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Abstract: The problem of iterating the jump operator into the transfinite is dis-
cussed from several points of view.

0. Introduction

This paper is essentially the text of the author’s invited address to the
Kleene Symposium on June 21, 1978. We dedicate this paper to Professor
Stephen C. Kleene on the occasion of his seventieth birthday.

Unless otherwise specified, by a set we mean a set of natural numbers.
The jump operator is a well-known canonical method of passing from a set
X to a more complicated set X °, defined by

meX o {m}(X,m)~I

(see KLEENE and Post (1954)). The purpose of this paper is to report on
the work that has been done on the problem of iterating the jump operator
into the transfinite. As with all hierarchies, the goal of such an iteration is
to classify sets in increasing levels of complexity. It turns out that trans-
finite iterates of the jump operator correspond closely to the known
set-theoretical hierarchies (GODEL, 1939; JENSEN, 1972; SILVER, 1971b;
Dobp and JENSEN, 1976; MITCHELL, 1974). At the same time these iterates
lead to interesting questions concerning degrees of unsolvability (SPECTOR,
1955; BooLos and PuTNaMm, 1968; JockuscH and SIMPSON, 1976; HoDEs,
1977). Thus is forged an ineluctable bond between recursion theory and set
theory.

*Preparation cf this paper was partially supported by NSF grant MCS 77-13935.
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1. Finite iterates of the jump operator

These are defined by setting X°= X and X"*'=(X") for all n. In other
words, the finite iterates of the jump operator

J 1sets —sets

are defined by composition, j?=;°--- O (n times). Note that the nth
jump operator j” still carries sets to sets. However, degrees of unsolvability,
as opposed to sets, are relevant as can be seen from the following theorem
of KLEENE (1943) and Post (1948).

Theorem 1.1. Let X be a set. Then X <1" if and only if X is AY, .

In other words, the degree of unsolvability of X is less than or equal to
that of the nth jump of the empty set, if and only if X is expressible in both
n+1 quantifier forms in the arithmetical hierarchy. This theorem
illustrates the naturalness of the jump operator inasmuch as one applica-
tion of the jump operator corresponds to one numerical quantifier.

2. Iteration through the constructive ordinals

In this section we define a streamlined variant of Kleene’s notation
system O (KLEENE (1938)) and use it to iterate the jump operator through
the constructive ordinals.

Let e be an index of a recursive binary relation <. on the natural
numbers. The field of <. is defined to be the set of all x such that x <.x.
We write x <.y to mean that x <.y and x#y. We define © to be the set of
all e such that <. is a well-ordering of the field of <..If e€0 we write |e|
for the order type of <. and refer to e as a notation for the ordinal |e|. An
ordinal is said to be constructive or recursive if it has at least one notation
in 0. The least nonconstructive ordinal is denoted w,.

Let p be a fixed recursive function of two variables such that

X Sple )V X ey <ez

for all x,y,z,e. Thus |p(e,z)| runs through the ordinals less than |e| as z
runs through the field of <.. For e€ 0 we define

H,= {2’3"‘: z€field(<.)andme H,:(e,z)}-

For example, if the field of <. is the empty set, then H,=. If the field of
<. is a one element set, then H,={23":m€EQ"} where z is the unique
element of the field. It is easy to check that if |e| is a finite ordinal n, then
H, has the same degree of unsolvability as &". More generally, for all
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e€0,H, can be described as the result of “iterating the jump operator |e|
times” along the well-ordering <.. The H-sets were introduced by Davis
(1950) and Mostowski (1951).

It is tempting to define the |e|th iterate of the jump operator (applied to
@) to be the set H,. Unfortunately, H, depends on the notation e and not
Jjust on the ordinal |e|. It can even be shown that there exist e and ¢’ in O
such that |e|=|e’| but H, and H, are not recursively isomorphic. More-
over, we know from proof theory that the problem of choosing a “natural”
or “canonical”’ notation for an arbitrary constructive ordinal is far from
trival.

Thus we find a serious obstacle to a satisfactory definition of &%, the ath
jump, for arbitrary a < w,. The following remarkable theorem of SPECTOR
(1955) overcomes this obstacle by employing the concept of degrees of
unsolvability.

Theorem 2.1. If |e|=|e’|, then H,=rH,, i.e. H, and H, have the same
degree of unsolvability .

Thus we have a well-defined mapping from the constructive ordinals
into the degrees of unsolvability,

D=degrees=sets/ =r,
defined by 0*=degree(H,) where |e|=qa.
Similarly, by the well-known procedure of relativization, we may define
d* for all degrees d and ordinals a < w{ where w{ is the least ordinal not

recursive in d. In particular we obtain transfinite iterates of the jump
operator

j*:D—>D
for all a < w,.

The above definition of 0%, given by Spector’s theorem, is satisfying in
that 0" =degree(d") for all finite n, and 0°*'=jump(0®) whenever this
makes sense. However, Spector’s theorem leaves open the exact nature of
the dependence of 0* on {0°:a <A} when A is a limit ordinal. Clearly 0" is
an upper bound of {0%:a <A}, but can we say more? This question will be

discussed in a more general setting from two different points of view in
Sections 4 and 5 respectively.

3. The degree of Kleene’s O

The class of hyperarithmetical sets is defined by
HYP={X:X <rH,for somee€l }.
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Thus a set is hyperarithmetical if and only if its degree of unsolvability is
<0* for some a <w;. The following theorems of KLEENE (1955, 1959a),
SPECTOR (1960), and GANDY (1960) are relevant to the problem of pushing
the iteration of the jump operator beyond w,.

Theorem 3.1. Kleene’s O is a complete 11, set.

Theorem 3.2. HYP=A}; i.e. a set is hyperarithmetical if and only if it is
expressible in both one-quantifier forms in the analytical hierarchy.

Theorem 3.3. Kleene’s O is =] over HYP, i.e. expressible in existential set
quantifier form where the set quantifier ranges over HYP.

These theorems suggest that Kleene’s © should be in some sense the
“next natural set” after HYP. This suggestion is confirmed by the follow-
ing corollary which is expressed in terms of degrees of unsolvability.

Corollary 3.4. Ler X be a set.
() X is A] over HYP if and only if X EHYP
(il) X is A} over HYP if and only if X <7 0.
(ili) More generally, X is A}, ,, over HYP if and only if X <r the nth jump
of 0.

Thus we are led to define 0'=degree(0) and more generally 0“'* "=
degree(9”).

4. Master codes in the constructible hierarchy

The ideas which were introduced above suffice to define 0* for all
ordinals « <w_,=the limit of the first « admussible ordinals. Further
extensions of the jump hierarchy may be defined by other methods. For
instance, the ramified analytical hierarchy and the corresponding degrees
0%, <B,, have been discussed by BoyD ET AL. (1969) and JockuscH and
SimMpsoN (1976). Let us now pass over these piecemeal results and look at a
truly far-reaching extension, the constructible hierarchy of GODEL (1939).

For our purposes it is convenient to define the constructible hierarchy as
follows:

L,=HF = {hereditarily finite sets};

L,,,={subsets of L, first order definable over L, with parameters};

L,= U {L,:a <A} for limit ordinals A.
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Recall now that by a ser we mean a subset of w, the set of natural
numbers. A set X is said to be Z,(L,) if it is first-order definable over L,
by a 3, formula with parameters from L, (cf. JENSEN (1972)). Thus
X€L,,, if and only if X is Z,(L,) for some n. A set X is said to be 4,(L,)
if both X and w— X are =,(L,).

We say that a set 4 is a A,(L,) master code if

VX(X <rAoXisA, (L))

Thus a A,(L,) master code is simply a A,(L,) set whose degree of
unsolvability is maximum among the degrees of all such sets. The concept
of a master code is due to JENSEN (1967,1972).

By a Jensen degree let us mean the degree of a A,(L,) master code for
some positive integer n and ordinal «. Clearly the Jensen degrees are
well-ordered in the natural ordering of degrees of unsolvability. It can also
be shown that if 4 is a A,(L,) master code, then the jump of 4 is a
A, . (L,) master code. Thus the successor operation on the well-ordering
of Jensen degrees is given by the jump operator.

The following theorem of JENSEN (1967) shows that there are no unnec-
essary gaps in the hierarchy of Jensen degrees.

Theorem 4.1. Suppose that there exists a set X which is A,(L,) but not an
element of L,. Then there exists a A,(L,) master code.

Proof (sketch). We know that X and w— X are definable over L by X,
formulas with parameters. By the uniformization theorem (JENSEN, 1972)
we can choose a canonical collection of £, Skolem functions for these
formulas and all their subformulas. Let M be the submodel of L, gener-
ated from the parameters by the Skolem functions. The condensation
lemma tells us that there is an ordinal 8 <a such that L, is isomorphic to
M. By construction X is A,(M), hence A,(Lp). Hence B=a since otherwise
we would have X € L,. Hence the inverse image of M under the Skolem
functions yields a subset 4 of w which encodes L,. It can then be shown
that 4 is a A,(L,) master code.

An argument of the above type also appeared in a paper of BooLos and
PutnaMm (1968).

An easy consequence of Jensen’s theorem is that the Jensen degrees are
well-ordered in order type &F, the least constructibly uncountable ordinal.
We are therefore justified in defining 0% for all a <8% to be the ath
Jensen degree. It can be shown that this definition of 0% agrees with the
definitions in Sections 1, 2 and 3 above for the «’s considered there. Thus
we have iterated the jump operator through all the constructibly countable
ordinals.
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5. Degree theoretic characterizations

In this section we discuss the Jensen degrees 0%« <N‘," which were
defined above and reexamine them from an algebraic point of view.
Specifically, we consider the algebraic structure

D=(D, U, <,0,j>

where D is the set of all degrees of unsolvability, 0 is the least element of

D, and; is the jump operator. This is an upper semilattice (with admittedly

some extra structure) and it is natural to ask whether the degrees 0%, a <aF©

can be characterized in lattice theoretic terms. We may begin by defining
0°=0

and

0°* ' =jump(0~)

for successor ordinals a + 1, but what is the lattice theoretic aspect of the

dependence of 0" on {0°:a <A} for limit ordinals A < 8-? If we define the
ideal

Li={deD: (Fa<)) d<0°)},

then clearly 0" is an upper bound for 7,, but we would like to characterize
0* somehow as the “least natural” upper bound for 7,. This is accom-
plished by the following theorem.

Theorem 5.1. Let \ be a limit ordinal less than 8%. Define v\ to be the least
ordinal v such thar the set of all degrees of the form (aub)” with

I,={d€eD:d<aandd<b} (%)

has a least element. Then v, exist and 0" is that least element. Moreover,
there exist degrees a and b such that () holds and 0*=(aUb)* and v, is
recursive in aUb.

For A <w, the above theorem is essentially due ENDERTON and PuTNAM
(1970) and Sacks (1971). In this case it turns out that », =2 and an even
more perspicuous characterization of 0* is possible.

For A<B, the above theorem is due to JockUscH and SIMPSON (1976).
Here B, is the least ordinal 8 such that Ly is a model of ZF minus the
power set axiom, and », can assume any finite value n> 2.

The full Theorem 5.1 appears in the thesis of Hobpgs (1977) who
acknowledges some help from Abramson in the proof of the “moreover”
clause. The main tool in Hodes’ proof is a notion of forcing due to SACKs
(1971) in which a condition is a recursively pointed perfect tree P whose
degree lies in I,. The recursive pointedness means that P is recursive in
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each of its infinite branches. The “moreover” clause is obtained with the
aid of another notion of forcing due to STEEL (1978).

The noteworthy point about Theorem 5.1 is that the next Jensen degree,
0, is defined in purely algebraic terms from the ideal generated by the
previous Jensen degrees. At first glance, the given definition of 0* may
appear circular in that it uses the concept of »th jump where » is essentially
arbitrary. Indeed, it often happens that », >A. But, the “moreover” clause
tells us that the result of the given definition remains unchanged if we
restrict attention to a,b,» such that » is recursive in aUb. For such a,b,»
the definition of (aUb)” is unproblematical (cf. Section 2 above). Thus we
really do have a definition of 0* in terms of simpler concepts.

6. Open problems

The purpose of this section is to discuss several problems which are
suggested by results stated in previous sections.

An obvious problem, suggested by Sections 4 and 5, is to extend the
degree theoretic hierarchy 0* to ordinals a > 8. Clearly some unusual
hypothesis is called for here since if =L, then the degrees 0% a < &F have
no upper bound. If we assume the existence of, say, a Ramsey cardinal,
then the work of Dopp and JENSEN (1976) establishes the existence of a
hierarchy of master codes beyond &y . The first such master code is of
course Silver's remarkable set 0% (SILVER, 1971a). It therefore seems
reasonable to define 0™ to be the degree of 0%, Similarly, we may define 0
for a<xf to be the degree of the ath master code in the Dodd-Jensen
core model K (Dopp and JENSEN, 1976). This much is clear. What is not
clear is how to characterize these degrees algebraically from below in the
style of Theorem 5.1.

We therefore pose the following test problem: find a natural algebraic
characterization of the degree of 0¥ within the degree-theoretic structure
9. A fact which may be relevant here is that there exists a =) set of
degrees of unsolvability whose determinacy is provably equivalent to the
existence of 0%, This result is due to HARRINGTON (1979).

In order to be completely honest with the reader, we must now pause to
point out that the problem just stated is highly speculative because the
existence of 0¥ is not firmly established. Indeed, several prominent set
theorists have seriously attempted to refute the existence of 0¥. So far it is
known that

(i) 0% does not exist in the models of set theory considered by GODEL
(1939) and CoHEN (1966);

(i) the consistency of the existence of 0¥ with set theory cannot be
proved in set theory, even if large cardinal axioms of the kinds considered
by LEvy (1971) and SiLVER (1970) are assumed;
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(iii) the hypothesis of the nonexistence of 0¥ is an attractive one with
far-reaching consequences, e.g. the solution of the singular cardinals prob-
lem (DEVLIN and JENSEN, 1975).

However, the nonexistence of 0¥ has not yet been proved and indeed
may be unprovable.

We now turn to another set of problems. It is known from JOCKUSCH
and SiMPsoN (1976) that many specific Jensen degrees have natural alge-
braic characterizations within % . For instance, let a, be the least ordinal a
such that L is a model of the Al comprehension axiom of second order
arithmetic. Thus ay=w,a, =w;,a,=w{", and in general a,,,=the first
Z,,, admissible ordinal greater than . The results of JockuscH and
SiMpPsON (1976) show that the degrees 0 as well as 0% have simple
algebraic characterizations. Question: Can we do the same for some of
the other specific Jensen degrees which arise from the theories of recursion
in higher types (KLEENE, 1959b, 1963) and nonmonotonic inductive defini-
tions (RICHTER and AcCzEL, 1974)? A good test case here is the Jensen
degree 0° where o=w,E'*=the least | reflecting ordinal (RICHTER and
AcCzEL, 1974)=the least non-Gandy ordinal (ABRAMSON and SAcks, 1976).
This degree 0° can also be characterized as the largest degree of a set
which is =] inductively definable, i.e. recursively enumerable in E*
(HwmaN, 1978, Theorem VI1.6.14). Does 0° have a natural algebraic
characterization within 6D?

It is perhaps worth remarking that 0° and most other specific Jensen
degrees (and also the degree of 0¥ if it exists) are already known to be
first-order definable in 0. This follows from the general definability
theorem of SMPSON (1977, Theorem 3.12). However, the first-order defini-
tions of 0° which are known at this writing look extremely artificial from
the algebraic and degree-theoretic viewpoint. What we lack is a degree-
theoretically natural characterization of 0°.
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