Turing degrees of hyperjumps

Hayden R. Jananthan
Department of Mathematics
Vanderbilt University
Nashville, TN 37203, USA
https://my.vanderbilt.edu/haydenjananthan
hayden.r.jananthan@vanderbilt.edu

Stephen G. Simpson
Department of Mathematics
Vanderbilt University
Nashville, TN 37203, USA
https://www.math.psu.edu/simpson
sgslogic@gmail.com

First draft: August 25, 2019 This draft: June 29, 2020

Abstract

The Posner-Robinson Theorem states that for any reals Z and A such that $Z \oplus 0' \leq_{\mathrm{T}} A$ and $0 <_{\mathrm{T}} Z$, there exists B such that $A \equiv_{\mathrm{T}} B' \equiv_{\mathrm{T}} B \oplus Z \equiv_{\mathrm{T}} B \oplus 0'$. Consequently, any nonzero Turing degree $\deg_{\mathrm{T}}(Z)$ is a Turing jump relative to some B. Here we prove the hyperarithmetical analog, based on an unpublished proof of Slaman, namely that for any reals Z and A such that $Z \oplus \mathcal{O} \leq_{\mathrm{T}} A$ and $0 <_{\mathrm{HYP}} Z$, there exists B such that $A \equiv_{\mathrm{T}} \mathcal{O}^B \equiv_{\mathrm{T}} B \oplus Z \equiv_{\mathrm{T}} B \oplus \mathcal{O}$. As an analogous consequence, any nonhyperarithmetical Turing degree $\deg_{\mathrm{T}}(Z)$ is a hyperjump relative to some B.

Contents

1	Introduction	2
2	A Basis Theorem for Σ^1_1 Classes	3
3	Posner-Robinson for Turing Degrees of Hyperjumps3.1Kumabe-Slaman Forcing3.2Proof of Posner-Robinson for Hyperjumps	9 9 12
4	Open Problems	15

1 Introduction

Our starting point is the Friedberg Jump Theorem:

Theorem 1.1 (Friedberg Jump Theorem). [10, Theorem 13.3.IX, pg. 265] Suppose A is a real such that $0' \leq_T A$. Then there exists B such that

$$A \equiv_{\mathrm{T}} B' \equiv_{\mathrm{T}} B \oplus 0'.$$

There are several refinements of the Friedberg Jump Theorem. One such extension shows that B can be taken to be an element of any special Π_1^0 class $P \subseteq \{0,1\}^{\mathbb{N}}$. Here special means that P is nonempty and has no recursive elements.

Theorem 1.2. [6, following Theorem 3.1, pg. 37] Suppose $P \subseteq \{0,1\}^{\mathbb{N}}$ is a special Π_1^0 class and A is a real such that $0' \leq_{\mathbb{T}} A$. Then there exists $B \in P$ such that

$$A \equiv_{\mathbf{T}} B' \equiv_{\mathbf{T}} B \oplus 0'.$$

Another refinement is the Posner-Robinson Theorem:

Theorem 1.3 (Posner-Robinson Theorem). [8, Theorem 1, pg. 715] [5, Theorem 3.1, pg. 1228] Suppose Z and A are reals such that $Z \oplus 0' \leq_T A$ and $0 <_T Z$. Then there exists B such that

$$A \equiv_{\mathrm{T}} B' \equiv_{\mathrm{T}} B \oplus Z \equiv_{\mathrm{T}} B \oplus 0'.$$

In this paper we prove hyperarithmetical analogs of Theorem 1.2 and Theorem 1.3. The hyperarithmetical analog of Theorem 1.1 is due to Macintyre [7, Theorem 3, pg. 9]. In these hyperarithmetical analogs, the Turing jump operator $X \mapsto X'$ is replaced by the hyperjump operator $X \mapsto \mathcal{O}^X$ and Π^0_1 classes are replaced by Σ^1_1 classes. A feature of [7, Theorem 3, pg. 9] and of our results is that they involve Turing degrees rather than hyperdegrees, so for instance \mathcal{O}^B is not only hyperarithmetically equivalent to A, but in fact Turing equivalent to A.

Here is an outline of this paper:

In §2 we prove the following basis theorem for uncountable Σ_1^1 classes $K \subseteq \{0,1\}^{\mathbb{N}}$.

Theorem 2.1. Suppose $K \subseteq \{0,1\}^{\mathbb{N}}$ is an uncountable Σ_1^1 class and Z and A are reals such that $Z \oplus \mathcal{O} \subseteq_{\mathbf{T}} A$ and $0 \subseteq_{\mathbf{HYP}} Z$. Then there exists $B \in K$ such that

$$A \equiv_{\mathbf{T}} \mathcal{O}^B \equiv_{\mathbf{T}} B \oplus \mathcal{O}$$

and $Z \nleq_{\text{HYP}} B$.

In §3 we prove the following analog of Theorem 1.3, which is essentially due to Slaman [13].

Theorem 3.1. Suppose Z and A are reals such that $Z \oplus \mathcal{O} \leq_{\mathrm{T}} A$ and $0 <_{\mathrm{HYP}} Z$. Then there exists B such that

$$A \equiv_{\mathrm{T}} \mathcal{O}^B \equiv_{\mathrm{T}} B \oplus Z \equiv_{\mathrm{T}} B \oplus \mathcal{O}.$$

The remainder of this section fixes notation and terminology.

 $g: \subseteq A \to B$ denotes a partial function with domain $dom g \subseteq A$ and codomain B. For $a \in A$, if $a \in dom g$ then we say 'g(a) converges' or 'g(a) is defined' and write $g(a) \downarrow$. Otherwise, we say 'g(a) diverges' or 'g(a) is undefined' and write $g(a) \uparrow$. If f and g are two partial functions

 $\subseteq A \to B$ and $a \in A$, then $f(a) \simeq g(a)$ means $(f(a) \downarrow \land g(a) \downarrow \land f(a) = g(a)) \lor (f(a) \uparrow \land g(a) \uparrow)$. We write $f(a) \downarrow = b$ to mean that $f(a) \downarrow$ and $f: a \mapsto b$.

 $\mathbb{N}^{\mathbb{N}}$ and $\{0,1\}^{\mathbb{N}}$ denote the Baire and Cantor spaces, respectively, whose elements we sometimes call *reals*. We identify $\{0,1\}^{\mathbb{N}}$ and the powerset $\mathcal{P}(\mathbb{N})$ in the usual manner.

If S is a set, then S^* is the set of strings of elements from S. If $s_0, \ldots, s_{n-1} \in S$, then $\sigma = \langle s_0, \ldots, s_{n-1} \rangle \in S^*$ denotes the string of $length \ |\sigma| := n$ defined by $\sigma(k) = s_k$. If $\langle s_0, \ldots, s_{n-1} \rangle, \langle t_0, \ldots, t_{m-1} \rangle \in S^*$, then their concatenation is $\langle s_0, \ldots, s_{n-1} \rangle, \langle t_0, \ldots, t_{m-1} \rangle := \langle s_0, \ldots, s_{n-1}, t_0, \ldots, t_{m-1} \rangle$. If $\sigma, \tau \in S^*$, then σ is an initial segment of τ (equivalently, τ is an extension of σ) written $\sigma \subseteq \tau$, if $\tau \upharpoonright |\sigma| = \sigma$. If $f : \mathbb{N} \to S$ then $\sigma \in S^*$ is an initial segment of f (equivalently, f is an extension of σ), written $\sigma \subseteq f$, if $f \upharpoonright |\sigma| = \sigma$. $\sigma, \tau \in S^*$ are incompatible if neither is an initial segment of the other. If \leq is a partial order on S, then the lexicographical ordering \leq_{lex} on S^* is defined by setting $\sigma \leq_{\text{lex}} \tau$ if $\sigma \subseteq \tau$ or, where k is the least index at which $\sigma(k) \neq \tau(k)$, then $\sigma(k) < \tau(k)$.

 $\varphi_e^{(k)}$ denotes the e-th partial recursive function $\subseteq \mathbb{N}^k \to \mathbb{N}$; e is called an index of $\varphi_e^{(k)}$. Likewise, if $f \in \mathbb{N}^{\mathbb{N}}$ then $\varphi_e^{(k),f}$ denotes the e-th partial function $\varphi_e^{(k),f} : \subseteq \mathbb{N}^k \to \mathbb{N}$ which is partial recursive in f; e is again called an index of $\varphi_e^{(k),f}$, while f is called an oracle of $\varphi_e^{(k),f}$.

 \leq_{T} denotes Turing reducibility while \equiv_{T} denotes Turing equivalence. \leq_{HYP} denotes hyperarithmetical reducibility while \equiv_{HYP} denotes hyperarithmetical equivalence. For $X \in \{0,1\}^{\mathbb{N}}$, X' denotes the Turing jump of X and \mathcal{O}^X denotes the hyperjump of X. \mathcal{O} denotes Kleene's \mathcal{O} . For $f,g \in \mathbb{N}^{\mathbb{N}}$, their join $f \oplus g \in \mathbb{N}^{\mathbb{N}}$ is defined by $(f \oplus g)(2n) = f(n)$ and $(f \oplus g)(2n+1) = g(n)$.

 P_e denotes the e-th Π_1^0 set $\{f \in \mathbb{N}^{\mathbb{N}} \mid \varphi_e^{(1),f}(0)\downarrow\} \subseteq \mathbb{N}^{\mathbb{N}}$. P_e^* denotes the e-th Σ_1^1 class $\{X \in \{0,1\}^{\mathbb{N}} \mid \exists f \ (f \oplus X \in P_e)\}$.

2 A Basis Theorem for Σ_1^1 Classes

The following theorem includes the Gandy Basis Theorem [11, Theorem III.1.4, pg. 54], the Kreisel Basis Theorem for Σ_1^1 Classes [11, Theorem III.7.2, pg. 75], and Macintyre's Hyperjump Inversion Theorem [7, Theorem 3, pg. 9].

Theorem 2.1. Suppose $K \subseteq \{0,1\}^{\mathbb{N}}$ is an uncountable Σ_1^1 class and Z and A are reals such that $Z \oplus \mathcal{O} \leq_{\mathrm{T}} A$ and $0 <_{\mathrm{HYP}} Z$. Then there exists $B \in K$ such that

$$A \equiv_{\mathbf{T}} \mathcal{O}^B \equiv_{\mathbf{T}} B \oplus \mathcal{O}$$

and $Z \nleq_{\text{HYP}} B$.

To prove Theorem 2.1 we use Gandy-Harrington forcing (first introduced by Harrington in an unpublished manuscript [2]; see, e.g., [11, Theorem IV.6.3, pg. 108]), forming a descending sequence of uncountable Σ_1^1 classes

$$K = K_0 \supseteq K_1 \supseteq \cdots \supseteq K_n \supseteq \cdots$$

where an element of the intersection $\bigcap_{n=0}^{\infty} K_n$ has the desired property. Unlike in the case of Π_1^0 subsets of $\{0,1\}^{\mathbb{N}}$, compactness cannot be used to easily show that the intersection $\bigcap_{n=0}^{\infty} K_n$ is nonempty. Instead, some care must be taken to show that this is the case.

Proposition 2.2.

(a) Given a Σ_1^1 predicate $K \subseteq \{0,1\}^{\mathbb{N}} \times \mathbb{N}^k$, there is a primitive recursive function $f: \mathbb{N}^k \to \mathbb{N}$ such that

$$P_{f(x_1,...,x_k)}^*(X) \equiv K(X,x_1,...,x_k).$$

- (b) Suppose $X \in \{0,1\}^{\mathbb{N}}$. Then $\{e \in \mathbb{N} \mid X \notin P_e^*\} \equiv_{\mathrm{T}} \mathcal{O}^X$.
- (c) $\{e \in \mathbb{N} \mid P_e^* = \emptyset\} \equiv_{\mathbf{T}} \mathcal{O}.$

Proof. Straight-forward.

Corollary 2.3. There exist primitive recursive functions v, u, and U such that that for all $n, m \in \mathbb{N}$ and $\sigma, \tau \in \mathbb{N}^*$ and $I \in \mathcal{P}_{fin}(\mathbb{N})$,

$$P_{v(n,m)}^* = P_n^* \cap P_m^*,$$

$$P_{u(e,\sigma,\tau)}^* = P_e^* [\sigma,\tau] = \{ X \in \{0,1\}^{\mathbb{N}} \mid \sigma \in X \land \exists g \ (X \oplus g \in P_e \land \tau \in g) \},$$

$$P_{U(I,\sigma,\langle\tau_0,...,\tau_{n-1}\rangle)}^* = \bigcap_{k \in I \land k \leq n} P_k^* [\sigma,\tau_k].$$

Proposition 2.4. The following partial functions are O-recursive:

- (a) The partial function $\rho(\sigma, e) \simeq \langle \sigma_0, \sigma_1 \rangle$ where σ_0, σ_1 are minimal incompatible extensions of σ which have extensions in P_e^* and σ_0 is lexicographically less than σ_1 , whenever σ has at least two extensions in P_e^* , otherwise diverging.
- (b) The partial function $\operatorname{ext}(\langle e_1, \dots, e_N \rangle, \sigma, \langle \tau_1, \dots, \tau_N \rangle) \simeq (\tilde{\sigma}, \langle \tilde{\tau}_1, \dots, \tilde{\tau}_N \rangle)$ where $(\tilde{\sigma}, \langle \tilde{\tau}, \dots, \tilde{\tau}_N \rangle)$ is the lexicographically least pair such that
 - 1. $\sigma \subsetneq \tilde{\sigma}$ and $\tau_k \subsetneq \tilde{\tau_k}$ for $1 \leq k \leq N$ and
 - 2. $\bigcap_{k=1}^{N} P_{e_k}^* [\tilde{\sigma}, \tilde{\tau_k}] \neq \emptyset$

whenever $\bigcap_{k=1}^{N} P_{e_k}^* [\sigma, \tau_k] \neq \emptyset$, otherwise diverging.

Proof.

- (a) Using \mathcal{O} , search for the first string ν such that $P_e^*[\sigma^{\hat{}}\nu^{\hat{}}\langle i\rangle, \langle \rangle] \neq \emptyset$ for i = 0, 1. Once such ν has been found, $\rho(\sigma, e) \downarrow = \langle \sigma^{\hat{}}\nu^{\hat{}}\langle 0\rangle, \sigma^{\hat{}}\nu^{\hat{}}\langle 1\rangle \rangle$.
- (b) Using \mathcal{O} , search for the first of i=0,1 for which $\bigcap_{k=1}^N P_{e_k}^* [\sigma^{\hat{}}(i), \tau_k] \neq \emptyset$, then search for the lexicographically least $\langle j_1, \ldots, j_N \rangle \in \{0,1\}^N$ such that $\bigcap_{k=1}^N P_{e_k}^* [\sigma^{\hat{}}(i), \tau_k^{\hat{}}(j_k)] \neq \emptyset$. If no such i or j_1, \ldots, j_N are found, then diverge. Otherwise, $\operatorname{ext}(\langle e_1, \ldots, e_N \rangle, \sigma, \langle \tau_1, \ldots, \tau_N \rangle) \downarrow = (\sigma^{\hat{}}(i), \langle \tau_1^{\hat{}}(j_1), \ldots, \tau_N^{\hat{}}(j_N))$.

Let ρ_0, ρ_1 be defined by

$$\rho(\sigma, e) \simeq \langle \rho_0(\sigma, e), \rho_1(\sigma, e) \rangle.$$

We use the ordinal notation description of \mathcal{O} (and, more generally, \mathcal{O}^Y for $Y \in \{0,1\}^{\mathbb{N}}$) described in [11] and use the following well-known lemma to describe hyperarithmetical reducibility in terms of H-sets.

Notation. For $X \in \{0,1\}^{\mathbb{N}}$ and $n \in \mathbb{N}$, define

$$(X)_n := \{x \in \mathbb{N} \mid 2^n \cdot 3^x \in X\}.$$

4

Lemma 2.5. Suppose X and Y are reals in $\{0,1\}^{\mathbb{N}}$. Then $X \leq_{\text{HYP}} Y$ if and only if there exists $b \in \mathcal{O}^Y$ and $n \in \mathbb{N}$ such that $X = (H_b^Y)_n$.

Proof. Suppose $X \leq_{\text{HYP}} Y$, so that there is $b \in \mathcal{O}^Y$ such that $X \leq_{\text{T}} H_b^Y$. Let e be the index of such a Turing reduction, i.e., let e be such that $X = \varphi_e^{(1), H_b^Y}$. By definition [11], $2^b \in \mathcal{O}^Y$ and

$$H_{2b}^{Y} := \{2^{n}3^{x} \mid \varphi_{n}^{(1), H_{b}^{Y}}(x)\downarrow\}.$$

Let f be an index such that

$$\varphi_f^{(1),H_b^Y}(x)\downarrow \iff \varphi_e^{(1),H_b^Y}(x)\downarrow = 1$$

Then

$$(H_{2^{b}}^{Y})_{f} = \{x \in \mathbb{N} \mid \varphi_{f}^{(1), H_{b}^{Y}}(x) \downarrow \}$$
$$= \{x \in \mathbb{N} \mid \varphi_{e}^{(1), H_{b}^{Y}}(x) \downarrow = 1\}$$
$$= X$$

Conversely, suppose there is $b \in \mathcal{O}^Y$ and $n \in \mathbb{N}$ such that $X = (H_b^Y)_n$. Let e be an index such that

$$\varphi_e^{(1),Z}(x) = \begin{cases} 1 & \text{if } x \in (Z)_n \\ 0 & \text{if } x \notin (Z)_n \end{cases}$$

for any $Z \in \{0,1\}^{\mathbb{N}}$. Then $\varphi_e^{(1),H_b^Y} = X$, showing that $X \leq_{\mathbf{T}} H_b^Y$.

Proof of Theorem 2.1. By the Gandy Basis Theorem [11, Theorem III.1.4, pg. 54], assume without loss of generality that $\omega_1^Y = \omega_1^{\text{CK}}$ for all $Y \in K$.

In order to control the hyperjump \mathcal{O}^B , we choose B to be an element of an intersection

In order to control the hyperjump \mathcal{O}^B , we choose B to be an element of an intersection of Σ_1^1 subsets

$$K = K_0 \supseteq K_1 \supseteq \cdots \supseteq K_n \supseteq \cdots$$
.

In order for B to be an element of $K_n = P_{j(n)}^*$ for each n, there must be $g_n \in \mathbb{N}^{\mathbb{N}}$ such that $B \oplus g_n \in P_{j(n)}$, where j(n) is some index of K_n . Such g_n depend on B. Thus, we additionally define sequences of strings

so that $B = \bigcup_{n \in \omega} \sigma_n$ and $g_k = \bigcup_{n \in \omega} \tau_{n,k}$. We also define a sequence of finite subsets of \mathbb{N}

$$I_0 \subseteq I_1 \subseteq \cdots \subseteq I_n \subseteq \cdots$$

encoded as finite sequences $\{e_1, \ldots, e_N\} \mapsto \langle e_1, \ldots, e_N \rangle$ which keep track of the indices e of Σ_1^1 classes we have committed to intersecting, so that $K_n = \bigcap_{k \in I_n} P_k^* [\sigma_n, \tau_{n,k}]$. A function $j: \mathbb{N} \to \mathbb{N}$ keeps track of the index of K_n , i.e.,

$$K_n = P_{j(n)}^*.$$

In the course of the proof, we assume that j encodes all of the information from previous steps (i.e., a course-of-value computation) though we avoid making this precise to ease the burden of notation.

To ease in the notation and exposition, we set the following temporary definitions. An *intersection system* consists of the following data:

- (i) a finite subset $I \subseteq \mathbb{N}$,
- (ii) a string σ , and
- (iii) a sequence of strings $\langle \tau_k \mid k \in I \rangle$

subject to the constraint that $\bigcap_{k \in I} P_k^*[\sigma, \tau_k]$ is nonempty. If $k \notin I$, then we assign the value $\langle \rangle$ to τ_k .

By adding P_e^* to the intersection system $I, \sigma, \langle \tau_k \mid k \in I \rangle$, we mean the following procedure, where $K = \bigcap_{k \in I} P_k^* [\sigma, \tau_k]$:

Case 1: $K \cap P_e^* = \emptyset$. Let $\tilde{I} = I$, $\tilde{K} = K$, $\tilde{\sigma} = \sigma$, and $\tilde{\tau_k} = \tau_k$ for each k.

Case 2: $K \cap P_e^* \neq \emptyset$. Let $\tilde{I} = I \cup \{e\}$, and let $\tilde{\sigma}$ and, simultaneously for all $k \in \tilde{I}$, $\tilde{\tau}_k$ be the lexicographically least proper extensions of σ and τ_k , respectively, such that $\bigcap_{k \in \tilde{I}} P_k^* [\tilde{\sigma}, \tilde{\tau}_k] \neq \emptyset$.

The resulting intersection system is $\tilde{I}, \tilde{\sigma}, \langle \tilde{\tau}_k \mid k \in \tilde{I} \rangle$. Note that from $I, \sigma, \langle \tau_k \mid k \in I \rangle$ and e, the new intersection system $\tilde{I}, \tilde{\sigma}, \langle \tilde{\tau}_k \mid k \in \tilde{I} \rangle$ can be determined in a uniform way recursively in \mathcal{O} : representing I as $\langle e_1, \ldots, e_N \rangle$ and writing $e_{N+1} = e$, then

$$\begin{split} \tilde{I} = \begin{cases} \langle e_1, \dots, e_N, e_{N+1} \rangle & \text{if } K \cap P_e^* \neq \varnothing, \\ I & \text{otherwise,} \end{cases} \\ (\tilde{\sigma}, \langle \tilde{\tau_k} \mid k \in \tilde{I} \rangle) = \begin{cases} \text{ext}(\tilde{I}, \sigma, \langle \tau_{e_1}, \dots, \tau_{e_N}, \langle \rangle \rangle) & \text{if } K \cap P_e^* \neq \varnothing, \\ (\sigma, \langle \tau_k \mid k \in I \rangle) & \text{otherwise.} \end{cases} \end{split}$$

In particular, the index $U(\tilde{I}, \tilde{\sigma}, \langle \tilde{\tau_k} \mid k < \max I \rangle)$ of \tilde{K} can be determined uniformly from the intersection system $I, \sigma, \langle \tau_k \mid k \in I \rangle$ using \mathcal{O} as an oracle.

Now we proceed with the construction. As K is Σ_1^1 , there is e_0 such that $K = P_{e_0}^*$.

Stage n = 0: Define

$$K_0 \coloneqq K$$
, $\sigma_0 \coloneqq \langle \rangle$, $\tau_{0,k} \coloneqq \langle \rangle$, $j(0) \coloneqq e_0$, $I_0 \coloneqq \{e_0\}$.

Note that $P_{j(0)}^* = K_0 = \bigcap_{k \in I_0} P_k^* [\sigma_0, \tau_{0,k}].$

Stage n = 3e + 1: Let $I_n, \sigma_n, \langle \tau_{n,k} \mid k \in I_n \rangle$ be the result of adding P_e^* to the intersection system $I_{n-1}, \sigma_{n-1}, \langle \tau_{n-1,k} \mid k \in I_{n-1} \rangle$, and let $K_n := \bigcap_{k \in I_n} P_k^* [\sigma_n, \tau_{n,k}]$ and j(n) be an index for K_n .

Stage n = 3e + 2: At this stage we encode A(e) into B.

By construction,

$$P_{j(n-1)}^* = K_{n-1} = \bigcap_{k \in I_{n-1}} P_k^* [\sigma_{n-1}, \tau_{n-1,k}] \neq \emptyset.$$

As K_{n-1} is uncountable, there are infinitely many pairwise-incompatible extensions of σ_{n-1} which extend to elements of K_{n-1} . Thus, let

$$\sigma_n := \rho_{A(e)}(\sigma_{n-1}, j(n-1)).$$

Define

$$\begin{split} K_n &\coloneqq \bigcap_{k \in I_{n-1}} P_k^{\star} \big[\sigma_n, \tau_{n-1,k} \big] = P_{U(\sigma_n, I_{n-1}, \langle \tau_{n-1,0}, \dots, \tau_{n-1,n-1} \rangle)}, \\ \tau_{n,k} &\coloneqq \tau_{n-1,k}, \qquad \text{(for all } k) \\ I_n &\coloneqq I_{n-1}, \\ j(n) &\coloneqq U(\sigma_n, I_{n-1}, \langle \tau_{n-1,0}, \dots, \tau_{n-1,n-1} \rangle). \end{split}$$

Stage $n = 3^{b+1} \cdot 5^e \cdot 7^f$: Suppose $b \in \mathcal{O}$. Let $m \in \mathbb{N}$ be the least natural number for which there are $Y_1, Y_2 \in K_{n-1}$ such that $\varphi_f^{(1), H_b^{Y_1}}(2^e \cdot 3^m)$ and $\varphi_f^{(1), H_b^{Y_2}}(2^e \cdot 3^m)$ are both defined and unequal. For $i \in \{0, 1\}$, let

$$K_{n-1}^i=\big\{Y\in K_{n-1}\mid \varphi_f^{(1),H_b^{Y_1}}\big(2^e\cdot 3^m\big) \big\downarrow=i\big\}.$$

Because $K_{n-1}^0 \cap K_{n-1}^1 = \emptyset$, there is a least $k \in \mathbb{N}$ and $i \in \{0,1\}$ such that $\{Y \in K_{n-1}^0 \mid Y(k) = i\}$ and $\{Y \in K_{n-1}^1 \mid Y(k) \neq i\}$ are nonempty. Let $i_0 = i$ and $i_1 = 1 - i$.

Let $I_n, \sigma_n, \langle \tau_{n,k} \mid k \in I_n \rangle$ be the result of adding the (uniformly in b, e, f, m, k,and i, given Z(m)) Σ_1^1 class $\{Y \in \{0,1\}^{\mathbb{N}} \mid \varphi_f^{(1),H_b^Y}(2^e \cdot 3^m) \downarrow \neq Z(m) \land Y(k) \neq i_{Z(m)}\}$ to the intersection system $I_{n-1}, \sigma_{n-1}, \langle \tau_{n-1,k} \mid k \in I_{n-1} \rangle$, and let $K_n := \bigcap_{k \in I_n} P_k^*[\sigma_n, \tau_{n,k}]$ and j(n) be an index for K_n .

If $b \notin \mathcal{O}$ or no such m exists, do nothing, i.e., let

$$K_n \coloneqq K_{n-1}, \qquad \sigma_n \coloneqq \sigma_{n-1}, \qquad \tau_{n,k} \coloneqq \tau_{n-1,k}, \qquad j(n) \coloneqq j(n-1), \qquad I_n \coloneqq I_{n-1}.$$

All Other Stages n: Do nothing, i.e., let

$$K_n := K_{n-1}, \qquad \sigma_n := \sigma_{n-1}, \qquad \tau_{n,k} := \tau_{n-1,k}, \qquad j(n) := j(n-1), \qquad I_n := I_{n-1}.$$

This completes the construction.

Define

$$B \coloneqq \bigcup_{n \in \mathbb{N}} \sigma_n$$
 and $g_k \coloneqq \bigcup_{n \in \mathbb{N}} \tau_{n,k}$.

We start by claiming $B \in \bigcap_{n \in \mathbb{N}} K_n$: by construction, for $k \in \bigcap_{n \in \mathbb{N}} I_n$, we have $B \oplus g_k \in P_k$, showing $B \in P_k^*$. Additionally, by construction $B \in P_k^*[\sigma_n, \tau_{n,k}]$ for every n and every $k \in \bigcap_{n \in \mathbb{N}} I_n$, so $B \in \bigcap_{k \in I_n} P_k^*[\sigma_n, \tau_{n,k}] = K_n$. Thus, $B \in \bigcap_{n \in \mathbb{N}} K_n$. In particular, $B \in K_0 = K$, so $\omega_1^B = \omega_1^{CK}$.

If $Z \leq_{\text{HYP}} B$, then Lemma 2.5 shows there are $c \in \mathcal{O}^B$ and $e \in \mathbb{N}$ such that $Z = (H_b^B)_e$. Because $\omega_1^B = \omega_1^{\text{CK}}$, there exists $b \in \mathcal{O}$ such that |b| = |c| and hence $H_b^B \equiv_{\text{T}} H_c^B$ by Spector's Uniqueness Theorem [11, Corollary II.4.6, pg. 40]. Let f be an index such that $\varphi_f^{(1),H_b^B} = H_c^B$, so that $Z = (\varphi_f^{(1),H_b^B})_e$. By construction, at Stage $n = 3^{b+1} \cdot 5^e \cdot 7^f$ it must have been the case that no m and $Y_1, Y_2 \in K_{n-1}$ existed with $\varphi_f^{(1),H_b^{Y_1}}(2^e \cdot 3^m)$ and

 $\varphi_f^{(1),H_b^{Y_2}}(2^e\cdot 3^m)$ both defined and unequal. In particular, $\varphi_f^{(1),H_b^B}$ is a Σ_1^1 singleton, and so hyperarithmetical. But then $H_c^B\equiv_{\mathrm{T}}H_b^B$ is hyperarithmetical, hence $Z=(H_c^B)_e$ is hyperarithmetical, a contradiction. Thus, $Z\nleq_{\mathrm{HYP}}B$.

We now make the following observations: assuming j(n-1) is known (and utilizing the implicit course-of-values procedure to yield $I_{n-1}, \sigma_{n-1}, \langle \tau_{n-1,k} \rangle_{k \in \mathbb{N}}$), then...

- ...in Stage n = 3e + 1, the determination of $I_n, \sigma_n, \langle \tau_{n,k} \rangle_{k \in \mathbb{N}}$ (and hence also j(n)) is recursive in \mathcal{O} by Proposition 2.4.
- ...in Stage n = 3e + 2, the determination of $I_n, \sigma_n, \langle \tau_{n,k} \rangle_{k \in \mathbb{N}}$ (and hence also j(n)) is recursive in A (by construction) or $B \oplus \mathcal{O}$ (by determining the unique i for which $\rho_i(\sigma_{n-1}, j(n-1)) \subset B$) by Proposition 2.4.
- ... in Stage $n=3^{b+1}\cdot 5^e\cdot 7^f$, the determination of $I_n,\sigma_n,\langle \tau_{n,k}\rangle_{k\in\mathbb{N}}$ (and hence also j(n)) is recursive in $B\oplus \mathcal{O}$ (the determination of whether $b\in \mathcal{O}$ and whether there exists an m and $Y_1,Y_2\in K_{n-1}$ for which $\varphi_f^{(1),H_b^{Y_1}}(2^e\cdot 3^m)$ and $\varphi_f^{(1),H_b^{Y_2}}(2^e\cdot 3^m)$ are both defined and unequal may be performed recursively in \mathcal{O} since it corresponds to checking whether a particular Σ_1^1 class is nonempty, and once the least such m is found, we may determine the least k and $i\in\{0,1\}$ for which $\{Y\in K_{n-1}^0\mid Y(k)=i\}$ and $\{Y\in K_{n-1}^1\mid Y(k)=1-i\}$ are nonempty; finally, checking whether B(k)=i or B(k)=1-i determines whether we intersected $\{Y\in\{0,1\}^\mathbb{N}\mid \varphi_f^{(1),H_b^Y}(2^e\cdot 3^m)\downarrow=0\land Y(k)=i\}$ or $\{Y\in\{0,1\}^\mathbb{N}\mid \varphi_f^{(1),H_b^Y}(2^e\cdot 3^m)\downarrow=1\land Y(k)=1-i\}$, respectively) or A (as before, the determination of whether $b\in \mathcal{O}$ and of the existence of such an m may be done recursively in $\mathcal{O}\leq_{\mathrm{T}}A$, and $Z\leq_{\mathrm{T}}A$).
- ...in all other Stages n, the determination of $I_n, \sigma_n, \langle \tau_{n,k} \rangle_{k \in \mathbb{N}}$ (and hence also j(n)) is recursive.

In particular, $j \leq_T A$ and $j \leq_T B \oplus \mathcal{O}$.

We make the following final observations:

- $A \leq_{\mathrm{T}} j \oplus \mathcal{O}$ as A(e) = i if and only if $j(n) = U(\rho_i(\sigma_{n-1}, j(n-1)), I_{n-1}, \langle \tau_{n-1,0}, \dots, \tau_{n-1,n-1} \rangle)$, where n = 3e + 2.
- $\mathcal{O}^B \leq_{\mathrm{T}} j \oplus \mathcal{O}$ as $B \in P_e^*$ if and only if $v(j(n-1),e) \notin \{i \mid P_i^* = \emptyset\} \equiv_{\mathrm{T}} \mathcal{O}$. The determination $v(j(n-1),e) \notin \{i \mid P_i^* = \emptyset\} \equiv_{\mathrm{T}} \mathcal{O}$ can be made recursively in $j \oplus \mathcal{O}$.

Thus, we find that

$$A \leq_{\mathrm{T}} j \oplus \mathcal{O} \leq_{\mathrm{T}} B \oplus \mathcal{O} \leq_{\mathrm{T}} \mathcal{O}^B \leq_{\mathrm{T}} j \oplus \mathcal{O} \leq_{\mathrm{T}} A$$

so we have Turing equivalence throughout.

The following corollary is originally due to Macintyre [7, Theorem 3, pg. 9].

Corollary 2.6. Suppose A is a real such that $\mathcal{O} \leq_{\mathrm{T}} A$. Then there exists B such that

$$A \equiv_{\mathbf{T}} \mathcal{O}^B \equiv_{\mathbf{T}} B \oplus \mathcal{O}.$$

The following corollary is "folklore", being unpublished but known to researchers and stated in [1, Exercise 2.5.6, pg. 40] without proof or references. Other than [1, Exercise 2.5.6, pg. 40] we have not seen any statement of Corollary 2.7 in the literature.

Corollary 2.7. Suppose K is a nonempty Σ_1^1 class. Then there exists $B \in K$ such that $\mathcal{O} \equiv_{\mathbb{T}} \mathcal{O}^B \equiv_{\mathbb{T}} B \oplus \mathcal{O}$.

Proof. If K is uncountable, then we apply Theorem 2.1 with $Z = A = \mathcal{O}$.

If K is countable, then its elements are hyperarithmetical [11, Theorem III.6.2, pg. 72] and so any $B \in K$ satisfies $\mathcal{O} \equiv_{\mathbf{T}} \mathcal{O}^B \equiv_{\mathbf{T}} B \oplus \mathcal{O}$.

We can generalize Theorem 2.1, replacing the real Z by a sequence of reals, as follows.

Theorem 2.8. Suppose K is an uncountable Σ_1^1 class and Z and A are reals such that $Z \oplus \mathcal{O} \leq_{\mathrm{T}} A$ and $0 <_{\mathrm{HYP}} (Z)_k$ for each $k \in \mathbb{N}$. Then there exists $B \in K$ such that

$$A \equiv_{\mathbf{T}} \mathcal{O}^B \equiv_{\mathbf{T}} B \oplus \mathcal{O}$$

and $(Z)_k \nleq_{HYP} B$ for all k.

Proof. The proof of Theorem 2.1 may be adapted by replacing Stage $n = 3^{b+1} \cdot 5^e \cdot 7^f$ with $n = 3^{b+1} \cdot 5^e \cdot 7^f \cdot 11^k$ and replacing therein Z with $(Z)_k$.

3 Posner-Robinson for Turing Degrees of Hyperjumps

Theorem 3.1 (Posner-Robinson for Turing Degrees of Hyperjumps). Suppose Z and A are reals such that $Z \oplus \mathcal{O} \leq_T A$ and $0 <_{HYP} Z$. Then there exists B such that

$$A \equiv_{\mathrm{T}} \mathcal{O}^B \equiv_{\mathrm{T}} B \oplus Z \equiv_{\mathrm{T}} B \oplus \mathcal{O}.$$

Theorem 3.1 is essentially due to Slaman [13]. The rest of this section is devoted to a proof of Theorem 3.1. The key to the proof is a forcing notion known as Kumabe-Slaman forcing, which was originally introduced in [12].

3.1 Kumabe-Slaman Forcing

In order to prove Theorem 3.1, we will use Turing functionals and an associated notion of forcing to construct the desired B.

Definition 3.2 (Turing Functionals). [12, 9] A **Turing functional** Φ is a set of triples $(x, y, \sigma) \in \mathbb{N} \times \{0, 1\} \times \{0, 1\}^*$ (called **computations in** Φ) such that if $(x, y_1, \sigma_1), (x, y_2, \sigma_2) \in \Phi$ and σ_1 and σ_2 are compatible, then $y_1 = y_2$ and $\sigma_1 = \sigma_2$.

A Turing functional Φ is **use-monotone** if:

- (i) For all (x_1, y_1, σ_1) and (x_2, y_2, σ_2) are elements of Φ and $\sigma_1 \subset \sigma_2$, then $x_1 < x_2$.
- (ii) For all x_1 and $(x_2, y_2, \sigma_2) \in \Phi$ where $x_2 > x_1$, then there are y_1 and σ_1 such that $\sigma_1 \subseteq \sigma_2$ and $(x_1, y_1, \sigma_1) \in \Phi$.

Remark 3.3. Despite the terminology, a Turing functional Φ is not assumed to be recursive or even recursively enumerable.

Definition 3.4 (Computations along a Real). [12, 9] Suppose Φ is a Turing functional and $X \in \{0,1\}^{\mathbb{N}}$. Then $(x,y,\sigma) \in \Phi$ is a **computation along** X if $\sigma \in X$, in which case we write $\Phi(X)(x) = y$. If for every $x \in \mathbb{N}$ there exists $y \in \{0,1\}$ and $\sigma \in X$ such that $(x,y,\sigma) \in \Phi$, then $\Phi(X)$ defines an element of $\{0,1\}^{\mathbb{N}}$ (otherwise it is a partial function).

Lemma 3.5. Suppose Φ is a Turing functional, $X \in \{0,1\}^{\mathbb{N}}$, and $\Phi(X) \in \{0,1\}^{\mathbb{N}}$. Then

$$\Phi(X) \leq_{\mathrm{T}} \Phi \oplus X$$
.

Proof. Obvious from the definition of $\Phi(X)$.

Definition 3.6 (Kumabe-Slaman Forcing). [12, 9] Define the poset (\mathbb{P}, \leq) as follows:

- (i) Elements of \mathbb{P} are pairs (Φ, \mathbf{X}) where Φ is a finite use-monotone Turing functional and \mathbf{X} is a finite subset of $\{0, 1\}^{\mathbb{N}}$.
- (ii) If $p = (\Phi_p, \mathbf{X}_p)$ and $q = (\Phi_q, \mathbf{X}_q)$ are in \mathbb{P} , then $p \leq q$ if
 - (a) $\Phi_p \subseteq \Phi_q$ and for all $(x_q, y_q, \sigma_q) \in \Phi_q \setminus \Phi_p$ and all $(\mathbf{X}_p, y_p, \sigma_p) \in \Phi_p$, the length of σ_q is greater than the length of σ_p .
 - (b) $\mathbf{X}_p \subseteq \mathbf{X}_q$.
 - (c) For every x, y, and $X \in \mathbf{X}$, if $\Phi_q(X)(x) = y$, then $\Phi_p(X)(x) = y$.

In other words, a stronger condition than p can add longer computations to Φ_p , provided they don't apply to any element of \mathbf{X}_p .

In the remainder of §3, we will be discussing Kumabe-Slaman forcing over countable ω -models of ZFC^1 . Unlike in the forcing constructions in axiomatic set theory, it will be important here that the countable ground model M is *not* well-founded. We now introduce some conventions for discussing such models.

Let M be a countable non-well-founded ω -model of ZFC. Let $\theta(x_1,\ldots,x_n)$ be a sentence in the language of ZFC with parameters x_1,\ldots,x_n from M. We write $\theta^M(x_1,\ldots,x_m)$ or $M \models \theta(x_1,\ldots,x_n)$ to mean that $\theta(x_1,\ldots,x_n)$ holds in M. In particular, $x_1 \in {}^M x_2$ means that $M \models x_1 \in x_2$, etc. We tacitly identity the natural number system of M with the standard natural number system, the reals of M with standard reals, etc. In particular, let \mathbb{P}^M be the set of pairs (Φ,X) such that $M \models \text{``}(\Phi,X)$ is a Kumabe-Slaman forcing condition". In this case, Φ is identified with a finite Turing functional, X is identified with a finite set of reals belonging to M, etc., so (Φ,X) actually is a Kumabe-Slaman forcing condition.

The key property of Kumabe-Slaman Forcing is the following:

Lemma 3.7. [9, based on Lemma 3.10, pg. 23] Suppose M is an ω -model of ZFC, $D \in M$ is dense in \mathbb{P}^M , and $X_1, \ldots, X_n \in \{0,1\}^{\mathbb{N}}$. Then for any $p \in \mathbb{P}^M$, there exists $q \geq p$ such that $q \in D$ and Φ_q does not add any new computations along any X_k .

Proof. Suppose $p = (\Phi_p, \mathbf{X}_p) \in \mathbb{P}^M$. Say that an n-tuple of strings $\vec{\tau}$ is essential for (p, D) if q > p and $q \in D$ implies the existence of $(x, y, \sigma) \in \Phi_q \setminus \Phi_p$ such that σ is compatible with some component of $\vec{\tau}$, i.e., any extension of p in D adds a computation along a string compatible with a component of $\vec{\tau}$. Being essential for (p, D) is definable in M.

Define

$$T_n(p, D) := \{ \vec{\tau} \in (\{0, 1\}^*)^n \mid \vec{\tau} \text{ is essential for } (p, D) \text{ and } |\tau_1| = \dots = |\tau_n| \}.$$

Being essential for (p, D) is closed under taking (component-wise) initial segments, so $T_n(p, D)$ is a finitely branching tree in M.

¹Here ZFC denotes Zermelo-Fraenkel Set Theory with the Axiom of Choice. However, for the purposes of this paper, our ω-models need not satisfy ZFC but only a small subsystem of ZFC or actually of second-order arithmetic.

Suppose for the sake of a contradiction that for every q > p, either $q \notin D$ or else q adds a new computation along some X_k . We claim that $\langle X_1 | m, \ldots, X_n | m \rangle$ is essential for (p, D) for all $m \in \mathbb{N}$. Given q > p with $q \in D$, by hypothesis there is some computation $(x, y, \sigma) \in \Phi_q \setminus \Phi_p$ along some X_k . This means that $\sigma \subset X_k$ (outside of M), so σ is compatible with $X_k | m$.

This shows that $T_n(p, D)$ is infinite. As M is a model of ZFC, it follows that $T_n(p, D)$ has a path through it. The requirement that the components of any element of $T_n(p, D)$ are of the same length implies that such a path is of the form (Y_1, \ldots, Y_n) for $Y_1, \ldots, Y_n \in M \cap \{0,1\}^{\mathbb{N}}$.

Consider $p_1 = (\Phi_p, \mathbf{X}_p \cup \{Y_1, \dots, Y_n\})$. Suppose $q \geq p_1$ and $q \in D$. Each n-tuple $\langle Y_1 \upharpoonright m, \dots, Y_n \upharpoonright m \rangle$ is essential for (p, D) for each m, so there exists $(x_m, y_m, \sigma_m) \in \Phi_q \setminus \Phi_p$ such that σ_m is compatible with $Y_k \upharpoonright m$ for some k. As Φ_q is finite, letting m be sufficiently large shows that there is $(x, y, \sigma) \in \Phi_q \setminus \Phi_p$ for which σ is an initial segment of Y_k for some k. However, this is not possible since $q \leq p_1$ implies $Y_k \in \mathbf{X}_q$. This provides the needed contradiction.

Suppose G is an M-generic filter for \mathbb{P}^M . Then for every X

$$X \subseteq^M \mathbb{N} \iff \text{there is } p \in G \text{ with } X \in \mathbf{X}_p$$

since for any $X \subseteq^M \mathbb{N}$, the set $\{p \in \mathbb{P}^M \mid (\emptyset, \{X\}) \leq p\}^M$ is a dense open subset of \mathbb{P}^M in M. Thus, the essential parts of an M-generic filter G are the Turing functionals Φ_p for $p \in G$.

Definition 3.8. A Turing functional Φ is M-generic for \mathbb{P}^M if and only if there exists an M-generic filter G such that

$$(x, y, \sigma) \in \Phi \iff \text{there exists } p \in G \text{ such that } (x, y, \sigma) \in {}^{M} \Phi_{p}.$$

 Φ may be identified with an element $(\dot{\Phi})_G$ in M[G], where

$$M \vDash \dot{\Phi} = \{(p, \dot{c}) \mid p \in \mathbb{P}^M \land c \in \Phi_p\}$$

and \dot{c} is a canonical name for $c \in M$, defined by transfinite recursion in M to be the unique element in M for which

$$M \vDash \dot{c} = \mathbb{P}^M \times \{\dot{b} \mid b \in c\}.$$

Lemma 3.9. The following are equivalent for a Turing functional Φ :

- (i) Φ is an M-generic Turing functional for \mathbb{P}^M .
- (ii) For every dense open subset $D \subseteq^M \mathbb{P}^M$, there exists $p \in^M D$ such that

$$(x, y, \sigma) \in {}^{M} \Phi_{p} \Longrightarrow (x, y, \sigma) \in \Phi.$$

Proof.

 $(i) \Longrightarrow (ii)$ Let G be an M-generic filter for \mathbb{P}^M such that

$$(x, y, \sigma) \in \Phi \iff \text{there exists } p \in G \text{ such that } (x, y, \sigma) \in {}^{M} \Phi_{p}.$$

Suppose $D \subseteq^M \mathbb{P}^M$ is dense open. By definition, there exists $p \in G$ such that $p \in^M D$. Then by definition,

$$(x, y, \sigma) \in {}^{M} \Phi_{p} \Longrightarrow (x, y, \sigma) \in \Phi.$$

(ii) \Longrightarrow (i) For $p \in M$ \mathbb{P}^M , temporarily write $p \in \Phi$ if $(x, y, \sigma) \in M$ Φ_p implies $(x, y, \sigma) \in \Phi$. Define

$$G := \{ q \mid \exists p \ (p < \Phi \land M \vDash (p \le q)) \}.$$

We claim that G is an M-generic filter for \mathbb{P}^M .

Upwards closed: Suppose $q \in G$ and $M \models (q \leq q')$. Let $p < \Phi$ be such that $M \models p \leq q$. Then $M \models p \leq q'$ since $M \models (\leq \text{ is transitive})$, so $q' \in G$.

Downwards directed: Suppose $q, q' \in G$. Let $p, p' < \Phi$ be such that $M \models (p \le q \land p' \le q')$. Then the unique p'' for which $M \models p'' = (\Phi_p \cap \Phi_{p'}, \emptyset)$ satisfies $p'' < \Phi$ and $M \models (p'' \le q \land p'' \le q')$.

M-generic: Suppose $D \subseteq^M \mathbb{P}^M$ is dense open. By hypothesis, there exists $p < \Phi$ such that $p \in^M D$. By definition of $G, p \in G$.

By defining an M-generic Turing functional Φ for \mathbb{P}^M by means of approximations, Lemmas 3.7 and 3.10 allow us to meet dense sets without affecting $\Phi(Z)$, which can then be arranged independently.

3.2 Proof of Posner-Robinson for Hyperjumps

Now we proceed with the proof of Theorem 3.1:

Lemma 3.10. Suppose Z and A are reals such that $Z \oplus \mathcal{O} \leq_T A$ and $0 <_{HYP} Z$. Then there exists a (code for a) countable ω -model M of ZFC such that $\mathcal{O}^M \equiv_T A$ and $Z \notin M$.

Proof. The set of codes for countable ω -models of ZFC is Σ_1^1 , so the existence of a code of such an M follows from Theorem 2.1.

Proof of Theorem 3.1: The main idea of the proof is due to Slaman [13].

We shall construct an M-generic Turing functional Φ with $B = \Phi$ the desired real. Assume without loss of generality that no initial segment of Z is an initial segment of \mathcal{O} . By arranging for $\Phi(Z) \in \{0,1\}^{\mathbb{N}}$ and $\Phi(Z) = \mathcal{O}^{\Phi}$ and $\Phi(\mathcal{O}) = A$, this will complete the proof.

By Lemma 3.10, there exists a countable ω -model M of ZFC such that $\mathcal{O}, Z \notin M$ and $\mathcal{O}^M \equiv_{\mathrm{T}} A$. Without loss of generality, $M = \langle \omega, E \rangle$.

Let $D_0, D_1, D_2, ...$ be an enumeration, recursive in A, of the dense open subsets of \mathbb{P}^M in M (M is countable and $\mathcal{O}^M \equiv_{\mathrm{T}} A$, so this is possible). To construct our M-generic Φ , we approximate it by finite initial segments

$$p_0 \le p_1 \le \cdots \le p_n \le \cdots$$
.

During our construction, we alternate between meeting dense sets, arranging for $\Phi(\mathcal{O}) = A$, and arranging for $\Phi(Z) \equiv_T \mathcal{O}^{\Phi}$.

Stage n = 0: Define $p_0 := (\emptyset, \emptyset)$.

Stage $n = 2^m$: Suppose p_{n-1} has been constructed. By Lemma 3.7, there exists $q \in D_n$ extending p_{n-1} which does not add any new computations along Z or \mathcal{O} . Let p_n be the least such condition.

- Stage $n = 2^m \cdot 3$: We extend p_{n-1} to p_n by adding $(m, A(m), \sigma)$ where $\sigma \in \mathcal{O}$ is a sufficiently long initial segment of \mathcal{O} (i.e., the shortest initial segment of \mathcal{O} which is longer than any existing strings in elements of $\Phi_{p_{n-1}}$).
- **Stage** $n = 2^m \cdot 5$: Suppose p_{n-1} has been constructed. By construction, there is no y and $\sigma \in Z$ such that $(m, y, \sigma) \in \Phi_{p_{n-1}}$. Now proceed as follows:
 - **Substage 1:** Consider the set D (in M) containing all $q \in \mathbb{P}^M$ such that one of the following conditions hold:
 - (i) $q \Vdash (m \text{ encodes a } \Phi\text{-recursive linear order on } \omega \land m \in \mathcal{O}^{\Phi} \land \exists \alpha \ (\alpha \in \operatorname{Ord}^{M} \land |m| = \alpha)),$
 - (ii) $q \Vdash (m \text{ encodes a } \Phi\text{-recursive linear order on } \omega \land m \notin \mathcal{O}^{\Phi}), \text{ or }$
 - (iii) $q \Vdash \neg (m \text{ encodes a } \Phi\text{-recursive linear order on } \omega)$.

D is dense. By Lemma 3.7, there exists $q \in D$ extending p_{n-1} which does not add any new computations along Z or \mathcal{O} . Let q be minimal with that property.

- **Substage 2:** Extend q to p_n by adding (m, y, σ) , where $\sigma \in Z$ is a sufficiently long initial segment of Z (i.e., the shortest initial segment of Z which is longer than any existing strings in elements of Φ_q) and y depends on the following cases:
 - Case 1: If $q \Vdash (m \text{ encodes a } \Phi\text{-recursive linear order on } \omega \land m \in \mathcal{O}^{\Phi} \land \exists \alpha \ (\alpha \in \operatorname{Ord}^M \land |m| = \alpha))$, then we break into two subcases:
 - Case 1a: If α is in the standard part of Ord^M , then α is actually an ordinal and m does encode a Φ -recursive linear order on ω . Thus, set y := 1.
 - Case 1b: If α is not in the standard part of Ord^M , then α is not actually well-ordered (it is only well-ordered when viewed in M) so m does not encode a Φ -recursive linear order on ω . Thus, set y := 0.
 - Case 2: If $q \Vdash (m \text{ encodes a } \Phi\text{-recursive linear order on } \omega \land m \notin \mathcal{O}^{\Phi})$, then m cannot encode a Φ -recursive well-ordering of ω . Thus, set y := 0.
 - Case 3: If $q \Vdash \neg (m \text{ encodes a } \Phi\text{-recursive linear order on } \omega)$, then set $y \coloneqq 0$.

All Other Stages n: Let $p_n = p_{n-1}$.

Define Φ to be the unique set such that

$$(x, y, \sigma) \in \Phi \iff \text{there exists } n \in \mathbb{N} \text{ such that } (x, y, \sigma) \in \mathcal{M} \Phi_{p_n}.$$

Thanks to Stages $n=2^m$ and Lemma 3.9, Φ is an M-generic Turing functional. Thanks to Stages $n=2^m\cdot 3$, $\Phi(\mathcal{O})=A$. Thanks to Stages $n=2^m\cdot 5$, $\Phi(Z)=\mathcal{O}^\Phi$.

We also note that in the above construction of Φ , (assuming p_{n-1} is given)...

- ... Stage $n = 2^m$ is recursive in $\mathcal{O}^M \oplus Z \oplus \mathcal{O} \leq_T A$.
- ... Stage $n = 2^m \cdot 3$ is recursive in $\mathcal{O} \leq_T A$,
- ... Stage $n = 2^m \cdot 5$ (Substage 1) is recursive in $\mathcal{O} \oplus \mathcal{O}^M \oplus Z \leq_T A$,
- ... Stage $n = 2^m \cdot 5$ (Substage 2) is recursive in $Z \leq_T A$, and
- ... Stage n (for all other n) is recursive.

Thus,

$$\Phi \leq_{\mathrm{T}} M \oplus (\mathcal{O}^M \oplus Z) \oplus A \leq_{\mathrm{T}} A.$$

Applying Lemma 3.5 we find

$$A = \Phi(\mathcal{O}) \leq_{\mathrm{T}} \mathcal{O} \oplus \Phi \leq_{\mathrm{T}} \mathcal{O}^{\Phi} \equiv_{\mathrm{T}} \Phi(Z) \leq_{\mathrm{T}} Z \oplus \Phi \leq_{\mathrm{T}} Z \oplus A \equiv_{\mathrm{T}} A$$

so we have Turing equivalence throughout. $B = \Phi$ is hence the desired real.

Theorem 3.1 can be generalized, replacing the real Z by a sequence of reals.

Theorem 3.11. Suppose Z and A are reals such that $Z \oplus \mathcal{O} \leq_{\mathrm{T}} A$ and $0 <_{\mathrm{HYP}} (Z)_k$ for every $k \in \mathbb{N}$. Then there exists B such that for every $k \in \mathbb{N}$

$$A \equiv_{\mathbf{T}} \mathcal{O}^B \equiv_{\mathbf{T}} B \oplus (Z)_k \equiv_{\mathbf{T}} B \oplus \mathcal{O}.$$

Proof. The proof of Theorem 3.1 may be adapted by making the following adjustments. First, we replace the use of Lemma 3.10 with the following lemma:

Lemma 3.12. Suppose Z and A are reals such that $Z \oplus \mathcal{O} \leq_{\mathrm{T}} A$ and $0 <_{\mathrm{HYP}} (Z)_k$ for every $k \in \mathbb{N}$. Then there exists a (code for a) countable ω -model M of ZFC such that $\mathcal{O}^M \equiv_{\mathrm{T}} A$ and $(Z)_k \notin M$ for every $k \in \mathbb{N}$.

Proof. Replace the usage of Theorem 2.1 in the proof of Lemma 3.10 with Theorem 2.8. \Box

This yields a (code for a) countable ω -model M of ZFC such that $\mathcal{O}, (Z)_0, (Z)_1, \ldots \notin M$ and $\mathcal{O}^M \equiv_T A$. We assume without loss of generality that $\mathcal{O} \neq (Z)_k$ for each k.

The adjustments to the construction are the following:

- In Stages $n = 2^m$ and $n = 2^m \cdot 3$, we avoid adding new computations along $(Z)_0, \ldots, (Z)_n$ and \mathcal{O} .
- Replace Stage $n = 2^m \cdot 5$ with Stages $n = 2^m \cdot 5^{k+1}$, and at the beginning of Stage $n = 2^m \cdot 5^{k+1}$, first check if there exists y and $\sigma \in (Z)_k$ such that $(m, y, \sigma) \in \Phi_{p_{n-1}}$. If such a y and σ are found, do nothing and proceed to the next stage. Otherwise, proceed as in Stage $n = 2^m \cdot 5$ of the proof of Theorem 3.1, with the same adjustment of avoiding adding new computations along $(Z)_0, \ldots, (Z)_n$ and \mathcal{O} as above.

Note that it is no longer necessarily the case that $\Phi((Z)_k) = \mathcal{O}^{\Phi}$ for every $k \in \mathbb{N}$, as early stages may have added computations to Φ which make $\Phi((Z)_k)$ disagree with \mathcal{O}^{Φ} . However, after Stage k, no other stages add new computations along $(Z)_k$ except for those purposely added (i.e., in Stages $n = 2^m \cdot 5^{k+1}$). It follows that $\Phi((Z)_k)$ and \mathcal{O}^{Φ} differ only on a finite set of indices, so $\Phi((Z)_k) \equiv_T \mathcal{O}^{\Phi}$.

In the resulting construction of Φ , (assuming p_{n-1} is given)

- ... Stage $n = 2^m$ is recursive in $\mathcal{O}^M \oplus \bigoplus_{i=0}^n (Z)_i \oplus \mathcal{O} \leq_T A$,
- ... Stage $n = 2^m \cdot 3$ is recursive in $\mathcal{O} \leq_T A$,
- ... Stage $n = 2^m \cdot 5^{k+1}$ (Substage 1) is recursive in $\mathcal{O} \oplus \mathcal{O}^M \oplus \bigoplus_{i=0}^n (Z)_i \leq_T A$,
- ... Stage $n = 2^m \cdot 5^{k+1}$ (Substage 2) is recursive in $(Z)_k \leq_T A$, and
- \dots Stage n (for all other n) is recursive.

Thus,

$$\Phi \leq_{\mathrm{T}} M \oplus (\mathcal{O}^M \oplus Z) \oplus A \equiv_{\mathrm{T}} A.$$

The proof concludes as in the proof of Theorem 3.1.

4 Open Problems

In light of Theorems 2.1 and 3.1, it is natural to ask whether they can be combined into one theorem. In other words, for which uncountable Σ_1^1 classes $K \subseteq \{0,1\}^{\mathbb{N}}$ do the following properties hold?

Property 4.1. Suppose Z and A are reals such that $Z \oplus \mathcal{O} \leq_{\mathrm{T}} A$ and $0 <_{\mathrm{HYP}} (Z)_k$ for every $k \in \mathbb{N}$. Then there exists $B \in K$ such that

$$A \equiv_{\mathbf{T}} \mathcal{O}^B \equiv_{\mathbf{T}} B \oplus Z \equiv_{\mathbf{T}} B \oplus \mathcal{O}.$$

Property 4.2. Suppose Z and A are reals such that $Z \oplus \mathcal{O} \leq_{\mathrm{T}} A$ and $0 <_{\mathrm{HYP}} (Z)_k$ for every $k \in \mathbb{N}$. Then there exists $B \in K$ such that for every k

$$A \equiv_{\mathbf{T}} \mathcal{O}^B \equiv_{\mathbf{T}} B \oplus (Z)_k \equiv_{\mathbf{T}} B \oplus \mathcal{O}.$$

The following theorem answers some special cases of this problem.

Theorem 4.3. Let $L_T = \{X \mid \mathcal{O}^X \equiv_T X \oplus \mathcal{O}\}$. Suppose K is an uncountable Σ_1^1 class which is Turing degree upward closed in L_T , i.e., whenever $X,Y \in L_T$, $X \in K$, and $X \leq_T Y$, then there is $Y_0 \in K$ such that $Y \equiv_T Y_0$. Then K has Properties 4.1 and 4.2.

Proof. This theorem is analogous to [3, Lemma 3.3]. By Theorem 2.1, let C be such that

$$A \equiv_{\mathbf{T}} \mathcal{O}^C \equiv_{\mathbf{T}} C \oplus Z \equiv_{\mathbf{T}} C \oplus \mathcal{O}. \tag{*}$$

Theorem 2.1, relativized to C, yields $B_0 \in K$ such that

$$\mathcal{O}^C \equiv_{\mathrm{T}} \mathcal{O}^{B_0 \oplus C} \equiv_{\mathrm{T}} B_0 \oplus \mathcal{O}^C. \tag{\dagger}$$

Combining (†) and (*) shows that $\mathcal{O}^{B_0 \oplus C} \equiv_{\mathrm{T}} B_0 \oplus C \oplus \mathcal{O}$. As $B_0 \leq_{\mathrm{T}} B_0 \oplus C$, there is $B \in K$ such that $B \equiv_{\mathrm{T}} B_0 \oplus C$ by hypothesis. In particular,

$$\mathcal{O}^C \equiv_{\mathrm{T}} \mathcal{O}^B \equiv_{\mathrm{T}} B \oplus \mathcal{O}.$$

Moreover, in combination with (*),

$$A \equiv_{\mathrm{T}} \mathcal{O}^B \equiv_{\mathrm{T}} B \oplus \mathcal{O} \equiv_{\mathrm{T}} B \oplus Z.$$

This shows that K has Property 4.1.

To show that K has Property 4.2, repeat the above argument using Theorem 2.8 instead of Theorem 2.1.

Remark 4.4. The proof of Theorem 4.3 is easily adapted to prove the same result with $L_T = \{X \mid \mathcal{O}^X \equiv_T X \oplus \mathcal{O}\}$ replaced by $L_{HYP} = \{X \mid \mathcal{O}^X \equiv_{HYP} X \oplus \mathcal{O}\}$.

The hyperarithmetical analog of the Pseudojump Inversion Theorem [4, Theorem 2.1, pg. 601] also remains open. Namely, suppose V_e^X is an effective enumeration of the $\Pi_1^{1,X}$ predicates, uniformly in X. Define the e-th pseudo-hyperjump by

$$\mathrm{HJ}_e(X) \coloneqq X \oplus V_e^X.$$

Does the following result hold?

Conjecture 4.5. Suppose $e \in \mathbb{N}$ and A is a real such that $\mathcal{O} \leq_T A$. Then there exists B such that

$$A \equiv_{\mathrm{T}} \mathrm{HJ}_{e}(B) \equiv_{\mathrm{T}} B \oplus \mathcal{O}. \tag{1}$$

Even if Conjecture 4.5 holds, this leaves open the question of characterizing the Σ_1^1 classes $K \subseteq \{0,1\}^{\mathbb{N}}$ with the following properties:

Property 4.6. Suppose $e \in \mathbb{N}$ and A is a real such that $\mathcal{O} \leq_{\mathrm{T}} A$. Then there exists $B \in K$ such that Equation (1) holds.

Property 4.7. Suppose $e \in \mathbb{N}$ and Z and A are reals such that $Z \oplus \mathcal{O} \leq_{\mathrm{T}} A$ and $0 <_{\mathrm{HYP}} (Z)_k$ for each $k \in \mathbb{N}$. Then there exists $B \in K$ such that Equation (1) holds and $(Z)_k \nleq_{\mathrm{HYP}} B$ for every $k \in \mathbb{N}$.

Property 4.8. Suppose $e \in \mathbb{N}$ and Z and A are reals such that $Z \oplus \mathcal{O} \leq_{\mathrm{T}} A$ and $0 <_{\mathrm{HYP}} Z$. Then there exists $B \in K$ such that

$$A \equiv_{\mathrm{T}} \mathrm{HJ}_e(B) \equiv_{\mathrm{T}} B \oplus Z \equiv_{\mathrm{T}} B \oplus \mathcal{O}.$$

References

- [1] Chi Tat Chong and Liang Yu, Recursion Theory: Computational Aspects of Definability, Walter de Gruyter GmbH & Co KG, 2015, xiii + 306 pages.
- [2] Leo Harrington, A powerless proof of a theorem of Silver, unpublished manuscript, 8 pages, 1976.
- [3] Hayden R. Jananthan and Stephen G. Simpson, Pseudojump inversion in special r.b. Π⁰₁ classes, 2020, 19 pages, submitted for publication in Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, 2020.
- [4] Carl G. Jockusch and Richard A. Shore, *Pseudojump operators. I: The r.e. case*, Transactions of the American Mathematical Society **275** (1983), no. 2, 599–609.
- [5] _____, Pseudo-jump operators. II: Transfinite iterations, hierarchies and minimal covers, The Journal of Symbolic Logic 49 (1984), no. 4, 1205–1236.
- [6] Carl G. Jockusch and Robert I. Soare, Π_1^0 classes and degrees of theories, Transactions of the American Mathematical Society 173 (1972), 35–56.
- [7] John M. Macintyre, Transfinite extensions of Friedberg's completeness criterion 1, The Journal of Symbolic Logic 42 (1977), no. 1, 1–10.
- [8] David B. Posner and Robert W. Robinson, *Degrees joining to* 0', The Journal of Symbolic Logic **46** (1981), no. 4, 714–722.
- [9] Jan Reimann and Theodore A. Slaman, Effective randomness for continuous measures, 2018, preprints, arXiv:1808.10102v1, 2018, 57 pages, and arXiv:1808.10102v2, 2020, 62 pages.
- [10] Hartley Rogers, Jr, Theory of Recursive Functions and Effective Computability, McGraw-Hill Series in Higher Mathematics, McGraw-Hill, 1967, xix + 482 pages.

- [11] Gerald E. Sacks, Higher Recursion Theory, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1990, xv + 344 pages. MR 1080970
- [12] Richard A. Shore and Theodore A. Slaman, *Defining the Turing jump*, Mathematical Research Letters **6** (1999), no. 5/6, 711–722.
- [13] Theodore A. Slaman, private communication, November 2018.