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Abstract

A mass problem is a set of Turing oracles. If P and @) are mass
problems, we say that P is weakly reducible to Q if for all Y € @ there
exists X € P such that X is Turing reducible to Y. A weak degree is
an equivalence class of mass problems under mutual weak reducibility.
Let P be the lattice of weak degrees of mass problems associated with
nonempty I1? subsets of the Cantor space. The lattice P, has been studied
in previous publications. The purpose of this paper is to show that P,
partakes of hyperarithmeticity. We exhibit a family of specific, natural
degrees in P, which are indexed by the ordinal numbers less than w{¥
and which correspond to the hyperarithmetical hierarchy. Namely, for
each a < wi let h, be the weak degree of 009, the ath Turing jump of
0. If p is the weak degree of any mass problem P, let p* be the weak degree
of the mass problem P* = {Y | 3X (X € P and BLR(X) C BLR(Y))}
where BLR (X)) is the set of functions which are boundedly limit recursive
in X. Let 1 be the top degree in P,. We prove that all of the weak
degrees inf(h%,1), a < w{X, are distinct and belong to P,,. In addition,
we prove that certain index sets associated with P,, are II} complete.
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1 Introduction

Let 2% be the Cantor space, i.e., the space of infinite sequences of 0’s and 1’s. In
previous papers [6, 8, 38, 34, 36, 37] Simpson and others studied the lattice P,, of
degrees of unsolvability of mass problems associated with nonempty II subsets
of 2¥. Simpson [34, 36, 37, 38] showed that P,, contains many specific, natural
degrees in addition to 1 and 0, the top and bottom elements of P,,. These spe-
cific, natural degrees in P, arise from foundationally interesting topics such as
reverse mathematics, algorithmic randomness, computational complexity, and
subrecursive hierarchies from Gentzen-style proof theory.

In the present paper we exhibit some new examples of specific, natural de-
grees in P,,. Our new examples arise from hyperarithmetical theory. In order
to introduce our new examples, we first review some basic facts about the hy-
perarithmetical hierarchy. Some useful references for hyperarithmetical theory
are Ash/Knight [3], Rogers [29, Chapter 16], Sacks [30, Part A], Shoenfield [31,
Sections 7.8-7.11], and Simpson [33, Section VIIL3].

A recursive ordinal is an ordinal number which is the order type of a recursive
well ordering of the integers. Obviously the recursive ordinals form a countable
initial segment of the countable ordinals.! Let w{¥ (pronounced “omega-one-C-
K” or “Church-Kleene-omega-one”) be the least nonrecursive ordinal. Thus for
any ordinal a we have o < w{¥ if and only if « is recursive. For each such « let
0(®) be the ath iterated Turing jump of 0. It is known that 0(*) is well defined

Tt is known that an ordinal is recursive if and only if is the order type of a A} well ordering
of the integers. An interesting refinement of this result is due to Montalbdn [26].



up to Turing degree. Moreover, 0(*) is a %9 singleton.? The Turing degrees 0,
a < WPk are collectively known as the hyperarithmetical hierarchy. A Turing
oracle X is said to be hyperarithmetical if it is Turing reducible to 0(*) for some
a < wPK. Tt is known that X is hyperarithmetical if and only if X is Turing
reducible to some arithmetical singleton, if and only if X is Al.

Given a Turing oracle X, we identify the Turing degree of X with the weak
degree of the singleton set {X }. In particular, for each a < w{¥ let h, be
the Turing degree of 0(® identified with the weak degree of {O(a }. We wish
to embed the degrees h,, a < w¥, into P,. There is a general Embedding
Lemma due to Simpson [36, Lemma 3.3] (see also [38]) which reads as follows:
If s is the weak degree of a X9 set of Turing oracles, then inf(s, 1) belongs to
P, Since {O(a)} is X239, it follows that inf(h,, 1) € P,. However, this particular
mapping of the hyperarithmetical hierarchy into P, is of no interest, because
for all @« > 1 we have inf(h,,1) = 1 in view of the Kleene Basis Theorem. To
obtain an interesting one-to-one embedding of the hyperarithmetical hierarchy
into P,,, we need an additional device: bounded limit recursiveness.

Given a Turing oracle X and a function f from integers to integers, we say
that f is boundedly limit recursive in X, abbreviated f € BLR( ), if there exist
an approximating function f and a bounding function f such that f is Turing
computable from X, f is Turing computable, and

s | f(n,s) # f(n.s + 1)} < f(n)

with f(n) = lim, f(n, s) for all n. Here we are implicitly citing the Limit
Lemma, a well known result which says that f is (unboundedly) limit recursive
if and only if f is Turing reducible? to 0/, if and only if f is AY. More precisely,
one can say that f € BLR(0) if and only if f is weakly truth-table reducible to
0’, if and only if f occurs at the wth level of the Ershov hierarchy.

We prove below that if S is £9 then

S* ={Y | 3X (X € S and BLR(X) C BLR(Y))}

is again X.9. In particular, for each a < W, {0(®)}* is B9, Therefore, letting
h# be the weak degree of {0(®)}* we have inf(h’,1) € P, by the Embed-
ding Lemma [36, 38]. Moreover, we prove below that all of these weak degrees
inf(h?,1), a < wP are distinct. In this way we obtain our specific, natural,
one-to-one embedding of the hyperarithmetical hierarchy into P,. This is our
first main result.

In order to state our second main result, let P;, i = 0,1,..., be a standard,
recursive enumeration of all of the nonempty I1{ subsets of 2¢. Let p; be the
weak degree of P;. Thus by definition P, = {p; | i =0,1,...}. We prove below
that the index set {i | p; = 1} is a II} complete set of integers. More generally,
if j is such that p; > 0, then {i | p; = p,} and {i | p; > p,} are II} complete

2By a Eg singleton we mean a Turing oracle X such that the one-element set {X} is Zg.
Some interesting results concerning arithmetical singletons are due to H. Tanaka [40] and Leo
Harrington (unpublished).

3Note that 0/ = 0(1) = the Turing jump of 0 = the halting problem.



sets of integers. We leave it as an open question to characterize the j’s such
that {i | p; < p;} is a [I} complete set of integers.

Another open question is to calculate the degree of unsolvability of Th(P,,),
the first-order theory of the lattice P,,. We conjecture that Th(P,,) is recursively
isomorphic to O, the wth Turing jump of @. Here O is Kleene’s O, i.e., a
I} complete set of integers. This conjecture seems reasonable in light of our
results stated above plus the known characterizations of Th(S) (up to recursive
isomorphism) for other degree structures S. See for example Simpson [32] and
Nies/Shore/Slaman [28].

The idea that P, may partake of hyperarithmeticity was first broached by
Simpson in his 2005 grant application to the U.S. National Science Foundation,
which eventually resulted in NSF grant DMS-0600823.

The reader who is familiar with the basics of recursion theory and hyper-
arithmetical theory will find that this paper is largely self-contained. We use
standard recursion-theoretical notation from Rogers [29].

2 Bounded limit recursiveness

Let w = {0,1,2,...} = the set of nonnegative integers. Let w* be the Baire
space, i.e., the set of totally defined functions f :w — w.

Definition 2.1. Let A be a Turing oracle. We define f : w — w to be boundedly
limit recursive in A if there exist an A-recursive approzimating function f :
w X w — w and a recursive bounding function f :w — w such that for all n,
{s] f(n,s) # f(n,s+1)} is finite of cardinality < f(n) and lim, f(n,s) = f(n).
We write

BLR(A) = {f € w*¥ | f is boundedly limit recursive in A}.

Remark 2.2. The next three lemmas provide better understanding of BLR(A).
See also Section 6 below. We write f <7 A to mean that f is A-recursive, i.e.,
Turing reducible to A, i.e., computable using A as a Turing oracle. Let A’ be
the Turing jump of A.

Lemma 2.3. We have f € BLR(A) if and only if [ <p A’ with recursively
bounded use of A’ and unbounded use of A.

Proof. “If”. Assume f <7 A’ with recursively bounded use of A’ and un-

bounded use of A, say f(n) = gag)’A(A' I b(n),n) where b(n) is recursive.

Let A, = the finite subset of A’ enumerated in the first s steps of some fixed
A-recursive enumeration of A’. Let f(n,s) = gogz’ArS(A; [ b(n),n) if this is

defined, 0 otherwise. Then f(n, s) is A-recursive and f(n) = lim, f(n, s). More-
over

{s | f(n,s) # f(n, s+ 1)} <2b(n) +1



so f € BLR(A) via f(n) = 2b(n) + 2.
~ “Only if”. Assume f € BLR(A) via an A-recursive approximating function
f and a recursive bounding function f. We describe how to compute f(n). For

~

each i < f(n) we ask the oracle A’ whether

[{s | f(n,s) # f(n,s +1)}| >i.

From the answers to these questions, we immediately read off

k(n) = [{s] f(n,s) # f(n,s + 1)}|.
Then f(n) = f(n,t) for the least ¢ such that

{s <t]f(n,s) # f(n,s + 1)} = k(n).

Here we have used A’ only to compute k(n). Therefore, our use of A’ was

bounded by b(n) = max{p(n,i) | i« < f(n)} where p(n,i) is a fixed, primitive
recursive function. Since f(n) is recursive, so is b(n). O

Lemma 2.4. X <7 Y implies BLR(X) C BLR(Y), which implies X' <r Y.

Proof. The first implication is clear from the definition of BLR, because if X <p
Y then every X-recursive function is Y-recursive. The second implication is an
easy consequence of Lemma 2.3. O

Lemma 2.5. The following are pairwise equivalent.
1. BLR(X) C BLR(Y).

2. For each partial X -recursive function ¢(n) we have g € BLR(Y) where

{ Y(n)+1 if(n) is defined,

n)=
9(n) 0 otherwise.

3. There exists h € BLR(Y) such that
v (if <p$11)’X(n) is defined then h(n) = @53)’)((71)).

Proof. Clearly 1 = 2 and 2 = 3. To prove 3 = 2, assume that ¥(n) is partial

X-recursive. Let e be an index of v, i.e., gogl)’X(n) ~ ¢(n) for all n. Let

O(n) ~ the least ¢ C X such that @(1),0

elo]

(n) is defined. Since 6(n) is partial
X-recursive, let p(n) be primitive recursive such that 6(n) ~ wél(zl)x (p(n)). Let
h be as in 3, and let g(n) ~ ‘Pil\)ﬁl(ﬁjr(:)l))\) (n)+1if the latter is defined, 0 otherwise.
Then ¢ satisfies 2. To prove 2 = 1, let f € BLR(X) be given. For all n and
all i < f(n) + 1, let ¢¥;(n) ~ the ith successive value of f(n,s) as s — oo.
The functions v;(n) are uniformly partial X-recursive, so by 2 the functions
gi(n) = ¥;(n) + 1 if ¢;(n) is defined, 0 otherwise, are uniformly BLR(Y") with
uniformly recursive bounding functions g;(n). Let g(n) = g;(n) — 1 for the least



i such that g;+1(n) = 0. Then f = g € BLR(Y) via the recursive bounding
function g(n) = > {gi(n) | i < f(n)}. O
Theorem 2.6. The binary relation BLR(X) C BLR(Y) is 3. Furthermore,
if S is X9 then so is

S* = {Y | 3X (X € S and BLR(X) C BLR(Y))}.

Proof. By Lemma 2.5, BLR(X) € BLR(Y) if and only if there exists h €

BLR(Y) such that ¥n (h(n) = gogll)’X(n) if the latter is defined). This holds if

and only if there exist (indices for) a totally defined Y-recursive function h and
a totally defined recursive function A such that

¥ ({s | h(n,s) # h(n,s + 1)} < h(n))

and VnVs 3t > s (h(n,t) = wg,i%’Xrt(n) if the latter is defined). A Tarski/Kura-
towski computation (see Rogers [29, Section 14.3]) shows that this statement is
$9. This proves the first part of the theorem.

In order to prove the second part, we first prove it with S replaced by P,
where P is a H(l) subset of w¥. Let T'C w<% be a recursive tree such that

P = {paths through T},
ie.,
P={few”|Vj(fljeT)}

By Lemma 2.5, Y € P* if and only if there exist f € P and g € BLR(Y") such

that Vi (g(2¢) = f(i)) and Vn (g(2n + 1) = @%mf(n) if the latter is defined).
This holds if and only if there exist (indices for) a totally defined Y-recursive
function g and a totally defined recursive function g such that

vn ([{s]g(n,s) # g(n,s + 1)} <g(n))
and
ViVs3t > s ((9(2i,¢) | i < jyeT)
and
YnViVs3t > s(g(2n+1,t) = gp&%’G(Qi’t)lKﬁ (n) if the latter is defined).

Thus, by a Tarski/Kuratowski computation, P* is 39.
Now let S be X9, say

S={X|3VmInR(,mn,X)}
where R is recursive. Consider the I19 set
P={@)~(Xaf) | vmR(i,m, f(m), X)}.

By what we have already proved, P* is £3. But clearly the Turing upward
closure of S is the same as the Turing upward closure of P. Hence by Lemma
2.4 we have S* = P*. It follows that S* is X§. (|



Remark 2.7. (1) We could modify Definition 2.1 by requiring fto be not only
recursive but also primitive recursive. In this case, Lemma 2.3 would hold with
“recursively bounded” replaced by “primitive recursively bounded”. Lemma
2.5 and Theorems 2.6, 4.4, 4.5, 4.7 would go through unchanged but with a
different meaning. (2) Alternatively, we could modify Definition 2.1 by allowing
fto be A-recursive instead of merely recursive. In this case, Lemma 2.3 would
hold with “recursively bounded” replaced by “A-recursively bounded”. Lemma
2.5 would fail, the definition of S* would need to be changed accordingly, and
Theorems 2.6, 4.4, 4.5, 4.7 would go through with this change.

3 Diagonal nonrecursiveness and 1-genericity

Definition 3.1. A function g € w* is said to be 1-generic if for every recursively
enumerable set of strings A C w<%“ there exists a string ¢ C g such that either
c€Aor—dr(cCrand T € A).

Remark 3.2. There is an extensive literature on 1-genericity. See Kumabe [24]
and the references listed there.

Remark 3.3. In the definition of 1-genericity, it suffices to consider only the
particular recursive sets of strings
Ap = {1 € w< | oM (n) is defined}.

| 7]

This is because, for any recursively enumerable set A C w<“, we can find an n

such that for all g € w¥, <p$})79(n) is defined if and only if 37 C g (7 € A).

Lemma 3.4. Given a Turing oracle X, we can find a 1-generic g such that
BLR(X) = BLR(g).

Proof. Define h € w* by h(n) = gogll)’X(n)—i—l if gogll)’X(n) is defined, O otherwise.
Let the sets A,, n =0,1,2,... be as in Remark 3.3. Define a sequence of strings
T C7mn C--Cr7, C--- as follows. Begin with 79 = (), the empty string.
Assuming that 7,, has already been defined, ask the oracle 0’ whether there
exists 7 D 7,"(h(n)) such that 7 € A,. If the answer is yes, let 7,41 = the
least such 7 in some fixed recursive enumeration of w<%. If the answer is no,
let 7,41 = 7,7 (h(n)). Finally let g = |J,, 7. By Remark 3.3, g is 1-generic.
By construction, the sequence of strings 7,,, n = 0,1,2,... is boundedly limit
recursive in each of the oracles X and g with bounding functions 4™ and 2"
respectively. Moreover, h(n) = 7,41(|7|) and o9 (n) ~ gp(l)’T"“(n). It

n’7|7n+1|

follows by Lemma 2.5 that BLR(X) = BLR(g). O

Definition 3.5. A function f € w* is said to be diagonally nonrecursive, ab-
breviated DNR, if f(n) 2 ¢\ (n) for all .

Remark 3.6. There is an extensive literature on DNR functions and their
Turing degrees. See for instance Jockusch [21], Kjos-Hanssen/Merkle/Stephan
[23], and Ambos-Spies/Kjos-Hanssen/Lempp/Slaman [1]. The following lemma
appears in Demuth/Kucera [15, Corollary 9].



Lemma 3.7. If g is 1-generic, there is no DNR, function <t g.

Proof. Fix an index e. Consider the recursively enumerable set of strings

A={7 1307 () L= oV () 1}

Because g is 1-generic, there are two cases.

Case 1. There exists 7 C g such that 7 € A. Then for some n we have
gpél)’T(n) 1= gogll)(n) 1, hence gpél)’g(n) l= gogll)(n) 1, hence gpél)’g is not DNR.

Case 2. For some o C g, there is no 7 2 ¢ belonging to A. Fix such a o.
Define a partial recursive function 6(n) as follows. Given n, look for 7 O ¢ such
that gogl)’T(n) l. If and when we find such a 7, define 6(n) = wgl)’T(n). If no
such 7 is found, let 8(n) be undefined.

Let n be an index of §. We claim that wgl)’T(n) T for all 7 D 0. Otherwise,
there exists 7 O o such that (" (n) | and 0(n) ~ ¢ (n), by definition of
f(n). But then

M () L= 0(n) L= ¢V (n) 1,

hence T € A, contradicting the case hypothesis. This proves our claim.

Our claim implies that gaél)’g (n) 7. Hence cpgl)’g is not totally defined, hence

not DNR.

‘We have now shown that cpgl)’g is not DNR for any e. O

Theorem 3.8. Given a Turing oracle X, we can find a Turing oracle Y such
that BLR(X) = BLR(Y') and there is no DNR function <p Y.

Proof. This is immediate from Lemmas 3.4 and 3.7. O

4 Embedding hyperarithmeticity into P,

The Embedding Lemma of Simpson [36, 38] reads as follows.

Lemma 4.1 (Embedding Lemma). Let S C w* be $9. Let s be the weak degree
of S. Then inf(s, 1) belongs to Py.

Proof. See [36, Lemma 3.3] or [38, Lemma 4]. O

Remark 4.2. Simpson [34, 36, 37, 38] has used the Embedding Lemma to
obtain many examples of specific, natural degrees in P,,. In particular, let d
be the weak degree of DNR, the set of diagonally nonrecursive functions, and
let r,, be the weak degree of R, the set of n-random sequences of 0’s and 1’s.
Using the Embedding Lemma 4.1, Simpson [34, 36] has shown that d and r;
and inf(rs, 1) belong to P, and that

0<d<r <inf(rs,1) <1,

where 0 and 1 are the bottom and top degrees in P,,.



We now extend this methodology as follows.
Definition 4.3. For any set S of Turing oracles, let
S*={Y |3X (X € S and BLR(X) C BLR(Y))}.

If s is the weak degree of S, let s* be the weak degree of S*. By Lemma 2.4, s*
depends only on the weak degree s and not on its representative S.

Theorem 4.4. If S is 39, then the weak degree inf(s*,1) belongs to P.,.
Proof. By Theorem 2.6 S* is 3. Therefore by Lemma 4.1 inf(s*,1) € P,,. O

Theorem 4.5. If ) # S C {X | X' > 0"}, then the weak degree inf(s*,1) is
incomparable with each of the weak degrees d and vy and inf(ry,1).

Proof. Since S is nonempty, Theorem 3.8 gives Y € S* such that there is no
DNR function <p Y. It follows that d £ s*, hence d £ inf(s*,1). On the other
hand, since S C {X | X' > 0"}, it follows by Lemma 2.4 that S* C {Y |
Y’ >r 07}, and this set is known to be of measure 0. (See for instance [37,
proof of Theorem 4.5].) In addition, recall that 1 is the weak degree of PA, the
set of complete extensions of Peano Arithmetic, and it is known that the set
{Y €2¢|3X (X € PA and X <7 Y)} is also of measure 0. (See for instance
the general non-helping result in [34, Lemma 7.3].) Since Ry is of measure 1, we
can find Y € Ry not belonging to either of these sets of measure 0. It follows
that ro Z inf(s*, 1), hence inf(ry,1) 7 inf(s*,1). The proof is now finished,
because d < r1 < inf(rg, 1). O

Remark 4.6. The effect of Theorems 4.4 and 4.5 is to supplement the Embed-
ding Lemma 4.1 by providing another general method for discovering specific,
natural degrees in P,. We shall now use this technique to embed the hyper-
arithmetical hierarchy into P,. Recall from the Introduction that 0(®) is the
ath Turing jump of 0, and h,, is the weak degree of the singleton set {0(*)}.

Theorem 4.7. For each o < wch we have inf(hf,1) € Py,. For each a < wch
except 0, inf(h%,1) is incomparable with d and r1 and inf(ra, 1) in the lattice
ordering of Pw. For all a < f < wP® we have inf(hf,1) < inf(hj, 1), in fact
inf(hy, d) < inf(h%,d).

Proof. By [30, Section I1.4] or [33, Section VIIL3], the singleton set {0(*} is
¥9. Hence, by Theorem 4.4, inf(h},1) € P,. For a > 0 we obviously have
0(®) >7 0/, hence by Theorem 4.5 inf(h%, 1) is incomparable with d and r; and
inf(ry,1). For a < 3 < w® we obviously have 0(*) <7 009 hence h,, < hg,
hence h, < hj, hence inf(hf,,d) < inf(hj,d). To obtain a strict inequality,
apply Theorem 3.8 to get Y such that BLR(0(®)) = BLR(Y) and there is no
DNR function <7 Y. Then Y € {0(*)}* and, since BLR(0(™) & BLR(0(?),
there is no Z <7 Y such that Z € {0(®}*. This shows that h¥ % inf(hj,d). It
now follows that inf(hf,d) < inf(hj, d), hence inf(hf, 1) < inf(hj, 1). O



5 Index sets associated with P,

In this section we prove that certain index sets associated with weak reducibility
in P, are H% complete. The proof is based on the following lemma concerning
19 subsets of w*. Let REC = {g € w* | g is recursive}.

Lemma 5.1. Given I1{ sets P,Q C w* such that QNREC = ), we can effectively
find a 119 set H(P,Q) C w® such that P is homeomorphic to H(P,Q) and there
do not exist g € Q and h € H(P,Q) such that g <t h.

Proof. The proof of Lemma 5.1 will involve a construction and two sublemmas.
We begin with some general remarks concerning treemaps.

Definition 5.2. A treemap is a function F' : w<% — w<% such that
F(o)™ (i) € F(o™ (i)
for all 0 € w<¥ and all i € w. A tree is a set T C w<% such that
VoVr((c Ctand 7€ T)=0€T).
Given a treemap F' and a tree T, we have another tree
F(T)={r|3c(c €T and 7 C F(0))}.

Remark 5.3. Given 7 € F(T), let ¢ be mininal such that 7 C F(o). Then
o € T and o is a substring of 7, i.e., 0 = (1(Jo),7(j1), -+, T(Jm—1)) for some
Jo < Jj1 <+ < Jm—1 <|7| where m = |o|. Therefore, in the definition of F(T"),
the quantifier 3o can be replaced by a bounded quantifier, namely

F(T) = {7 | (3o substring of 7) (c € T and 7 C F(0))}.
From this it follows that, for example, if F and T are recursive then so is F(T).
Remark 5.4. The sets
P = {paths through T}
and
F(P) = {paths through F(T)}.

are closed subsets of w* and we have a homeomorphism F : P — F(P), i.e., a
continuous, open, one-to-one mapping of P onto F(P), defined by

F(f)=U{F(o) [ o C f}

for all f € P. In particular, if T C w<¥ is a recursive tree and F' : w<% — w<% is
a recursive treemap, then P and F(P) are I1{ subsets of w*, and F : P — F(P)
is a recursive homeomorphism of P onto F'(P).

w

We now begin the proof of Lemma 5.1. Given a H(l) set (Q C w* such that
QNREC =0, let U C w<¥ be a recursive tree such that

Q = {g € w¥ | g is a path through U}.

10



We shall use U to define a treemap Hg.
In constructing Hg, we shall sometimes identify strings o € w<“ with

their Godel numbers #(o) = Hi<|rf| pf(i)ﬂ, where pg, p1,p2, - .. are the prime

numbers 2, 3,5, ... in increasing order. For integers e and strings o, we write
P (o) = <<p£1‘)‘;‘7(j) | 7 < n) where n = least j such that gaill)[;‘lf(j) 7. Note that

D, : w<¥ — w<¥ is recursive and monotonic, i.e., ¢ C 7 implies ®.(c) C (7).

The construction of Hg is as follows. We define Hg(o) by induction on
o € w<¥. Begin with Hg({)) = () where () is the empty string. Assume that
Hg(o) has already been defined. In order to define Hg(o™ (i), let e = |o| and
let 790 = Hg(o)™(@). Given 7,, let 7,41 = the least 7 such that 7, C 7 and
O.(15) C D(7) € U. If no such 7 exists, let 7,41 be undefined. This must
happen for some n, because otherwise we would have ®.(7,,) C Pe(r41) € U
for all n, hence | J,, ®c(7,,) would be a recursive path through U, i.e., a member
of Q N REC, contradicting the assumption that @ N REC = (). We then let
Hg(o™ (i) = 7y, for the least n such that 7,41 is undefined.

Sublemma 5.5. Hq is a treemap, and Hg <7 0.
Proof. This is clear from the construction of Hg. O

Sublemma 5.6. There do not exist f € w* and g € Q such that Ho(f) >7 g.

Proof. Suppose Hg(f) >7 g. Let e be such that wgl)’HQ(f) =g. Let 07 (i) =
f | e+ 1 and consider the definition of Hg (o™ (i)). Since 7,41 is undefined and
Tn, = Hg(07(i)) = Ho(f | e+ 1), there is no 7 D Hg(f | e+ 1) such that

O.(17) D P(Ho(f [ e+ 1)) and ®.(7) € U. In particular, cpgl)’HQ(f) is not a
path through U. In other words, g ¢ Q. This proves the sublemma. O

Now let P C w® be I1Y. By Remarks 5.3 and 5.4 and Sublemma 5.5, Hg(P)

is H(l)’ol and Hg is a homeomorphism of P onto Hg(P). It follows that Hg(P)
is 113, say

Hg(P)={h € w*|Ym3InR(m,n,h)}
where R C w X w X w® is recursive. Define
H(P,Q)={h®k € w“|Vm(k(m) = least n such that R(m,n,h))}.

Clearly H(P,Q) is I1Y and h — h & k is a homeomorphism of Hg(P) onto
H(P,Q). Moreover, for all h® k € H(P,Q) we have h & k =r h € Hy(P),
hence by Sublemma 5.6 there is no g € @ such that g <p h @ k. Note also that
our construction was such that, given I1{ indices of P and Q, we can effectively

find a H(l]’o/ index of Hg(P), a 11 index of Hg(P), and a I1{ index of H(P, Q).
This finishes the proof of Lemma 5.1. O

We now return to the study of IIY subsets of 2.
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Theorem 5.7. Let P;, i =0,1,... be a standard recursive enumeration of the
nonempty 19 subsets of 2%. For each i, let p; be the weak degree of P;. If j is
such that p; > 0, then the index sets {i | p; = p;} and {i | p; > p;} are 11}
complete sets of integers.

Proof. Let S., e =0,1,...be astandard recursive enumeration of the IIJ subsets
of w¥. As a consequence of the Kleene Normal Form Theorem, it is well known
that the index set {e | Sc = 0} is a II} complete set of integers. We shall reduce
this II} complete set to each of the index sets in question. Fix an index j such
that p; > 0, i.e., P, N REC = (. Given an index e, Lemma 5.1 tells us that
we can effectively find an index h(e, j) such that Sy jy = H(Se, P;). Also, the
proof of the Embedding Lemma 4.1 (see also Simpson [36, Lemma 3.3] and [38,
Lemma, 4]) tells us that we can effectively find an index f(e, j) such that Py ;)
is weakly equivalent to S. U P;. Combining these two results, we obtain:

Given an index e, we can effectively find an index i = f(h(e,j),7)
such that P; is weakly equivalent to H (S, P;) U P;.

Now, if S, = 0 then H(S., P;) = (), hence P; is weakly equivalent to P;. On the
other hand, if S # 0 then H(S., Pj) # 0 and for all h € H(S., P;) there is no
g € P; such that g <t h, hence P; is not weakly reducible to F;. Thus we see
that the IT complete set {e | Sc = 0} is reducible to both {i | p; = p;} and
{i | pi > p;} via the reduction e — f(h(e,j),j). This proves our theorem. O

Corollary 5.8. The index set {i | p; = 1} is II] complete.
Proof. This is the special case p; = 1 of Theorem 5.7. O

Remark 5.9. All of the special cases p; > d of Theorem 5.7 can be given
an alternative proof based on Theorems 2.6 and 3.8. An open question is to
characterize the indices j such that {i | p; < p;} is II} complete.

The following corollary of Theorem 5.7 is originally due to Simpson/Slaman
[39] who proved it using a different method. Let Py be the lattice of strong
degrees of nonempty IT9 subsets of 2.

Corollary 5.10. Each nonzero weak degree in P, includes infinitely many
strong degrees in Ps.

Proof. We begin with some background information. If P and ) are mass
problems, we say that P is strongly reducible to @ if there exists a partial
recursive functional ¥ such that U(Y) € P for all Y € Q. A strong degree is an
equivalence class of mass problems under strong reducibility. Obviously strong
reducibility implies weak reducibility, but the converse does not hold. In the
case of I subsets of 2¢, the strong reducibility relation

{(i,4) | P; is strongly reducible to P;}

is easily seen to be arithmetical, in fact 9. (See for instance Simpson [34,
Corollary 4.9] or Cenzer/Hinman [9].) On the other hand, Theorem 5.7 implies
that the weak reducibility relation
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{(4,7) | P; is weakly reducible to P;}

is I} complete, hence not arithmetical, hence not 3.

To prove Corollary 5.10, let p > 0 be a weak degree in P,,. We must show
that there exists an infinite set I C w such that (a) for all ¢ € I, P; is of weak
degree p, and (b) for all 4, j € I, if i # j then P; and P; are of different strong
degrees. If such an I did not exist, then there would be a finite set of indices
J1,---,Jn such that for all ¢, P; is of weak degree p if and only if P; is of the
same strong degree as one of P; ,..., P; . Hence the index set

{i| P; is of weak degree p}

would be XY, contradicting Theorem 5.7 which says that this set is I} complete.
This proves the corollary. O

6 More on bounded limit recursiveness

This section is tangential to the rest of the paper. The purpose of this section
is to compare our notion of bounded limit recursiveness, Definition 2.1 above,
with other notions that have appeared in the recursion-theoretical literature.

Remark 6.1. Rogers [29, Chapters 8 and 9] and Downey/Jockusch/Stob [17]
have considered truth-table reducibility and weak truth-table reducibility. For
X, Y € 2¥ we write X <y Y to mean that X is truth-table computable from Y.
For f € w¥ and Y € 2¥ we write f <,u Y to mean that f is weakly truth-table
computable from Y. We sometimes identify a set A C w with its characteristic
function xa € 2% defined by xa(n) =1ifne A, 0ifn ¢ A.

Theorem 6.2. For f € w* we have f € BLR(0) if and only if f <wu 0', if and
only if f occurs at level < w of the Ershov hierarchy.

Proof. The proof is straightforward. See Lemma 2.3 above, plus Rogers [29, Ex-
ercise 9-45, pages 158-159], plus Downey/Jockusch/Stob [17, paragraph preced-
ing Definition 1.1], plus Arslanov [2]. Note also that, according to [17, Definition
1.1], a Turing oracle X is array recursive if and only if there exists g <, 0
which eventually dominates all f <p X. O

Remark 6.3. For arbitrary Turing oracles Y, it is not always the case that
f € BLR(Y) if and only if f <,u Y’'. For example, let f € w* be so fast-
growing that f L. Z for all Z € 2¢. In particular f £ Y’ for all Turing
oracles Y, but by Lemma 3.4 we have f € BLR(Y) for some Y.

On the other hand, there is the following result for {0, 1}-valued functions.

Theorem 6.4. For X C w we have X € BLR(Y)) if and only if X <, Y.

Proof. Let g be the characteristic function of X. Note that g € 2“. For the “if”
part of the theorem, assume X <;; Y, i.e., g <4 Y’. This means that there is a
recursive mapping n — (7, ; | ¢ < ky) such that for all n, g(n) = 1 if and only if
(Fi < kn) (o CY'). Let Y/ =, Y, where Yy CY/ C---CY/CY/  C---
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is a Y-recursive sequence of finite sets. Let g(n,s) = 1if (30 < k) (7,,; C YY),
0 otherwise, and let g(n) = max{|7,:| | # < kn}. Clearly ¢ € BLR(Y') via the
Y -recursive approximating function ¢ and the recursive bounding function g.
For the “only if” part of the theorem, assume g € BLR(Y”) via a Y-recursive
approximating function g and a recursive bounding function g. We may safely
assume that g(n,s) < 2 for all n and s, and g(n,0) = 0 for all n. We now
describe how to compute g from Y’. Given n, for each i < g(n) ask the oracle
Y’ whether [{s | g(n,s) # g(n,s+1)}| > i. Upon receiving the answers to these
questions, we know the number |{s | g(n,s) # g(n,s + 1)}|. Then g(n) = 0 if
this number is even, 1 if it is odd. Thus X <;; Y’, Q.E.D. O

Corollary 6.5. For arbitrary Turing oracles X and Y, we have X' <; Y’ if
and only if X' € BLR(Y).

Proof. This is immediate from Theorem 6.4 upon recalling that X’ C w. O

Corollary 6.6. For arbitrary Turing oracles X and Y, the binary relation
X' < Y'isXin X and Y.

Proof. Let h be the characteristic function of X’. By Corollary 6.5, X’ <; Y’
if and only X’ € BLR(Y), i.e., h € BLR(Y). This holds if and only if there

exist (indices for) a totally defined Y-recursive function h and a totally defined
recursive function h such that

I (|{s | h(n. 5) # h(n.s + 1)} < h(n))
and
Vn(n e X' = Vs3t(t>s and h(n,t) = 1))
and
Vn(n ¢ X' = Vs3t(t > s and h(n,t) = 0)).
By a Tarski/Kuratowski computation, this statement is £ in X and Y. O

Definition 6.7. We say that X is jump-traceable by Y (Simpson [35]) if there

exist recursive functions f(n) and g(n) such that Vn (gpgll)’x(n) 1= gogll)’X(n) €

WJ}/(n)) and Vn (|W}/(n)| < g(n)).

Lemma 6.8. Assume that BLR(X) C BLR(Y). Then X is jump-traceable by
Y and X' <, Y.

Proof. Assume BLR(X) C BLR(Y). By Lemma 2.5 the function

e X ) +1 i oW (n) |,

0 otherwise

h(n) = h¥(n) = {

belongs to BLR(Y), say h(n) = lim, h(n, s) and
{5 | B(n.5) # h(n,s + 1)} < h(n)
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where h is Y-recursive and h is recursive. By the S-m-n Theorem let f (n)
be recursive such that W,}/(n) = {h(n,s) | s = 0,1,2,...} for all n. Then

h(n) € W;/(n) and |W;/(n)| < /ﬁ(n), hence X is jump-traceable by Y. To show
that X’ <; Y”, note that X’ € BLR(X), hence X’ € BLR(Y), hence X’ <; Y’

by Theorem 6.4. O

Remark 6.9. Lemma 6.8 may suggest that, in general, BLR(X) C BLR(Y) if
and only if X is jump-traceable by Y and X’ <;; Y’. We do not endorse such
a conjecture, but we shall now prove some additional results in this direction.

Lemma 6.10. Assume that X is jump-traceable by Y and (X @Y) <y YV'.
Then BLR(X) C BLR(Y).

Proof. Consider the partial X-recursive function 6X(n) ~ the least 0 C X
such that gof:?;(n) l. Clearly X’ = dom(6X) = {n | 6X(n) |}. Since X
is jump-traceable by Y, let f(n) and g(n) be recursive functions such that
vn (0% (n) | = 0% (n) € W}/(n)) and Vn (|W}/(n)| < g(n)). We may safely assume
that for all o € W;/(n) we have <pﬁ:‘ (n) | and gpﬁp’f
for each n and each i < g(n) let o, ; ~ the ith member of W}/(n) in order of Y-

(n) 1 for all p C 0. Now

recursive enumeration. As in the proof of Lemma 6.8, let hX (n) = <p$})’X (n)+1

if gogll)’x(n) 1, 0 otherwise. We shall now describe how to compute h* (n) from

Y’. Since (X ®Y)" <4 Y', we can ask questions of the oracle (X @Y)’ via the
oracle Y’. Given n, for each i < g(n) ask the oracle Y’ whether o,, ; | C X. After
receiving the answers to these questions, we know the unique i < g(n) such that
on,i | C X if such an ¢ exists. We can then use the oracle Y to find this ¢ = o0y, ;.

We then have hX (n) = ‘pﬁ:\ (n)+1if o exists, 0 otherwise. Since our use of Y’

in computing A% (n) was recursively bounded, we have hX € BLR(Y') by Lemma
2.3. It then follows by Lemma 2.5 that BLR(X) € BLR(Y), Q.E.D. O

Theorem 6.11. Assume that X >7 Y. Then BLR(X) C BLR(Y) if and only
if X is jump-traceable by Y and X' <;; Y.

Proof. The “only if” follows from Lemma 6.8. The “if” follows from Lemma
6.10 upon noting that X >7 Y and X’ <; Y/ imply (X ®Y)" <, Y. O

We say that X C w is Y -recursively enumerable if X is the range of a Y-
recursive function.

Theorem 6.12. Assume that X >7 Y and X is Y -recursively enumerable.
Then the following are pairwise equivalent.

1. BLR(X) € BLR(Y).
2. X 1is jump-traceable by Y .
3 X' <y Y.
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Proof. Lemma 6.8 gives 1 = 2 and 1 = 3. To prove 2 = 1, assume X is
jump-traceable by Y. Let 6% (n), hX(n), f(n), g(n), on; be as in the proof
of Lemma 6.10. Since X is Y-recursively enumerable, let X = |J, X, where
XoCX;C--C X, C X471 C---isa Y-recursive sequence of finite sets. We
identify the sets X and X, with their characteristic functions. We shall now
describe how to compute 2X(n) from Y’. Given n, for each i < g(n) ask the
oracle Y’ whether 3s(0,; | C X,) and whether 3s3t (s < t and o,,; | C X,
and o,,; ¢ X;). After receiving the answers to these 2g(n) questions, we know
the unique ¢ < g(n) such that o,; | C X if such an ¢ exists. We can then
use the oracle Y to find this ¢ = 0,,;. We then have h*(n) = gpﬁqﬁ(n) +1
if o exists, 0 otherwise. Thus h* € BLR(Y). It follows by Lemma 2.5 that
BLR(X) € BLR(Y"). This finishes the proof of 2 = 1. To prove 3 = 2, recall
the proof by Nies (see (ii)=-(i) of [27, Theorem 4.1]) that if X is recursively
enumerable and X’ <4 0/ then X is jump-traceable. The same proof relativizes
to Y to give our implication 3 = 2. O

We now draw some additional corollaries.

Definition 6.13. We say that X is superlow (see Mohrherr [25], Nies [27],
Simpson [35]) if X’ <4 0'. We say that X is jump-traceable (see Nies [27], Simp-
son [35], Figueira/Nies/Stephan [20], Cholak/Downey/Greenberg [11], Dow-
ney/Greenberg [16]) if there exist recursive functions f(n), g(n) such that

Vi (i (n) L= o (n) € W) amd Y (Wi < g(n))-
Corollary 6.14. The set {X | X is superlow} is ¥9.
Proof. This is the special case Y = 0 of Corollary 6.6. O

Corollary 6.15. For all X, BLR(X) C BLR(0) if and only if X is jump-
traceable and superlow.

Proof. This is the special case Y = 0 of Theorem 6.11. O

Remark 6.16. Nies [27] has shown that, in general, jump-traceability does not
imply superlowness, and superlowness does not imply jump-traceability. In the
following corollary, the equivalence 2 < 3 is due to Nies [27, Theorem 4.1].

Corollary 6.17. If X is recursively enumerable, the following are pairwise
equivalent.

1. BLR(X) C BLR(0).
2. X s jump-traceable.
3. X s superlow.

Proof. This is the special case Y = 0 of Theorem 6.12. O
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Definition 6.18. We say that Y is superhigh (see Mohrherr [25], Binns/Kjos-
Hanssen/Lerman/Solomon [7], Cholak/Greenberg/Miller [12], Kjos-Hanssen [22],
Simpson [35]) if 07 <4 Y’. We say that Y is generalized superhigh (see Barm-
palias/Lewis/Soskova [4]) if (Y ®0')" <, Y.

Corollary 6.19. For allY the following are pairwise equivalent.

1. BLR(Y ®0') C BLR(Y).

2. Y @0 is jump-traceable by Y.

3. Y is generalized superhigh.
Proof. This is the special case X =Y @ 0’ of Theorem 6.12. O
Corollary 6.20. The set {Y |Y is generalized superhigh} is 3.

Proof. The method of Theorem 2.6 shows that, for any % binary relation
S(X,Y), the set

{Y | 3X (S(X,Y) and BLR(X) C BLR(Y))}

is 9. Letting S(X,Y) be the binary relation X = Y & 0/, we see that the
set {Y | BLR(Y @ 0’) € BLR(Y)} is £3. Our result then follows in view of
Corollary 6.19. O

Remark 6.21. We do not know whether the set {Y | Y is superhigh} is 9,
nor whether Y being superhigh is equivalent to BLR(0’) € BLR(Y). More
generally, for 1 < a < w?K we do not know whether 0@ <,, Y’ is equivalent
to BLR(0(®)) C BLR(Y)). If this were the case, it would follow by Theorems 2.6
and 4.7 that {Y" | 0@+ <, Y’} is 3 and of weak degree h¥.
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