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Abstract

Let Pw be the lattice of Muchnik degrees of nonempty Π0

1 subsets of

2ω. The lattice Pw has been studied extensively in previous publications.

In this note we prove that the lattice Pw is not Brouwerian.

1 Introduction

Definition 1. Let ω denote the set of natural numbers, ω = {0, 1, 2, . . .}. Let
ωω denote the Baire space, ωω = {f | f : ω → ω}. Following Medvedev [27] and
Rogers [32, §13.7] we define a mass problem to be an arbitrary subset of ωω.
For mass problems P and Q we say that P is Medvedev reducible or strongly

reducible to Q, abbreviated P ≤s Q, if there exists a partial recursive functional
Ψ such that Ψ(g) ∈ P for all g ∈ Q. We say that P is Muchnik reducible or
weakly reducible to Q, abbreviated P ≤w Q, if for all g ∈ Q there exists f ∈ P
such that f is Turing reducible to g. Clearly Medvedev reducibility implies
Muchnik reducibility, but the converse does not hold.

Definition 2. A Medvedev degree or degree of difficulty or strong degree is
an equivalence class of mass problems under mutual Medvedev reducibility. A
Muchnik degree or weak degree is an equivalence class of mass problems un-
der mutual Muchnik reducibility. We write degs(P ) = the Medvedev degree
of P . We write degw(P ) = the Muchnik degree of P . Let Ds be the set of
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Medvedev degrees, partially ordered by Medvedev reducibility. There is a nat-
ural embedding of the Turing degrees into Ds given by degT (f) 7→ degs({f}).
Let Dw be the set of Muchnik degrees, partially ordered by Muchnik reducibil-
ity. There is a natural embedding of the Turing degrees into Dw given by
degT (f) 7→ degw({f}). Here {f} is the singleton set whose only element is f .

Definition 3. Let L be a lattice. For a, b ∈ L we define a ⇒ b to be the unique
minimum x ∈ L such that sup(a, x) ≥ b. Note that a ⇒ b may or may not exist
in L. Following Birkhoff [8, 9] (first two editions) and McKinsey/Tarski [25] we
say that L is Brouwerian if a ⇒ b exists in L for all a, b ∈ L and L has a top
element. It is known (see Birkhoff [9, §IX.12] [10, §II.11] or McKinsey/Tarski
[25] or Rasiowa/Sikorski [31, §I.12]) that if L is Brouwerian then L is distributive
and has a bottom element and for all a ≤ b in L the sublattice

{x ∈ L | a ≤ x ≤ b}

is again Brouwerian.

Remark 1. Given a Brouwerian lattice L, we may view L as a model of first-
order intuitionistic propositional calculus. Namely, for a, b ∈ L we define a∧b =
sup(a, b), a ∨ b = inf(a, b), a ⇒ b as above, and ¬ a = (a ⇒ 1) where 1 is the
top element of L. We may also define a ⊢ b if and only if a ≥ b in L. There
is a completeness theorem (see Tarski [52] or McKinsey/Tarski [24, 25, 26] or
Rasiowa/Sikorski [31, §IX.3] or Rasiowa [30, §XI.8]) saying that a first-order
propositional formula is intuitionistically provable if and only if it evaluates
identically to the bottom element in all Brouwerian lattices.

Remark 2. Brouwerian lattices have also been studied under other names
and with other notation and terminology. A pseudo-Boolean algebra is a lat-
tice L such that the dual of L is Brouwerian; see Rasiowa/Sikorski [31] and
Rasiowa [30]. Pseudo-Boolean algebras are also known as Heyting algebras ;
see Balbes/Dwinger [2, Chapter IX], Fourman/Scott [18], and Grätzer [19].
Brouwerian lattices are also known as Brouwer algebras ; see Sorbi [48, 49],
Sorbi/Terwijn [51], and Terwijn [53, 54, 55, 56, 57]. Remarkably, the so-called
Brouwerian lattices of Birkhoff [10] (third edition) are dual to those of Birkhoff
[8, 9] (first two editions). We adhere to the terminology of Birkhoff [8, 9].

Remark 3. It is known that Ds and Dw are Brouwerian lattices. There is
a natural homomorphism of Ds onto Dw given by degs(P ) 7→ degw(P ). This
homomorphism preserves the binary lattice operations sup and inf and the top
and bottom elements, but it does not preserve the binary if-then operation ⇒.

Remark 4. The relationship between mass problems and intuitionism has
a considerable history. Indeed, it seems fair to say that the entire subject
of mass problems originated from intuitionistic considerations. The impetus
came from Kolmogorov 1932 [22, 23] who informally proposed to view Heyt-
ing’s intuitionistic propositional calculus [20] as a “calculus of problems” (“Auf-
gabenrechnung”). This idea amounts to what is now known as the BHK or
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Brouwer/Heyting/Kolmogorov interpretation of the intuitionistic propositional
connectives; see Troelstra/van Dalen [59, §§1.3.1 and 1.5.3]. Elaborating Kol-
mogorov’s idea, Medvedev 1955 [27] introduced Ds and noted that Ds is a
Brouwerian lattice. Later Muchnik 1963 [28] introduced Dw and noted that Dw

is a Brouwerian lattice. Some further papers in this line are Skvortsova [47],
Sorbi [48, 49, 50], Sorbi/Terwijn [51], and Terwijn [54, 53, 55, 56, 57].

Definition 4. Let 2ω denote the Cantor space, 2ω = {f | f : ω → {0, 1}}.
Following Simpson [40] let Ps be the sublattice of Ds consisting of the Medvedev
degrees of nonempty Π0

1 subsets of 2ω, and let Pw be the sublattice of Dw

consisting of the Muchnik degrees of nonempty Π0
1 subsets of 2ω.

Remark 5. The lattices Ps and Pw are mathematically rich and have been
studied extensively. See Alfeld [1], Binns [3, 4, 5, 6], Binns/Simpson [7], Cen-
zer/Hinman [11], Cole/Simpson [13], Kjos-Hanssen/Simpson [21], Simpson [34,
35, 37, 38, 39, 40, 41, 42, 43, 45, 44], Simpson/Slaman [46], and Terwijn [54]. It
is known that Pw contains not only the recursively enumerable Turing degrees
[42] but also many specific, natural Muchnik degrees which arise from founda-
tionally interesting topics. Among these foundationally interesting topics are
algorithmic randomness [40, 42], reverse mathematics [36, 40, 41, 43], almost
everywhere domination [43], hyperarithmeticity [13], diagonal nonrecursiveness
[40, 42], subrecursive hierarchies [21, 40], resource-bounded computational com-
plexity [21, 40], and Kolmogorov complexity [21]. Recently Simpson [44] has
applied Ps and Pw to prove a new theorem in symbolic dynamics.

Remark 6. It is known that Ps and Pw are distributive lattices with top and
bottom elements. Moreover, the natural lattice homomorphism of Ds onto Dw

restricts to a natural lattice homomorphism of Ps onto Pw preserving top and
bottom elements.

Remark 7. In view of Remarks 3, 4, 5 and 6, it is natural to ask whether Ps

and Pw are Brouwerian lattices. The purpose of this note is to show that Pw

is not a Brouwerian lattice. Letting 1 denote the top element of Pw, we shall
produce a family of Muchnik degrees p ∈ Pw such that p ⇒ 1 does not exist in
Pw. In other words, ¬p does not exist in Pw.

Remark 8. It remains open whether Ps is a Brouwerian lattice. Terwijn [54]
has shown that the dual of Ps is not a Brouwerian lattice. It remains open
whether the dual of Pw is a Brouwerian lattice.

2 Proof that Pw is not Brouwerian

In this section we prove that the lattice Pw is not Brouwerian.

Definition 5. For f, g ∈ ωω we write f ≤T g to mean that f is Turing reducible

to g, i.e., f is computable relative to the Turing oracle g. We write g′ = the
Turing jump of g. In particular 0′ = the halting problem = the Turing jump of
0. We use standard recursion-theoretic notation from Rogers [32]. We say that
f is majorized by g if f(n) < g(n) for all n.
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We begin with four well known lemmas.

Lemma 1. Given f ≤T 0′ we can find g ≡T f such that {g} is Π0
1.

Proof. Since f ≤T 0′, it follows by Post’s Theorem (see for instance [32, §14.5,
Theorem VIII]) that f is ∆0

2. From this it follows that the singleton set {f}
is Π0

2. Let R ⊆ ωω × ω × ω be a recursive predicate such that our f is the
unique f ∈ ωω such that ∀m ∃n R(f, m, n) holds. Let g = f ⊕ h where h ∈ ωω

is defined by h(m) = the least n such that R(f, m, n) holds. It is easy to verify
that g ≡T f and {g} is Π0

1. �

Lemma 2. If {f} is Π0
1 and f is nonrecursive, then f is not majorized by any

recursive function.

Proof. This lemma is equivalent to, for instance, [40, Theorem 4.15]. �

Lemma 3. For all nonempty Π0
1 sets Q ⊆ 2ω we have Q ≤w {0′}.

Proof. This lemma is a restatement of the well known Kleene Basis Theorem.
Namely, every nonempty Π0

1 subset of 2ω contains an element which is ≤T 0′.
See for instance the proof of [42, Lemma 5.3]. �

Lemma 4. Let Q ⊆ 2ω be nonempty Π0
1 such that no element of Q is recursive.

Then we can find g ∈ ωω such that 0 <T g <T 0′ and Q �w {g}.

Proof. By Lemma 3 it suffices to find g ∈ ωω such that 0 <T g ≤T 0′ and
Q �w {g}. To construct g we may proceed as in the proof of Lemma 5 below.
The construction is easier than in Lemma 5, because we can ignore f . �

Lemma 5. Let Q ⊆ 2ω be nonempty Π0
1. Let f be such that 0 <T f <T 0′ and

Q �w {f}. Then we can find g ∈ ωω such that 0 <T g <T 0′ and Q �w {g}
and f ⊕ g ≡T 0′.

Proof. We adapt the technique of Posner/Robinson [29].
Let U ⊆ ω<ω be a recursive tree such that Q = {paths through U}. By

Lemmas 1 and 2 we may safely assume that f is not majorized by any recursive
function.

For integers e ∈ ω and strings σ ∈ ω<ω we write

Φe(σ) = 〈ϕ
(1),σ
e,|σ| (i) | i < j〉

where j = the least i such that either ϕ
(1),σ
e,|σ| (i) ↑ or i ≥ |σ|. Note that the

mapping Φe : ω<ω → ω<ω is recursive and monotonic, i.e., σ ⊆ τ implies
Φe(σ) ⊆ Φe(τ). Moreover, for all g, h ∈ ωω we have g ≥T h if and only if
∃e (Φe(g) = h). Here we are writing

Φe(g) =

∞⋃

n=0

Φe(g ↾ n) .
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In order to prove Lemma 5, we shall inductively define an increasing sequence
of strings τe ∈ ω<ω, e = 0, 1, 2, . . .. We shall then let g =

⋃∞
e=0 τe. In presenting

the construction, we shall identify strings with their Gödel numbers.
Stage 0. Let τ0 = 〈〉 = the empty string.
Stage e + 1. Assume that τe has been defined. The definition of τe+1 will be

given in a finite number of substages.
Substage 0. Let σe,0 = τe.
Substage i + 1. Assume that σe,i has been defined. Let ne,i = the least n

such that either

(1) ∃σ < f(n) [ σe,i
a〈n〉 ⊆ σ and Φe(σe,i) ⊂ Φe(σ) ∈ U ]

or

(2) ¬∃σ [ σe,i
a〈n〉 ⊆ σ and Φe(σe,i) ⊂ Φe(σ) ∈ U ] .

Note that ne,i exists, because otherwise f(n) would be majorized by the recur-
sive function le,i(n) = least σ such that σe,i

a〈n〉 ⊆ σ and Φe(σe,i) ⊂ Φe(σ) ∈ U .
If (1) holds with n = ne,i let σe,i+1 = le,i(ne,i). If (2) holds with n = ne,i let
τe+1 = σe,i

a〈ne,i, 0
′(e)〉. This completes our description of the construction.

We claim that, within each stage e + 1, (2) holds for some i. Otherwise, we
would have infinite increasing sequences of strings

σe,0 ⊂ σe,1 ⊂ · · · ⊂ σe,i ⊂ σe,i+1 ⊂ · · ·

and
Φe(σe,0) ⊂ Φe(σe,1) ⊂ · · · ⊂ Φe(σe,i) ⊂ Φ(σe,i+1) ⊂ · · ·

with Φe(σe,i) ∈ U for all i. Moreover, these sequences would be recursive relative
to f , namely σe,i+1 = le,i(ne,i) where ne,i = least n such that (1) holds. Thus,
letting h =

⋃∞
i=0 Φe(σe,i), we would have h ∈ Q and h ≤T f . Thus Q ≤w {f},

a contradiction. This proves our claim.
From the previous claim it follows that τe is defined for all e = 0, 1, 2, . . ..

By construction, the sequence 〈τ0, τ1, . . . , τe, τe+1, . . .〉, is recursive relative to
0′. Moreover, 0′ is recursive relative to 〈τ0, τ1, . . . , τe, τe+1, . . .〉, because for all
e we have 0′(e) = τe+1(|τe+1| − 1).

Finally let g =
⋃∞

e=0 τe. Clearly g ≤T 0′.
We claim that the sequence 〈τ0, τ1, . . . , τe, τe+1, . . .〉 is ≤T f ⊕ g. Namely,

given τe, we may use f and g as oracles to compute τe+1 as follows. We begin
with σe,0 = τe. Given σe,i we use the oracle g to compute ne,i = g(|σe,i|).
Then, using the oracle f , we ask whether there exists σ < f(ne,i) such that
σe,i

a〈ne,i〉 ⊆ σ and Φe(σe,i) ⊂ Φe(σ) ∈ U . If so, we compute σe,i+1 = the least
such σ. If not, we use the oracle g to compute τe+1 = g ↾ |σe,i|+ 2. This proves
our claim.

From the previous claim it follows that 0′ ≤T f ⊕ g. Hence 0′ ≡T f ⊕ g.
We claim that Q �w {g}. To see this, let e be such that Φe(g) =

⋃∞
e=0 Φe(τe)

is a total function. Consider what happened at stage e + 1 of the construction.
Consider the least i such that (2) holds, i.e., τe+1 = σe,i

a〈ne,i, 0
′(e)〉. Since (2)
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holds, there does not exist σ such that σe,i
a〈ne,i〉 ⊆ σ and Φe(σe,i) ⊂ Φe(σ) ∈ U .

In particular, letting τ be an initial segment of g such that σe,i
a〈ne,i〉 ⊆ τ and

Φe(σe,i) ⊂ Φe(τ), we have Φe(τ) /∈ U . Hence Φe(g) /∈ Q. This proves our claim.
From the two previous claims, it follows that 0 <T g <T 0′. The proof of

Lemma 5 is now finished. �

Remark 9. By a similar argument we can prove the following. Let S ⊆ ωω

be Σ0
3. Let f ∈ ωω be of hyperimmune Turing degree such that S �w {f}.

Let h ∈ ωω be such that f ⊕ 0′ ≤T h. Then we can find g ∈ ωω such that
0 <T g <T h and S �w {g} and f ⊕ g ≡T g′ ≡T g ⊕ 0′ ≡T h.

Lemma 6. Let P ⊆ 2ω be nonempty Π0
1. Let S ⊆ ωω be Σ0

3. Then

degw(P ∪ S) ∈ Pw .

Proof. This is Simpson’s Embedding Lemma. See [42, Lemma 3.3] or [45]. �

We are now ready to prove our main result.

Theorem 1. Pw is not Brouwerian.

Proof. Let PA be the set of completions of Peano Arithmetic. Recall from
Simpson [40] that degw(PA) = 1 = the top element of Pw. By Lemma 4 let f
be such that 0 <T f <T 0′ and PA �w {f}. Let

p = degw(PA ∪ {f})

and note that p < 1. By Lemmas 1 and 6 we have p ∈ Pw.
It is well known (see for instance [40, Remark 3.9]) that Dw is a complete

lattice. This means that for all A ⊆ Dw the least upper bound sup(A) and the
greatest lower bound inf(A) exist in Dw. Therefore, within Dw, let

q = inf({x ∈ Pw | sup(p,x) = 1})

and note that sup(p,q) = 1 in Dw. In other words, q ≥ (p ⇒ 1) in Dw.
We claim that q /∈ Pw. Otherwise, let q = degw(Q) where Q ⊆ 2ω is

nonempty Π0
1. Since sup(p,q) = 1, we have PA ≤w {f ⊕ h} for all h ∈ Q.

Since PA �w {f}, it follows that Q �w {f}. By Lemma 5 let g be such that
0 <T g <T 0′ and Q �w {g} and f ⊕ g ≡T 0′. Let

q0 = degw(Q ∪ {g})

and note that q0 < q. By Lemmas 1 and 6 we have q0 ∈ Pw. By Lemma 3 we
have PA ≤w {0′} ≡w {f ⊕ g}, hence sup(p,q0) = 1 contradicting the definition
of q. This proves our claim.

Because q /∈ Pw it follows that p ⇒ 1 does not exist in Pw. Thus Pw is not
Brouwerian. �
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Remark 10. The same proof shows that for all q > 0 in Pw we can find p < q

in Pw such that p ⇒ q does not exist in Pw. On the other hand, we know at
least a few nontrivial instances where p ⇒ q exists in Pw. For example, letting
r be the Muchnik degree of the set of 1-random reals, Theorem 8.12 of Simpson
[40] tells us that r < 1 in Pw and r ⇒ 1 exists in Pw. In fact, r ⇒ 1 in Pw is
equal to r ⇒ 1 in Dw, which is equal to 1. We do not know any instances of
p,q ∈ Pw where p ⇒ q exists in Pw and both p and p ⇒ q are < q in Pw.
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