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Abstract

We consider implicit definability over the natural number system
N,+,×,=. We present a new proof of two theorems of Leo Harrington.
The first theorem says that there exist implicitly definable subsets of N
which are not explicitly definable from each other. The second theorem
says that there exists a subset of N which is not implicitly definable
but belongs to a countable, explicitly definable set of subsets of N.
Previous proofs of these theorems have used finite- or infinite-injury
priority constructions. Our new proof is easier in that it uses only a
non-priority oracle construction, adapted from the standard proof of
the Friedberg Jump Theorem.
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1 Introduction

Definitions. Let N = {0, 1, 2, . . . , n, . . .} = the set of all natural numbers.
Let Pow(N) be the powerset of N, i.e., the set of all subsets of N. A set
X ∈ Pow(N) is said to be arithmetical if it is explicitly definable over the
natural number system N,+,×,=. In other words,

X = {n ∈ N | (N,+,×,=) |= Φ(n)}

for some first-order formula Φ(n) in the language +,×,=. Given two sets
X,Y ∈ Pow(N), we say thatX is arithmetical in Y ifX is explicitly definable
from Y , i.e.,

X = {n ∈ N | (N,+,×, Y,=) |= Φ(n)}

for some first-order formula Φ(n) in the language +,×, Y,=. We say that
X and Y are arithmetically incomparable if neither is arithmetical in the
other. A set of sets S ⊆ Pow(N) is said to be arithmetical if it is explicitly
definable, i.e.,

S = {X ∈ Pow(N) | (N,+,×,X,=) |= Φ}

for some first-order sentence Φ in the language +,×,X,=. A set X ∈
Pow(N) is called an arithmetical singleton or implicitly arithmetical if the
singleton set {X} is arithmetical.

Remark 1. The purpose of this paper is to present a new proof of two the-
orems of Harrington [6, 7] concerning implicit definability over the natural
number system N,+,×,=. The two theorems read as follows.
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1. There exist arithmetical singletons X,Y ∈ Pow(N) which are arith-
metically incomparable. (See Theorem 4.4 below.)

2. There exists a set Z ∈ Pow(N) which belongs to a countable arith-
metical set of sets S ⊆ Pow(N) but is not an arithmetical singleton.
(See Theorem 4.5 below.)

We feel that these two theorems deserve to be better known, because they
embody significant insight concerning implicit definability in arithmetic.

Remark 2. Before Harrington’s work, some early theorems concerning im-
plicit definability in arithmetic were as follows.

1. There exists X ∈ Pow(N) which is implicitly arithmetical but not
arithmetical. (Namely, letX = 0(ω) = the Tarski truth set for N,+,×,=.
See Rogers [11, Theorems 14-X and 15-XII].)

2. There exist X,Y ∈ Pow(N) such that the pair X ⊕ Y is implicitly
arithmetical but neither X nor Y is implicitly arithmetical. (Namely,
let X and Y be Cohen generic over N,+,×,= such that X ⊕ Y and
0(ω) are arithmetical in each other. See Feferman [3] or Rogers [11,
Exercise 16-72].)

3. Each arithmetical singleton is arithmetical in 0(α) for some recursive
ordinal α, and each such 0(α) is itself an arithmetical singleton. (See
for instance Sacks [13, Chapter II].)

4. Every nonempty countable arithmetical set of sets S ⊆ Pow(N) con-
tains an arithmetical singleton. (This result is due to H. Tanaka [15].)

Remark 3. Harrington’s original proof [6] of Theorem 4.4 was based on
an infinite-injury priority construction. The same method has been used
by Harrington [6] and others to obtain results about ω-REA arithmetical
degrees (see M. F. Simpson [14, Chapters 2 and 3] and Odifreddi [10, Chap-
ter XIII]), jump embeddings (see Hinman/Slaman [8]), nonstandard models
of arithmetic (see Ash/Knight [1, Chapters 14–19, Theorem 19.19]), and
generalized high/low hierarchies (see Montalbán [9]).

Remark 4. Harrington’s original proof [7] of Theorem 4.5 was based on a
finite-injury priority construction. The same method has been extended into
the transfinite by Harrington [7] and Gerdes [5] to obtain other interesting
results. In particular, see Remark 12 below. For an application to effectively
Borel equivalence relations, see Fokina/Friedman/Törnquist [4].
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Remark 5. Our new proof of Theorems 4.4 and 4.5 does not use a prior-
ity construction of any kind. Instead our proof is based on a direct oracle
construction, adapted from the standard proof of the Friedberg Jump The-
orem. In this sense our proof of Theorems 4.4 and 4.5 is much easier than
the proofs in [1, 5, 6, 7, 8, 9, 10, 14]. On the other hand, our proof uses the
Recursion Theorem in exactly the same way as Harrington used it. Har-
rington [6] has referred to this way of using the Recursion Theorem as “the
shiny little box which was first opened by Sacks [12].”

Remark 6. Beyond Theorems 4.4 and 4.5, we believe we can extend our
non-priority oracle method farther into the transfinite to obtain relatively
easy proofs of at least some of the other results of Harrington [7] and Gerdes
[5]. However, we reserve that extension for a future paper. In this paper we
limit ourselves to providing relatively easy proofs of Theorems 4.4 and 4.5.

Remark 7. The plan of this paper is as follows. In §2 we review some
basic recursion-theoretic notions. In §3 we prove a rudimentary version of
Theorems 4.4 and 4.5. In §4 we prove Theorems 4.4 and 4.5.

2 Recursion-theoretic background

In this section we review some basic notions from recursion theory which
are needed for our proof of Theorems 4.4 and 4.5. A good reference for this
material is Rogers [11].

Natural numbers are denoted e, i, j, k, l,m, n, . . .. The set of all natural
numbers is denoted N. Instead of working with Pow(N), the set of all subsets
X ⊆ N, we work with NN, the set of all functions X : N → N. The space
NN with the product topology is known as the Baire space. Points in NN are
denoted X,Y,Z, . . .. Subsets of NN are denoted P,Q, . . ..

Recall that a point X ∈ NN or a set P ⊆ NN is arithmetical if and
only if it is Π0

n for some n ≥ 1. The hierarchy Π0
n where n = 1, 2, . . . is

known as the arithmetical hierarchy. See for instance [11, Chapters 14–16].
(It is known [15] that every arithmetical set is in arithmetical one-to-one
correspondence with a Π0

1 set. However, we shall not need this result here.)
A Π0

n singleton is a point X such that the singleton set {X} is Π0
n. Thus X

is an arithmetical singleton if and only if it is a Π0
n singleton for some n ≥ 1.

A ranked point is a point X such that X ∈ P for some countable Π0
1 set P .

Points in NN may be viewed as Turing oracles. See for instance [11,
Chapters 9–13]. Relativizing to a Turing oracle A ∈ NN, a point X ∈ NN or
a set P ⊆ NN is said to be Π0,A

n if it is Π0
n relative to A, and arithmetical
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in A if it is Π0,A
n for some n. In particular, a set P is topologically closed

if and only if it is Π0,A
1 for some A. A point X such that the singleton set

{X} is Π0,A
n is called a Π0,A

n singleton.
For A ∈ NN we write {e}A(i) = j to mean that the eth Turing machine

with oracle A and input i halts with output j. We write {e}A(i) ↓ (respec-
tively ↑) to mean that the eth Turing machine with oracle A and input i halts
(respectively, does not halt). Thus {e}A(i) ↓ if and only if ∃j ({e}A(i) = j).
For A,B ∈ NN we write A ≤T B to mean that A is Turing reducible to B,
i.e., ∃e∀i (A(i) = {e}B(i)). We write A ≡T B to mean that A is Turing

equivalent to B, i.e., A ≤T B and B ≤T A. We define A ⊕ B ∈ NN by the
equations (A⊕B)(2i) = A(i) and (A⊕B)(2i+1) = B(i). Thus A⊕B ≤T C
if and only if A ≤T C and B ≤T C.

For A ∈ NN we write A′ = the Turing jump of A, defined by

A′(e) =

{
1 if {e}A(e) ↓ ,

0 if {e}A(e) ↑ .

We write A(n) = the nth Turing jump of A, defined inductively by letting
A(0) = A and A(n+1) = (A(n))′ for all n. Recall that A is arithmetical
in B if and only if ∃n (A ≤T B(n)). For use in the proof of Theorems
3.5 and 4.5, note that for each n ≥ 1, a set P ⊆ NN is Π0

n if and only if
∃e∀X (X ∈ P ⇔ X(n)(e) = 0). See for instance [11, §14.5].

We write A(ω) = the ωth Turing jump of A, defined by

A(ω)(i) =

{
A(n)(e) if i = 3n5e,

0 otherwise .

Thus A(ω) =
⊕

nA
(n) and A(n) ≤T A(ω) uniformly in n.

Let 0 ∈ NN denote the constant zero function. Thus 0(n) = the nth
Turing jump of 0, and 0(ω) = the ωth Turing jump of 0. Note also that X
is arithmetical if and only if X ≤T 0(n) for some n.

3 A rudimentary version of Harrington’s theorems

The purpose of this section is to prove a rudimentary version of Harrington’s
theorems, with “arithmetical” replaced by Π0

n for a fixed n. Our rudimentary
versions of Theorems 4.4 and 4.5 are Theorems 3.4 and 3.5 respectively.

Lemma 3.1. Given a Π0,A′

1 set P we can find a Π0,A
1 set Q and a home-

omorphism F : P ∼= Q such that X ⊕ A ≡T F (X) ⊕ A uniformly for all
X ∈ P .
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Proof. Since P is a Π0,A′

1 set, it follows that P is a Π0,A
2 set, say P = {X |

∀i∃j R(X, i, j)} where R is an A-recursive predicate. Define F : P ∼= Q =
F (P ) by letting F (X) = X⊕X̂ where X̂(i) = the least j such that R(X, i, j)
holds. Clearly Q is a Π0,A

1 set and X ⊕ A ≡T F (X) ⊕ A uniformly for all
X ∈ P .

Lemma 3.2. Given a Π0,A′

1 set P we can find a Π0,A
1 set Q and a homeo-

morphism H : P ∼= Q such that X ⊕ A′ ≡T H(X) ⊕ A′ ≡T (H(X) ⊕ A)′

uniformly for all X ∈ P .

In order to prove Lemma 3.2, we first present some general remarks
concerning strings, trees, and treemaps.

Notation (strings). Let N∗ =
⋃

l∈N Nl = the set of strings, i.e., finite se-
quences of natural numbers. For σ = 〈n0, n1, . . . , nl−1〉 ∈ N∗ we write
σ(i) = ni for all i < |σ| = l = the length of σ. For σ, τ ∈ N∗ we
write σaτ = the concatenation, σ followed by τ , defined by the conditions
|σaτ | = |σ| + |τ |, (σaτ)(i) = σ(i) for all i < |σ|, and (σaτ)(|σ| + i) = τ(i)
for all i < |τ |. We write σ ⊆ τ if σaρ = τ for some ρ. If |σ| ≥ n we write
σ↾n = 〈σ(0), σ(1), . . . , σ(n − 1)〉 = the unique ρ ⊆ σ such that |ρ| = n. For
X ∈ NN we write X↾n = 〈X(0),X(1), . . . ,X(n − 1)〉 = the unique σ ⊂ X
such that |σ| = n. If |σ| = |τ | = n we define σ ⊕ τ ∈ N∗ by the conditions
|σ ⊕ τ | = 2n and (σ ⊕ τ)(2i) = σ(i) and (σ ⊕ τ)(2i+ 1) = τ(i) for all i < n.

Definition (trees). A tree is a set T ⊆ N∗ such that

∀ρ∀σ ((ρ ⊆ σ and σ ∈ T ) ⇒ ρ ∈ T ).

For any tree T we write

[T ] = {paths through T} = {X | ∀n (X↾n ∈ T )}.

Remark 8. It is well known (see for instance [11, Chapter 15]) that the
following statements are pairwise equivalent.

1. P is a Π0,A
1 set.

2. P = [T ] for some Π0,A
1 tree T .

3. P = [T ] for some A-recursive tree T .

4. P = {X | X ⊕A ∈ [T ]} for some recursive tree T .

Definition (treemaps). Let T be a tree. A treemap is a function F : T → N∗

such that
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F (σa〈i〉) ⊇ F (σ)a〈i〉

for all σ ∈ T and all i ∈ N such that σa〈i〉 ∈ T . We then have another tree

F (T ) = {τ | ∃σ (σ ∈ T and τ ⊆ F (σ))}.

Thus P = [T ] and F (P ) = [F (T )] are closed sets in the Baire space, and we
have a homeomorphism F : P ∼= F (P ) defined by F (X) =

⋃
n∈N F (X↾n) for

all X ∈ P . Note also that the composition of two treemaps is a treemap. A
treemap F : T → N∗ is said to be A-recursive if it is the restriction to T of
a partial A-recursive function.

Remark 9. Let T be a tree and let F : T → N∗ be a treemap. Given
τ ∈ F (T ) let σ ∈ T be minimal such that τ ⊆ F (σ). Then σ is a substring

of τ , i.e., σ = 〈τ(j0), τ(j1), . . . , τ(jl−1)〉 for some j0 < j1 < · · · < jl−1 < |τ |.
Thus, in the definition of F (T ), the quantifier ∃σ may be replaced by a
bounded quantifier,

F (T ) = {τ | (∃σ substring of τ) (σ ∈ T and τ ⊆ F (σ))}.

This implies that, for instance, if F and T are A-recursive then so is F (T ).

We are now ready to prove Lemma 3.2.

Proof of Lemma 3.2. Given A we construct a particularA′-recursive treemap
G : N∗ → N∗. We define G(σ) by induction on |σ| beginning with G(〈〉) = 〈〉.
If G(σ) has been defined, let e = |σ| and for each i let G(σa〈i〉) = the
least τ ⊇ G(σ)a〈i〉 such that {e}τ⊕A

|τ | (e) ↓ if such a τ exists, otherwise

G(σa〈i〉) = G(σ)a〈i〉. Clearly G is an A′-recursive treemap, and our con-
struction of G implies that for all e and X, {e}G(X)⊕A(e) ↓ if and only if

{e}
G(X↾e+1)⊕A

|G(X↾e+1)|
(e) ↓. Thus X ⊕A′ ≡T G(X)⊕A′ ≡T (G(X)⊕A)′ uniformly

for all X.
Let G be the A′-recursive treemap which was constructed above. Let P

be a Π0,A′

1 set. By Remarks 8 and 9 we know that the restriction of G to P

maps P homeomorphically onto another Π0,A′

1 set G(P ). Applying Lemma

3.1 to G(P ) we obtain a Π0,A
1 set Q and a homeomorphism F : G(P ) ∼= Q

such that Y ⊕A ≡T F (Y )⊕A uniformly for all Y ∈ G(P ). Thus H = F ◦G
is a homeomorphism of P onto Q, and for all X ∈ P we have G(X)⊕A ≡T

F (G(X)) ⊕ A = H(X) ⊕ A uniformly, hence X ⊕ A′ ≡T H(X) ⊕ A′ ≡T

(H(X) ⊕A)′ uniformly, Q.E.D.
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Remark 10. Our proof of Lemma 3.2 via treemaps is similar to the proof
of [2, Lemma 5.1]. Within our proof of Lemma 3.2, the construction of the
specific treemap G is the same as the standard proof of the Friedberg Jump
Theorem as expounded for instance in [11, §13.3].

Lemma 3.3. Given a Π0,0(n)

1 set Pn we can find a Π0
1 set P0 and a homeo-

morphismHn
0 : Pn

∼= P0 such that Xn⊕0(n) ≡T X0⊕0(n) ≡T X
(n)
0 uniformly

for all Xn ∈ Pn and X0 = Hn
0 (Xn) ∈ P0.

Proof. The proof is by induction on n. For n = 0 there is nothing to prove.

For the inductive step, given a Π0,0(n+1)

1 set Pn+1 apply Lemma 3.2 with

A = 0(n) to obtain a Π0,0(n)

1 set Pn and a homeomorphism Hn : Pn+1
∼= Pn

such that Xn+1 ⊕ 0(n+1) ≡T Hn(Xn+1) ⊕ 0(n+1) ≡T (Hn(Xn+1) ⊕ 0(n))′

uniformly for all Xn+1 ∈ Pn+1. Then apply the inductive hypothesis to
Pn to find a Π0

1 set P0 and a homeomorphism Hn
0 : Pn

∼= P0 such that

Xn ⊕ 0(n) ≡T X0 ⊕ 0(n) ≡T X
(n)
0 uniformly for all Xn ∈ Pn. Letting

Hn+1
0 = Hn ◦Hn

0 it follows that Xn+1 ⊕ 0(n+1) ≡T X0 ⊕ 0(n+1) ≡T X
(n+1)
0

uniformly for all Xn+1 ∈ Pn+1 and X0 = Hn+1
0 (Xn+1) ∈ P0, Q.E.D.

We now use Lemma 3.3 to prove a rudimentary version of Harrington’s
theorems.

Theorem 3.4. Given n we can find Π0
1 singletons X,Y such thatX �T Y (n)

and Y �T X(n).

Proof. It is well known [11, §13.3] that there exist incomparable Turing
degrees between 0 and 0′. Relativizing to 0(n), let Xn, Yn be such that
0(n) ≤T Xn ≤T 0(n+1) and 0(n) ≤T Yn ≤T 0(n+1) and Xn �T Yn and

Yn �T Xn. Note that Xn and Yn are ∆0,0(n)

2 , hence Xn and Yn are Π0,0(n)

2

singletons. Therefore, by the proof of Lemma 3.1 we may safely assume that

Xn and Yn are Π0,0(n)

1 singletons. Apply Lemma 3.3 to Pn = {Xn, Yn} to
get X0 = Hn

0 (Xn) and Y0 = Hn
0 (Yn). Note that P0 = {X0, Y0} is a Π0

1 set,

hence X0 and Y0 are Π0
1 singletons. Since Xn �T Yn ⊕ 0(n) ≡T Y

(n)
0 and

Xn ⊕ 0(n) ≡T X0 ⊕ 0(n) we have X0 �T Y
(n)
0 , and similarly Y0 �T X

(n)
0 .

Letting X = X0 and Y = Y0 we obtain our theorem.

Theorem 3.5. Given n we can find a countable Π0
1 set P such that some

Z ∈ P is not a Π0
n singleton.

Proof. Let Pn be a countable Π0
1 set such that some Zn ∈ Pn is not isolated

in Pn. (For instance, let Pn = {X | ∀i∀j (X(i) 6= 0 6= X(j) ⇒ i = j)}
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and let Zn = 0.) Treating Pn as a Π0,0(n)

1 set, apply Lemma 3.3. Then
P0 is a countable Π0

1 set and, because Hn
0 : Pn

∼= P0 is a homeomorphism,
Z0 = Hn

0 (Zn) is not isolated in P0. We claim that Z0 is not a Π0
n singleton.

Otherwise, let e be such that {Z0} = {X | X(n)(e) = 0}. Since Z
(n)
0 (e) = 0

and Z0 ∈ P0 and X
(n)
0 ≡T Xn ⊕ 0(n) uniformly for all Xn ∈ Pn and X0 =

Hn
0 (Xn) ∈ P0, there exists j such that X

(n)
0 (e) = 0 for all Xn ∈ Pn such

that Xn↾j = Zn↾j. But Zn is not isolated in Pn, so there exists Xn ∈ Pn

such that Xn↾j = Zn↾j and Xn 6= Zn. Thus X
(n)
0 (e) = 0 and X0 6= Z0, a

contradiction. Letting P = P0 and Z = Z0 we obtain our theorem.

4 Proof of Harrington’s theorems

In order to prove the full version of Harrington’s theorems, we need to show
that Lemma 3.3 holds with n replaced by ω. To this end we first draw out
some effective uniformities which are implicit in the proofs of Lemmas 3.1
and 3.2.

Notation. Let WA
e for e = 0, 1, 2, . . . be a standard enumeration of all

A-recursively enumerable subsets of N∗. Then

TA
e = {σ ∈ N∗ | (∀n ≤ |σ|) (σ↾n /∈ WA

e )}

for e = 0, 1, 2, . . . is a standard enumeration of all Π0,A
1 trees. Hence PA

e =

[TA
e ] for e = 0, 1, 2, . . . is a standard enumeration of all Π0,A

1 sets.

Remark 11. If F is an A-recursive treemap and T is a Π0,A
1 tree, then F (T )

is again a Π0,A
1 tree. Moreover, this holds uniformly in the sense that there is

a primitive recursive function f such that TA
f(e) = F (TA

e ) and PA
f(e) = F (PA

e )
for all e, and we can compute a primitive recursive index of f knowing only
an A-recursive index of F .

The next two lemmas are refinements of Lemmas 3.1 and 3.2 respectively.

Lemma 4.1 (refining Lemma 3.1). There is a primitive recursive function
f with the following property. Given e we can effectively find an A-recursive
treemap F : TA′

e → TA
f(e) which induces a homeomorphism F : PA′

e
∼= PA

f(e).

It follows that X ⊕A ≡T F (X) ⊕A uniformly for all X ∈ PA′

e .

Proof. Let T = TA′

e and P = PA′

e . Since TA′

e is uniformly Π0,A′

1 , it is

uniformly Π0,A
2 , say T = TA′

e = {σ | ∀i∃j R(σ, e, i, A↾j)} whereR ⊆ N∗×N×
N×N∗ is a fixed primitive recursive predicate. Let (−,−) be a fixed primitive
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recursive one-to-one mapping of N × N onto N such that m ≤ (m,n) and
n ≤ (m,n) for all m and n. Define Q = [T̂ ] where T̂ = {σ⊕ τ | |σ| = |τ | and
(∀(n, i) < |τ |) (τ((n, i)) = the least j such that R(σ↾n, e, i, A↾j))}. ThusQ =
{X ⊕ X̂ | X ∈ P} where X̂((n, i)) = the least j such that R(X↾n, e, i, A↾j).
Moreover, we have an A-recursive treemap F : T → T̂ given by F (σ) = σ⊕σ̂
for all σ ∈ T , where |σ| = |σ̂| and (∀(n, i) < |σ|) (σ̂((n, i)) = the least j such
that R(σ↾n, e, i, A↾j)). Although we cannot expect to have F (T ) = T̂ , we
nevertheless have F : [T ] ∼= [T̂ ], i.e., F : P ∼= F (P ) = Q, and F (X) = X⊕X̂
and X⊕A ≡T F (X)⊕A uniformly for all X ∈ P . The definition of T̂ shows
that T̂ is uniformly A-recursive, hence uniformly Π0,A

1 , so we can find a fixed

primitive recursive function f such that TA
f(e) = T̂A′

e for all e and A.

Lemma 4.2 (refining Lemma 3.2). There is a primitive recursive function h
with the following property. Given e we can effectively find an A′-recursive
treemap H : TA′

e → TA
h(e) which induces a homeomorphism H : PA′

e
∼= PA

h(e)

such that X⊕A′ ≡T H(X)⊕A′ ≡T (H(X)⊕A)′ uniformly for all X ∈ PA′

e .

Proof. Let G be the specific A′-recursive treemap which was constructed in
the proof of Lemma 3.2. By Remark 11 we can find a primitive recursive
function g such that for all e we have G(TA′

e ) = TA′

g(e) and the restriction of

G to TA′

e is a treemap from TA′

e to TA′

g(e) which induces a homeomorphism

G : PA′

e
∼= PA′

g(e). By construction of G we have X ⊕ A′ ≡T G(X) ⊕ A′ ≡T

(G(X)⊕A)′ uniformly for all X ∈ PA′

e . Now applying Lemma 4.1 we obtain
an A-recursive treemap F : TA′

g(e) → TA
f(g(e)) which induces a homeomorphism

F : PA′

g(e)
∼= PA

f(g(e)) such that Y ⊕A ≡T F (Y )⊕A uniformly for all Y ∈ PA
g(e).

Thus the treemap H = F ◦ G : TA′

e → TA
f(g(e)) induces a homeomorphism

F ◦ G = H : PA′

e
∼= PA

f(g(e)) such that X ⊕ A′ ≡T H(X) ⊕ A′ ≡T (H(X) ⊕

A)′ uniformly for all X ∈ PA′

e . Our lemma follows upon defining h(e) =
f(g(e)).

We now show that Lemma 3.3 holds with n replaced by ω.

Lemma 4.3. Given a Π0,0(ω)

1 set Pω we can effectively find a Π0
1 set P0 and

a homeomorphism Hω
0 : Pω

∼= P0 such that Xω ⊕ 0(ω) ≡T X0⊕ 0(ω) ≡T X
(ω)
0

uniformly for all Xω ∈ Pω and X0 = Hω
0 (Xω) ∈ P0.

Proof. Since Pω is a Π0,0(ω)

1 set, Remark 8 gives a recursive tree T such
that Pω = {X | X ⊕ 0(ω) ∈ [T ]}. Moreover, from the definition of 0(ω) we
know that 0(ω)↾n is computable from 0(n) uniformly for all n. Thus, letting
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Tω = {σ | σ ⊕ 0(ω)↾|σ| ∈ T}, we see that Pω = [Tω] and {σ | |σ| ≤ n, σ ∈
Tω} ≤T 0(n) uniformly for all n. Define

Te,n = {σ | |σ| ≤ n} ∪ {σ | |σ| > n, σ↾n ∈ Tω, σ ∈ T
〈n〉a0(n)

e }.

Thus Te,n is a Π0,0(n)

1 tree, hence Pe,n = [Te,n] is Π
0,0(n)

1 uniformly for all n.
In the vein of Lemma 4.2, we claim there is a primitive recursive function

h∗ with the following property. Given e and n we can effectively find a
0(n+1)-recursive treemap

He,n : Te,n+1 → Th∗(e),n

which induces a homeomorphism He,n : Pe,n+1
∼= Ph∗(e),n such that X ⊕

0(n+1) ≡T He,n(X) ⊕ 0(n+1) ≡T (He,n(X) ⊕ 0(n))′ uniformly for all X ∈
Pe,n+1, and in addition He,n(σ) = σ for all σ such that |σ| ≤ n.

To prove our claim, let r be a 3-place primitive recursive function such
that T 0(n)

r(e,n,σ) = {τ | σaτ ∈ Te,n} for all e, n, σ. We can then write

Te,n+1 = {σ | |σ| ≤ n} ∪ {σaτ | |σ| = n, τ ∈ T 0(n+1)

r(e,n+1,σ)}.

Since n is uniformly computable from 〈n〉a0(n), let h∗ be a primitive recur-
sive function such that

Th∗(e),n = {σ | |σ| ≤ n} ∪ {σaτ | |σ| = n, τ ∈ T 0(n)

h(r(e,n+1,σ))}

where h is as in Lemma 4.2. For all σ and τ such that |σ| = n and τ ∈

T 0(n+1)

r(e,n+1,σ) let He,n(σ
aτ) = σaH(τ) where H : T 0(n+1)

r(e,n+1,σ) → T 0(n)

h(r(e,n+1,σ)) is

as in Lemma 4.2. Clearly h∗(e) and He,n have the required properties, so
our claim is proved.

Let h∗ and He,n be as in the above claim. By the Recursion Theorem
(see [11, Chapter 11]) let e∗ be a fixed point of h∗, so that TA

h∗(e∗) = TA
e∗ for

all A, hence Th∗(e∗),n = Te∗,n for all n. Let Hn = He∗,n and Tn = Te∗,n and
Pn = Pe∗,n = [Tn] for all n. As in the proof of Lemma 3.3 we have uniformly
for each s > n a 0(s)-recursive treemap Hs

n = Hn◦· · ·◦Hs−1 : Ts → Tn which
induces a homeomorphism Hs

n : Ps
∼= Pn such that X ⊕ 0(s) ≡T Hs

n(X) ⊕
0(s) ≡T (Hs

n(X))(s−n) uniformly for all X ∈ Ps, and in addition Hs
n(σ) = σ

for all σ such that |σ| ≤ n. We also have for each n a 0(ω)-recursive treemap
Hω

n : Tω → Tn which induces a homeomorphism Hω
n : Pω

∼= Pn, namely

Hω
n (σ) = H

|σ|
n (σ) if |σ| > n and Hω

n (σ) = σ if |σ| ≤ n. Note also that for
all n < s < t < ω we have Ht

n = Hs
n ◦ Ht

s and Hω
n = Hs

n ◦ Hω
s . Finally,

given Xω ∈ Pω let Xn = Hω
n (Xω) for all n. Then Xω↾n = Xn↾n and

Xn ⊕ 0(n) ≡T X0 ⊕ 0(n) ≡T X
(n)
0 uniformly for all n and all Xω ∈ Pω, hence
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Xω ⊕ 0(ω) ≡T X0 ⊕ 0(ω) ≡T X
(ω)
0 uniformly for all Xω ∈ Pω. This completes

the proof.

We now present Harrington’s construction of arithmetically incompara-
ble arithmetical singletons.

Theorem 4.4. There is a pair of arithmetically incomparable Π0
1 singletons.

Proof. As in the proof of Theorem 3.4, let Xω, Yω be such that 0(ω) ≤T

Xω ≤T 0(ω+1) and 0(ω) ≤T Yω ≤T 0(ω+1) and Xω �T Yω and Yω �T Xω.

Note that Xω and Yω are ∆0,0(ω)

2 and hence Π0,0(ω)

2 singletons. Therefore, by

the proof of Lemma 3.1 we may safely assume that Xω and Yω are Π0,0(ω)

1

singletons. Apply Lemma 4.3 to Pω = {Xω, Yω} to get a Π0
1 set P0 and

a homeomorphism Hω
0 : Pω

∼= P0. Let X0 = Hω
0 (Xω) and Y0 = Hω

0 (Yω).
Since P0 = {X0, Y0} it follows that X0 and Y0 are Π0

1 singletons. Since

Xω �T Yω ⊕ 0(ω) ≡T Y
(ω)
0 and Xω ⊕ 0(ω) ≡T X0 ⊕ 0(ω) we have X0 �T

Y
(ω)
0 , and similarly Y0 �T X

(ω)
0 . In particular X0 and Y0 are arithmetically

incomparable, Q.E.D.

Finally we present Harrington’s construction of a ranked point which
is not an arithmetical singleton. This refutes a conjecture which had been
known as McLaughlin’s Conjecture and which was suggested by the result
of H. Tanaka [15] mentioned in Remark 2 above.

Theorem 4.5. There is a countable Π0
1 set P such that some Z ∈ P is not

an arithmetical singleton.

Proof. As in the proof of Theorem 3.5, let Pω be a countable Π0
1 set such

that some Zω ∈ Pω is not isolated in Pω. Apply Lemma 4.3 and note
that P0 is a countable Π0

1 set and Z0 = Hω
0 (Zω) ∈ P0 is not isolated in

P0. We claim that Z0 is not an arithmetical singleton. Otherwise, let i be

such that {Z0} = {X | X(ω)(i) = 0}. Since Z
(ω)
0 (i) = 0 and Z0 ∈ P0 and

X
(ω)
0 ≡T Xω⊕0(ω) uniformly for all Xω ∈ Pω and X0 = Hω

0 (Xω) ∈ P0, there

exists j such that X
(ω)
0 (i) = 0 for all Xω ∈ Pω such that Zω↾j ⊂ Xω. But

Zω is not isolated in Pω, so there exists Xω ∈ Pω such that Zω↾j ⊂ Xω and

Xω 6= Zω. Thus X
(ω)
0 (i) = 0 and X0 6= Z0, a contradiction. Letting P = P0

and Z = Z0 we obtain our theorem.

Remark 12. Modifying the proof of Lemma 4.3, it is easy to replace ω by
a small recursive ordinal such as ω + ω or ω · ω or ωω. Harrington [7] and
Gerdes [5] have shown that Lemma 4.3 and consequently Theorems 4.4 and
4.5 hold generally with ω replaced by any recursive ordinal.
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