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Abstract

The study of mass problems and Muchnik degrees was originally moti-

vated by Kolmogorov’s non-rigorous 1932 interpretation of intuitionism as

a calculus of problems. The purpose of this paper is to summarize recent

investigations into the lattice of Muchnik degrees of nonempty effectively

closed sets in Euclidean space. Let Ew be this lattice. We show that Ew

provides an elegant and useful framework for the classification of certain

foundationally interesting problems which are algorithmically unsolvable.

We exhibit some specific degrees in Ew which are associated with such

problems. In addition, we present some structural results concerning the

lattice Ew. One of these results answers a question which arises naturally

from the Kolmogorov interpretation. Finally, we show how Ew can be

applied in symbolic dynamics, toward the classification of tiling problems

and Zd-subshifts of finite type.
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1 Introduction

1.1 Turing degrees

In his ground-breaking 1936 paper [115], Turing proved the existence of mathe-
matical problems which are algorithmically unsolvable. Actually Turing exhib-
ited a specific algorithmically unsolvable problem, known as the halting problem.
During the years 1950–1970 it was discovered that algorithmically unsolvable
problems exist in virtually every branch of mathematics: group theory [80, 1],
number theory [24], analysis, combinatorics [5, 82], geometry [73, Appendix],
topology, mathematical logic [112], and even elementary calculus [81]. Among
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the specific, natural, unsolvable problems which were discovered during this pe-
riod are: the Entscheidungsproblem for logical validity in the predicate calculus,
the triviality problem for finitely presented groups, Hilbert’s Tenth Problem in
number theory [39], the domino problem, the homeomorphism problem for finite
simplicial complexes, the diffeomorphism problem for compact manifolds, and
the problem of integrability in elementary terms.

In an influential 1954 paper [56], Kleene and Post introduced a scheme for
classifying unsolvable mathematical problems. Informally, by a real we mean a
point in an effectively presented complete separable metric space.1 Two reals
are said to be Turing equivalent2 if each is computable using the other as a
Turing oracle. According to Kleene and Post [56], the Turing degree of a real
is its equivalence class under this equivalence relation. Each of the specific
unsolvable problems mentioned in the previous paragraph is a decision problem

and may therefore be straightforwardly described or “encoded” as a real.3 Once
this has been done, it can be shown that each of these problems is of the same
Turing degree as the halting problem. This Turing degree is denoted 0′. Thus
the specific Turing degree 0′ is extremely useful and important.

Let DT be the set of all Turing degrees. For each real x, the Turing degree
of x is denoted degT(x). If a and b are the Turing degrees of reals x and y
respectively, we write x ≤T y or a ≤ b to mean that y is “at least as unsolvable
as” x in the following sense: x is computable using y as a Turing oracle. We also
write x <T y or a < b to mean that x ≤T y and y �T x. Kleene and Post proved
that ≤ is a partial ordering of DT and every finite set of Turing degrees in DT has
a supremum with respect to ≤. They also proved that there are infinitely many
Turing degrees which are less than 0′, and there are uncountably many other
Turing degrees which are incomparable with 0′. Thus DT has a rich algebraic
structure. However, the Turing degrees which are less than 0′ or incomparable
with 0′ have turned out to be almost useless for the classification of specific
algorithmically unsolvable problems.

Given a real x, let x′ be a real which encodes the halting problem relative

to x, i.e., with x used as a Turing oracle. If a is the Turing degree of x, let a′

be the Turing degree of x′. It can be shown that a′ is independent of the choice
of x. The operator a 7→ a′ from Turing degrees to Turing degrees is known as
the Turing jump operator. Generalizing Turing’s proof of the unsolvability of
the halting problem, one may show that a < a′. In other words, a′ is “more
unsolvable than” a. See for instance [83, §13.1]. Inductively we write a(0) = a

and a(n+1) = (a(n))′ for all natural numbers n. Extending this induction into

1For instance, a real in our sense could be a real number, or a set of natural numbers, or a
sequence of natural numbers, or a set of finite strings of symbols from a fixed finite alphabet,
or a point in d-dimensional Euclidean space [0, 1]d where d is a positive integer, or a (code for
a) point in C([0, 1]d) or Lp([0, 1]d) for 1 ≤ p < ∞, or (a code for) an infinite sequence of real
numbers, or a (code for a) Borel probability measure on [0, 1]d, etc.

2We follow the terminology of Rogers [83].
3More specifically, each of the mentioned problems amounts to the question of deciding

whether a given string of symbols from a fixed finite alphabet belongs to a particular set
of such strings. For instance, the triviality problem for finitely presented groups may be
described in terms of the set of all finite presentations of the trivial group.
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the transfinite, it is possible to define a(α) where α ranges over a rather large
initial segment of the ordinal numbers. We then have a(α) < a(β) whenever
α < β. See for instance [86, Part A] and [47, 92].

Let 0 be the bottom degree in DT. Thus 0 is the Turing degree of any
computable real. By repeatedly applying the Turing jump operator, we obtain
a tranfinite hierarchy of specific, natural Turing degrees

0 < 0′ < 0′′ < · · · < 0(α) < 0(α+1) < · · ·

where α ranges over a large initial segment of the ordinal numbers including all
of the constructibly countable ones [47, 92]. Moreover, this hierarchy of spe-
cific, natural Turing degrees has been somewhat useful for classifying unsolvable
mathematical problems. See for instance [83, §14.8] and [74]. However, no other
specific Turing degrees have been useful in this regard.

Summarizing, one may say that the Kleene/Post program of using Turing
degrees to classify unsolvable mathematical problems has met with significant
but limited success. The Turing degrees 0 and 0′ have been extremely useful,
and the Turing degrees 0′′, 0′′′, . . . , 0(α), 0(α+1), . . . have been somewhat
useful, but the other Turing degrees have not been useful at all.

1.2 Muchnik degrees

In 1955 and 1963 respectively, Medvedev and Muchnik [67, 71] introduced two
extended degree structures based on mass problems. Regrettably, these alter-
native structures were largely ignored outside the Soviet Union for a long time.
However, over the past 10 years we have learned that the Muchnik degrees are
capable of providing an elegant and useful framework for the classification of
foundationally interesting problems. Many of these problems are impossible
to classify using Turing degrees, and in such cases the Muchnik degrees have
emerged as the appropriate classification tool.

The essential concepts are as follows. Let P be a set of reals. We may view
P as a mass problem, viz., the problem of “finding” a real which belongs to P .
In this sense, a “solution” of the problem P is any real x ∈ P . Accordingly,
a mass problem P is said to be (algorithmically) solvable if there exists a real
x ∈ P which is Turing computable. Furthermore, a mass problem Q is said to
be (algorithmically) reducible to a mass problem P if each x ∈ P can be used
as a Turing oracle to compute some y ∈ Q. This is Muchnik’s notion of weak
reducibility [71], denoted ≤w. Thus we have

P ≥w Q if and only if (∀x ∈ P ) (∃y ∈ Q) (x ≥T y).

We define a Muchnik degree to be an equivalence class of mass problems under
weak reducibility. The Muchnik degree of a mass problem P is denoted degw(P ).

The partial ordering of all Muchnik degrees under weak reducibility is de-
noted Dw. It can be shown that Dw is a lattice in the sense of Birkhoff
[12, 13, 14], i.e., each finite set of degrees in Dw has a supremum and an infimum
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in Dw. The top degree in Dw is ∞ = degw(∅) where ∅ denotes the empty set.
The bottom degree in Dw is 0 = degw(S) where S is any solvable mass problem.

There is an obvious embedding of the Turing degrees into the Muchnik de-
grees, given by degT(x) 7→ degw({x}). Here {x} is the singleton set consisting of
the real x. This embedding of DT into Dw is one-to-one and preserves essential
algebraic structure including 0, ≤, �, the jump operator,4 and finite suprema.
Accordingly, we identify each Turing degree degT(x) with its corresponding
Muchnik degree degw({x}).

We end this section by mentioning some foundationally interesting examples
of Muchnik degrees which are not Turing degrees.

First, let T be a consistent theory which is axiomatizable and effectively
essentially undecidable.5 By Gödel’s First Incompleteness Theorem [37] (see
also [112]), we know that T is incomplete. Let C(T ) be the problem of finding a
completion of T , i.e., a complete, consistent theory which includes T . By [112]
the problem C(T ) is algorithmically unsolvable, and by [36] it is impossible
to assign a Turing degree to C(T ). However, since C(T ) may be viewed as a
mass problem, it is clear how to assign a Muchnik degree to C(T ). Indeed, by
[36, 88, 89] we know that the Muchnik degree of C(T ) is independent of the
choice of T .6 Thus we have a particular Muchnik degree, denoted 1, which is
of obvious foundational interest.7 From [112, 36] it is known that 0 < 1 < 0′.
In other words, the problem of finding a completion of T is unsolvable but not
so unsolvable as the halting problem.

Second, consider the problem of finding a real which is random in the sense of
Martin-Löf [66] (see also [98, 76, 28]). This problem is denoted MLR. Clearly
each random real is noncomputable, so the problem MLR is algorithmically
unsolvable. Moreover, as in the case of C(T ), there is no way to associate
a Turing degree to MLR. On the other hand, there is a Muchnik degree r1
associated to MLR, and by [49, Theorem 5.3] (see also [96]) we know that this
Muchnik degree is strictly less than the Muchnik degree of C(T ). Thus we have

0 < r1 < 1 < 0′

where r1 = degw(MLR).
Third, let K be any class of isomorphism types of algebraic and/or relational

structures. There is an obvious Muchnik degree sK ∈ Dw associated with K.

4The jump operator on Dw may be defined as p = degw(P ) 7→ p′ = degw(P ′) where
P ′ = {x′ | x ∈ P}. Clearly p ≤ p′, but examples show that p < p′ is not always the case. For
instance, let p = infn an where an for n = 0, 1, 2, . . . is a sequence of Turing degrees with the
property that a′

n+1
≤ an for all n. Then p = p′. The existence of such sequences of Turing

degrees is well known. See for instance [109].
5For instance, we could take T = PA = Peano arithmetic, or T = ZFC = Zermelo/Fraenkel

set theory with the Axiom of Choice, or T = Q = Robinson arithmetic [112], or T = any
consistent axiomatizable extension of one of these.

6Indeed, the recursive homeomorphism type of C(T ) is independent of the choice of T . See
also [79], [97, §3] and [96, §6].

7By [25] we may also characterize 1 as the Muchnik degree of the problem of finding a
probability measure ν on {0, 1}N which is neutral, i.e., every x ∈ {0, 1}N is Martin-Löf random
with respect to ν.
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Namely, let sK = degw(StrN(K)) where StrN(K) is the problem of finding a
structure M such that (1) the isomorphism type of M belongs to K, and (2)
the universe of M is N = {0, 1, 2, . . .} = the set of natural numbers. See for
instance [110]. Sometimes sK is a Turing degree, but often it is not. For
example, let K consist of the single isomorphism type ωCK

1 = Church/Kleene
ω1 = the least noncomputable transfinite ordinal number. It can be shown
that the Muchnik degree sωCK

1
is not a Turing degree. As another example, let

T be any of the subsystems of second-order arithmetic considered in [95], and
let K = Modω(T ) = the class of ω-models of T . Again, the Muchnik degree
sModω(T ) is not a Turing degree.

The above examples suggest the possible existence of a great many interest-
ing Muchnik degrees associated with specific unsolvable problems. This possi-
bility has been explored over the past 10 years. Some of the resulting Muchnik
degrees and their relationships are exhibited in Figure 1 below.

1.3 Effectively closed sets

The lattice Dw is very large and complicated.8 In order to obtain a sublattice
of Dw which is smaller and more manageable, we follow the lead of effective
descriptive set theory [40, 65, 69] and consider mass problems which are “effec-
tively definable” in some appropriate sense.

Recall that a mass problem is any set in an effectively presented complete
separable metric space. Let X be such a space. A set U ⊆ X is said to
be effectively open if there exist computable sequences of computable points
an ∈ X and computable real numbers rn ∈ R with n = 0, 1, 2, . . . such that

U =
∞⋃

n=0

B(an, rn).

Here we are writing B(a, r) = {x ∈ X | dist(a, x) < r} where dist(x, y) = the
distance between two points x, y ∈ X . A set C ⊆ X is said to be effectively

closed if its complement X \ C is effectively open.
For example, if X is d-dimensional Euclidean space Rd, we may assume that

an and rn are rational, i.e., an ∈ Qd and rn ∈ Q. Similarly, if X is the Cantor
space {0, 1}N or the Baire space NN, the effectively open sets in X are of the
form U =

⋃
σ∈S Nσ where S is a recursively enumerable set of finite strings

σ ∈ {0, 1}∗ or σ ∈ N∗ respectively. Here we are writing

Nσ = {x ∈ X | σ = x↾{0, . . . , |σ| − 1}}

where |σ| = the length of σ.
Clearly every nonempty effectively open set is of Muchnik degree 0. However,

we shall see that there exist effectively closed sets of infinitely many different
Muchnik degrees.

8For example, the cardinality of Dw is 22
ℵ0 .
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In this paper we consider mainly the case when X is effectively compact.
For example, X = [0, 1]d = the d-dimensional unit cube, or X = {0, 1}N = the
Cantor space, or X = the weak-star unit ball in the dual space of C[0, 1]d or of
Lp([0, 1]

d) where 1 ≤ p <∞. It can be shown that each effectively closed set in
an effectively compact, complete separable metric space is Muchnik equivalent
to an effectively closed set in the Cantor space. Accordingly, we define Ew
to be the sublattice of Dw consisting of the Muchnik degrees of all nonempty
effectively closed sets in the Cantor space.

It is interesting to compare Ew with ET, the subsemilattice of DT consisting
of the recursively enumerable Turing degrees.9 One knows that ET has been
studied extensively in many publications including [85, 83, 107, 77, 61]. I have
shown [99] that Ew is analogous to ET and contains a naturally isomorphic copy
of ET. But I have also shown [96, 99, 100, 102, 22, 103]10 that Ew, unlike
ET, contains many specific, natural degrees which are associated with natural,
foundationally interesting, unsolvable problems.

The history of Ew is that I first defined it in 1999 [93, 94]. At the time I
noted that Ew is a countably infinite sublattice of Dw and that 1 and 0 are
the top and bottom degrees in Ew. I also observed that there is at least one
other specific, natural degree in Ew, namely r1. Moreover Ew is essentially dis-
joint from ET, because the only Turing degree belonging to Ew is 0. These
observations were implicit in the much earlier work of Gandy/Kreisel/Tait [36],
Scott/Tennenbaum [88, 89], Jockusch/Soare [49, 48], and Kučera [60]. My con-
tribution in 1999 was to define the lattice Ew and to call attention to it as a more
fruitful alternative to the much-studied semilattice ET. Later I discovered the
existence of many other specific, natural degrees in Ew as illustrated in Figure
1 below. My embedding of ET into Ew [99] was obtained as a byproduct.

This paper is essentially a summary of what I have learned about Ew over
the past 10 years. An obvious reason for undertaking the study of Ew is that it
is the smallest and simplest nontrivial sublattice of Dw which presents itself in
terms of effective descriptive set theory. Beyond this, we shall see that Ew is a
rich and useful structure in its own right.

Here is an outline of the rest of this paper. In Section 2 we exhibit a large
variety of specific, natural degrees in Ew. In Section 3 we explore some structural
and methodological aspects of Ew. In Section 4 we discuss the original intuition-
istic motivation for the study of Dw. In Section 5 we discuss an application of
Ew in the study of tiling problems and symbolic dynamics.

9In the same vein one may compare the lattice of Π0
1 sets in {0, 1}N (see for instance [19]

and [118]) with the lattice of (complements of) recursively enumerable subsets in N (see for
instance [83, Chapter XII] and [107, Chapters X, XI, XV]). In particular, by [96, §9] and
[7, 8, 9] we know that certain “smallness properties” of a nonempty Π0

1
set P ⊆ {0, 1}N imply

0 < p < 1 where p = degw(P ) ∈ Ew. The analogous issue for ET remains unresolved [102].
See also the discussion of Post’s Program in [107].

10In many of these papers I used the notation Pw instead of Ew. I now say Ew in order to
emphasize the analogy with ET, the semilattice of recursively enumerable Turing degrees.
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2 Some specific Muchnik degrees in Ew
Recall from Section 1.3 that Ew is the lattice of Muchnik degrees of nonempty
effectively closed sets in the Cantor space. The purpose of this section is to
exhibit some specific degrees in Ew which are associated with specific, natural,
algorithmically unsolvable problems. Figure 1 represents the lattice Ew. Each
of the black dots except the one labeled inf(a,1) represents a specific, natural,
Muchnik degree in Ew. We shall now explain each of these black dots.

2

1

inf(r  ,1)

inf(a,1)
r

k

d

0

1 = deg  (CPA)w

α +1inf(b      ,1)
s

1

inf(b  ,1)2
inf(b ,1)

αinf(b  ,1)
fk

C       Ck   = d

REC      REC
k       = d

Figure 1: A picture of Ew.

As noted in Sections 1.2 and 1.3, the top degree in Ew is 1 = degw(CPA)
where CPA is the problem of finding a completion of Peano arithmetic. The
bottom degree in Ew is 0 = degw(S) where S is any solvable mass problem.
Given two Muchnik degrees p and q, let sup(p,q) and inf(p,q) be the Muchnik
degrees which are the least upper bound and the greatest lower bound of p and
q respectively. In [99] I proved that there is a natural one-to-one embedding of
the recursively enumerable Turing degrees into Ew given by a 7→ inf(a,1). Since
the semilattice ET is known to contain infinitely many Turing degrees (see for
instance [85]), my embedding of ET into Ew implies the existence of infinitely
many Muchnik degrees in Ew. However, since no specific recursively enumerable
Turing degrees other than 0′ and 0 are known, my embedding of ET into Ew
yields no specific examples of Muchnik degrees in Ew other than 1 and 0.

2.1 Algorithmic randomness

Historically, the first example of a specific Muchnik degree in Ew other than 1

and 0 was r1 = degw(MLR) = the Muchnik degree of the problem of finding an
infinite sequence of 0’s and 1’s which is random in the sense of Martin-Löf [66].
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A related example is as follows. Let r2 = degw(MLR2) where

MLR2 = {x ∈ {0, 1}N | x is Martin-Löf random relative to 0′}.

Here 0′ denotes the halting problem. One can easily show that r2 does not
belong to Ew. However, it turns out [96, 99] that inf(r2,1) belongs to Ew.
Moreover, as indicated in Figure 1, we have r1 < inf(r2,1) < 1. Thus inf(r2,1)
is another specific, natural degree in Ew which, like r1, is characterized in terms
of algorithmic randomness.

Alternatively, we may characterize r1 as the maximum Muchnik degree of
an effectively closed subset of {0, 1}N which is of positive measure. Similarly, we
may characterize inf(r2,1) as the maximum Muchnik degree of an effectively
closed subset of {0, 1}N whose Turing upward closure is of positive measure. See
[99, Theorem 3.8].

2.2 Kolmogorov complexity

As already meantioned, r1 is the Muchnik degree in Ew corresponding to Martin-
Löf randomness. Subsequently, many other Muchnik degrees in Ew of a similar
nature were discovered. We shall now develop some of these examples, using
the concept of Kolmogorov complexity.

Kolmogorov complexity [28, 76, 62] is a way of measuring the “information
content” of a finite mathematical object. The key definitions are as follows. Let
{0, 1}∗ be the set of finite sequences of 0’s and 1’s, i.e., words on the alphabet
{0, 1}. We define a machine to be a partial recursive function M from {0, 1}∗
to {0, 1}∗. A universal machine is a machine U with the property that for all
machines M there exists a word ρ ∈ {0, 1}∗ such that M(σ) = U(ρaσ) for all σ
in the domain of M . Here ρaσ denotes the concatenation, ρ followed by σ, i.e.,

ρaσ = 〈ρ(0), . . . , ρ(|ρ| − 1), σ(0), . . . , σ(|σ| − 1)〉

where |σ| = the length of σ. Note that |ρaσ| = |ρ| + |σ|. It is straightforward
to prove the existence of a universal machine. Now let U be a fixed universal
machine. By a description of τ ∈ {0, 1}∗ we mean any σ ∈ {0, 1}∗ such that
U(σ) = τ . We then define the complexity of τ , measured in bits, to be the
smallest length of a description of τ . In other words, the complexity of τ is
C(τ) = min{|σ| | U(σ) = τ}. It is straightforward to show that C(τ) is, in
a sense, asymptotically independent of our choice of a fixed universal machine
U . Namely, letting U1 and U2 be any two universal machines, and letting
C1(τ) and C2(τ) be the complexity of τ as defined in terms of U1 and U2

respectively, we have ∃c ∀τ (|C1(τ)−C2(τ)| ≤ c). In other words, the complexity
of τ is well defined up to within an additive constant. An easy argument shows
that the complexity of τ is bounded by the length of τ plus a constant, i.e.,
∃c ∀τ (C(τ) ≤ |τ | + c).

For technical reasons it is convenient to consider a “prefix-free” variant of
C(τ). A machineM is said to be prefix-free if the domain ofM contains no pair
ρ, σ such that ρ is a proper initial segment of σ. A universal prefix-free machine
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is a prefix-free machine U such that for all prefix-free machines M there exists
ρ such that M(σ) = U(ρaσ) for all σ in the domain of M . The prefix-free

complexity of τ is defined as K(τ) = min{|σ| | U(σ) = τ} where U is a universal
prefix-free machine. As in the case of C(τ), it is straightforward to show that
K(τ) is well defined up to plus or minus a constant. Clearly C(τ) and K(τ) are
closely related. For example, one can show that C(τ) ≤ K(τ) ≤ C(τ)+2 log2 |τ |
up to additive constants.

Now let x be a point in the Cantor space, i.e., an infinite sequence of 0’s and
1’s. By the initial segment complexity of x we mean the asymptotic behavior of
the complexity of the finite initial segments x↾{0, . . . , n} as n goes to infinity.
An interesting theorem of Schnorr (see for instance [98, Theorem 10.3]) says
that Martin-Löf randomness can be characterized in terms of initial segment
complexity. Specifically, x is random if and only if

∃c ∀n (K(x↾{0, . . . , n}) ≥ n− c).

In other words, x is random if and only if the initial segment complexity of x is
as large as possible.

Unfortunately Schnorr’s theorem fails with C in place of K. However, the
theorem suggests that initial segment complexity may be useful in uncovering
other interesting mass problems. For instance, one may define the effective

Hausdorff dimension of x as

effdim(x) = lim inf
n→∞

K(x↾{0, . . . , n})
n

and here it is immaterial whether we use C or K. Thus effdim(x) measures the
“asymptotic density of information” in x. It is known (see for instance [41]) that
effective Hausdorff dimension is closely related to the familiar classical Hausdorff
dimension which plays such a large role in fractal geometry [32]. Namely, for any
effectively closed set P in the Cantor space {0, 1}N, the Hausdorff dimension of P
with respect to the standard metric on {0, 1}N is equal to the effective Hausdorff
dimension of P , defined as

effdim(P ) = sup{effdim(x) | x ∈ P}.

Now, given a rational number s in the range 0 ≤ s < 1, it follows from [99,
Lemma 3.3] (see also Theorem 3.3.1 below) that the Muchnik degree

ks = degw({x ∈ {0, 1}N | effdim(x) > s})

belongs to Ew. Moreover, a theorem of Miller [68] may be restated as follows:
s < t implies ks < kt. Thus we have an infinite family of specific, natural degrees
in Ew which are indexed by the rational numbers s in the interval 0 ≤ s < 1.
See also Figure 1.

We have seen that the Muchnik degrees ks are defined in terms of effective
Hausdorff dimension, which is in turn defined in terms of linear lower bounds on
initial segment complexity. We now consider nonlinear lower bounds. Let f be
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a convex order function, i.e., an unbounded computable function f : N → [0,∞)
such that f(n) ≤ f(n+1) ≤ f(n)+ 1 for all n. For example, f(n) could be n or
n/2 or n/3 or

√
n or 3

√
n or logn or log logn or the inverse Ackermann function.

By [99, Lemma 3.3] (see also Theorem 3.3.1 below) each of the Muchnik degrees

kf = degw({x ∈ {0, 1}N | ∃c ∀n (K(x↾{0, . . . , n}) ≥ f(n)− c)})

belongs to Ew. Moreover, Hudelson [43] has generalized Miller’s construction
[68] to prove that kf < kg provided f(n)+2 log2 f(n) ≤ g(n) for all n. Thus we
see that the degrees kf corresponding to specific, natural, convex order functions
f comprise a rich family of specific, natural degrees in Ew. See also Figure 1.

In addition, there are many specific, natural degrees in Ew corresponding
to familiar classes of recursive functions. Let REC be the class of all total
recursive functions, and let C be any reasonably nice subclass of REC. For
example C could be the class of polynomial time computable functions, or the
class of polynomial space computable functions, or the class of exponential time
computable functions, or the class of elementary recursive functions, or the class
of primitive recursive functions, or the class of recursive functions at or below
level α of the Wainer hierarchy [116] for some particular ordinal α ≤ ε0. Or, C
could be REC itself. Our Muchnik degree corresponding to C is

kC = degw({x ∈ {0, 1}N | (∃h ∈ C)∀n (K(x↾{0, . . . , h(n)}) ≥ n)})

and by [99, Lemma 3.3] (see also Theorem 3.3.1 below) we have kC ∈ Ew.
Moreover, Hudelson’s theorem [43] (see also [3, Theorems 1.8 and 1.9]) tells us
that kC∗ < kC provided C∗ contains a function which grows significantly faster
than all functions in C. Thus we see that there are many specific degrees11

in Ew corresponding to specific subclasses of REC which arise from resource-
bounded computational complexity [38] and from proof theory [87, 111, 116]. I
first identified these degrees in terms of diagonal nonrecursiveness rather than
Kolmogorov complexity [96, §10]. See also Figure 1 and Section 2.3 below.

2.3 Diagonal nonrecursiveness

As in [83] let ϕ
(1)
e (n) for e = 1, 2, 3, . . . be a standard enumeration of the 1-

place partial recursive functions. A 1-place total function g : N → N is said

to be diagonally nonrecursive if g(n) 6= ϕ
(1)
n (n) for each n for which ϕ

(1)
n (n)

is defined. Obviously each diagonally nonrecursive function is nonrecursive.
Much more information about diagonally nonrecursive functions can be found
in [44, 3, 59, 53]. Let d = degw(DNR) where

DNR = {g ∈ NN | g is diagonally nonrecursive}.
By [99, Lemma 3.3] (see also Theorem 3.3.1 below) we have d ∈ Ew. Thus d is
yet another example of a specific, natural degree in Ew. See also Figure 1.

11These degrees kC are closely related to the degrees kf which were defined previously.
Namely, to each strictly increasing h ∈ C we associate a convex order function h−1(m) = the
least n such that h(n) ≥ m. We then have kC = inf{kh−1 | h ∈ C, h strictly increasing}.
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The naturalness of d may be questioned on the grounds that it appears
to depend on our choice of a standard enumeration of the partial recursive
functions. However, we may respond by noting that the 1-place partial recursive

function θ(n) ≃ ϕ
(1)
n (n) is universal12 in the following sense: for all 1-place

partial recursive functions ψ(n) there exists a primitive recursive function p(n)
such that ψ(n) ≃ θ(p(n)) for all n. One can show that d does not depend
on the choice of a universal 1-place partial recursive function. Furthermore,
one can construct a universal 1-place partial recursive function θ(n) which is
“linearly universal” in that p(n) may be taken to be linear, i.e., p(n) = an+ b
for appropriately chosen constants a, b ∈ N. See also the discussion in [96, §10].

In order to obtain additional specific examples of degrees in Ew, recall that
REC is the class of total recursive functions. As in Section 2.2 let C = REC or
C = any reasonably nice subclass of REC. A 1-place total function g : N → N is
said to be C-bounded if there exists h ∈ C such that g(n) < h(n) for all n. Let
dC be the Muchnik degree of the problem of finding a diagonally nonrecursive
function which is C-bounded. In other words,

dC = degw({g ∈ DNR | (∃h ∈ C)∀n (g(n) < h(n))}).

These specific, natural degrees in Ew were first identified in [96, §10]. Moreover,
by [53, 55] there is a close relationship between diagonal nonrecursiveness and
Kolmogorov complexity, and this leads to the equations kREC = dREC and
kC = dC as indicated in Figure 1.

2.4 Almost everwhere domination

For total functions f, g : N → N we say that f is dominated by g if f(n) < g(n)
for all but finitely many n. A real y is said to be almost everywhere dominating

[27, 10, 20, 52, 54, 98, 100] if for all reals x ∈ {0, 1}N except a set of measure zero,
every f : N → N which is computable using x as a Turing oracle is dominated
by some g : N → N which is computable using y as a Turing oracle. Here we are
referring to the fair coin probability measure on {0, 1}N. Let b1 = degw(AED)
where

AED = {y | y is almost everywhere dominating}.

One does not expect b1 to belong to Ew, and indeed it does not. However, it
turns out [52, 98] that inf(b1,1) belongs to Ew, so this is another example of a
specific, natural13 degree in Ew. The degree inf(b1,1) is particularly interesting
because it is incomparable with other specific, natural degrees in Ew such as r1
and d. On the other hand, there is a recursively enumerable Turing degree a

such that inf(b1,1) < inf(a,1) < 1. For more information on inf(b1,1) and
related degrees in Ew, see [100] and [103].

12The notation E1 ≃ E2 means that E1 and E2 are both undefined, or E1 and E2 are both
defined and E1 = E2. Here E1 and E2 are expressions which may or may not be defined.

13Our sole reason for viewing inf(b1,1) as a natural degree is that it is the infimum of two
other degrees which are obviously natural.
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2.5 LR-reducibility and hyperarithmeticity

Given a Turing oracle x, one may relativize the concepts of Martin-Löf ran-
domness and Kolmogorov complexity to x. Let MLRx = {z ∈ {0, 1}N | z is
Martin-Löf random relative to x}, and let Kx(τ) = the prefix-free complex-
ity of τ relative to x. Nies [75] introduced the corresponding reducibility no-
tions, LR-reducibility and LK-reducibility. Namely, x ≤LR y if and only if
MLRy ⊆ MLRx, and x ≤LK y if and only if ∃c ∀τ (Ky(τ) ≤ Kx(τ) + c). Later
Kjos-Hanssen/Miller/Solomon [54] proved that LR-reducibility is equivalent to
LK-reducibility. They also used LR-reducibility to give an interesting charac-
terization of almost everywhere domination: y ∈ AED if and only if 0′ ≤LR y.
Thus b1 = degw({y | 0′ ≤LR y}). See also my exposition in [98, 100]. Here of
course 0′ = the halting problem.

Recently [103] I generalized some of these results concerning almost every-
where domination, from 0′ to the entire hyperarithmetical hierarchy. For each
ordinal α < ωCK

1 let

bα = degw({y | 0(α) ≤LR y}).

It turns out [103] that there is a natural embedding of the hyperarithmetical
hierarchy into Ew given by 0(α) 7→ inf(bα,1) as indicated in Figure 1. See also
Example 3.2.1.3 below.

2.6 Ew and reverse mathematics

Reverse mathematics is a program of research in the foundations of mathe-
matics. The purpose of reverse mathematics is to determine the weakest set
existence axioms which are needed in order to prove specific core mathematical
theorems. In many cases it turns out that the axioms are equivalent to the
theorem. The standard reference on reverse mathematics is my book [95]. See
also my recent survey paper [104].

Several of the specific, natural degrees in Ew which are depicted in Figure
1 were originally motivated by and correspond closely to various set existence
axioms which occur in reverse mathematics. To begin with, the top and bottom
degrees 1 and 0 in Ew correspond to the axiomatic theories WKL0 and RCA0

which are known [95] to play an enormous role throughout reverse mathematics.
In particular, 1 can be characterized as the Muchnik degree of the problem of
finding a countably coded ω-model of WKL0. See also [97].

Similarly, one can show that r1 is the Muchnik degree of the problem of
finding a countably coded ω-model of WWKL0. Here WWKL0 is an axiomatic
theory which arises frequently in the reverse mathematics of measure theory.
See for instance [119, 16] and [95, §X.1].

In addition, the degrees bα for α < ωCK
1 were also inspired by the reverse

mathematics of measure theory. Technical results concerning these degrees have
been used [27, 103] in order to construct ω-models for some relevant subsystems
of second-order arithmetic. The precise relationship between measure theory
and the degrees bα for α < ωCK

1 is as follows: 0(α) ≤LR y if and only if every
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Σ0
α+2 set includes a Σ0,y

2 set of the same measure [103, Corollary 4.12]. Here
again we are referring to the fair coin probability measure on {0, 1}N.

2.7 Summary

To summarize, we have seen that Ew contains many specific, natural degrees
which correspond to foundationally interesting topics. Among these topics
are algorithmic randomness, Kolmogorov complexity, effective Hausdorff di-
mension, resource-bounded computational complexity, subrecursive hierarchies,
proof theory, LR-reducibility, hyperarithmeticity, and reverse mathematics.

3 Structural and methodological aspects of Ew
3.1 Priority arguments

Some structural properties of Ew are stated in the following theorem.

Theorem 3.1.1.

1. Ew is a countable distributive lattice with 1 and 0 as the top and bottom
elements.

2. Every countable distributive lattice is lattice-embeddable in Ew.

3. More generally, given 0 < p ∈ Ew, every countable distributive lattice is
lattice-embeddable into the initial segment of Ew below p.

4. Given 0 < p ∈ Ew we can find p1 ∈ Ew and p2 ∈ Ew such that p =
sup(p1,p2) and 0 < p1 < p and 0 < p2 < p.

Here items 2 and 3 are from [11] and item 4 is from [6].
As mentioned in Section 1.3 above (see also [99]), the study of the lattice Ew

is in some ways analogous to the study of the semilattice ET of recursively enu-
merable Turing degrees. A traditional highlight in the study of ET has been the
methodology of priority arguments. Over a span of several decades, successively
more difficult types of priority arguments including finite injury arguments, in-
finite injury arguments [84, 85], 0′′′ priority arguments [107, 61], etc., were used
to elucidate the structure of ET. Later it emerged that priority arguments can
also be used to study Ew. In particular, each of items 2–4 in Theorem 3.1.1
was originally proved by means of a finite injury priority argument. In this
vein there is the following generalization of the Sacks Splitting Theorem [107,
Theorem VII.3.2] which was proved by essentially the same method.

Theorem 3.1.2 (Binns Splitting Theorem). Let A ⊆ N be recursively enumer-
able, and let P ⊆ NN be effectively closed such that P ∩ REC = ∅. Then, we
can find a pair of recursively enumerable sets A1, A2 such that A = A1∪A2 and
A1 ∩A2 = ∅ and no member of P is Turing reducible to A1 or to A2.
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Item 4 in Theorem 3.1.1 was originally obtained in [6] as a special case of
Theorem 3.1.2 with A = 0′ = the halting problem. Namely, let P be such that
p = degw(P ) and for i = 1, 2 let pi = inf(p, ai) where ai = degT(Ai).

Remark 3.1.3. An open question concerning the structure of Ew reads as
follows.

Given p1 ∈ Ew and p2 ∈ Ew such that p1 < p2, can we find q ∈ Ew
such that p1 < q < p2?

An affirmative answer to this question would constitute an Ew-analog of the
Sacks Density Theorem for ET [84]. It seems reasonable to conjecture that q

can be constructed using an infinite injury priority argument as in [84].

3.2 Forcing arguments

Forcing constructions have played a large role in the study of Ew. Many of
the relationships between specific pairs of degrees in Ew which are exhibited in
Figure 1 have been proved by means of forcing. Here are some examples.

Examples 3.2.1.

1. The fact that d < r1 [96] (see Figure 1) was originally obtained as a con-
sequence of Kumabe’s Theorem [59]: there exist diagonally nonrecursive
functions which are of minimal Turing degree. The proof of Kumabe’s
Theorem uses the Kumabe/Lewis technique of bushy tree forcing [59, 3].

2. Cholak/Greenberg/Miller [20, §4] introduced an interesting forcing tech-
nique in order to construct an almost everywhere dominating real which
does not compute a diagonally nonrecursive function. This result is equiv-
alent to saying that d � b1 in Figure 1.

3. In [103, §5] I simplified and generalized the technique of [20, §4] to prove
that for any real x we can find a real y such that x ≤LR y and y does
not compute a diagonally nonrecursive function. Consequently we have
inf(bα,d) < inf(bα+1,d) for each α < ωCK

1 . See also Figure 1.

4. Miller [68] introduced his technique of forcing with optimal covers in order
to prove that s < t implies ks < kt in Figure 1.

5. Recently Hudelson [43] modified and generalized Miller’s technique in or-
der to prove that kf < kg whenever f and g are convex order functions
satisfying f(n) + 2 log2 f(n) ≤ g(n) for all n. See Figure 1.

Remark 3.2.2. Even the familiar Kleene/Post/Friedberg technique of forcing
with finite conditions and 1-genericity (see [56] and [83, §§13.1,13.3]) has been
very useful in the study of Ew. In [22, §§3,4] we used this method to obtain a nat-
ural embedding of the hyperarithmetical hierarchy into Ew. Also, as explained
as Sections 3.4 and 4.2 below, a variant method based on Posner/Robinson
[78] has been used in [101] to obtain some interesting structural information
concerning Ew.
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Remark 3.2.3. An open structural question concerning Ew is to compute the
Turing degree of Th(Ew), the first-order theory of Ew. Since the hyperarith-
metical hierarchy is naturally embeddable into Ew [22, 103], it seems reasonable
to conjecture that Th(Ew) should be recursively isomorphic to the ωth Turing
jump of the complete Π1

1 set of integers. This conjecture was first stated in [22].

3.3 The Σ0
3 Embedding Lemma

As illustrated in Figure 1, many specific, natural degrees in Ew are of the form
inf(s,1) where s is a specific, natural degree which does not belong to Ew. We
now present the key theorem which enables us to deal with such degrees. Our
theorem is known as the Σ0

3 Embedding Lemma.
Let X be an effectively presented complete separable metric space. A subset

of X is said to be Σ0
1 if and only if it is effectively open. This class of sets is, of

course, the effective analog of the open sets. We now define effective analogs of
other classes of sets. For each positive integer k, a set P ⊆ X is said to be Π0

k

if and only if its complement X \ P is Σ0
k. For example, P is Π0

1 if and only if
P is effectively closed. A set S ⊆ X is said to be Σ0

k+1 if and only if it is of the
form

S = {x ∈ X | ∃n ((n, x) ∈ P )}
where P ⊆ N×X is Π0

k. Here we are viewing N×X as an effectively presented
complete separable metric space in its own right. Thus S =

⋃∞
n=0 Pn where

each Pn = {x ∈ X | (n, x) ∈ P} is a Π0
k set and moreover the sequence Pn for

n = 0, 1, 2, . . . is uniformly Π0
k.

In particular, the Σ0
3 sets in X are those of the form

S = {x ∈ X | ∃m ∀n ((m,n, x) ∈ U)}

where U ⊆ N×N×X is effectively open. Note that the Σ0
3 sets are the effective

analogs of the classical Gδσ sets [50, Introduction]. For each k ≥ 3 it can be
shown that every Σ0

k set in X is Muchnik equivalent to a Π0
k−1 set in the Baire

space NN or in the Cantor space {0, 1}N. For convenience we shall focus on Σ0
3

sets in the Baire space, i.e., sets of the form

S = {f ∈ NN | ∃k ∀m ∃nR(k,m, n, f)} (1)

where R ⊆ N3 ×NN is recursive. These sets will play an important role in what
follows.

Theorem 3.3.1 (The Σ0
3 Embedding Lemma). Let s = degw(S) where S is a

Σ0
3 set. Then inf(s,1) belongs to Ew.

Theorem 3.3.1 has been extremely useful in showing that various interesting
Muchnik degrees belong to Ew. We now present some examples.

Examples 3.3.2.

16



1. Recall that a real x ∈ {0, 1}N is said to be 2-random if it is Martin-Löf
random relative to 0′ = the halting problem. It is not hard to see that

MLR2 = {x ∈ {0, 1}N | x is 2-random}

is Σ0
3. Therefore, letting r2 = degw(MLR2) we have inf(r2,1) ∈ Ew in

view of Theorem 3.3.1. See also Figure 1.

2. Recall from Figure 1 the degrees r1, ks, kf , and d, as well as kC = dC

where C = REC or C = a nice subclass of REC. Each of these was defined
in Section 2 as the Muchnik degree of a specific, natural, Σ0

3 subset of
{0, 1}N or of NN. Moreover, each of these degrees is easily seen to be ≤ 1.
Therefore, by Theorem 3.3.1, each of these degrees belongs to Ew.

3. For each real x ≤T 0′ the singleton set {x} is easily seen to be Σ0
3. There-

fore, Theorem 3.3.1 tells us that inf(a,1) ∈ Ew where a = degT(x) =
degw({x}). This applies in particular if a is a recursively enumerable
Turing degree, as shown in Figure 1. The Arslanov Completeness Cri-
terion [107, Theorem V.5.1] tells us that for all a ∈ ET the embedding
a 7→ inf(a,1) is one-to-one.

4. In [103, Theorem 6.3] I proved that if S is Σ0
3 then its LR-upward closure

SLR = {y | ∃x (x ∈ S and x ≤LR y)}

is again Σ0
3. Moreover, it is known (see for instance [86, Part A]) that the

singleton set {0(α)} is Σ0
3 for each recursive ordinal α < ωCK

1 . Combining
these facts with Theorem 3.3.1 we see that inf(bα,1) ∈ Ew where bα =
degw({y | 0(α) ≤LR y}). See also Figure 1.

Remark 3.3.3. In view of Theorem 3.3.1 it seems reasonable to consider a
certain sublattice of Dw which is larger than Ew but still countable. Namely, let
Sw be the lattice of Muchnik degrees of nonempty Σ0

3 sets in NN, or equivalently,
nonempty Π0

1 sets in NN (see Lemma 3.3.5 below). Trivially Sw includes Ew but
it also includes much more. In particular, each of the degrees 0(α) and bα for
α < ωCK

1 belongs to Sw. The structure of Sw has not been studied extensively,
but we can show for instance that Sw has no top degree. We also have the
following result.

Corollary 3.3.4. Ew is an initial segment of Sw. Specifically, we have

Ew = {s ∈ Sw | s ≤ 1}.

Proof. This is a restatement of Theorem 3.3.1.

We shall now sketch a proof of Theorem 3.3.1. The theorem was first proved
in [99, Lemma 3.3] but the proof given here yields additional useful information.
See also Remark 3.3.7 below.
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If P and Q are sets of reals, we say that P and Q are Turing equivalent,
abbreviated P ≡T Q, if and only if

{degT(x) | x ∈ P} = {degT(y) | y ∈ Q}.

Note that P ≡T Q implies degw(P ) = degw(Q) but not conversely. For f, g ∈ NN

we write f⊕g = the unique h ∈ NN such that h(2n) = f(n) and h(2n+1) = g(n)
for all n.

Lemma 3.3.5. Let S be a Σ0
3 set in NN. Then, we can find a Π0

1 set Q in NN

such that Q ≡T S.

Proof. Since S is Σ0
3, let R ⊆ N3 × NN be a recursive relation such that (1)

holds. We then let

Q = {〈k〉a(f ⊕ g) | ∀m (g(m) = the least n such that R(k,m, n, f) holds)}.
Clearly Q is a Π0

1 set in NN, and it is easy to check that Q ≡T S.

Lemma 3.3.6. Let S be a Σ0
3 set in NN. Let P be a nonempty Π0

1 set in {0, 1}N.
Then, we can find a nonempty Π0

1 set Q in {0, 1}N such that Q ≡T S ∪ P .

Proof. By Lemma 3.3.5 we may safely assume that S is a Π0
1 set in NN. There-

fore, let U be a recursive subtree of N∗ such that S = {paths through U}. In
addition, let V be a recursive subtree of {0, 1}∗ such that P = {paths through
V }. Define W to be the recursive subtree of {0, 1, 2}∗ consisting of all strings
of the form

σ0
a〈2〉aσ1a〈2〉a · · ·a〈2〉aσn−1

a〈2〉aσn
such that

(a) for each i ≤ n, σi ∈ V ;

(b) for each i < n, σi is the leftmost σ ∈ V such that |σ| = |σi|;

(c) the string 〈|σ0|, |σ1|, . . . , |σn−1|〉 belongs to U .

Letting Q = {paths throughW}, it is straightforward to verify that Q ≡T S∪P .
Clearly Q is a Π0

1 set in {0, 1, 2}N. Since {0, 1, 2}N is effectively homeomorphic
to {0, 1}N, we have our lemma.

Remark 3.3.7. Kent and Lewis [51] have studied the lattice of sets of Turing
degrees of the form {degT(x) | x ∈ P} where P is a Π0

1 subset of {0, 1}N. Lemma
3.3.6 is of obvious interest in this regard.

Proof of Theorem 3.3.1. Let P ⊆ {0, 1}N be Π0
1 such that degw(P ) = 1. For

instance, we could take P = CPA or P = DNR ∩ {0, 1}N. Apply Lemma 3.3.6
to get a Π0

1 set Q ⊆ {0, 1}N such that Q ≡T S ∪ P . Let q = degw(Q). We then
have q ∈ Ew and q = degw(Q) = degw(S ∪ P ) = inf(s,1), Q.E.D.
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3.4 A generalization of the Posner/Robinson Theorem

We now prove another lemma which is consequential for the structure of Ew.
This is a strengthened version of [101, Lemma 5].

Lemma 3.4.1. Let S ⊆ NN be Σ0
3. Assume that f, h ∈ NN are such that

S �w {f} and 0 <T f and f ⊕ 0′ ≤T h. Then, we can find a 1-generic g ∈ NN

such that S �w {g} and f ⊕ g ≡T g
′ ≡T g ⊕ 0′ ≡T h.

Proof. For integers n ∈ N and strings σ ∈ N∗ we write

Φn(σ) = 〈ϕ(1),σ
n,|σ|(i) | i < j〉

where j = the least i such that either ϕ
(1),σ
n,|σ|(i) ↑ or i ≥ |σ|. Note that the

mapping Φn : N∗ → N∗ is recursive and monotonic, i.e., σ ⊆ τ implies Φn(σ) ⊆
Φn(τ). Moreover, for all g, ĝ ∈ NN we have g ≥T ĝ if and only if ∃n (Φn(g) = ĝ).
Here we are writing

Φn(g) =

∞⋃

l=0

Φn(g↾{0, 1, . . . , l − 1}).

Let S, f and h be as in the statement of Lemma 3.4.1. By Lemma 3.3.5 we
may safely assume that S is Π0

1, so let U ⊆ N∗ be a recursive tree such that
S = {paths through U}. Since f is not recursive, we can find a set A ⊆ N
such that f ≡T A and A is not recursively enumerable. We shall inductively
define an increasing sequence of strings σk ∈ N∗ for k = 0, 1, 2, . . . and then let
g =

⋃∞
k=0 σk. In presenting the construction, we shall identify strings with their

Gödel numbers.
Stage 0. Let σ0 = 〈〉 = the empty string.
Stage 3n+ 1. Assume inductively that σ3n has been defined. Let σ3n+1 =

σ3n
a〈h(n)〉.
Stage 3n+ 2. Assume inductively that σ3n+1 has been defined. Since A is

not recursively enumerable, there exists i such that

i ∈ A ⇔ ¬∃σ (σ3n+1
a〈i〉 ⊆ σ ∧Φn(σ)(0) ↓).

Using A ⊕ 0′ as an oracle, find in = the least such i. If in ∈ A let σ3n+2 =
σ3n+1

a〈in〉. If in /∈ A let σ3n+2 = the least σ ⊇ σ3n+1
a〈in〉 such that

Φn(σ)(0) ↓.
Stage 3n+ 3. Assume inductively that σ3n+2 has been defined. Let σn,0 =

σ3n+2. Suppose that σn,s has been defined. Using A ⊕ 0′ as an oracle, search
for an i such that

i ∈ A ∧ ¬∃σ (σn,sa〈i〉 ⊆ σ ∧ Φn(σn,s) ⊂ Φn(σ) ∈ U). (2)

At the same time, using A as an oracle, search for a pair i, σ such that

i /∈ A ∧ σn,sa〈i〉 ⊆ σ ∧ Φn(σn,s) ⊂ Φn(σ) ∈ U. (3)
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Since A is not recursively enumerable, at least one of these two searches will
eventually succeed. If search (2) succeeds first, let σ3n+3 = σn,s

a〈i〉. If search
(3) succeeds first, let σn,s+1 = σ. In either case let in,s = i.

We claim that for some s, search (2) succeeds first. Otherwise, by performing
search (3) for s = 0, 1, 2, . . . successively, we would obtain infinite increasing
sequences of strings

σn,0 ⊂ σn,1 ⊂ · · · ⊂ σn,s ⊂ σn,s+1 ⊂ · · ·

and
Φn(σn,0) ⊂ Φn(σn,1) ⊂ · · · ⊂ Φn(σn,s) ⊂ Φn(σn,s+1) ⊂ · · ·

with Φn(σn,s) ∈ U for all s. Moreover, these sequences of strings would be

computable relative to A. Thus, letting f̂ =
⋃∞

s=0 Φn(σn,s) we would have

f̂ ∈ S and f̂ ≤T A ≡T f , hence S ≤w {f}, a contradiction. This proves our
claim. From this it follows that σ3n+3 is defined.

Clearly the sequence σ0, σ1, . . . , σk, σk+1, . . . is computable relative to h, be-
cause A⊕0′ ≡T f⊕0′ ≤T h. Moreover, h is computable relative to this sequence,
because for all n we have h(n) = σ3n+1(|σ3n|).

Let g =
⋃∞

k=0 σk. We claim that the sequence σ0, σ1, . . . , σk, σk+1, . . . is
≤T A ⊕ g. Given σk we use A ⊕ g to compute σk+1 as follows. For k = 3n
we have σk+1 = σk

a〈g(|σk|)〉. For k = 3n + 1 we have in = g(|σk|) and
σk+1 = σk

a〈in〉 if in ∈ A, otherwise σk+1 = the least σ ⊇ σk
a〈in〉 such that

Φn(σ)(0) ↓. For k = 3n + 2 we begin with σn,0 = σk. Given σn,s we use g
to compute in,s = g(|σn,s|) and then use A to decide whether in,s ∈ A or not.
If in,s /∈ A we compute σn,s+1 = the least σ such that σn,s

a〈in,s〉 ⊆ σ and
Φn(σn,s) ⊂ Φn(σ) ∈ U . By the previous claim, we will eventually find an s such
that in,s ∈ A, and then we have σk+1 = σn,s

a〈in,s〉. This proves our claim.
Since A ≡T f ≤T h and g ≤T h, it follows that h ≡T A⊕ g ≡T f ⊕ g.

Next we claim that the sequence σ0, σ1, . . . , σk, σk+1, . . . is ≤T g⊕ 0′. Given
σk we use g ⊕ 0′ to compute σk+1 as follows. For k = 3n we have σk+1 =
σk

a〈g(|σk|)〉. For k = 3n + 1 we have in = g(|σk|) and we can then use 0′ to
decide whether there exists σ such that σk

a〈in〉 ⊆ σ and Φn(σ)(0) ↓. If such
a σ exists, we have σk+1 = the least such σ, otherwise σk+1 = σk

a〈in〉. For
k = 3n+ 2 we have σn,0 = σk. Given σn,s we use g to compute in,s = g(|σn,s|)
and then use 0′ to decide whether there exists σ such that σn,s

a〈in,s〉 ⊆ σ and
Φn(σn,s) ⊂ Φn(σ) ∈ U . If such a σ exists, we compute σn,s+1 = the least such σ,
otherwise σk+1 = σn,s

a〈in,s〉. As before we know that this procedure eventually
gives σk+1. This proves our claim. Thus h ≤T g ⊕ 0′. Moreover g′ ≤T g ⊕ 0′

because for all n we have n ∈ g′ if and only if Φn(σ3n+2)(0) ↓. Since g ≤T h
and 0′ ≤T h it follows that g′ ≡T h.

The construction at stage 3n + 3 insures that S �w {g}. Moreover, the
construction at stage 3n + 2 insures that g is 1-generic. This completes the
proof of Lemma 3.4.1.

Remark 3.4.2. The Posner/Robinson Theorem [78] follows from the special
case of Lemma 3.4.1 with S = ∅ = the empty set. Also, Lemma 3.4.1 improves
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our result in [101, Remark 9] by eliminating the hyperimmunity hypothesis.
Other generalizations of the Posner/Robinson Theorem are in [45, 46, 90].

Lemma 3.4.3. Let S ⊆ NN be Σ0
3 such that S �w {0}, i.e., S ∩REC = ∅. Let

h ∈ NN be such that 0′ ≤T h. Then, we can find a 1-generic g ∈ NN such that
S �w {g} and g′ ≡T g ⊕ 0′ ≡T h.

Proof. We proceed as in the proof of Lemma 3.4.1 above. The construction is
easier than in Lemma 3.4.1, because we can ignore f . We omit the details.

As in Remark 3.3.3 let Sw be the lattice of Muchnik degrees of nonempty
Σ0

3 sets in NN.

Theorem 3.4.4. Let s be a Muchnik degree in Sw such that 0 < s. Let c be a
Turing degree such that 0′ ≤ c. Then, we can find a Turing degree a such that
0 < a < c and s � a. Moreover, given any such Turing degree a1 we can find
another such Turing degree a2 with the property that sup(a1, a2) = c.

Proof. These statements are a partial translation of Lemmas 3.4.3 and 3.4.1
into the language of Muchnik degrees and Turing degrees.

Theorem 3.4.5. Let p be a Muchnik degree in Ew such that 0 < p. Then, we
can find a Turing degree a such that 0 < a < 0′ and p � a. Moreover, given
any such Turing degree a1 we can find another such Turing degree a2 with the
property that sup(a1, a2) = 0′. Consequently, letting pi = inf(p, ai) for i = 1, 2
we have pi ∈ Ew and 0 < pi < p and p = sup(p1,p2).

Proof. Apply Theorem 3.4.4 with s = p and c = 0′. From ai < 0′ plus Theorem
3.3.1 it follows that pi ∈ Ew. From 0 < p and 0 < ai and p � ai it follows
that 0 < pi < p. Since p ≤ 1 < 0′ = sup(a1, a2), the distributive law gives
p = inf(p, sup(a1, a2)) = sup(inf(p, a1), inf(p, a2)) = sup(p1,p2).

Remark 3.4.6. Theorem 3.4.5 provides another proof of the Splitting Theorem
3.1.1.4 and this alternative proof is in some ways more informative. Also, as we
shall see in Section 4, Theorem 3.4.5 answers a question about Ew which arises
naturally fromMuchnik’s version of Kolmogorov’s interpretation of intuitionism.

4 Muchnik degrees and intuitionism

Historically, Muchnik degrees arose from the foundational controversy which
was ignited by Brouwer’s doctrine of intuitionism. Kolmogorov, in his influen-
tial 1932 paper [57, 58], proposed to interpret intuitionism nonrigorously as an
Aufgabenrechnung (translation: calculus of problems).14 In order to rigorously
implement Kolmogorov’s idea, Medvedev 1955 [67] introduced mass problems,
and Muchnik 1963 [71] proved that the lattice Dw of all Muchnik degrees is
Brouwerian, i.e., it satisfies Heyting’s intuitionistic propositional calculus. My
brief account of this history is in [101].

14This proposal in [57] accounts for the “K” in the so-called BHK-interpretation of intu-
itionism [114, §§1.3.1,1.5.3].
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4.1 Interpreting intuitionism in Dw

We shall now briefly describe Kolmogorov’s interpretation and Muchnik’s im-
plementation of it. The original Kolmogorov idea was to view each intuitionistic
proposition as a “problem.” An intuitionistic proof of the proposition is then
the same thing as a “solution” of the problem. If A and B are problems, let us
write A ⊢ B to mean that the problem A is “at least as difficult as” the problem
B, in the sense that any solution of A would “easily” or “immediately” yield a
solution of B. Consequently, A and B are “equivalent” as problems if and only
if A ⊢ B and B ⊢ A. We denote this equivalence as A ≡ B.

One may combine problems in various ways to obtain new problems. Some
of the methods of combination correspond to the intuitionistic propositional
connectives ∧, ∨, ⇒, ¬ , etc. Thus, if A and B are problems, let A ∧B denote
the problem of solving both A and B, let A∨B denote the problem of solving at
least one of A and B, and let A⇒ B denote the “least difficult” problem C such
that A∧C ⊢ B. Rephrasing this in terms of “solutions,” we see that a solution of
A∧B should be essentially an ordered pair (x, y) where x and y are solutions of
A and B respectively; a solution of A∨B should consist of a solution of at least
one of A and B; and a solution of A⇒ B should be something which allows us
to “easily transform” any solution of A into a solution of B. Attempting to state
this in another way, let P and Q be the solution sets of A and B respectively,
i.e., P = {solutions of A} and Q = {solutions of B}. Clearly we ought to have
something like P ×Q = {solutions of A∧B}, and P ∪Q = {solutions of A∨B},
but the set-theoretic interpretation of A⇒ B is not so clear.

Let us now adopt an instrumentalist viewpoint, according to which any
“problem” A is to be identified with its solution set P . On this view, any set P
of possible solutions corresponds in turn to a problem, namely, the problem of
“finding” an element of P . Muchnik’s idea was to identify the possible solutions
as Turing oracles. Thus P and Q are sets of Turing oracles, i.e., mass problems,
and we interpret P ⊢ Q to mean that P ≥w Q, i.e., every solution of P can be
used as a Turing oracle to compute some solution ofQ. Letting p = degw(P ) and
q = degw(Q), it is easy to check that sup(p,q) = degw(P ×Q) and inf(p,q) =
degw(P ∪Q), so we are forced15 to implement ∧ and ∨ respectively as sup and
inf in the Muchnik lattice Dw. Similarly we implement ⊢ as ≥ and ≡ as = in
Dw. In order to implement ⇒ in Dw we need the following theorem.

Theorem 4.1.1. Let p and q be Muchnik degrees. Then, among all Muchnik
degrees z such that sup(p, z) ≥ q there is a unique smallest one. We denote
this Muchnik degree by imp(p,q).

Proof. Let P and Q be sets of reals such that degw(P ) = p and degw(Q) = q.
Let imp(p,q) = degw(P ⇒ Q) where

(P ⇒ Q) = {z | (∀x ∈ P ) (∃y ∈ Q) ((x, z) ≥T y)}.
15For this reason we strongly prefer the notations sup(p,q) and inf(p,q) for the least upper

bound and greatest lower bound operations in Dw. The usual lattice-theoretic notations ∨
and ∧ [23] or + and × [108] are confusing and misleading in the mass problem context.
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It is straightforward to verify that imp(p,q) has the desired property.

We now have an interpretation of the formulas of propositional calculus in
Dw. Namely, if φ is a mapping of propositional atoms into Dw, we extend φ
to propositional formulas as follows: φ(A ∧B) = sup(φ(A), φ(B)), φ(A ∨B) =
inf(φ(A), φ(B)), φ(A ⇒ B) = imp(φ(A), φ(B)), and φ(¬A) = imp(φ(A),∞)
where of course ∞ = degw(∅) = the top degree in Dw. Let us define a propo-
sitional formula A to be Dw-valid if and only if φ(A) = 0 for all φ. It is
straightforward to show that the axioms of intuitionistic propositional calculus
[114, §2.1] are Dw-valid, and that Dw-validity is preserved under the intuition-
istic propositional rules of inference. Thus we see that all of the theorems of
intuitionistic propositional calculus are Dw-valid.

16

The above interpretation of intuitionistic propositional calculus in Dw can be
extended to an interpretation of intuitionistic arithmetic, intuitionistic analysis,
and intuitionistic higher-order logic. This is accomplished as follows. Recall
from Section 1.1 that DT is the partial ordering of all Turing degrees. A set
U ⊆ DT is said to be upward closed if for all a ∈ U and a ≤ b ∈ DT we have
b ∈ U . Obviously the upward closed sets in DT form a complete and completely
distributive lattice under reverse inclusion. Moreover, as noted by Muchnik [71],
the upward closed sets in DT are the open sets of a topology on DT.

Theorem 4.1.2. The lattice Dw is canonically isomorphic to the lattice of
upward closed sets in DT ordered by reverse inclusion.

Proof. Recall from Section 1.2 that each Turing degree is identified with a Much-
nik degree. Thus DT ⊆ Dw. For each p ∈ Dw the corresponding upward closed
set in DT is

Up = {a ∈ DT | p ≤ a}
and all upward closed sets in DT are of this form. It is also clear that p ≤ q if
and only if Up ⊇ Uq, so we have a canonical isomorphism as required.

Remark 4.1.3. For any topological space X , let Sh(X) be the category of
sheaves over X . This category Sh(X) is the standard example of a topos. See
for instance [114, §§14.5,15.1,15.2] and [64]. In particular, let Sh(DT) be the
category of sheaves over DT with the topology of upward closed sets. In light of
Theorem 4.1.2 we refer to Sh(DT) as the Muchnik topos. Regrettably, the Much-
nik topos has not been studied extensively. Like Sh(X) for any topological space
X , the Muchnik topos is a model of intuitionistic higher-order logic, intuitionis-
tic arithmetic, and intuitionistic analysis. However, the Muchnik topos has the
advantage of carrying with it the original intuitionistic motivation in terms of
Kolmogorov’s Aufgabenrechnung. We may therefore expect the Muchnik topos
to yield new foundational insights. This is a topic of ongoing investigation.

16One can show that the Dw-valid propositional formulas are precisely the theorems of
Jankov logic, consisting of intuitionistic propositional calculus together with the so-called
weak law of the excluded middle, (¬A) ∨ (¬¬A). See for instance [108].
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4.2 Non-interpretability of intuitionism in Ew
In view of the Kolmogorov/Muchnik interpretation of intuitionism in Dw, one
may ask whether intuitionism can be similarly interpreted in various sublat-
tices of Dw. Following Birkhoff [12, 13] (first and second editions) we define
a Brouwerian lattice to be a distributive lattice L with a top element and a
bottom element such that for all a, b ∈ L there is a unique smallest c ∈ L such
that sup(a, c) ≥ b. Just as classical propositional calculus may be viewed as the
theory of Boolean lattices, so intuitionistic propositional calculus may be viewed
as the theory of Brouwerian lattices. Theorem 4.1.1 says that Dw is Brouwerian,
and Sorbi and Terwijn [108] have investigated Brouwerian sublattices of Dw. In
particular, each initial segment of Dw is Brouwerian.

Recall from Section 1.3 that Ew is a distributive sublattice of Dw with top
and bottom elements 1 and 0. In view of the great interest of Ew as documented
in Sections 2 and 3 above, it is natural to ask whether Ew is Brouwerian. The
answer is negative, as shown by the following theorem from [101].

Theorem 4.2.1. Given p ∈ Ew such that 0 < p, we can find p1 < p such that
p1 ∈ Ew and there is no smallest z ∈ Ew such that sup(p1, z) ≥ p.

Proof. By the first part of Theorem 3.4.5, let a be a Turing degree such that
0 < a < 0′ and p � a. Let p1 = inf(p, a). Clearly p1 < p, and by Theorem
3.3.1 we have p1 ∈ Ew. Now given z ∈ Ew such that sup(p1, z) ≥ p, we clearly
have 0 < z and z � a, so by the second part of Theorem 3.4.5 let b be a Turing
degree such that 0 < b < 0′ and z � b and sup(a,b) = 0′. Let z1 = inf(z,b).
Clearly z1 < z, and by Theorem 3.3.1 we have z1 ∈ Ew. Since p ≤ 1 < 0′ we
have sup(a,b) > p, hence sup(p1, z1) ≥ p. This completes the proof.

Theorem 4.2.1 implies that there are many pairs of degrees p1,p ∈ Ew such
that imp(p1,p) /∈ Ew and moreover Ew is not Brouwerian. Comparing Remark
4.1.3 with Theorem 4.2.1, we may say that Dw provides an interesting model
of intuitionistic higher-order arithmetic and analysis, while Ew does not even
provide a model of intuitionistic propositional calculus.

5 Ew and symbolic dynamics

In this section we present an application of Ew to symbolic dynamics. As
explained below, symbolic dynamics is the study of subshifts. We are inter-
ested specifically in Zd-subshifts. A standard reference for symbolic dynamics
is Lind/Marcus [63] which also includes an appendix on Zd-subshifts [63, §13.2].

5.1 Tiling problems

Historically, the subject of Z2-subshifts began with tiling problems in the sense
of Wang [117]. A Wang tile is a unit square with colored edges. Given a finite
set A of Wang tiles, let PA be the problem of tiling the plane with copies of
tiles from A. More formally, PA is the set of mappings x : Z×Z → A such that
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for all (i, j) ∈ Z× Z the right edge of x(i, j) matches the left edge of x(i+ 1, j)
and the top edge of x(i, j) matches the bottom edge of x(i, j + 1). Clearly PA

is an effectively closed set in the effectively compact space AZ×Z. From this it
follows that degw(PA) ∈ Ew provided PA 6= ∅.

In 1966 Berger [5] proved that, given A, it is algorithmically undecidable
whether PA = ∅. From this it follows that there exists an A such that PA 6= ∅
but no x ∈ PA is periodic. In 1971 Robinson [82] gave an elegant simplified
treatment of Berger’s results. In 1974 Myers [72] used Robinson’s method to
construct an A such that PA 6= ∅ but no x ∈ PA is computable. Thus 0 <
degw(PA) ≤ 1, and indeed, for the A constructed by Myers one has degw(PA) =
1. My contribution in 2007 [105] was to show that for each p ∈ Ew one can find
an A such that degw(PA) = p. Thus the Muchnik degrees of tiling problems
are precisely characterized in terms of Ew. A new treatment of these results and
many others is in Durand/Romashchenko/Shen [30].

5.2 Symbolic dynamics

Given a dynamical system, one may partition the state space into a finite num-
ber of regions. Then, each orbit of the system has a symbolic representation
obtained by ignoring the actual states and considering only the regions. In this
way one obtains a symbolic representation of the given system. The existence
of these symbolic representations is part of the reason for the importance of the
symbolic case in dynamical systems theory.

Some key definitions for symbolic dynamics are as follows. Fix a countable
semigroup G. Specifically, let G be the additive group (Zd,+) or the additive
semigroup (Nd,+) where d is a positive integer. Let A be a finite set of symbols.
The shift action of G on AG is defined by (Sgx)(h) = x(g + h) for all g, h ∈ G
and x ∈ AG. We endow A with the discrete topology and AG with the product
topology. A G-subshift is a nonempty set X ⊆ AG which is topologically closed
and shift-invariant, i.e., x ∈ X implies Sgx ∈ X for all g ∈ G. The study of
subshifts is called symbolic dynamics.

Let X ⊆ AG and Y ⊆ BG be G-subshifts. A shift morphism is a continuous
mapping Φ : X → Y such that Φ(Sgx) = SgΦ(x) for all g ∈ G and x ∈ X . Two
G-subshifts are said to be conjugate if they are topologically isomorphic, i.e.,
there is a shift isomorphism between them. A compactness argument shows that
any shift morphism is given by a block code, i.e., a finite mapping φ : AF → B,
where F is a fixed finite subset of G, such that Φ(x)(g) = φ(Sgx↾F ) for all x ∈ X
and all g ∈ G. Since block codes are Turing functionals (in fact, bounded truth-
table functionals), the existence of a shift morphism Φ : X → Y implies that Y
is weakly reducible to X . In particular, the Muchnik degree of X is a conjugacy
invariant of X .

Since degw(X) is a conjugacy invariant, it is appropriate to compare degw(X)
with other conjugacy invariants which have arisen previously in dynamical sys-
tems theory. One of the most important conjugacy invariants is the topological
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entropy,

ent(X) = lim
n→∞

log2 |{x↾Fn | x ∈ X}|
|Fn|

where Fn = {−n, . . . , n}d if G = Zd, or {0, 1, . . . , n}d if G = Nd. Here the
cardinality of a finite set F is denoted |F |. As a guiding principle, one may
say that degw(X) represents a lower bound on the complexity of the orbits
of X , while ent(X) represents an upper bound. In [106] we provide a precise
characterization of ent(X) in terms of the initial segment complexity of the
orbits of X . Relationships of this kind are a subject of ongoing investigation.

A G-subshift X is said to be of finite type if it is defined by a finite set E of
excluded finite configurations. More precisely, X is of finite type if

X = {x ∈ AG | (∀g ∈ G) (Sgx↾F /∈ E)}

where F and E are finite. Many of the subshifts which arise in practice (see
for instance [15, 63]) are of finite type. Moreover, this property of subshifts is
again a conjugacy invariant.

In 1989 [70] it was realized that Z2-subshifts of finite type are essentially
the same thing as tiling problems. Clearly each tiling problem PA 6= ∅ is a
Z2-subshift of finite type. Conversely, it is easy to see that each Z2-subshift of
finite type is conjugate to a tiling problem. Thus, all of the results and methods
which were originally developed for tiling problems [5, 82, 72, 105] apply equally
well to the study of Z2-subshifts of finite type. Hochman and Meyerovitch [42]
have used these methods to show that a nonnegative real number is the entropy
of a Z2-subshift of finite type if and only if it is right recursively enumerable.
In addition, my result from [105] (see Section 5.1 above) provides the following
characterization of the Muchnik degrees of such subshifts.

Theorem 5.2.1. Let p be a Muchnik degree. For each d ≥ 2 the following
statements are pairwise equivalent.

1. p = degw(X) where X is a Zd-subshift of finite type.

2. p = degw(X) where X is an Nd-subshift of finite type.

3. p belongs to Ew.

Proof. See [105]. Another proof is implicit in [30].

5.3 An application

We shall now present an application of Theorem 5.2.1 which is stated purely
in terms of subshifts, with no reference to Muchnik degrees. Namely, we shall
construct an infinite collection of Z2-subshifts of finite type which are, in a
certain sense, mutually incompatible. This application is intended to suggest
that the Muchnik degrees may provide a potentially significant method for the
classification of subshifts. In particular, each of the Muchnik degrees in Figure
1 represents a possibly interesting class of subshifts of finite type.

26



If X and Y are G-subshifts on k and l symbols respectively, let X + Y and
X × Y be the disjoint union and Cartesian product of X and Y . These are G-
subshifts on k+ l and kl symbols respectively. If U is a collection of G-subshifts,
let cl(U) be the closure of U under + and ×.

Theorem 5.3.1. We can find an infinite collection of Z2-subshifts of finite type,
W , such that for all partitions of W into two subcollections, U and V , there is
no shift morphism of X into Y for any X ∈ cl(U) and Y ∈ cl(V).

Proof. By Theorem 3.1.1.2 let pi for i = 1, 2, . . . be an infinite family of Muchnik
degrees in Ew which are independent, i.e.,

inf(pii , . . . ,pim) � sup(pj1 , . . . ,pjn)

whenever {i1, . . . , im}∩{j1, . . . , jn} = ∅. By Theorem 5.2.1, for each i = 1, 2, . . .
let Xi be a Z2-subshift of finite type such that degw(Xi) = pi. Let W be the
collection Xi, i = 1, 2, . . ., and let U ,V be a partition of W . By induction on
X ∈ cl(U) and Y ∈ cl(V) we can easily show that neither of X and Y is Muchnik
reducible to the other. Since each shift morphism is given by a block code, it
follows that there is no shift morphism of X into Y or vice versa.
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[104] Stephen G. Simpson. The Gödel hierarchy and reverse mathematics. In
[33], pages 109–127, 2010.

[105] Stephen G. Simpson. Medvedev degrees of 2-dimensional subshifts of
finite type. Ergodic Theory and Dynamical Systems, 34(2):665–674, 2014.
http://dx.doi.org/10.1017/etds.2012.152.

[106] Stephen G. Simpson. Symbolic dynamics: entropy = di-
mension = complexity. Theory of Computing Systems, 2014.
http://dx.doi.org/10.1007/s00224-014-9546-8, 17 pages.

[107] Robert I. Soare. Recursively Enumerable Sets and Degrees. Perspectives
in Mathematical Logic. Springer-Verlag, 1987. XVIII + 437 pages.

[108] Andrea Sorbi and Sebastiaan A. Terwijn. Intuitionistic logic and Muchnik
degrees. Algebra Universalis, 67:175–188, 2012. DOI 10.1007/s00012-012-
0176-1.

[109] John R. Steel. Descending sequences of degrees. Journal of Symbolic

Logic, 40:59–61, 1975.

[110] Alexey Stukachev. On mass problems of presentability. In [18], pages
772–782, 2006.

[111] Gaisi Takeuti. Proof Theory. Studies in Logic and Foundations of Math-
ematics. North-Holland, 2nd edition, 1987. X + 490 pages.

34



[112] Alfred Tarski, Andrzej Mostowski, and Raphael M. Robinson. Undecidable
Theories. Studies in Logic and the Foundations of Mathematics. North-
Holland, 1953. IX + 98 pages.

[113] V. M. Tikhomirov, editor. Selected Works of A. N. Kolmogorov, Volume

I, Mathematics and Mechanics. Mathematics and its Applications, Soviet
Series. Kluwer Academic Publishers, 1991. XIX + 551 pages.

[114] Anne S. Troelstra and Dirk van Dalen. Constructivism in Mathematics,

an Introduction. Studies in Logic and the Foundations of Mathematics.
North-Holland, 1988. Volume I, XX + 342 + XIV pages, Volume II, XVIII
+ 535 + LII pages.

[115] Alan M. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,
42:230–265, 1936.

[116] Stanley S. Wainer. A classification of the ordinal recursive functions.
Archiv für Mathematische Logik und Grundlagenforschung, 13:136–153,
1970.

[117] Hao Wang. Proving theorems by pattern recognition, II. Bell System

Technical Journal, 40:1–42, 1961.

[118] Rebecca Weber. Invariance in E∗ and EΠ. Transactions of the American

Mathematical Society, 358:3023–3059, 2006.

[119] Xiaokang Yu and Stephen G. Simpson. Measure theory and weak König’s
lemma. Archive for Mathematical Logic, 30:171–180, 1990.

35


