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Abstract

We examine the concept of almost everywhere domination from the
viewpoint of mass problems. Let AED and MLR be the set of reals which
are almost everywhere dominating and Martin-Löf random, respectively.
Let b1, b2, b3 be the degrees of unsolvability of the mass problems asso-
ciated with the sets AED, MLR×AED, MLR∩AED respectively. Let Pw

be the lattice of degrees of unsolvability of mass problems associated with
nonempty Π0

1 subsets of 2ω . Let 1 and 0 be the top and bottom elements
of Pw. We show that inf(b1,1) and inf(b2,1) and inf(b3,1) belong to Pw

and that 0 < inf(b1, 1) < inf(b2,1) < inf(b3,1) < 1. Under the natural
embedding of the recursively enumerable Turing degrees into Pw, we show
that inf(b1,1) and inf(b3,1) but not inf(b2,1) are comparable with some
recursively enumerable Turing degrees other than 0 and 0

′. In order to
make this paper more self-contained, we exposit the proofs of some recent
theorems due to Hirschfeldt, Miller, Nies, and Stephan.
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1 Introduction

In our previous papers [3, 31, 34, 32, 7] we studied the lattice Pw of degrees of
unsolvability of mass problems associated with nonempty Π0

1 subsets of 2ω. We
showed that Pw contains many specific, natural degrees in addition to 1 and
0, the top and bottom elements of Pw. We showed that many specific, natural
degrees in Pw arise from foundationally interesting topics such as reverse mathe-
matics, algorithmic randomness, computational complexity, hyperarithmeticity,
and subrecursive hierarchies from Gentzen-style proof theory.

The purpose of the present paper is to exhibit and discuss some relatively
new examples of specific, natural degrees in Pw. The new examples arise from
almost everywhere domination, a concept which was originally introduced by
Dobrinen/Simpson [9]. Let B be a Turing oracle. We say that B is almost
everywhere dominating if, for allX ∈ 2ω except a set of measure 0, each function
computable from X is dominated by some function computable from B. It is
known [9] that almost everywhere domination is closely related to the reverse
mathematics of measure theory.

In order to succinctly state our results, let MLR = {X ∈ 2ω | X is Martin-
Löf random} and AED = {Y ∈ 2ω | Y is almost everywhere dominating}. For
P,Q ⊆ 2ω we write P × Q = {X ⊕ Y | X ∈ P and Y ∈ Q} and P ∩ Q =
the intersection of P and Q. With these conventions, let b1, b2, b3 be the
respective degrees of unsolvability of the mass problems associated with AED,
MLR × AED, MLR ∩ AED. Trivially b1 ≤ b2 ≤ b3. Our main results may be
summarized by saying that the degrees inf(b1,1), inf(b2,1), inf(b3,1) belong
to Pw and

0 < inf(b1,1) < inf(b2,1) < inf(b3,1) < 1.
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The proof of this chain of inequalities uses virtually everything that is currently
known about the relationship between Martin-Löf randomness and almost ev-
erywhere domination. See Theorems 2.2 and 2.3 below.

Historically, there has been a great deal of interest in the semilattice of
recursively enumerable Turing degrees. Therefore, it seems desirable to examine
the relationships between recursively enumerable Turing degrees and the various
specific, natural degrees in Pw. In order to state our results, let us temporarily
identify each recursively enumerable Turing degree a with its image in Pw under
the natural one-to-one embedding a 7→ inf(a,1) given in [34, Theorem 5.5]. In
particular, we identify 0′ and 0, the top and bottom recursively enumerable
Turing degrees, with 1 and 0, the top and bottom degrees in Pw. In our papers
[31, 34] written in 2004, we remarked that all of the specific, natural degrees
in Pw which were known at that time are incomparable with all recursively
enumerable Turing degrees except 0′ and 0. In this respect it turns out that
our new examples of specific, natural degrees in Pw behave somewhat differently
from the old ones. Namely, although inf(b2,1) is again incomparable with all
recursively enumerable Turing degrees except 0′ and 0, this turns out not to be
the case for inf(b1,1) and inf(b3,1). See Theorems 3.1 and 3.2 below.

Our work in this paper owes much to conversations with Bjørn Kjos-Hanssen,
Antońın Kučera, and Joseph S. Miller. In particular, the fact that inf(b1,1)
belongs to Pw was already implicit in Kjos-Hanssen [18], and Miller corrected
an error in one of our early proofs of the inequality inf(b2,1) < inf(b3,1).

The reader who is familiar with the basics of recursion theory will find that
this paper is largely self-contained. If E is an expression which may or may not
denote a natural number, we write E ↓ to mean that E is defined (i.e., E denotes
a natural number), otherwise E ↑. If E1 and E2 are two such expressions,
we write E1 ≃ E2 to mean that E1 and E2 are both defined and equal, or
both undefined. Throughout this paper, a convenient background reference is
our recent paper [33], which includes a fairly thorough exposition of almost
everywhere domination and Martin-Löf randomness.

2 Some mass problem inequalities

The purpose of this section is to prove our mass problem inequalities in Pw. The
proofs use some recent theorems of Cholak/Greenberg/Miller, Kjos-Hanssen,
Hirschfeldt/Miller, Nies, and Stephan concerning almost everywhere domination
and Martin-Löf randomness. In order to make this paper more self-contained,
we exposit the proofs of the theorems of Hirschfeldt/Miller, Nies, and Stephan
respectively in Sections 4, 5, 6 below.

Our notion of reducibility for decision problems is standard. Given X,Y ∈
2ω, we say that X is Turing reducible to Y , abbreviated X ≤T Y , if X is
computable using Y as an oracle. A Turing degree is an equivalence class of
elements of 2ω under mutual Turing reducibility. The Turing degree of X is
denoted degT (X).

Our notion of reducibility for mass problems is as follows. Given P,Q ⊆ 2ω,
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we say that P is weakly reducible to Q, abbreviated P ≤w Q, if for all Y ∈ Q
there exists X ∈ P such that X is Turing reducible to Y . A weak degree is an
equivalence class of subsets of 2ω under mutual weak reducibility. The weak
degree of P is denoted degw(P ). Weak degrees have sometimes been known as
Muchnik degrees [23].

Note that for p = degw(P ) and q = degw(Q) we have inf(p,q) = degw(P ∪
Q) and sup(p,q) = degw(P × Q). Note also that for X,Y ∈ 2ω we have
X ≤T Y if and only if {X} ≤w {Y }. Here {X} denotes the singleton set
whose only element is X . Therefore, the Turing degree degT (X) is sometimes
identified with the weak degree degw({X}).

Definition 2.1.

1. Let b1 = degw(AED) where

AED = {Y ∈ 2ω | Y is almost everywhere dominating}.

2. Let b2 = degw(MLR × AED) where

MLR = {X ∈ 2ω | X is Martin-Löf random}.

3. Let b3 = degw(MLR ∩ AED).

Theorem 2.2. The weak degrees inf(b1,1), inf(b2,1), inf(b3,1) belong to Pw.

Proof. An important tool in the study of Pw is the Embedding Lemma [34,
Lemma 3.3], [32, Lemma 4]. The Embedding Lemma says: For any s = degw(S)
where S is Σ0

3, we have inf(s,1) ∈ Pw. Therefore, in order to prove Theorem
2.2, it suffices to show that AED and MLR are Σ0

3.
After Dobrinen/Simpson [9], the concept of almost everywhere domina-

tion was subsequently explored by Binns/Kjos-Hanssen/Lerman/Solomon [2],
Cholak/Greenberg/Miller [5], Kjos-Hanssen [18], Kjos-Hanssen/Miller/Solomon
[19], and Simpson [33]. We now know [18, 19] that B is almost everywhere dom-
inating if and only if 0′ ≤LR B. Here 0′ denotes the Halting Problem, and ≤LR

denotes LR-reducibility: A ≤LR B if and only if ∀X (if X is random relative to
B, then X is random relative to A). Moreover, as shown in [19], LR-reducibility
is equivalent to LK -reducibility: A ≤LK B if and only if KB(τ) ≤ KA(τ)+O(1)
for all τ . Here KB(τ) denotes the prefix-free Kolmogorov complexity of τ rela-
tive to a Turing oracle B. The concepts of LR-reducibility and LK -reducibility
were originally introduced by Nies [24, Section 8]. A convenient reference for
these results is Simpson [33].

One way to see that AED is Σ0
3 is to use the characterization in terms of

LK -reducibility. We know that B ∈ AED if and only if 0′ ≤LK B, i.e., KB(τ) ≤
K0′

(τ) + O(1), i.e., ∃c ∀τ (KB(τ) ≤ K0′

(τ) + c). But KB(τ) ≤ K0′

(τ) + c if
and only if ∀ρ (U0′

(ρ) ≃ τ ⇒ ∃σ (|σ| ≤ |ρ| + c and UB(σ) ≃ τ)). Here UB is
a universal prefix-free oracle machine. The last satement is Π0

2, so AED is Σ0
3.

The fact that AED is Σ0
3 has previously been noted by Kjos-Hanssen [18] and

Kjos-Hanssen/Miller/Solomon [19]. See also [33, Corollary 5.9].
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It remains to show that MLR is Σ0
3. In fact, MLR is Σ0

2 in view of the
existence of a universal Martin-Löf test. See for instance [20] or [31, Theorem
8.3] or [33, Theorem 3.2]. This completes the proof of Theorem 2.2. �

Theorem 2.3. In Pw we have 0 < inf(b1,1) < inf(b2,1) < inf(b3,1) < 1.

Proof. Trivially b1 ≤ b2 ≤ b3, hence inf(b1,1) ≤ inf(b2,1) ≤ inf(b3,1). Recall
from [31, 34] that 1 = degw(PA) where

PA = {X ∈ 2ω | X is a complete extension of Peano Arithmetic}.

We have 0 < inf(b1,1) because by [9] no member of AED∪PA is recursive. In
order to prove inf(b1,1) < inf(b2,1), consider

DNR = {f ∈ ωω | f is diagonally nonrecursive}

where f is said to be diagonally nonrecursive if ∀n (f(n) 6≃ ϕ
(1)
n (n)).

Lemma 2.4. DNR 6≤w AED.

Proof. This follows from items 1 and 2 in Lemma 2.7 below. �

The next two lemmas are well known.

Lemma 2.5. DNR ≤w MLR.

Proof. Consider the recursive functionalX 7→ fX given by fX(n) =
∑n−1

i=0 X(i)2i

for all X ∈ 2ω. Let Un = {X ∈ 2ω | fX(n) ≃ ϕ
(1)
n (n)}. Note that Un

is uniformly Σ0
1 and µ(Un) ≤ 1/2n. If X is random, it follows by Solovay’s

Lemma (see for instance [33, Lemma 3.7]) that X ∈ Un for only finitely many
n. Therefore, with finitely many exceptions, fX is diagonally nonrecursive.
This proves the lemma. For refinements, see Jockusch [14, Proposition 3] and
Ambos-Spies/Kjos-Hanssen/Lempp/Slaman [1] and Simpson [31]. �

Lemma 2.6. MLR ≤w PA.

Proof. Since MLR is Σ0
2 and nonempty, we can find a nonempty Π0

1 set P ⊆
MLR. Since P is a nonempty Π0

1 subset of 2ω, we have P ≤w PA in view of
Scott/Tennenbaum [30] and Scott [29]. The lemma follows. �

By Lemmas 2.4 and 2.5 and 2.6 we have MLR ∪ PA 6≤w AED. From this
it follows trivially that AED ∪ PA <w (MLR × AED) ∪ PA. In other words,
inf(b1,1) < inf(b2,1).

Next we prove inf(b2,1) < inf(b3,1). We use the forcing construction of
Cholak/Greenberg/Miller [5] referring to CGM-genericity.

Lemma 2.7 (Cholak/Greenberg/Miller).

1. If B is sufficiently CGM-generic, then B is almost everywhere dominating.

2. If B is sufficiently CGM-generic, then DNR 6≤w {B}.
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3. For each nonrecursive A, if B is sufficiently CGM-generic then A 6≤T B.

Proof. See Cholak/Greenberg/Miller [5, Section 4]. �

We also use the following result due to Hirschfeldt and Miller, 2006.

Lemma 2.8 (Hirschfeldt/Miller). There is a nonrecursive, recursively enumer-

able set A such that {A} ≤w MLR ∩ AED.

Proof. See Nies [25, Theorem 5.6]. Alternatively, see Section 4 below. �

The next lemma is well known.

Lemma 2.9.

1. If A 6≤T B, then µ({X ∈ 2ω | A 6≤T X ⊕B}) = 1.

2. If PA 6≤w {B}, then µ({X ∈ 2ω | PA 6≤w {X ⊕B}}) = 1.

Proof. The first statement is a relativized form of Sacks [28, Theorem 1, page
154]. The second statement is a relativized form of Jockusch/Soare [16, Theo-
rem 5.3]. Both statements follow from the general “non-helping” result in [31,
Lemma 7.3]. �

By Lemma 2.8 let A be nonrecursive such that {A} ≤w MLR∩AED. Since A
is nonrecursive, {A}∪DNR 6≤w AED by Lemma 2.7. Hence {A}∪PA 6≤w AED
by Lemmas 2.5 and 2.6. But then, by Lemma 2.9, {A} ∪ PA 6≤w MLR × AED,
since µ(MLR) = 1. It now follows by our choice of A that (MLR ∩ AED) ∪
PA 6≤w MLR×AED. From this it follows trivially that (MLR×AED)∪PA <w

(MLR ∩ AED) ∪ PA. In other words, inf(b2,1) < inf(b3,1).
It remains to prove inf(b3,1) < 1. We use the following results of Nies 2006

and Stephan 2002.

Lemma 2.10 (Nies). There exists B ∈ MLR ∩ AED such that 0′ 6≤T B.

Proof. See Nies [26, Theorem VI.18]. Alternatively, see Section 5 below. �

Lemma 2.11 (Stephan). If B ∈ MLR and 0′ 6≤T B, then PA 6≤w {B}.

Proof. See Stephan [35]. Alternatively, see Section 6 below. �

By Lemma 2.10 let B ∈ MLR ∩ AED be such that 0′ 6≤T B. By Lemma
2.11 we have PA 6≤w {B}. Thus PA 6≤w MLR ∩ AED. It follows trivially that
(MLR ∩ AED) ∪ PA <w PA. In other words, inf(b3,1) < 1.

This completes the proof of Theorem 2.3. �

3 Comparison with r.e. Turing degrees

In this section we discuss the relationship between the weak degrees b1, b2,
b3 and the recursively enumerable Turing degrees. Recall from [34, Theorem
5.5] that there is a natural one-to-one embedding of the recursively enumerable
Turing degrees into Pw given by a 7→ inf(a,1).
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Theorem 3.1. There is no recursively enumerable Turing degree 0 < a < 0′

such that inf(a,1) is comparable with inf(b2,1).

Proof. Let a = degT (A) where A is recursively enumerable and 0 <T A <T 0′.
Since A is nonrecursive, we have {A} ∪ DNR 6≤w AED by Lemma 2.7, hence
{A}∪PA 6≤w AED by Lemmas 2.5 and 2.6, hence {A}∪PA 6≤w MLR×AED by
Lemma 2.9. From this it follows trivially that {A}∪PA 6≤w (MLR×AED)∪PA.
In other words, inf(a,1) 6≤ inf(b2,1). On the other hand, since A is recursively
enumerable and not Turing complete, we have DNR 6≤w {A} by the Arslanov
Completeness Criterion [14], hence MLR∪PA 6≤w {A} by Lemmas 2.5 and 2.6.
From this it follows trivially that (MLR × AED) ∪ PA 6≤w {A} ∪ PA. In other
words, inf(b2,1) 6≤ inf(a,1). This completes the proof. �

Theorem 3.2. There are recursively enumerable Turing degrees 0 < a < 0′

and 0 < c < 0′ such that 0 < inf(a,1) < inf(b3,1) < 1 and 0 < inf(b1,1) <
inf(c,1) < 1.

Proof. By Lemma 2.8 due to Hirschfeldt and Miller, let A >T 0 be recur-
sively enumerable such that {A} ≤w MLR ∩ AED. By Simpson [33, Exam-
ple 6.8] or Cholak/Greenberg/Miller [5, Theorem 2.1], let C <T 0′ be recur-
sively enumerable and almost everywhere dominating. Let a = degT (A) and
c = degT (C). Clearly 0 < inf(a,1) ≤ inf(b3,1) < 1 and 0 < a < 0′ and
0 < inf(b1,1) ≤ inf(c,1) < 1 and 0 < c < 0′. By Theorems 2.3 and 3.1 it
follows that inf(a,1) < inf(b3,1) and inf(b1,1) < inf(c,1). �

4 A theorem of Hirschfeldt and Miller

In this section we exposit the proof of the following theorem of Hirschfeldt and
Miller 2006, generalizing a much earlier theorem of Kučera [21].

Theorem 4.1 (Hirschfeldt/Miller). Let S ⊆ 2ω be Σ0
3 of measure 0. Then we

can find a nonrecursive, recursively enumerable set A such that A ≤T X for all

random X ∈ S.

Proof. We follow the writeup of Nies [25, Theorem 5.6].
We first prove the theorem for Π0

2 sets. Let P ⊆ 2ω be Π0
2 of measure 0.

Write P =
⋂

n Vn where Vn is uniformly Σ0
1 and limn µ(Vn) = 0.

The construction of A is as follows. At stage s, for each e < s such that
We,s ∩As = ∅, look for n ∈ We,s such that n > 2e and µ(Vn,s) < 1/2e and put
the least such n into As+1.

Clearly A is recursively enumerable. Moreover, for each e, at most one n
gets into A for the sake of We, and for this n we have n > 2e. Hence A has at
most e members ≤ 2e. Thus A is infinite.

We claim that if We is infinite then We ∩A 6= ∅. To see this, fix n ∈ We so
large that n > 2e and µ(Vn) < 1/2e. Let s be such that n ∈ We,s. We have
µ(Vn,s) < 1/2e, so by construction We,s ∩As+1 6= ∅, Q.E.D.
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It follows from the previous claim that A is nonrecursive. Indeed, A is simple

in the sense of Post (compare Rogers [27, Section 8.1]).
We claim that A ≤T X for all random X ∈ P . To see this, note that by

construction ∑

n∈As+1\As

µ(Vn,s) <
∑

e

1/2e = 2 < ∞ .

Since X is random, it follows by Solovay’s Lemma (see [33, Lemma 3.7]) that
X /∈ Vn,s for all but finitely many pairs n, s such that n ∈ As+1 \As. Let s0 be
so large that (∀s > s0) (∀n ∈ As+1 \As) (X /∈ Vn,s). Given n, since X ∈ Vn we
can effectively find s > s0 such that X ∈ Vn,s. We then have n ∈ A⇐⇒ n ∈ As.
Thus A ≤T X , Q.E.D. This proves the theorem for Π0

2 sets.
Suppose now that S is Σ0

3 of measure 0. Write S =
⋃

i Pi where Pi is
uniformly Π0

2. Write Pi =
⋂

n Vi,n where Vi,n is uniformly Σ0
1 and limn µ(Vi,n) =

0 for each i. This implies that limn

∑
i µ(Vi,n)/2i = 0, so we can build A as

before replacing µ(Vn,s) by
∑

i µ(Vi,n,s)/2
i. The construction insures that

∑

n∈As+1\As

∑

i

µ(Vi,n,s)/2
i <

∑

e

1/2e = 2 ,

hence for each i ∑

n∈As+1\As

µ(Vi,n,s) < 2i+1 < ∞ ,

hence for any random X we have by Solovay’s Lemma X /∈ Vi,n,s for all but
finitely many n, s such that n ∈ As+1 \ As. It follows as before that A ≤T X
for all random X ∈ Pi. This proves the theorem. �

Remark 4.2. Hirschfeldt, Miller and Nies describe the proof of Theorem 4.1
as a “cost function” construction. In the case of a Π0

2 set, the cost of putting n
into A at stage s is µ(Vn,s). In the case of a Σ0

3 set, the cost of putting n into
A at stage s is

∑
i µ(Vi,n,s)/2

i. The construction insures that the total cost of
building A is finite, so that Solovay’s Lemma can be applied.

The following corollary is originally due to Kučera [21].

Corollary 4.3 (Kučera). Let X1, . . . , Xn be random and ≤T 0′. Then we can

find a nonrecursive, recursively enumerable set A such that A ≤T Xi for all

i = 1, . . . , n.

Proof. Let S = {X1, . . . , Xn} and apply Theorem 4.1. �

The following lemma is well known.

Lemma 4.4. µ({X ∈ 2ω | X ′ ≡T X ⊕ 0′}) = 1.

Proof. It suffices to show that X ′ ≡T X ⊕ 0′ whenever X is random relative to
0′. (Generalizations of this result are in Kautz’s thesis [17, Theorem III.2.1].)
Consider the sets Un = {X ∈ 2ω | n ∈ X ′}. Obviously these sets are uniformly
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Σ0
1. Let f(n) = least s such that µ(Un \Un,s) ≤ 1/2n. Note that f ≤T 0′. Thus

Un \ Un,f(n) is uniformly Σ0,0′

1 and these sets form a Solovay test relative to 0′.
Now assume that X is random relative to 0′. By Solovay’s Lemma relative to
0′, we have X /∈ Un \ Un,f(n) for all but finitely many n. In other words, for all
but finitely many n, n ∈ X ′ if and only if X ∈ Un,f(n). Since f ≤T 0′, it follows
that X ′ ≤T X ⊕ 0′. This completes the proof. �

Theorem 4.5 (Hirschfeldt/Miller). We can find a nonrecursive, recursively

enumerable set A such that A ≤T X for all X such that X is random and

almost everywhere dominating.

Proof. By Theorem 4.1 with S = AED, it suffices to show that AED is Σ0
3 and of

measure 0. We have seen in the proof of Theorem 2.2 that AED is Σ0
3. To show

that µ(AED) = 0, recall from [19] and [33, Section 8] that AED ⊆ {X | X ′ ≥T

0′′}. Thus AED is disjoint from the intersection of two sets: {X | X ′ ≡T X⊕0′}
and {X | X ⊕ 0′ 6≥T 0′′}. The first set is of measure 1 by Lemma 4.4, and the
second set is of measure 1 by Lemma 2.9. This completes the proof. �

Remark 4.6. According to a theorem of Nies (see Section 5 below), there
are uncountably many X ’s as in Theorem 4.5 which are 6≥T 0′. On the other
hand, a result of Hirschfeldt/Nies/Stephan [13, Corollary 3.6] says that if X
is random and 6≥T 0′ then any recursively enumerable A ≤T X is K-trivial
[24], i.e., low-for-random [22, 24, 33]. In particular, any A as in Theorem 4.5 is
low-for-random.

5 A theorem of Nies

In this section we present a new proof of a theorem of Nies [26, Theorem VI.18]
refining the Jockusch/Shore Pseudojump Inversion Theorem [15, Theorem 2.1].
By a pseudojump operator we mean an operator Je : 2ω → 2ω given by Je(X) =
X ⊕WX

e for all X ∈ 2ω.

Theorem 5.1 (Nies). Let P ⊆ 2ω be Π0
1 of positive measure. For any pseudo-

jump operator Je and any Turing oracle A ≥T 0′, we can find B ∈ P such that

Je(B) ≡T B ⊕ 0′ ≡T A.

Proof. Our proof is based on a sketch given by Kučera at an American Institute
of Mathematics workshop on algorithmic randomness, August 7–11, 2006. The
idea is to combine the proofs of the Pseudojump Inversion Theorem and the
Kučera/Gács Theorem.

Let us write Qe = {X ∈ 2ω | ϕ
(1),X
e (e) ↑}. Note that Qe, e = 0, 1, 2, . . .

is a standard, recursive enumeration of all Π0
1 subsets of 2ω. Given a Π0

1 set
Q ⊆ 2ω, an index of Q is any integer e such that Q = Qe. Let us say that a Π0

1

set P ⊆ 2ω is rich if µ(P ) > 0 and there exists a recursive function h such that
for all e, if ∅ 6= Qe ⊆ P then µ(Qe) ≥ 1/2h(e).

We claim that every Π0
1 set P ⊆ 2ω of positive measure includes a Π0

1 set
which is rich. To see this, let n be such that µ(P ) > 1/2n. Write Qe,s = {X ∈
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2ω | ϕ
(1),X
e,s (e) ↑} and note that Qe,s, s = 0, 1, 2, . . . is a uniformly recursive

descending sequence of clopen sets such that Qe =
⋂

sQe,s. Define a recursive
ascending sequence of clopen sets Vs, s = 0, 1, 2, . . . as follows. Begin with
V0 = ∅. Given Vs define Vs+1 = Vs ∪

⋃
e<s(Qe,s \ Vs) where the union is taken

over all e < s such that µ(Qe,s \ Vs) ≤ 1/2n+e+1. Finally let P̃ = P \ V where

V =
⋃

s Vs. Clearly P̃ is Π0
1. Moreover µ(V ) ≤

∑
e 1/2n+e+1 = 1/2n, hence

µ(P̃ ) ≥ µ(P )−1/2n > 0. If ∅ 6= Qe ⊆ P̃ then for all s > e we have µ(Qe,s\Vs) >

1/2n+e+1, hence µ(Qe) ≥ 1/2n+e+1. Thus P̃ is rich via h(e) = n+ e+ 1. This
proves our claim.

To prove the theorem, let P ⊆ 2ω be Π0
1 of positive measure. By our claim,

we may safely assume that P is rich. Under this assumption we shall carry out
the proof of the Pseudojump Inversion Theorem “within P” to produce B ∈ P
with the desired properties.

For strings σ ∈ 2<ω let us write Nσ = {X ∈ 2ω | σ ⊂ X}. For each string
ρ ∈ 2<ω we define a string f(ρ) ∈ 2<ω and a nonempty Π0

1 set Qρ ⊆ P ∩Nf(ρ).
Begin with f(〈〉) = 〈〉 and Q〈〉 = P . Assume inductively that f(ρ) and Qρ have
already been defined.

In order to control the pseudojump Je(B), define a string f∗(ρ) ⊇ f(ρ) and
a nonempty Π0

1 set Q∗
ρ ⊆ Qρ ∩ Nf∗(ρ) as follows. Let m = |ρ|. If ∃X (X ∈ Qρ

and m /∈ WX
e ), let Q∗

ρ = {X ∈ Qρ | m /∈WX
e } and let f∗(ρ) = f(ρ). Otherwise,

consider the least σ ⊇ f(ρ) such that Qρ ∩ Nσ 6= ∅ and m ∈ W σ
e , and let

Q∗
ρ = Qρ ∩Nσ and f∗(ρ) = σ. Thus f∗(ρ) “decides” whether m ∈ WB

e or not.
Because P is rich, given an index of Q∗

ρ we can effectively find k such that

µ(Q∗
ρ) ≥ 1/2k. But then there are at least two strings τ ⊃ f∗(ρ) of length k+1

such that Q∗
ρ ∩ Nτ 6= ∅. Let f(ρa〈0〉) and f(ρa〈1〉) be the lexicographically

leftmost and rightmost such τ . Let Qρa〈0〉 = Q∗
ρ ∩ Nf(ρa〈0〉) and Qρa〈1〉 =

Q∗
ρ ∩Nf(ρa〈1〉).

We have now defined f(ρ), f∗(ρ), Qρ, Q
∗
ρ for all ρ. It is straightforward to

check that f(ρ) and f∗(ρ) and the indices of Qρ and Q∗
ρ are uniformly com-

putable from 0′.
Given A ∈ 2ω let B = f(A) =

⋃
m f(A ↾ m). Then m ∈ WB

e if and only

if m ∈ W
f∗(A↾m)
e . Moreover, it is straightforward to show that f(A ↾ m) and

f∗(A ↾ m) and the indices of QA↾m and Q∗
A↾m are uniformly computable from

each of the Turing oracles Je(B) = B ⊕WB
e and B ⊕ 0′ and A⊕ 0′. From this,

the desired conclusions follow easily. �

Theorem 5.2 (Nies). For any pseudojump operator Je and any Turing oracle

A ≥T 0′, we can find a random B such that Je(B) ≡T B ⊕ 0′ ≡T A.

Proof. In Theorem 5.1 let P be a nonempty Π0
1 set such that ∀X (X ∈ P ⇒ X

is random). �

Remark 5.3. Theorem 5.2 is a common generalization of several known theo-
rems. If we omit the conclusion that B is random, we get the Jockusch/Shore
Pseudojump Inversion Theorem [15, Theorem 2.1]. If we keep the conclusion
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that B is random but let Je be the identity operator, we get the Kučera/Gács
Theorem [33, Theorem 3.5]. If we let Je be the Turing jump operator, we get
the Friedberg Jump Inversion Theorem (see Rogers [27, Section 13.3]) with the
additional conclusion that B is random.

Corollary 5.4 (Nies). For any A ≥T 0′ we can find a random B <T A such

that B ⊕ 0′ ≡T A and A is low-for-random relative to B.

Proof. By Theorem 5.2, it suffices to produce a psuedojump operator Je such
that for all B, Je(B) >T B and Je(B) is low-for-random relative to B. Such
an operator is obtained by uniformly relativizing the Kučera/Terwijn [22] con-
struction of a nonrecursive, recursively enumerable set which is low-for-random.
See also the exposition in Simpson [33, Section 6]. �

Corollary 5.5 (Nies). We can find a random B <T 0′ such that 0′ is low-for-

random relative to B.

Proof. This is the special case of Corollary 5.4 in which we let A = 0′. �

Corollary 5.6 (Nies). There are uncountably many random B 6≥T 0′ such that

0′ is low-for-random relative to B.

Proof. This follows from Corollary 5.4 by considering uncountably many A >T

0′. �

Corollary 5.7 (Nies). We can find a random B <T 0′ which is almost every-

where dominating.

Corollary 5.8 (Nies). There are uncountably many random B 6≥T 0′ such that

B is almost everywhere dominating.

Proof. Corollaries 5.7 and 5.8 are immediate from Corollaries 5.5 and 5.6 plus the
following fact: If 0′ is low-for-random relative to B then B is almost everywhere
dominating. This fact is due to Kjos-Hanssen/Miller/Solomon [19]. See also
the exposition in Simpson [33, Section 5]. �

6 A theorem of Stephan

In this section we exposit the proof of the following theorem of Stephan [35].

Theorem 6.1 (Stephan). If B is random and 0′ 6≤T B, then PA 6≤w {B}.

Proof. We shall define a recursively bounded, partial recursive function ψ with
the following property: For all random B, if B ≥T some total function extending
ψ then B ≥T 0′. This suffices to prove the theorem, because clearly every
{B} ≥w PA computes a total extension of every recursively bounded, partial
recursive function (see for instance [31, Theorem 4.10]).

Recall that 0′ is a recursively enumerable set. If n /∈ 0′ let ψ(〈e, n〉) be
undefined for all e. If n ∈ 0′, say n ∈ 0′s+1 \ 0′s, then for each i < 2n compute
the rational numbers
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re,n,i = µ({X | ϕ
(1),X
e,s (〈e, n〉) ≃ i})

and define ψ(〈e, n〉) ≃ i chosen so as to minimize re,n,i. Note that ψ is partial
recursive, and ψ(〈e, n〉) ↓ if and only if n ∈ 0′. Moreover, if ψ(〈e, n〉) ↓ then
ψ(〈e, n〉) < 2n, so ψ is recursively bounded. In addition µ(Ve,n) ≤ 1/2n where

Ve,n = {X ∈ 2ω | ∃s (n ∈ 0′s+1 \ 0′s and ϕ
(1),X
e,s (〈e, n〉) ≃ ψ(〈e, n〉))}.

Assume now that B is random and computes a total extension of ψ. Let e

be such that ϕ
(1),B
e is total and extends ψ. Define f(n) = least s such that

ϕ
(1),B
e,s (〈e, n〉) ↓. Since ϕ

(1),B
e is total, f is total and ≤T B. Since B is random,

it follows by Solovay’s Lemma that B /∈ Ve,n for all but finitely many n. In other

words, for all but finitely many n, if n ∈ 0′s+1\0′s then ϕ
(1),B
e,s (〈e, n〉) 6≃ ψ(〈e, n〉).

But then, since ψ(〈e, n〉) ↓ and ϕ
(1),B
e extends ψ, it follows that ϕ

(1),B
e,s (〈e, n〉) ↑,

i.e., f(n) > s. We now see that, for all but finitely many n, if n ∈ 0′ then
n ∈ 0′

f(n). Thus 0′ ≤T f ≤T B. This completes the proof. �

Remark 6.2. A similar proof yields the following more detailed result. Given
a recursively enumerable set A, we can find recursively enumerable sets A1 and
A2 such that A1 ≡T A2 ≡T A and A1 ∩ A2 = ∅ and, for all random B, if
(∃Z ≤T B) (Z ⊇ A1 and Z ∩A2 = ∅) then A ≤T B.
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