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Abstract

The Posner-Robinson Theorem states that for any reals Z and A such that Z⊕0′ ≤T

A and 0 <T Z, there exists B such that A ≡T B′ ≡T B⊕Z ≡T B⊕0′. Consequently, any
nonzero Turing degree degT(Z) is a Turing jump relative to some B. Here we prove
the hyperarithmetical analog, based on an unpublished proof of Slaman, namely that
for any reals Z and A such that Z ⊕O ≤T A and 0 <HYP Z, there exists B such that
A ≡T OB ≡T B⊕Z ≡T B⊕O. As an analogous consequence, any nonhyperarithmetical
Turing degree degT(Z) is a hyperjump relative to some B.
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1 INTRODUCTION

1 Introduction

Our starting point is the Friedberg Jump Theorem:

Theorem 1.1 (Friedberg Jump Theorem). [10, Theorem 13.3.IX, pg. 265] Suppose A is a
real such that 0′ ≤T A. Then there exists B such that

A ≡T B
′ ≡T B ⊕ 0′.

There are several refinements of the Friedberg Jump Theorem. One such extension shows
that B can be taken to be an element of any special Π0

1 class P ⊆ {0,1}N. Here special means
that P is nonempty and has no recursvie elements.

Theorem 1.2. [6, following Theorem 3.1, pg. 37] Suppose P ⊆ {0,1}N is a special Π0
1 class

and A is a real such that 0′ ≤T A. Then there exists B ∈ P such that

A ≡T B
′ ≡T B ⊕ 0′.

Another refinement is the Posner-Robinson Theorem:

Theorem 1.3 (Posner-Robinson Theorem). [8, Theorem 1, pg. 715] [5, Theorem 3.1, pg.
1228] Suppose Z and A are reals such that Z ⊕ 0′ ≤T A and 0 <T Z. Then there exists B
such that

A ≡T B
′ ≡T B ⊕Z ≡T B ⊕ 0′.

In this paper we prove hyperarithmetical analogs of Theorem 1.2 and Theorem 1.3. The
hyperarithmetical analog of Theorem 1.1 is due to Macintyre [7, Theorem 3, pg. 9]. In these
hyperarithmetical analogs, the Turing jump operator X ↦X ′ is replaced by the hyperjump
operator X ↦ OX and Π0

1 classes are replaced by Σ1
1 classes. A feature of [7, Theorem 3,

pg. 9] and of our results is that they involve Turing degrees rather than hyperdegrees, so for
instance OB is not only hyperarithmetically equivalent to A, but in fact Turing equivalent
to A.

Here is an outline of this paper:
In §2 we prove the following basis theorem for uncountable Σ1

1 classes K ⊆ {0,1}N.

Theorem 2.1. Suppose K ⊆ {0,1}N is an uncountable Σ1
1 class and Z and A are reals such

that Z ⊕O ≤T A and 0 <HYP Z. Then there exists B ∈K such that

A ≡T OB ≡T B ⊕O

and Z ≰HYP B.

In §3 we prove the following analog of Theorem 1.3, which is essentially due to Slaman
[13].

Theorem 3.1. Suppose Z and A are reals such that Z⊕O ≤T A and 0 <HYP Z. Then there
exists B such that

A ≡T OB ≡T B ⊕Z ≡T B ⊕O.

The remainder of this section fixes notation and terminology.
g∶ ⊆A→ B denotes a partial function with domain dom g ⊆ A and codomain B. For a ∈ A,

if a ∈ dom g then we say ‘g(a) converges’ or ‘g(a) is defined’ and write g(a)↓. Otherwise, we
say ‘g(a) diverges’ or ‘g(a) is undefined’ and write g(a)↑. If f and g are two partial functions
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⊆A→ B and a ∈ A, then f(a) ≃ g(a) means (f(a)↓ ∧ g(a)↓ ∧ f(a) = g(a)) ∨ (f(a)↑ ∧ g(a)↑).
We write f(a)↓ = b to mean that f(a)↓ and f ∶a↦ b.

NN and {0,1}N denote the Baire and Cantor spaces, respectively, whose elements we
sometimes call reals. We identify {0,1}N and the powerset P(N) in the usual manner.

If S is a set, then S∗ is the set of strings of elements from S. If s0, . . . , sn−1 ∈ S,
then σ = ⟨s0, . . . , sn−1⟩ ∈ S∗ denotes the string of length ∣σ∣ ∶= n defined by σ(k) = sk. If
⟨s0, . . . , sn−1⟩, ⟨t0, . . . , tm−1⟩ ∈ S∗, then their concatenation is ⟨s0, . . . , sn−1⟩⌢⟨t0, . . . , tm−1⟩ ∶=
⟨s0, . . . , sn−1, t0, . . . , tm−1⟩. If σ, τ ∈ S∗, then σ is an initial segment of τ (equivalently, τ is an
extension of σ) written σ ⊆ τ , if τ↾∣σ∣ = σ. If f ∶N→ S then σ ∈ S∗ is an initial segment of f
(equivalently, f is an extension of σ), written σ ⊂ f , if f↾∣σ∣ = σ. σ, τ ∈ S∗ are incompatible if
neither is an initial segment of the other. If ≤ is a partial order on S, then the lexicographical
ordering ≤lex on S∗ is defined by setting σ ≤lex τ if σ ⊆ τ or, where k is the least index at
which σ(k) ≠ τ(k), then σ(k) < τ(k).

ϕ
(k)
e denotes the e-th partial recursive function ⊆Nk → N; e is called an index of ϕ

(k)
e .

Likewise, if f ∈ NN then ϕ
(k),f
e denotes the e-th partial function ϕ

(k),f
e ∶ ⊆Nk → N which is

partial recursive in f ; e is again called an index of ϕ
(k),f
e , while f is called an oracle of

ϕ
(k),f
e .
≤T denotes Turing reducibility while ≡T denotes Turing equivalence. ≤HYP denotes hyper-

arithmetical reducibility while ≡HYP denots hyperarithmetical equivalence. For X ∈ {0,1}N,
X ′ denotes the Turing jump of X and OX denotes the hyperjump of X. O denotes
Kleene’s O. For f, g ∈ NN, their join f ⊕ g ∈ NN is defined by (f ⊕ g)(2n) = f(n) and
(f ⊕ g)(2n + 1) = g(n).

Pe denotes the e-th Π0
1 set {f ∈ NN ∣ ϕ(1),fe (0)↓} ⊆ NN. P ∗

e denotes the e-th Σ1
1 class

{X ∈ {0,1}N ∣ ∃f (f ⊕X ∈ Pe)}.

2 A Basis Theorem for Σ1
1 Classes

The following theorem includes the Gandy Basis Theorem [11, Theorem III.1.4, pg. 54],
the Kreisel Basis Theorem for Σ1

1 Classes [11, Theorem III.7.2, pg. 75], and Macintyre’s
Hyperjump Inversion Theorem [7, Theorem 3, pg. 9].

Theorem 2.1. Suppose K ⊆ {0,1}N is an uncountable Σ1
1 class and Z and A are reals such

that Z ⊕O ≤T A and 0 <HYP Z. Then there exists B ∈K such that

A ≡T OB ≡T B ⊕O

and Z ≰HYP B.

To prove Theorem 2.1 we use Gandy-Harrington forcing (first introduced by Harrington
in an unpublished manuscript [2]; see, e.g., [11, Theorem IV.6.3, pg. 108]), forming a
descending sequence of uncountable Σ1

1 classes

K =K0 ⊇K1 ⊇ ⋯ ⊇Kn ⊇ ⋯

where an element of the intersection ⋂∞n=0Kn has the desired property. Unlike in the case
of Π0

1 subsets of {0,1}N, compactness cannot be used to easily show that the intersection

⋂∞n=0Kn is nonempty. Instead, some care must be taken to show that this is the case.

Proposition 2.2.
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(a) Given a Σ1
1 predicate K ⊆ {0,1}N×Nk, there is a primitive recursive function f ∶Nk → N

such that
P ∗
f(x1,...,xk)(X) ≡K(X,x1, . . . , xk).

(b) Suppose X ∈ {0,1}N. Then {e ∈ N ∣X ∉ P ∗
e } ≡T OX .

(c) {e ∈ N ∣ P ∗
e = ∅} ≡T O.

Proof. Straight-forward.

Corollary 2.3. There exist primitive recursive functions v, u, and U such that that for all
n,m ∈ N and σ, τ ∈ N∗ and I ∈ Pfin(N),

P ∗
v(n,m) = P ∗

n ∩ P ∗
m,

P ∗
u(e,σ,τ) = P ∗

e [σ, τ] = {X ∈ {0,1}N ∣ σ ⊂X ∧ ∃g (X ⊕ g ∈ Pe ∧ τ ⊂ g)},
P ∗
U(I,σ,⟨τ0,...,τn−1⟩) = ⋂

k∈I∧k<n
P ∗
k [σ, τk].

Proposition 2.4. The following partial functions are O-recursive:

(a) The partial function ρ(σ, e) ≃ ⟨σ0, σ1⟩ where σ0, σ1 are minimal incompatible extensions
of σ which have extensions in P ∗

e and σ0 is lexicographically less than σ1, whenever σ
has at least two extensions in P ∗

e , otherwise diverging.

(b) The partial function ext(⟨e1, . . . , eN ⟩, σ, ⟨τ1, . . . , τN ⟩) ≃ (σ̃, ⟨τ̃1, . . . , τ̃N ⟩) where (σ̃, ⟨τ̃ , . . . , τ̃N ⟩)
is the lexicographically least pair such that

1. σ ⊂−− σ̃ and τk ⊂−− τ̃k for 1 ≤ k ≤ N and

2. ⋂Nk=1 P
∗
ek

[σ̃, τ̃k] ≠ ∅

whenever ⋂Nk=1 P
∗
ek

[σ, τk] ≠ ∅, otherwise diverging.

Proof.

(a) Using O, search for the first string ν such that P ∗
e [σ⌢ν⌢⟨i⟩, ⟨⟩] ≠ ∅ for i = 0,1. Once

such ν has been found, ρ(σ, e)↓ = ⟨σ⌢ν⌢⟨0⟩, σ⌢ν⌢⟨1⟩⟩.

(b) Using O, search for the first of i = 0,1 for which ⋂Nk=1 P
∗
ek

[σ⌢⟨i⟩, τk] ≠ ∅, then search for

the lexicographically least ⟨j1, . . . , jN ⟩ ∈ {0,1}N such that ⋂Nk=1 P
∗
ek

[σ⌢⟨i⟩, τk⌢⟨jk⟩] ≠ ∅.
If no such i or j1, . . . , jN are found, then diverge. Otherwise, ext(⟨e1, . . . , eN ⟩, σ, ⟨τ1, . . . , τN ⟩)↓ =
(σ⌢⟨i⟩, ⟨τ1⌢⟨j1⟩, . . . , τN⌢⟨jN ⟩).

Let ρ0, ρ1 be defined by
ρ(σ, e) ≃ ⟨ρ0(σ, e), ρ1(σ, e)⟩.

We use the ordinal notation description of O (and, more generally, OY for Y ∈ {0,1}N)
described in [11] and use the following well-known lemma to describe hyperarithmetical
reducibility in terms of H-sets.

Notation. For X ∈ {0,1}N and n ∈ N, define

(X)n ∶= {x ∈ N ∣ 2n ⋅ 3x ∈X}.
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Lemma 2.5. Suppose X and Y are reals in {0,1}N. Then X ≤HYP Y if and only if there
exists b ∈ OY and n ∈ N such that X = (HY

b )n.

Proof. Suppose X ≤HYP Y , so that there is b ∈ OY such that X ≤T H
Y
b . Let e be the index

of such a Turing reduction, i.e., let e be such that X = ϕ(1),H
Y
b

e . By definition [11], 2b ∈ OY
and

HY
2b ∶= {2n3x ∣ ϕ(1),H

Y
b

n (x)↓}.
Let f be an index such that

ϕ
(1),HY

b

f (x)↓ ⇐⇒ ϕ
(1),HY

b
e (x)↓ = 1

Then

(HY
2b)f = {x ∈ N ∣ ϕ(1),H

Y
b

f (x)↓}

= {x ∈ N ∣ ϕ(1),H
Y
b

e (x)↓ = 1}
=X

Conversely, suppose there is b ∈ OY and n ∈ N such that X = (HY
b )n. Let e be an index

such that

ϕ(1),Ze (x) =
⎧⎪⎪⎨⎪⎪⎩

1 if x ∈ (Z)n
0 if x ∉ (Z)n

for any Z ∈ {0,1}N. Then ϕ
(1),HY

b
e =X, showing that X ≤T H

Y
b .

Proof of Theorem 2.1. By the Gandy Basis Theorem [11, Theorem III.1.4, pg. 54], assume
without loss of generality that ωY1 = ωCK

1 for all Y ∈K.
In order to control the hyperjump OB , we choose B to be an element of an intersection

of Σ1
1 subsets

K =K0 ⊇K1 ⊇ ⋯ ⊇Kn ⊇ ⋯.
In order for B to be an element of Kn = P ∗

j(n) for each n, there must be gn ∈ NN such

that B ⊕ gn ∈ Pj(n), where j(n) is some index of Kn. Such gn depend on B. Thus, we
additionally define sequences of strings

σ0 ⊆ σ1 ⊆ ⋯ ⊆ σn ⊆ ⋯
τ0,0 ⊆ τ1,0 ⊆ ⋯ ⊆ τn,0 ⊆ ⋯
τ0,1 ⊆ τ1,1 ⊆ ⋯ ⊆ τn,0 ⊆ ⋯
τ0,2 ⊆ τ1,2 ⊆ ⋯ ⊆ τn,0 ⊆ ⋯
⋮ ⋮ ⋱ ⋮ ⋱

so that B = ⋃n∈ω σn and gk = ⋃n∈ω τn,k. We also define a sequence of finite subsets of N

I0 ⊆ I1 ⊆ ⋯ ⊆ In ⊆ ⋯

encoded as finite sequences {e1, . . . , eN} ↦ ⟨e1, . . . , eN ⟩ which keep track of the indices e of
Σ1

1 classes we have committed to intersecting, so that Kn = ⋂k∈In P ∗
k [σn, τn,k]. A function

j∶N→ N keeps track of the index of Kn, i.e.,

Kn = P ∗
j(n).
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In the course of the proof, we assume that j encodes all of the information from previous
steps (i.e., a course-of-value computation) though we avoid making this precise to ease the
burden of notation.

To ease in the notation and exposition, we set the following temporary definitions. An
intersection system consists of the following data:

(i) a finite subset I ⊆ N,

(ii) a string σ, and

(iii) a sequence of strings ⟨τk ∣ k ∈ I⟩

subject to the constraint that ⋂k∈I P ∗
k [σ, τk] is nonempty. If k ∉ I, then we assign the value

⟨⟩ to τk.
By adding P ∗

e to the intersection system I, σ, ⟨τk ∣ k ∈ I⟩, we mean the following proce-
dure, where K = ⋂k∈I P ∗

k [σ, τk]:

Case 1: K ∩ P ∗
e = ∅. Let Ĩ = I, K̃ =K, σ̃ = σ, and τ̃k = τk for each k.

Case 2: K ∩ P ∗
e ≠ ∅. Let Ĩ = I ∪ {e}, and let σ̃ and, simultaneously for all k ∈ Ĩ, τ̃k

be the lexicographically least proper extensions of σ and τk, respectively, such that

⋂k∈Ĩ P ∗
k [σ̃, τ̃k] ≠ ∅.

The resulting intersection system is Ĩ , σ̃, ⟨τ̃k ∣ k ∈ Ĩ⟩. Note that from I, σ, ⟨τk ∣ k ∈ I⟩ and e,
the new intersection system Ĩ , σ̃, ⟨τ̃k ∣ k ∈ Ĩ⟩ can be determined in a uniform way recursively
in O: representing I as ⟨e1, . . . , eN ⟩ and writing eN+1 = e, then

Ĩ =
⎧⎪⎪⎨⎪⎪⎩

⟨e1, . . . , eN , eN+1⟩ if K ∩ P ∗
e ≠ ∅,

I otherwise,

(σ̃, ⟨τ̃k ∣ k ∈ Ĩ⟩) =
⎧⎪⎪⎨⎪⎪⎩

ext(Ĩ , σ, ⟨τe1 , . . . , τeN , ⟨⟩⟩) if K ∩ P ∗
e ≠ ∅,

(σ, ⟨τk ∣ k ∈ I⟩) otherwise.

In particular, the index U(Ĩ , σ̃, ⟨τ̃k ∣ k < max I⟩) of K̃ can be determined uniformly from the
intersection system I, σ, ⟨τk ∣ k ∈ I⟩ using O as an oracle.

Now we proceed with the construction. As K is Σ1
1, there is e0 such that K = P ∗

e0 .

Stage n = 0: Define

K0 ∶=K, σ0 ∶= ⟨⟩, τ0,k ∶= ⟨⟩, j(0) ∶= e0, I0 ∶= {e0}.

Note that P ∗
j(0) =K0 = ⋂k∈I0 P ∗

k [σ0, τ0,k].

Stage n = 3e + 1: Let In, σn, ⟨τn,k ∣ k ∈ In⟩ be the result of adding P ∗
e to the intersection

system In−1, σn−1, ⟨τn−1,k ∣ k ∈ In−1⟩, and let Kn ∶= ⋂k∈In P ∗
k [σn, τn,k] and j(n) be an

index for Kn.

Stage n = 3e + 2: At this stage we encode A(e) into B.

By construction,

P ∗
j(n−1) =Kn−1 = ⋂

k∈In−1
P ∗
k [σn−1, τn−1,k] ≠ ∅.
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As Kn−1 is uncountable, there are infinitely many pairwise-incompatible extensions of
σn−1 which extend to elements of Kn−1. Thus, let

σn ∶= ρA(e)(σn−1, j(n − 1)).

Define

Kn ∶= ⋂
k∈In−1

P ∗
k [σn, τn−1,k] = PU(σn,In−1,⟨τn−1,0,...,τn−1,n−1⟩),

τn,k ∶= τn−1,k, (for all k)
In ∶= In−1,

j(n) ∶= U(σn, In−1, ⟨τn−1,0, . . . , τn−1,n−1⟩).

Stage n = 3b+1 ⋅ 5e ⋅ 7f : Suppose b ∈ O. Let m ∈ N be the least natural number for which

there are Y1, Y2 ∈ Kn−1 such that ϕ
(1),HY1

b

f (2e ⋅ 3m) and ϕ
(1),HY2

b

f (2e ⋅ 3m) are both

defined and unequal. For i ∈ {0,1}, let

Ki
n−1 = {Y ∈Kn−1 ∣ ϕ(1),H

Y1
b

f (2e ⋅ 3m)↓ = i}.

Because K0
n−1 ∩K1

n−1 = ∅, there is a least k ∈ N and i ∈ {0,1} such that {Y ∈ K0
n−1 ∣

Y (k) = i} and {Y ∈K1
n−1 ∣ Y (k) ≠ i} are nonempty. Let i0 = i and i1 = 1 − i.

Let In, σn, ⟨τn,k ∣ k ∈ In⟩ be the result of adding the (uniformly in b, e, f , m, k,and i,

given Z(m)) Σ1
1 class {Y ∈ {0,1}N ∣ ϕ(1),H

Y
b

f (2e ⋅ 3m)↓ ≠ Z(m) ∧ Y (k) ≠ iZ(m)} to the

intersection system In−1, σn−1, ⟨τn−1,k ∣ k ∈ In−1⟩, and let Kn ∶= ⋂k∈In P ∗
k [σn, τn,k] and

j(n) be an index for Kn.

If b ∉ O or no such m exists, do nothing, i.e., let

Kn ∶=Kn−1, σn ∶= σn−1, τn,k ∶= τn−1,k, j(n) ∶= j(n − 1), In ∶= In−1.

All Other Stages n: Do nothing, i.e., let

Kn ∶=Kn−1, σn ∶= σn−1, τn,k ∶= τn−1,k, j(n) ∶= j(n − 1), In ∶= In−1.

This completes the construction.
Define

B ∶= ⋃
n∈N

σn and gk ∶= ⋃
n∈N

τn,k.

We start by claiming B ∈ ⋂n∈NKn: by construction, for k ∈ ⋂n∈N In, we have B ⊕ gk ∈ Pk,
showing B ∈ P ∗

k . Additionally, by construction B ∈ P ∗
k [σn, τn,k] for every n and every

k ∈ ⋂n∈N In, so B ∈ ⋂k∈In P ∗
k [σn, τn,k] =Kn. Thus, B ∈ ⋂n∈NKn. In particular, B ∈K0 =K,

so ωB1 = ωCK
1 .

If Z ≤HYP B, then Lemma 2.5 shows there are c ∈ OB and e ∈ N such that Z = (HB
b )e.

Because ωB1 = ωCK
1 , there exists b ∈ O such that ∣b∣ = ∣c∣ and hence HB

b ≡T HB
c by Spec-

tor’s Uniqueness Theorem [11, Corollary II.4.6, pg. 40]. Let f be an index such that

ϕ
(1),HB

b

f = HB
c , so that Z = (ϕ(1),H

B
b

f )e. By construction, at Stage n = 3b+1 ⋅ 5e ⋅ 7f it

must have been the case that no m and Y1, Y2 ∈ Kn−1 existed with ϕ
(1),HY1

b

f (2e ⋅ 3m) and

7
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ϕ
(1),HY2

b

f (2e ⋅ 3m) both defined and unequal. In particular, ϕ
(1),HB

b

f is a Σ1
1 singleton, and so

hyperarithmetical. But then HB
c ≡T HB

b is hyperarithmetical, hence Z = (HB
c )e is hyper-

arithmetical, a contradiction. Thus, Z ≰HYP B.
We now make the following observations: assuming j(n − 1) is known (and utilizing the

implicit course-of-values procedure to yield In−1, σn−1, ⟨τn−1,k⟩k∈N), then. . .

. . . in Stage n = 3e + 1, the determination of In, σn, ⟨τn,k⟩k∈N (and hence also j(n)) is
recursive in O by Proposition 2.4.

. . . in Stage n = 3e + 2, the determination of In, σn, ⟨τn,k⟩k∈N (and hence also j(n)) is
recursive in A (by construction) or B ⊕ O (by determining the unique i for which
ρi(σn−1, j(n − 1)) ⊂ B) by Proposition 2.4.

. . . in Stage n = 3b+1 ⋅ 5e ⋅ 7f , the determination of In, σn, ⟨τn,k⟩k∈N (and hence also j(n)) is
recursive in B⊕O (the determination of whether b ∈ O and whether there exists an m

and Y1, Y2 ∈Kn−1 for which ϕ
(1),HY1

b

f (2e ⋅3m) and ϕ
(1),HY2

b

f (2e ⋅3m) are both defined and
unequal may be performed recursively in O since it corresponds to checking whether a
particular Σ1

1 class is nonempty, and once the least such m is found, we may determine
the least k and i ∈ {0,1} for which {Y ∈K0

n−1 ∣ Y (k) = i} and {Y ∈K1
n−1 ∣ Y (k) = 1− i}

are nonempty; finally, checking whether B(k) = i or B(k) = 1 − i determines whether

we intersected {Y ∈ {0,1}N ∣ ϕ(1),H
Y
b

f (2e ⋅ 3m) ↓= 0 ∧ Y (k) = i} or {Y ∈ {0,1}N ∣
ϕ
(1),HY

b

f (2e ⋅ 3m) ↓= 1 ∧ Y (k) = 1 − i}, respectively) or A (as before, the determination
of whether b ∈ O and of the existence of such an m may be done recursively in O ≤T A,
and Z ≤T A).

. . . in all other Stages n, the determination of In, σn, ⟨τn,k⟩k∈N (and hence also j(n)) is
recursive.

In particular, j ≤T A and j ≤T B ⊕O.
We make the following final observations:

• A ≤T j⊕O asA(e) = i if and only if j(n) = U(ρi(σn−1, j(n−1)), In−1, ⟨τn−1,0, . . . , τn−1,n−1⟩),
where n = 3e + 2.

• OB ≤T j ⊕ O as B ∈ P ∗
e if and only if v(j(n − 1), e) ∉ {i ∣ P ∗

i = ∅} ≡T O. The
determination v(j(n − 1), e) ∉ {i ∣ P ∗

i = ∅} ≡T O can be made recursively in j ⊕O.

Thus, we find that
A ≤T j ⊕O ≤T B ⊕O ≤T OB ≤T j ⊕O ≤T A

so we have Turing equivalence throughout.

The following corollary is originally due to Macintyre [7, Theorem 3, pg. 9].

Corollary 2.6. Suppose A is a real such that O ≤T A. Then there exists B such that

A ≡T OB ≡T B ⊕O.

The following corollary is “folklore”, being unpublished but known to researchers and
stated in [1, Exercise 2.5.6, pg. 40] without proof or references. Other than [1, Exercise
2.5.6, pg. 40] we have not seen any statement of Corollary 2.7 in the literature.
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3 POSNER-ROBINSON FOR TURING DEGREES OF HYPERJUMPS

Corollary 2.7. Suppose K is a nonempty Σ1
1 class. Then there exists B ∈ K such that

O ≡T OB ≡T B ⊕O.

Proof. If K is uncountable, then we apply Theorem 2.1 with Z = A = O.
If K is countable, then its elements are hyperarithmetical [11, Theorem III.6.2, pg. 72]

and so any B ∈K satisfies O ≡T OB ≡T B ⊕O.

We can generalize Theorem 2.1, replacing the real Z by a sequence of reals, as follows.

Theorem 2.8. Suppose K is an uncountable Σ1
1 class and Z and A are reals such that

Z ⊕O ≤T A and 0 <HYP (Z)k for each k ∈ N. Then there exists B ∈K such that

A ≡T OB ≡T B ⊕O

and (Z)k ≰HYP B for all k.

Proof. The proof of Theorem 2.1 may be adapted by replacing Stage n = 3b+1 ⋅ 5e ⋅ 7f with
n = 3b+1 ⋅ 5e ⋅ 7f ⋅ 11k and replacing therein Z with (Z)k.

3 Posner-Robinson for Turing Degrees of Hyperjumps

Theorem 3.1 (Posner-Robinson for Turing Degrees of Hyperjumps). Suppose Z and A are
reals such that Z ⊕O ≤T A and 0 <HYP Z. Then there exists B such that

A ≡T OB ≡T B ⊕Z ≡T B ⊕O.

Theorem 3.1 is essentially due to Slaman [13]. The rest of this section is devoted to a
proof of Theorem 3.1. The key to the proof is a forcing notion known as Kumabe-Slaman
forcing, which was originally introduced in [12].

3.1 Kumabe-Slaman Forcing

In order to prove Theorem 3.1, we will use Turing functionals and an associated notion of
forcing to construct the desired B.

Definition 3.2 (Turing Functionals). [12, 9] A Turing functional Φ is a set of triples
(x, y, σ) ∈ N×{0,1}×{0,1}∗ (called computations in Φ) such that if (x, y1, σ1), (x, y2, σ2) ∈
Φ and σ1 and σ2 are compatible, then y1 = y2 and σ1 = σ2.

A Turing functional Φ is use-monotone if:

(i) For all (x1, y1, σ1) and (x2, y2, σ2) are elements of Φ and σ1 ⊂ σ2, then x1 < x2.

(ii) For all x1 and (x2, y2, σ2) ∈ Φ where x2 > x1, then there are y1 and σ1 such that σ1 ⊆ σ2

and (x1, y1, σ1) ∈ Φ.

Remark 3.3. Despite the terminology, a Turing functional Φ is not assumed to be recursive
or even recursively enumerable.

Definition 3.4 (Computations along a Real). [12, 9] Suppose Φ is a Turing functional and
X ∈ {0,1}N. Then (x, y, σ) ∈ Φ is a computation along X if σ ⊂X, in which case we write
Φ(X)(x) = y. If for every x ∈ N there exists y ∈ {0,1} and σ ⊂ X such that (x, y, σ) ∈ Φ,
then Φ(X) defines an element of {0,1}N (otherwise it is a partial function).

9



3 POSNER-ROBINSON FOR TURING DEGREES OF HYPERJUMPS

Lemma 3.5. Suppose Φ is a Turing functional, X ∈ {0,1}N, and Φ(X) ∈ {0,1}N. Then

Φ(X) ≤T Φ⊕X.

Proof. Obvious from the definition of Φ(X).

Definition 3.6 (Kumabe-Slaman Forcing). [12, 9] Define the poset (P,≤) as follows:

(i) Elements of P are pairs (Φ,X) where Φ is a finite use-monotone Turing functional and
X is a finite subset of {0,1}N.

(ii) If p = (Φp,Xp) and q = (Φq,Xq) are in P, then p ≤ q if

(a) Φp ⊆ Φq and for all (xq, yq, σq) ∈ Φq ∖Φp and all (Xp, yp, σp) ∈ Φp, the length of
σq is greater than the length of σp.

(b) Xp ⊆ Xq.

(c) For every x, y, and X ∈ X, if Φq(X)(x) = y, then Φp(X)(x) = y.

In other words, a stronger condition than p can add longer computations to Φp, pro-
vided they don’t apply to any element of Xp.

In the remainder of §3, we will be discussing Kumabe-Slaman forcing over countable
ω-models of ZFC1. Unlike in the forcing constructions in axiomatic set theory, it will be
important here that the countable ground model M is not well-founded. We now introduce
some conventions for discussing such models.

Let M be a countable non-well-founded ω-model of ZFC. Let θ(x1, . . . , xn) be a sentence
in the language of ZFC with parameters x1, . . . , xn from M . We write θM(x1, . . . , xm) or
M ⊧ θ(x1, . . . , xn) to mean that θ(x1, . . . , xn) holds in M . In particular, x1 ∈M x2 means
that M ⊧ x1 ∈ x2, etc. We tacitly identity the natural number system of M with the standard
natural number system, the reals of M with standard reals, etc. In particular, let PM be
the set of pairs (Φ,X) such that M ⊧ “(Φ,X) is a Kumabe-Slaman forcing condition”. In
this case, Φ is identified with a finite Turing functional, X is identified with a finite set of
reals belonging to M , etc., so (Φ,X) actually is a Kumabe-Slaman forcing condition.

The key property of Kumabe-Slaman Forcing is the following:

Lemma 3.7. [9, based on Lemma 3.10, pg. 23] Suppose M is an ω-model of ZFC, D ∈M
is dense in PM , and X1, . . . ,Xn ∈ {0,1}N. Then for any p ∈ PM , there exists q ≥ p such that
q ∈D and Φq does not add any new computations along any Xk.

Proof. Suppose p = (Φp,Xp) ∈ PM . Say that an n-tuple of strings τ⃗ is essential for (p,D)
if q > p and q ∈ D implies the existence of (x, y, σ) ∈ Φq ∖ Φp such that σ is compatible
with some component of τ⃗ , i.e., any extension of p in D adds a computation along a string
compatible with a component of τ⃗ . Being essential for (p,D) is definable in M .

Define

Tn(p,D) ∶= {τ⃗ ∈ ({0,1}∗)n ∣ τ⃗ is essential for (p,D) and ∣τ1∣ = ⋯ = ∣τn∣}.

Being essential for (p,D) is closed under taking (component-wise) initial segments, so
Tn(p,D) is a finitely branching tree in M .

1Here ZFC denotes Zermelo-Fraenkel Set Theory with the Axiom of Choice. However, for the purposes of
this paper, our ω-models need not satisfy ZFC but only a small subsystem of ZFC or actually of second-order
arithmetic.

10
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Suppose for the sake of a contradiction that for every q > p, either q ∉D or else q adds a
new computation along some Xk. We claim that ⟨X1↾m, . . . ,Xn↾m⟩ is essential for (p,D) for
all m ∈ N. Given q > p with q ∈D, by hypothesis there is some computation (x, y, σ) ∈ Φq∖Φp
along some Xk. This means that σ ⊂Xk (outside of M), so σ is compatible with Xk↾m.

This shows that Tn(p,D) is infinite. As M is a model of ZFC, it follows that Tn(p,D)
has a path through it. The requirement that the components of any element of Tn(p,D)
are of the same length implies that such a path is of the form (Y1, . . . , Yn) for Y1, . . . , Yn ∈
M ∩ {0,1}N.

Consider p1 = (Φp,Xp ∪ {Y1, . . . , Yn}). Suppose q ≥ p1 and q ∈ D. Each n-tuple
⟨Y1↾m, . . . , Yn↾m⟩ is essential for (p,D) for each m, so there exists (xm, ym, σm) ∈ Φq ∖Φp
such that σm is compatible with Yk↾m for some k. As Φq is finite, letting m be sufficiently
large shows that there is (x, y, σ) ∈ Φq ∖Φp for which σ is an initial segment of Yk for some
k. However, this is not possible since q ≤ p1 implies Yk ∈ Xq. This provides the needed
contradiction.

Suppose G is an M -generic filter for PM . Then for every X

X ⊆M N ⇐⇒ there is p ∈ G with X ∈ Xp

since for any X ⊆M N, the set {p ∈ PM ∣ (∅,{X}) ≤ p}M is a dense open subset of PM in M .
Thus, the essential parts of an M -generic filter G are the Turing functionals Φp for p ∈ G.

Definition 3.8. A Turing functional Φ is M-generic for PM if and only if there exists an
M -generic filter G such that

(x, y, σ) ∈ Φ ⇐⇒ there exists p ∈ G such that (x, y, σ) ∈M Φp.

Φ may be identified with an element (Φ̇)G in M[G], where

M ⊧ Φ̇ = {(p, ċ) ∣ p ∈ PM ∧ c ∈ Φp}

and ċ is a canonical name for c ∈M , defined by transfinite recursion in M to be the unique
element in M for which

M ⊧ ċ = PM × {ḃ ∣ b ∈ c}.

Lemma 3.9. The following are equivalent for a Turing functional Φ:

(i) Φ is an M -generic Turing functional for PM .

(ii) For every dense open subset D ⊆M PM , there exists p ∈M D such that

(x, y, σ) ∈M Φp Ô⇒ (x, y, σ) ∈ Φ.

Proof.

(i) Ô⇒ (ii) Let G be an M -generic filter for PM such that

(x, y, σ) ∈ Φ ⇐⇒ there exists p ∈ G such that (x, y, σ) ∈M Φp.

Suppose D ⊆M PM is dense open. By definition, there exists p ∈ G such that p ∈M D.
Then by definition,

(x, y, σ) ∈M Φp Ô⇒ (x, y, σ) ∈ Φ.

11
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(ii) Ô⇒ (i) For p ∈M PM , temporarily write p < Φ if (x, y, σ) ∈M Φp implies (x, y, σ) ∈ Φ.
Define

G ∶= {q ∣ ∃p (p < Φ ∧M ⊧ (p ≤ q))}.
We claim that G is an M -generic filter for PM .

Upwards closed: Suppose q ∈ G and M ⊧ (q ≤ q′). Let p < Φ be such that M ⊧ p ≤ q.
Then M ⊧ p ≤ q′ since M ⊧ (≤ is transitive), so q′ ∈ G.

Downwards directed: Suppose q, q′ ∈ G. Let p, p′ < Φ be such that M ⊧ (p ≤ q∧p′ ≤
q′). Then the unique p′′ for which M ⊧ p′′ = (Φp ∩ Φp′ ,∅) satisfies p′′ < Φ and
M ⊧ (p′′ ≤ q ∧ p′′ ≤ q′).

M-generic: Suppose D ⊆M PM is dense open. By hypothesis, there exists p < Φ such
that p ∈M D. By definition of G, p ∈ G.

By defining an M -generic Turing functional Φ for PM by means of approximations,
Lemmas 3.7 and 3.10 allow us to meet dense sets without affecting Φ(Z), which can then
be arranged independently.

3.2 Proof of Posner-Robinson for Hyperjumps

Now we proceed with the proof of Theorem 3.1:

Lemma 3.10. Suppose Z and A are reals such that Z ⊕O ≤T A and 0 <HYP Z. Then there
exists a (code for a) countable ω-model M of ZFC such that OM ≡T A and Z ∉M .

Proof. The set of codes for countable ω-models of ZFC is Σ1
1, so the existence of a code of

such an M follows from Theorem 2.1.

Proof of Theorem 3.1: The main idea of the proof is due to Slaman [13].
We shall construct an M -generic Turing functional Φ with B = Φ the desired real.

Assume without loss of generality that no initial segment of Z is an initial segment of O.
By arranging for Φ(Z) ∈ {0,1}N and Φ(Z) = OΦ and Φ(O) = A, this will complete the proof.

By Lemma 3.10, there exists a countable ω-model M of ZFC such that O, Z ∉ M and
OM ≡T A. Without loss of generality, M = ⟨ω,E⟩.

Let D0,D1,D2, . . . be an enumeration, recursive in A, of the dense open subsets of PM
in M (M is countable and OM ≡T A, so this is possible). To construct our M -generic Φ,
we approximate it by finite initial segments

p0 ≤ p1 ≤ ⋯ ≤ pn ≤ ⋯.

During our construction, we alternate between meeting dense sets, arranging for Φ(O) = A,
and arranging for Φ(Z) ≡T OΦ.

Stage n = 0: Define p0 ∶= (∅,∅).

Stage n = 2m: Suppose pn−1 has been constructed. By Lemma 3.7, there exists q ∈ Dn

extending pn−1 which does not add any new computations along Z or O. Let pn be
the least such condition.

12
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Stage n = 2m ⋅ 3: We extend pn−1 to pn by adding (m,A(m), σ) where σ ⊂ O is a sufficiently
long initial segment of O (i.e., the shortest initial segment of O which is longer than
any existing strings in elements of Φpn−1).

Stage n = 2m ⋅ 5: Suppose pn−1 has been constructed. By construction, there is no y and
σ ⊂ Z such that (m,y, σ) ∈ Φpn−1 . Now proceed as follows:

Substage 1: Consider the set D (in M) containig all q ∈ PM such that one of the
following conditions hold:

(i) q ⊩ (m encodes a Φ-recursive linear order on ω∧m ∈ OΦ∧∃α (α ∈ OrdM ∧∣m∣ =
α)),

(ii) q ⊩ (m encodes a Φ-recursive linear order on ω ∧m ∉ OΦ), or

(iii) q ⊩ ¬(m encodes a Φ-recursive linear order on ω).
D is dense. By Lemma 3.7, there exists q ∈D extending pn−1 which does not add
any new computations along Z or O. Let q be minimal with that property.

Substage 2: Extend q to pn by adding (m,y, σ), where σ ⊂ Z is a sufficiently long
initial segment of Z (i.e., the shortest initial segment of Z which is longer than
any existing strings in elements of Φq) and y depends on the following cases:

Case 1: If q ⊩ (m encodes a Φ-recursive linear order on ω ∧m ∈ OΦ ∧ ∃α (α ∈
OrdM ∧∣m∣ = α)), then we break into two subcases:

Case 1a: If α is in the standard part of OrdM , then α is actually an ordinal
and m does encode a Φ-recursive linear order on ω. Thus, set y ∶= 1.

Case 1b: If α is not in the standard part of OrdM , then α is not actually
well-ordered (it is only well-ordered when viewed in M) so m does not
encode a Φ-recursive linear order on ω. Thus, set y ∶= 0.

Case 2: If q ⊩ (m encodes a Φ-recursive linear order on ω ∧m ∉ OΦ), then m
cannot encode a Φ-recursive well-ordering of ω. Thus, set y ∶= 0.

Case 3: If q ⊩ ¬(m encodes a Φ-recursive linear order on ω), then set y ∶= 0.

All Other Stages n: Let pn = pn−1.

Define Φ to be the unique set such that

(x, y, σ) ∈ Φ ⇐⇒ there exists n ∈ N such that (x, y, σ) ∈M Φpn .

Thanks to Stages n = 2m and Lemma 3.9, Φ is an M -generic Turing functional. Thanks to
Stages n = 2m ⋅ 3, Φ(O) = A. Thanks to Stages n = 2m ⋅ 5, Φ(Z) = OΦ.

We also note that in the above construction of Φ, (assuming pn−1 is given). . .

. . . Stage n = 2m is recursive in OM ⊕Z ⊕O ≤T A,

. . . Stage n = 2m ⋅ 3 is recursive in O ≤T A,

. . . Stage n = 2m ⋅ 5 (Substage 1) is recursive in O ⊕OM ⊕Z ≤T A,

. . . Stage n = 2m ⋅ 5 (Substage 2) is recursive in Z ≤T A, and

. . . Stage n (for all other n) is recursive.
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Thus,
Φ ≤T M ⊕ (OM ⊕Z) ⊕A ≤T A.

Applying Lemma 3.5 we find

A = Φ(O) ≤T O ⊕Φ ≤T OΦ ≡T Φ(Z) ≤T Z ⊕Φ ≤T Z ⊕A ≡T A

so we have Turing equivalence throughout. B = Φ is hence the desired real.

Theorem 3.1 can be generalized, replacing the real Z by a sequence of reals.

Theorem 3.11. Suppose Z and A are reals such that Z ⊕ O ≤T A and 0 <HYP (Z)k for
every k ∈ N. Then there exists B such that for every k ∈ N

A ≡T OB ≡T B ⊕ (Z)k ≡T B ⊕O.
Proof. The proof of Theorem 3.1 may be adapted by making the following adjustments.
First, we replace the use of Lemma 3.10 with the following lemma:

Lemma 3.12. Suppose Z and A are reals such that Z⊕O ≤T A and 0 <HYP (Z)k for every
k ∈ N. Then there exists a (code for a) countable ω-model M of ZFC such that OM ≡T A
and (Z)k ∉M for every k ∈ N.

Proof. Replace the usage of Theorem 2.1 in the proof of Lemma 3.10 with Theorem 2.8.

This yields a (code for a) countable ω-model M of ZFC such that O, (Z)0, (Z)1, . . . ∉M
and OM ≡T A. We assume without loss of generality that O ≠ (Z)k for each k.

The adjustments to the construction are the following:

• In Stages n = 2m and n = 2m⋅3, we avoid adding new computations along (Z)0, . . . , (Z)n
and O.

• Replace Stage n = 2m ⋅ 5 with Stages n = 2m ⋅ 5k+1, and at the beginning of Stage
n = 2m ⋅ 5k+1, first check if there exists y and σ ⊂ (Z)k such that (m,y, σ) ∈ Φpn−1 .
If such a y and σ are found, do nothing and proceed to the next stage. Otherwise,
proceed as in Stage n = 2m ⋅ 5 of the proof of Theorem 3.1, with the same adjustment
of avoiding adding new computations along (Z)0, . . . , (Z)n and O as above.

Note that it is no longer necessarily the case that Φ((Z)k) = OΦ for every k ∈ N, as
early stages may have added computations to Φ which make Φ((Z)k) disagree with OΦ.
However, after Stage k, no other stages add new computations along (Z)k except for those
purposely added (i.e., in Stages n = 2m ⋅ 5k+1). It follows that Φ((Z)k) and OΦ differ only
on a finite set of indices, so Φ((Z)k) ≡T OΦ.

In the resulting construction of Φ, (assuming pn−1 is given)

. . . Stage n = 2m is recursive in OM ⊕⊕n
i=0 (Z)i ⊕O ≤T A,

. . . Stage n = 2m ⋅ 3 is recursive in O ≤T A,

. . . Stage n = 2m ⋅ 5k+1 (Substage 1) is recursive in O ⊕OM ⊕⊕n
i=0 (Z)i ≤T A,

. . . Stage n = 2m ⋅ 5k+1 (Substage 2) is recursive in (Z)k ≤T A, and

. . . Stage n (for all other n) is recursive.

Thus,
Φ ≤T M ⊕ (OM ⊕Z) ⊕A ≡T A.

The proof concludes as in the proof of Theorem 3.1.
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4 OPEN PROBLEMS

4 Open Problems

In light of Theorems 2.1 and 3.1, it is natural to ask whether they can be combined into
one theorem. In other words, for which uncountable Σ1

1 classes K ⊆ {0,1}N do the following
properties hold?

Property 4.1. Suppose Z and A are reals such that Z⊕O ≤T A and 0 <HYP (Z)k for every
k ∈ N. Then there exists B ∈K such that

A ≡T OB ≡T B ⊕Z ≡T B ⊕O.

Property 4.2. Suppose Z and A are reals such that Z⊕O ≤T A and 0 <HYP (Z)k for every
k ∈ N. Then there exists B ∈K such that for every k

A ≡T OB ≡T B ⊕ (Z)k ≡T B ⊕O.

The following theorem answers some special cases of this problem.

Theorem 4.3. Let LT = {X ∣ OX ≡T X ⊕O}. Suppose K is an uncountable Σ1
1 class which

is Turing degree upward closed in LT, i.e., whenever X,Y ∈ LT, X ∈ K, and X ≤T Y , then
there is Y0 ∈K such that Y ≡T Y0. Then K has Properties 4.1 and 4.2.

Proof. This theorem is analogous to [3, Lemma 3.3]. By Theorem 2.1, let C be such that

A ≡T OC ≡T C ⊕Z ≡T C ⊕O. (∗)

Theorem 2.1, relativized to C, yields B0 ∈K such that

OC ≡T OB0⊕C ≡T B0 ⊕OC . (†)

Combining (†) and (∗) shows that OB0⊕C ≡T B0 ⊕C ⊕O. As B0 ≤T B0 ⊕C, there is B ∈K
such that B ≡T B0 ⊕C by hypothesis. In particular,

OC ≡T OB ≡T B ⊕O.

Moreover, in combination with (∗),

A ≡T OB ≡T B ⊕O ≡T B ⊕Z.

This shows that K has Property 4.1.
To show that K has Property 4.2, repeat the above argument using Theorem 2.8 instead

of Theorem 2.1.

Remark 4.4. The proof of Theorem 4.3 is easily adapted to prove the same result with
LT = {X ∣ OX ≡T X ⊕O} replaced by LHYP = {X ∣ OX ≡HYP X ⊕O}.

The hyperarithmetical analog of the Pseudojump Inversion Theorem [4, Theorem 2.1,

pg. 601] also remains open. Namely, suppose V Xe is an effective enumeration of the Π1,X
1

predicates, uniformly in X. Define the e-th pseudo-hyperjump by

HJe(X) ∶=X ⊕ V Xe .

Does the following result hold?
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Conjecture 4.5. Suppose e ∈ N and A is a real such that O ≤T A. Then there exists B
such that

A ≡T HJe(B) ≡T B ⊕O. (1)

Even if Conjecture 4.5 holds, this leaves open the question of characterizing the Σ1
1

classes K ⊆ {0,1}N with the following properties:

Property 4.6. Suppose e ∈ N and A is a real such that O ≤T A. Then there exists B ∈ K
such that Equation (1) holds.

Property 4.7. Suppose e ∈ N and Z and A are reals such that Z⊕O ≤T A and 0 <HYP (Z)k
for each k ∈ N. Then there exists B ∈K such that Equation (1) holds and (Z)k ≰HYP B for
every k ∈ N.

Property 4.8. Suppose e ∈ N and Z and A are reals such that Z ⊕O ≤T A and 0 <HYP Z.
Then there exists B ∈K such that

A ≡T HJe(B) ≡T B ⊕Z ≡T B ⊕O.
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