . Then τ ⊇ τ∗ ⊇ τp and

µ(I ∪ rng(τ)) < µ(I ∪ rng(τ∗)) + ǫ = µ(I ∪ rng(τp)) + ǫ < ap .

Thus q = (τ, ap) is a forcing condition, and obviously q ≥ p and τq = τ .
To prove the second claim, assume q ≥ p∗. Then τq ⊇ τ∗, hence rng(τq) ⊇

rng(τ∗) ⊇ F , hence

rng(τq) \ rng(τ∗) ⊆ (I \ F ) ∪ (rng(τq) \ (I ∪ rng(τ∗))).

Since µ(I ∪ rng(τq)) < aq ≤ a∗ < µ(I ∪ rng(τ∗)) + ǫ/2 it follows that

µ(rng(τq) \ rng(τ∗)) ≤
ǫ

2
+
ǫ

2
= ǫ

hence τq ∈ T . This completes the proof of Sublemma 5.4.

We now prove Lemma 5.3. We may safely assume that I is nonempty.
Starting with any forcing condition p0, we shall inductively define a sequence
of forcing conditions p0 ≤ p1 ≤ · · · ≤ pn ≤ pn+1 ≤ · · · where pn = (τn, an).
Because I 6= ∅, it will be easy to arrange that |τn| ≥ n for all n. We shall then
let Y =

⋃∞
n=0 τn and J = rng(Y ) =

⋃∞
n=0 rng(τn). It will be easy to arrange

that J ⊇ I and µ(J) = infn an < ∞. The entire construction will be recursive
in X ′ using Sublemma 5.4. Once the forcing condition pn is known, we use
Sublemma 5.4 to obtain a forcing condition p∗n ≥ pn and an r.e. set Tn such
that {τq | q ≥ p∗n} ⊆ Tn ⊆ {τq | q ≥ pn}.

In order to insure that Y ′ ≤T X ′, let the forcing condition p2e = (τ2e, a2e)
be given. We shall choose p2e+1 ≥ p2e so as to decide Y ′(e). This will insure
that Y ′ ≤T X

′, because the entire construction will be ≤T X
′.

Case 1: There exists τ ∈ T2e such that ϕ
(1),τ
e,|τ | (e) ↓. In this case, search for

such a τ and let p2e+1 = (τ, a2e). This is a forcing condition because τ ∈ T2e ⊆

{τq | q ≥ p2e}. Thus we have forced Y ′(e) = i+ 1 where ϕ
(1),τ
e,|τ | (e) ↓= i.

Case 2: Not Case 1. In this case let p2e+1 = p∗2e. It remains to show

that p2e+1 forces ϕ
(1),Y
e (e) ↑. This follows from the failure of Case 1, because

{τq | q ≥ p2e+1} ⊆ T2e. Thus we have forced Y ′(e) = 0.
In order to insure that DNR �w {Y }, let the forcing condition p2e+1 =

(τ2e+1, a2e+1) be given. We shall choose p2e+2 ≥ p2e+1 to force ϕ
(1),Y
e (n) ↓=

ϕ
(1)
n (n) ↓ or ϕ

(1),Y
e (n) ↑ for some n. Thus ϕ

(1),Y
e will not be a DNR function.

Case 1: There exists τ ∈ T2e+1 such that ϕ
(1),τ
e,|τ | (n) ↓= ϕ

(1)
n (n) ↓ for some

n. In this case, search for such a τ and let p2e+2 = (τ, a2e+1). This is a
forcing condition because τ ∈ T2e+1 ⊆ {τq | q ≥ p2e+1}. Thus we have forced

ϕ
(1),Y
e (n) ↓= ϕ

(1)
n (n) ↓.

Case 2: Not Case 1. In this case let p2e+1 = p∗2e. We claim that p2e+1 forces

ϕ
(1),Y
e (n) ↑ for some n. Otherwise, for each n search for τ ∈ T2e+1 such that

ϕ
(1),τ
e,|τ | (n) ↓. Such a τ must exist because {τq | q ≥ p2e+2} ⊆ T2e+1. When

such a τ is found, define h(n) = ϕ
(1),τ
e,|τ | (n). By the failure of Case 1 we must
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have either ϕ
(1)
n (n) ↑ or ϕ

(1)
n (n) ↓6= h(n). Thus h is a DNR function, but this is

impossible because h is recursive.
This completes the proof of Lemma 5.3.

Finally we prove Theorem 5.1. Let X be given. Let µ and I be as in Lemma
5.2. By Lemma 5.3 let Y and J be such that µ(J) <∞ and I ⊆ J and Y ′ ≤T X

′

and DNR �w {Y }. From µ(J) < ∞ and I ⊆ J it follows by Lemma 5.2 that
X ≤LR Y . This completes the proof of Theorem 5.1.

We now prove some variants of Theorem 5.1. These variants will be used in
Section 7 to build some ω-models which are relevant for the reverse mathematics
of measure-theoretic regularity.

Theorem 5.5. Given X,A,B,C such that A �T B and DNR �w {C}, we can

find Y such that X ≤LR Y and A �T B ⊕ Y and DNR �w {C ⊕ Y }.

Proof. We imitate the proof of Theorem 5.1. Clearly it suffices to prove the
following variant of Lemma 5.3.

Lemma 5.6. Assume A �T B and DNR �w {C}. Let µ be a computable

measure. Given X and I such that I is X-r.e. and µ(I) < ∞, we can find Y
and J such that J is Y -r.e. and µ(J) < ∞ and I ⊆ J and A �T B ⊕ Y and

DNR �w {C ⊕ Y }.

Proof. We imitate the proof of Lemma 5.3.
In order to insure that A �T B⊕Y , let the forcing condition p2e = (τ2e, a2e)

be given. We shall choose p2e+1 ≥ p2e to force ϕ
(1),B⊕Y
e 6= A.

Case 1: There exists τ ∈ T2e such that ϕ
(1),B⊕τ

e,|τ | (n) ↓6= A(n) for some n.

In this case let p2e+1 = (τ, a2e). This is a forcing condition because τ ∈ T2e ⊆

{τq | q ≥ p2e}. Thus we have forced ϕ
(1),B⊕Y
e (n) ↓6= A(n).

Case 2: Not Case 1. In this case let p2e+1 = p∗2e. We claim that p2e+1

forces ϕ
(1),B⊕Y
e (n) ↑ for some n. Otherwise, because {τq | q ≥ p2e+1} ⊆ T2e,

we have that for each n there exists τ ∈ T2e such that ϕ
(1),B⊕τ

e,|τ | (n) ↓. But for

any τ ∈ T2e such that ϕ
(1),B⊕τ

e,|τ | (n) ↓ we must have ϕ
(1),B⊕τ

e,|τ | (n) = A(n), by the

failure of Case 1. Thus A ≤T B, and this is a contradiction.
In order to insure that DNR �w {C ⊕ Y }, let the forcing condition p2e+1 =

(τ2e+1, a2e+1) be given. We shall choose p2e+2 ≥ p2e+1 so as to force ϕ
(1),C⊕Y
e

to be non-DNR.
Case 1: There exists τ ∈ T2e+1 such that ϕ

(1),C⊕τ

e,|τ | (n) ↓= ϕ
(1)
n (n) ↓ for

some n. In this case let p2e+2 = (τ, a2e+1). This is a forcing condition because

τ ∈ T2e+1 ⊆ {τq | q ≥ p2e+1}. Thus we have forced ϕ
(1),C⊕Y
e (n) ↓= ϕ

(1)
n (n) ↓,

hence ϕ
(1),C⊕Y
e is not DNR.

Case 2: Not Case 1. In this case let p2e+2 = p∗2e+1. We claim that p2e+2

forces ϕ
(1),C⊕Y
e (n) ↑ for some n. Otherwise, for each n search for τ ∈ T2e+1

such that ϕ
(1),C⊕τ

e,|τ | (n) ↓. Such a τ must exist because {τq | q ≥ p2e+2} ⊆ T2e+1.
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When such a τ is found, define h(n) = ϕ
(1),C⊕τ

e,|τ | (n). By the failure of Case 1 we

must have either ϕ
(1)
n (n) ↑ or ϕ

(1)
n (n) ↓6= h(n). Thus h is a DNR function, but

this is impossible because h ≤T C and DNR �w {C}.

The proof of Theorem 5.5 is now complete.

We now generalize Theorem 5.5 replacing the oracles A,B,C by a countable
sequence of oracles Ai, Bi, Ci where i = 0, 1, 2, . . ..

Theorem 5.7. Given X and Ai �T Bi and DNR �w {Ci} for all i, we can

find Y such that X ≤LR Y and Ai �T Bi ⊕ Y and DNR �w {Ci ⊕ Y } for all i.

Proof. This is a routine generalization of Theorem 5.5. We omit the details.

Theorem 5.8. Given X and Ai �T Bi and DNR �w {Ci} and PA �w {Di} for

all i, we can find Y such that X ≤LR Y and Ai �T Bi⊕Y and DNR �w {Ci⊕Y }
and PA �w {Di ⊕ Y } for all i.

Proof. This is a variant1 of Theorem 5.7 with PA instead of DNR. The proof is
similar, using DNR ∩ 2N instead of DNR and recalling the well known fact (see
for instance [41]) that DNR ∩ 2N is Muchnik equivalent to PA.

Let us say that X is arithmetical in Y , abbreviated X ≤a Y , if X ≤T Y (n)

for some n.

Theorem 5.9. Given X and Ai �a Bi for all i, we can find Y such that

X ≤LR Y and Ai �a Bi ⊕ Y for all i.

Proof. This is like Theorem 5.7 replacing ≤T by ≤a. The proof is similar.

6 Mass problems

For each recursive ordinal α, let Bα be the set of Turing oracles with the prop-
erties listed in Corollary 4.12. In other words, Bα = {Y | 0(α) ≤LR Y } or
equivalently

Bα = {Y | every Σ0
α+2 set includes a Σ0,Y

2 set of the same measure}.

We may view Bα as a mass problem. Clearly these mass problems are of interest
from the viewpoint of reverse mathematics, specifically the reverse mathematics
of measure-theoretic regularity.

In this section we shall prove that Bα is Σ0
3. From this it will follow that the

Muchnik degrees bα = degw(Bα) ∈ Dw embed nicely into Ew. See also Figure 1
below.

Definition 6.1. If S is a set of Turing oracles, we write

SLR = {Y | ∃X (X ∈ S and X ≤LR Y )}.

1Obviously many other such variants also hold.
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Thus SLR is the upward closure of S under LR-reducibility.

Theorem 6.2. If S is Σ0
3 then SLR is again Σ0

3.

Proof. We need the following lemma.

Lemma 6.3. The 2-place predicate X ≤LR Y is Σ0,X′,Y ′

2 . In other words, we

have a Σ0
2 predicate L(U, V ) such that for all X and Y , X ≤LR Y if and only if

L(X ′, Y ′) holds.

Proof. Let IXc = {(n, i) | n ≥ KX(i) + c}. Clearly the sets IXc for c = 0, 1, 2, . . .

are uniformly Σ0,X
1 . It is also clear that X ≤LK Y if and only if ∃c (IXc ⊆ IY0 ),

i.e., ∃c ∀n ∀i ((n, i) ∈ IXc ⇒ (n, i) ∈ IY0 ). Thus X ≤LK Y is Σ0,X′,Y ′

2 . It follows

by Theorem 4.3 that X ≤LR Y is also Σ0,X′,Y ′

2 , Q.E.D.

Since S is Σ0
3, let R(X, k,m, n) be a recursive predicate such that S = {X |

∃k ∀m ∃nR(X, k,m, n)}. Let P = {〈k〉aX ⊕ f | ∀m (f(m) = the least n such
that R(X, k,m, n))}. Clearly P is Π0

1 and each X ∈ S is Turing equivalent to
some 〈k〉aX ⊕ f ∈ P and vice versa. Thus, replacing S by P , we may safely
assume that S is a Π0

1 subset of NN.
Since S is Π0

1, it follows by Lemma 2.8 that S′ = {X ′ | X ∈ S} is again
Π0

1. Let L(U, V ) be a Σ0
2 predicate as in Lemma 6.3. Thus Y ∈ SLR if and only

if L(Z, Y ′) holds for some Z ∈ S′. Since L(U, V ) is Σ0
2, let Q(j, U, V ) be a Π0

1

predicate such that L(U, V ) ≡ ∃j Q(j, U, V ).
Recall also Lemma 4.5 which says that every X ≤LR Y is jump-traceable by

Y with bounding function 2c+n for some constant c. Given e, c, n and Y , let

FY
e,c,n be a finite set defined as follows. If ϕ

(1)
e (n) ↑ let FY

e,c,n = ∅. Otherwise we

have ϕ
(1)
e (n) ↓= i for some i, so let FY

e,c,n consist of WY
i enumerated so long as

its cardinality is ≤ 2c+n. More precisely FY
e,c,n is the union of the sets WY

i,s over

all s such that |WY
i,s| ≤ 2c+n. Clearly the sets FY

e,c,n are finite and uniformly
Y -r.e. It follows that this sequence of finite sets is canonically Y ′-computable.
Moreover, Lemma 4.5 tells us that for every X ≤LR Y there exist constants e
and c such that X ′(n) ∈ FY

e,c,n for all n.

Combining the last two paragraphs, we see that Y ∈ SLR if and only if there
exist j, e, c, Z such that Z ∈ S′ and Q(j, Z, Y ′) and ∀n (Z(n) ∈ FY

e,c,n). Thus

SLR = {Y | ∃j ∃e ∃c (P Y
j,e,c 6= ∅)} where

P Y
j,e,c = {Z | Z ∈ S′ and Q(j, Z, Y ′) and ∀n (Z(n) ∈ FY

e,c,n)}

is Π0,Y ′

1 and Y ′-recursively bounded uniformly in j, e, c. From this it follows

by compactness that {(j, e, c) | P Y
j,e,c 6= ∅} is Π0,Y ′

1 uniformly in Y ′. Hence

{Y ′ | Y ∈ SLR} is Σ0
2 and thus SLR is Σ0

3.
This completes the proof of Theorem 6.2.

The next lemma shows how to embed a large part of Dw into Ew.

Lemma 6.4. If s = degw(S) where S is Σ0
3, then inf(s,1) belongs to Ew.
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Proof. This is a consequence of the Embedding Lemma of Simpson [43, Lemma
3.6]. See also our exposition in [46].

Definition 6.5. For each recursive ordinal α let Bα = {Y | 0(α) ≤LR Y }
and consider the Muchnik degree bα = degw(Bα). Consider also the Muchnik
degrees

1 = degw({X | X is a completion of Peano Arithmetic})

and

r = degw({X | X is random in the sense of Martin-Löf})

and

d = degw({X | X is diagonally nonrecursive})

and

0 = degw({X | X is recursive}).

It is well known that 1 and 0 are the top and bottom degrees in Ew. By [41, 43]
we know that the degrees d and r also belong to Ew and that 0 < d < r < 1.

1=deg  (PA)

d=deg  (DNR)

r=deg  (MLR)

0=deg  (REC)
w

w

w

w

1

inf(b ,1)
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Figure 1: A picture of Ew. Each of the black dots represents a specific, natural
Muchnik degree in Ew. Namely 1 = degw({X | X is a completion of Peano
Arithmetic}), r = degw({X | X is Martin-Löf random}), d = degw({X | X is
diagonally nonrecursive}), 0 = degw({X | X is recursive}), and bα = degw({Y |
0(α) ≤LR Y }) for each α < ωCK

1 .
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Theorem 6.6. For each α < ωCK
1 the mass problem Bα is Σ0

3. Hence inf(bα,1)
belongs to Ew. Moreover, for all α < β < ωCK

1 we have inf(bα,1) < inf(bβ ,1).
Also, if α > 0 then inf(bα,1) is incomparable with d and r.

Proof. Fix a recursive ordinal α. From hyperarithmetical theory it is well known
that 0(α) is a Σ0

3 singleton. (References are in the proof of Theorem 4.9 above.)
In other words, the one-element set {0(α)} is Σ0

3. It follows by Theorem 6.2 that
Bα = {0(α)}LR is Σ0

3. Hence by Lemma 6.4 we have inf(bα,1) ∈ Ew.
Trivially bα ≤ bβ for all α < β < ωCK

1 . Therefore, to prove inf(bα,1) <
inf(bβ ,1) it suffices to prove inf(bα+1,1) � bα. By Theorem 5.1 let Y be such
that 0(α) ≤LR Y and Y ′ ≤T 0(α+1) and DNR �w {Y }. Since 0(α+2) �T Y ′, it
follows by Corollary 4.10 that 0(α+1) �LR Y . Thus Bα+1 ∪DNR �w {Y }, and
this implies that inf(bα+1,d) � bα. From this we clearly have inf(bα+1,1) � bα

and d � inf(bα,1).
By the Low Basis Theorem (see for instance [41]) let Z be Martin-Löf random

and low, i.e., Z ′ ≤T 0′. By Corollary 4.10 (see also [42]) we know that each
Y ∈ Bα for α > 0 is high, i.e., 0′′ ≤T Y ′. Thus Bα �w {Z}. Moreover, in view
of Stephan’s Theorem [53] (see also our exposition in [44, Section 6]) we have
PA �w {Z}. Thus Bα ∪ PA �w {Z}, and this implies that inf(bα,1) � r.

For α > 0 we have seen that inf(bα,1) is � d and � r. From this plus d < r

it follows that inf(bα,1) is incomparable with d and r, Q.E.D.

Remark 6.7. The inequalities which were stated in Theorem 6.6 are illustrated
in Figure 1. A more precise account is given in the next theorem.

Theorem 6.8. For 0 < α < β < ωCK
1 we have

0 < inf(d, inf(bα,1)) < inf(d, inf(bβ ,1)) < d (1)

and

r < sup(r, inf(bα,1)) < sup(r, inf(bβ ,1)) < 1. (2)

Proof. The inequalities (1) are already clear from the proof of Theorem 6.6.
By a theorem of Nies (see our exposition in [44, Corollary 5.4]), given X ≥T

0′ we can find Z ≤T X such that 0′ �T Z and X ≤LR Z and Z is random in
the sense of Martin-Löf. Letting X = 0(α) with α > 0, we obtain a random Z
such that 0(α) ≤LR Z and 0(α+1) �LR Z and 0′ �T Z. Since Z is random and
0′ �T Z, it follows by Stephan’s Theorem that PA �w {Z}. Thus inf(bα+1,1) �
sup(r,bα), and (2) follows easily from this.

Remark 6.9. For each α < ωCK
1 let cα = degw(Cα) where

Cα = {Z | 0(α) ≤LR Z and Z is random in the sense of Martin-Löf}.

As above we have inf(cα,1) ∈ Ew and r < inf(cα,1) < inf(cβ ,1) < 1 whenever
0 < α < β < ωCK

1 . See also the additional information in Simpson [44].
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7 Consequences for reverse mathematics

Remark 7.1. As noted in [40, 47, Theorem VIII.3.15], the principal axiom of
ATR0 is equivalent to the existence of X(α) for all X and all α < ωX

1 . Therefore,
by formalizing Theorem 3.3 within ATR0, we see that ATR0 suffices to prove
measure-theoretic regularity at all levels of the Borel hierarchy. See also the
discussion of Borel sets in ATR0 in [40, 47, Section V.3]. This raises the question:

Which set existence axioms are needed in order to prove measure-
theoretic regularity in the Borel hierarchy?

This is a typical question of reverse mathematics. We shall now apply our results
on Muchnik degrees in order to build some ω-models (see [40, 47, Chapter VIII])
which are relevant for this question.

Definition 7.2 (MTR-models). LetM be an ω-model of RCA0. For S ⊆ 2N we
say that S is M -Borel if S is Σ0,X

α for some X ∈M and some α < ωX
1 . We say

that S is M -Fσ if S is Σ0,Y
2 for some Y ∈M . We say that M is an MTR-model

if every M -Borel set includes an M -Fσ set of the same measure. The acronym
MTR stands for “measure-theoretic regularity.”

Lemma 7.3. Let M be an ω-model of RCA0. Then M is an MTR-model if and

only if

(∀X ∈M) (∀α < ωX
1 ) (∃Y ∈M) (X(α) ≤LR Y ). (3)

Proof. Since M is closed under the pairing function ⊕, property (3) easily im-
plies the stronger-looking property

(∀X ∈M) (∀α < ωX
1 ) (∃Y ∈M) (X(α) ≤LR Y and X ≤T Y ).

But then, by 1 ⇒ 5 of Theorem 4.11, M is an MTR-model. Conversely, assume
that M is an MTR-model and let X ∈ M and α < ωX

1 be given. Consider a

universal Σ0,X
α+2 set S defined by

S = {〈0, . . . , 0
︸ ︷︷ ︸

n

, 1〉aZ | n ∈ N, Z ∈ Sn}

where Sn, n ∈ N is a recursive enumeration of the Σ0,X
α+2 sets. Since M is an

MTR-model, let Y ∈M be such that S includes a Σ0,Y
2 set of the same measure.

From the universality of S it follows that every Σ0,X
α+2 set includes a Σ0,Y

2 set of

the same measure. But then by 5 ⇒ 1 of Theorem 4.11 we have X(α) ≤LR Y .
This completes the proof.

Theorem 7.4. We can find MTR-models M1, M2, M3, M4 satisfying RCA0 +
¬WWKL0 and WWKL0 + ¬WKL0 and WKL0 + ¬ACA0 and ACA0 + ¬ATR0

respectively. Moreover, given a sequence of oracles Ai such that ∀i (Ai �T 0),
we can arrange that Ai /∈ Mj for all i ∈ N and j = 1, 2, 3. The same holds for

j = 4 provided ∀i ∀n (Ai �T 0(n)).
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Proof. Let M be a countable ω-model of ACA0 [40, 47, Chapter VIII] which is
closed under relative hyperarithmeticity, i.e., (∀X ∈M) (∀α < ωX

1 ) (X(α) ∈M).
Assume also that

⊕∞
i=0 Ai ∈ M . We shall build Mj as a submodel of M with

the following property:

(∀X ∈M) (∃Y ∈Mj) (X ≤LR Y ).

By Lemma 7.3 this insures that Mj is an MTR-model.
Let Xn for n = 0, 1, 2, . . . be a fixed enumeration of M .
To build M1 start with ∀i (Ai �T 0) and apply Theorem 5.7 repeatedly for

n = 0, 1, 2, . . . to obtain Yn ∈ M such that Xn ≤LR Yn and DNR �w {Yn} and
∀i (Ai �T Yn) and Yn ≤T Yn+1. Letting M1 = {Y | ∃n (Y ≤T Yn)} we have
M1 ∩ DNR = ∅ and ∀i (Ai /∈ M1). Since M1 ∩ DNR = ∅, there is no Z ∈ M1

which is Martin-Löf random. In particularM1 |= RCA0+¬WWKL0 as required.
For M2 we need a lemma:

Lemma 7.5. Given X and Ai �T Bi and PA �w {Ci} for all i, we can find

Z such that Z is Martin-Löf random relative to X and Ai �T Bi ⊕ Z and

PA �w {Ci ⊕ Z} for all i.

Proof. For any X the set {Z | Z is Martin-Löf random relative to X} is of
measure 1. Also, Ai �T Bi implies that {Z | Ai �T Bi ⊕ Z} is of measure 1,
and PA �w {Ci} implies that {Z | PA �w {Ci ⊕ Z}} is of measure 1. Letting
Z belong to the intersection of these sets of measure 1, we have our lemma.

To build M2 start with ∀i (Ai �T 0) and apply Theorem 5.8 and Lemma 7.5
repeatedly for n = 0, 1, 2, . . . to obtain Yn ∈M and Zn ∈M such that Xn ≤LR

Yn and PA �w {Yn} and ∀i (Ai �T Yn) and Zn is Martin-Löf random2 relative
to Xn⊕Yn and PA �w {Yn⊕Zn} and ∀i (Ai �T Yn⊕Zn) and Yn⊕Zn ≤T Yn+1.
Letting M2 = {Y | ∃n (Y ≤T Yn)} we have M2 ∩ PA = ∅ and ∀i (Ai /∈M2) and

(∀X ∈M) (∃Z ∈M2) (Z is Martin-Löf random relative to X).

In particular M2 |= WWKL0 + ¬WKL0 as required.
For M3 we need another lemma:

Lemma 7.6. Given Y and Ai �T Y for all i, we can find Z such that Z is

PA-complete over Y and Ai �T Y ⊕ Z for all i.

Proof. This is the Gandy/Kreisel/Tait Theorem [14]. See also our exposition in
[40, 47, Theorem VIII.2.2.4].

To build M3 start with ∀i (Ai �T 0) and apply Theorem 5.8 and Lemma 7.6
repeatedly for n = 0, 1, 2, . . . to obtain Yn ∈M and Zn ∈M such that Xn ≤LR

Yn and ∀i (Ai �T Yn) and Zn is PA-complete over Yn and ∀i (Ai �T Yn ⊕ Zn)
and Yn⊕Zn ≤T Yn+1. Letting M3 = {Y | ∃n (Y ≤T Yn)} we have ∀i (Ai /∈M3)
and

2Clearly we can replace Martin-Löf randomness by much stronger randomness notions.
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(∀Y ∈M3) (∃Z ∈M3) (Z is PA-complete over Y ).

Letting A0 = 0′ we have 0′ /∈M3 so M3 |= WKL0 + ¬ACA0 as required.
To build M4 start with ∀i (Ai �a 0) and apply Theorem 5.9 repeatedly for

n = 0, 1, 2, . . . to obtain Yn ∈ M such that Xn ≤LR Yn and ∀i (Ai �a Yn)
and Y ′

n ≤T Yn+1. Letting M4 = {Y | ∃n (Y ≤T Yn)} we have ∀i (Ai /∈ M4)
and (∀Y ∈ M4) (Y

′ ∈ M4). Letting A0 = 0(ω) we have 0(ω) /∈ M4 so M4 |=
ACA0 + ¬ATR0 as required.

Remark 7.7. In the proof of Theorem 7.4, we can insert extra steps into the
construction to insure that

M = {X | (∃Y ∈Mj) (X ≤T Y
′)}

for j = 1, 2, 3 and

M = {X | (∃Y ∈Mj) (X ≤T Y
(ω))}

for j = 4. Namely, for j = 1, 2, 3 and n = 0, 1, 2, . . . we can arrange that Gn is
1-generic relative to Yn and Xn ≤T (Yn ⊕Gn)

′ and Gn ≤T Yn+1. For j = 4 we
can arrange that Gn is ω-generic relative to Yn and Xn ≤T (Yn ⊕ Gn)

(ω) and
Gn ≤T Yn+1. By Cole/Simpson [9, Section 3] these extra steps are compatible
with the other requirements of the construction.

Remark 7.8. Let M and Mj be as in Remark 7.7. Then clearly M is in-
terpretable in Mj . Moreover, if M is an ω-model of ATR0 then Mj satisfies
measure-theoretic regularity for all levels of the Borel hierarchy along countable
well-orderings with a sufficient amount of transfinite induction.

Remark 7.9. Our results above are stated for ω-models. However, as usual
in reverse mathematics, we can extend our results to non-ω-models by for-
malizing our recursion-theoretic arguments within appropriate subsystems of
second-order arithmetic.

References

[1] Christopher J. Ash and Julia F. Knight. Computable Structures and the

Hyperarithmetical Hierarchy. Number 144 in Studies in Logic and the Foun-
dations of Mathematics. North-Holland, 2000. XV + 346 pages.

[2] Stephen Binns. A splitting theorem for the Medvedev and Muchnik lattices.
Mathematical Logic Quarterly, 49(4):327–335, 2003.

[3] Stephen Binns, Bjørn Kjos-Hanssen, Manuel Lerman, and David Reed
Solomon. On a question of Dobrinen and Simpson concerning almost ev-
erywhere domination. Journal of Symbolic Logic, 71:119–136, 2006.

22



[4] Stephen Binns and Stephen G. Simpson. Embeddings into the Medvedev
and Muchnik lattices of Π0

1 classes. Archive for Mathematical Logic, 43:399–
414, 2004.

[5] Douglas K. Brown, Mariagnese Giusto, and Stephen G. Simpson. Vitali’s
theorem and WWKL. Archive for Mathematical Logic, 41:191–206, 2002.

[6] Z. Chatzidakis, P. Koepke, and W. Pohlers, editors. Logic Colloquium ’02:

Proceedings of the Annual European Summer Meeting of the Association for

Symbolic Logic and the Colloquium Logicum, held in Münster, Germany,

August 3–11, 2002. Number 27 in Lecture Notes in Logic. Association for
Symbolic Logic, 2006. VIII + 359 pages.

[7] Peter Cholak, Noam Greenberg, and Joseph S. Miller. Uniform almost
everywhere domination. Journal of Symbolic Logic, 71:1057–1072, 2006.

[8] C.-T. Chong, Q. Feng, T. A. Slaman, W. H. Woodin, and Y. Yang, editors.
Computational Prospects of Infinity: Proceedings of the Logic Workshop

at the Institute for Mathematical Sciences, June 20 – August 15, 2005,

Part II: Presented Talks. Number 15 in Lecture Notes Series, Institute for
Mathematical Sciences, National University of Singapore. World Scientific,
2008. 432 pages.

[9] Joshua A. Cole and Stephen G. Simpson. Mass problems and hyperarith-
meticity. Journal of Mathematical Logic, 7(2):125–143, 2008.

[10] Natasha L. Dobrinen and Stephen G. Simpson. Almost everywhere domi-
nation. Journal of Symbolic Logic, 69:914–922, 2004.

[11] Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic Randomness and

Complexity. Theory and Applications of Computability. Springer, 2010.
XXVIII + 855 pages.

[12] S. Feferman, C. Parsons, and S. G. Simpson, editors. Kurt Gödel: Essays
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