Turing degrees of hyperjumps

Hayden R. Jananthan
Department of Mathematics
Vanderbilt University
Nashville, TN 37203, USA
https://my.vanderbilt.edu/haydenjananthan
hayden.r.jananthan@vanderbilt.edu
Stephen G. Simpson
Department of Mathematics
Vanderbilt University
Nashville, TN 37203, USA
https://www.math.psu.edu/simpson
sgslogic@gmail.com

First draft: August 25, 2019
This draft: June 29, 2020

Abstract

The Posner-Robinson Theorem states that for any reals Z and A such that $Z \oplus 0^{\prime} \leq_{\mathrm{T}}$ A and $0<_{\mathrm{T}} Z$, there exists B such that $A \equiv_{\mathrm{T}} B^{\prime} \equiv_{\mathrm{T}} B \oplus Z \equiv_{\mathrm{T}} B \oplus 0^{\prime}$. Consequently, any nonzero Turing degree $\operatorname{deg}_{\mathrm{T}}(Z)$ is a Turing jump relative to some B. Here we prove the hyperarithmetical analog, based on an unpublished proof of Slaman, namely that for any reals Z and A such that $Z \oplus \mathcal{O} \leq_{\mathrm{T}} A$ and $0<_{\text {нyp }} Z$, there exists B such that $A \equiv_{\mathrm{T}} \mathcal{O}^{B} \equiv_{\mathrm{T}} B \oplus Z \equiv_{\mathrm{T}} B \oplus \mathcal{O}$. As an analogous consequence, any nonhyperarithmetical Turing degree $\operatorname{deg}_{\mathrm{T}}(Z)$ is a hyperjump relative to some B.

Contents

1 Introduction 2
2 A Basis Theorem for Σ_{1}^{1} Classes 3
3 Posner-Robinson for Turing Degrees of Hyperjumps 9
3.1 Kumabe-Slaman Forcing . 9
3.2 Proof of Posner-Robinson for Hyperjumps . 12

4 Open Problems

1 Introduction

Our starting point is the Friedberg Jump Theorem:
Theorem 1.1 (Friedberg Jump Theorem). [10, Theorem 13.3.IX, pg. 265] Suppose A is a real such that $0^{\prime} \leq_{\mathrm{T}} A$. Then there exists B such that

$$
A \equiv_{\mathrm{T}} B^{\prime} \equiv_{\mathrm{T}} B \oplus 0^{\prime}
$$

There are several refinements of the Friedberg Jump Theorem. One such extension shows that B can be taken to be an element of any special Π_{1}^{0} class $P \subseteq\{0,1\}^{\mathbb{N}}$. Here special means that P is nonempty and has no recursvie elements.

Theorem 1.2. [6, following Theorem 3.1, pg. 37] Suppose $P \subseteq\{0,1\}^{\mathbb{N}}$ is a special Π_{1}^{0} class and A is a real such that $0^{\prime} \leq_{\mathrm{T}} A$. Then there exists $B \in P$ such that

$$
A \equiv_{\mathrm{T}} B^{\prime} \equiv_{\mathrm{T}} B \oplus 0^{\prime}
$$

Another refinement is the Posner-Robinson Theorem:
Theorem 1.3 (Posner-Robinson Theorem). [8, Theorem 1, pg. 715] [5, Theorem 3.1, pg. 1228] Suppose Z and A are reals such that $Z \oplus 0^{\prime} \leq_{\mathrm{T}} A$ and $0<_{\mathrm{T}} Z$. Then there exists B such that

$$
A \equiv_{\mathrm{T}} B^{\prime} \equiv_{\mathrm{T}} B \oplus Z \equiv_{\mathrm{T}} B \oplus 0^{\prime} .
$$

In this paper we prove hyperarithmetical analogs of Theorem 1.2 and Theorem 1.3. The hyperarithmetical analog of Theorem 1.1 is due to Macintyre [7, Theorem 3, pg. 9]. In these hyperarithmetical analogs, the Turing jump operator $X \mapsto X^{\prime}$ is replaced by the hyperjump operator $X \mapsto \mathcal{O}^{X}$ and Π_{1}^{0} classes are replaced by Σ_{1}^{1} classes. A feature of [7] Theorem 3, pg. 9] and of our results is that they involve Turing degrees rather than hyperdegrees, so for instance \mathcal{O}^{B} is not only hyperarithmetically equivalent to A, but in fact Turing equivalent to A.

Here is an outline of this paper:
In $\S 2$ we prove the following basis theorem for uncountable Σ_{1}^{1} classes $K \subseteq\{0,1\}^{\mathbb{N}}$.
Theorem 2.1. Suppose $K \subseteq\{0,1\}^{\mathbb{N}}$ is an uncountable Σ_{1}^{1} class and Z and A are reals such that $Z \oplus \mathcal{O} \leq_{\mathrm{T}} A$ and $0<_{\mathrm{HYP}} Z$. Then there exists $B \in K$ such that

$$
A \equiv_{\mathrm{T}} \mathcal{O}^{B} \equiv_{\mathrm{T}} B \oplus \mathcal{O}
$$

and $Z \not \$_{\mathrm{HYP}} B$.
In $\S 3$ we prove the following analog of Theorem 1.3 which is essentially due to Slaman 13.

Theorem 3.1. Suppose Z and A are reals such that $Z \oplus \mathcal{O} \leq_{\mathrm{T}} A$ and $0<_{\mathrm{HYP}} Z$. Then there exists B such that

$$
A \equiv_{\mathrm{T}} \mathcal{O}^{B} \equiv_{\mathrm{T}} B \oplus Z \equiv_{\mathrm{T}} B \oplus \mathcal{O}
$$

The remainder of this section fixes notation and terminology.
$g: \subseteq A \rightarrow B$ denotes a partial function with domain $\operatorname{dom} g \subseteq A$ and codomain B. For $a \in A$, if $a \in \operatorname{dom} g$ then we say ' $g(a)$ converges' or ' $g(a)$ is defined' and write $g(a) \downarrow$. Otherwise, we say ' $g(a)$ diverges' or ' $g(a)$ is undefined' and write $g(a) \uparrow$. If f and g are two partial functions
$\subseteq A \rightarrow B$ and $a \in A$, then $f(a) \simeq g(a)$ means $(f(a) \downarrow \wedge g(a) \downarrow \wedge f(a)=g(a)) \vee(f(a) \uparrow \wedge g(a) \uparrow)$. We write $f(a) \downarrow=b$ to mean that $f(a) \downarrow$ and $f: a \mapsto b$.
$\mathbb{N}^{\mathbb{N}}$ and $\{0,1\}^{\mathbb{N}}$ denote the Baire and Cantor spaces, respectively, whose elements we sometimes call reals. We identify $\{0,1\}^{\mathbb{N}}$ and the powerset $\mathcal{P}(\mathbb{N})$ in the usual manner.

If S is a set, then S^{*} is the set of strings of elements from S. If $s_{0}, \ldots, s_{n-1} \in S$, then $\sigma=\left\langle s_{0}, \ldots, s_{n-1}\right\rangle \in S^{*}$ denotes the string of length $|\sigma|:=n$ defined by $\sigma(k)=s_{k}$. If $\left\langle s_{0}, \ldots, s_{n-1}\right\rangle,\left\langle t_{0}, \ldots, t_{m-1}\right\rangle \in S^{*}$, then their concatenation is $\left\langle s_{0}, \ldots, s_{n-1}\right\rangle^{\wedge}\left\langle t_{0}, \ldots, t_{m-1}\right\rangle:=$ $\left\langle s_{0}, \ldots, s_{n-1}, t_{0}, \ldots, t_{m-1}\right\rangle$. If $\sigma, \tau \in S^{*}$, then σ is an initial segment of τ (equivalently, τ is an extension of σ) written $\sigma \subseteq \tau$, if $\tau \uparrow|\sigma|=\sigma$. If $f: \mathbb{N} \rightarrow S$ then $\sigma \in S^{*}$ is an initial segment of f (equivalently, f is an extension of σ), written $\sigma \subset f$, if $f \uparrow|\sigma|=\sigma . \sigma, \tau \in S^{*}$ are incompatible if neither is an initial segment of the other. If \leq is a partial order on S, then the lexicographical ordering $\leq_{\text {lex }}$ on S^{*} is defined by setting $\sigma \leq_{\text {lex }} \tau$ if $\sigma \subseteq \tau$ or, where k is the least index at which $\sigma(k) \neq \tau(k)$, then $\sigma(k)<\tau(k)$.
$\varphi_{e}^{(k)}$ denotes the e-th partial recursive function $\subseteq \mathbb{N}^{k} \rightarrow \mathbb{N}$; e is called an index of $\varphi_{e}^{(k)}$. Likewise, if $f \in \mathbb{N}^{\mathbb{N}}$ then $\varphi_{e}^{(k), f}$ denotes the e-th partial function $\varphi_{e}^{(k), f}: \subseteq \mathbb{N}^{k} \rightarrow \mathbb{N}$ which is partial recursive in $f ; e$ is again called an index of $\varphi_{e}^{(k), f}$, while f is called an oracle of $\varphi_{e}^{(k), f}$.
\leq_{T} denotes Turing reducibility while \equiv_{T} denotes Turing equivalence. \leq_{HYP} denotes hyperarithmetical reducibility while \equiv_{HYP} denots hyperarithmetical equivalence. For $X \in\{0,1\}^{\mathbb{N}}$, X^{\prime} denotes the Turing jump of X and \mathcal{O}^{X} denotes the hyperjump of X. \mathcal{O} denotes Kleene's \mathcal{O}. For $f, g \in \mathbb{N}^{\mathbb{N}}$, their join $f \oplus g \in \mathbb{N}^{\mathbb{N}}$ is defined by $(f \oplus g)(2 n)=f(n)$ and $(f \oplus g)(2 n+1)=g(n)$.
P_{e} denotes the e-th Π_{1}^{0} set $\left\{f \in \mathbb{N}^{\mathbb{N}} \mid \varphi_{e}^{(1), f}(0) \downarrow\right\} \subseteq \mathbb{N}^{\mathbb{N}} . P_{e}^{*}$ denotes the e-th Σ_{1}^{1} class $\left\{X \in\{0,1\}^{\mathbb{N}} \mid \exists f\left(f \oplus X \in P_{e}\right)\right\}$.

2 A Basis Theorem for Σ_{1}^{1} Classes

The following theorem includes the Gandy Basis Theorem [11, Theorem III.1.4, pg. 54], the Kreisel Basis Theorem for Σ_{1}^{1} Classes [11, Theorem III.7.2, pg. 75], and Macintyre's Hyperjump Inversion Theorem [7, Theorem 3, pg. 9].
Theorem 2.1. Suppose $K \subseteq\{0,1\}^{\mathbb{N}}$ is an uncountable Σ_{1}^{1} class and Z and A are reals such that $Z \oplus \mathcal{O} \leq_{\mathrm{T}} A$ and $0<_{\mathrm{HYP}} Z$. Then there exists $B \in K$ such that

$$
A \equiv_{\mathrm{T}} \mathcal{O}^{B} \equiv_{\mathrm{T}} B \oplus \mathcal{O}
$$

and $Z \not \ddagger_{\mathrm{HYP}} B$.
To prove Theorem 2.1 we use Gandy-Harrington forcing (first introduced by Harrington in an unpublished manuscript [2]; see, e.g., [11, Theorem IV.6.3, pg. 108]), forming a descending sequence of uncountable Σ_{1}^{1} classes

$$
K=K_{0} \supseteq K_{1} \supseteq \cdots \supseteq K_{n} \supseteq \cdots
$$

where an element of the intersection $\bigcap_{n=0}^{\infty} K_{n}$ has the desired property. Unlike in the case of Π_{1}^{0} subsets of $\{0,1\}^{\mathbb{N}}$, compactness cannot be used to easily show that the intersection $\bigcap_{n=0}^{\infty} K_{n}$ is nonempty. Instead, some care must be taken to show that this is the case.

Proposition 2.2.

(a) Given a Σ_{1}^{1} predicate $K \subseteq\{0,1\}^{\mathbb{N}} \times \mathbb{N}^{k}$, there is a primitive recursive function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ such that

$$
P_{f\left(x_{1}, \ldots, x_{k}\right)}^{*}(X) \equiv K\left(X, x_{1}, \ldots, x_{k}\right)
$$

(b) Suppose $X \in\{0,1\}^{\mathbb{N}}$. Then $\left\{e \in \mathbb{N} \mid X \notin P_{e}^{*}\right\} \equiv_{\mathrm{T}} \mathcal{O}^{X}$.
(c) $\left\{e \in \mathbb{N} \mid P_{e}^{*}=\varnothing\right\} \equiv_{\mathrm{T}} \mathcal{O}$.

Proof. Straight-forward.
Corollary 2.3. There exist primitive recursive functions v, u, and U such that that for all $n, m \in \mathbb{N}$ and $\sigma, \tau \in N^{*}$ and $I \in \mathcal{P}_{\text {fin }}(\mathbb{N})$,

$$
\begin{aligned}
P_{v(n, m)}^{*} & =P_{n}^{*} \cap P_{m}^{*} \\
P_{u(e, \sigma, \tau)}^{*}=P_{e}^{*}[\sigma, \tau] & =\left\{X \in\{0,1\}^{\mathbb{N}} \mid \sigma \subset X \wedge \exists g\left(X \oplus g \in P_{e} \wedge \tau \subset g\right)\right\}, \\
P_{U\left(I, \sigma,\left\langle\tau_{0}, \ldots, \tau_{n-1}\right\rangle\right)}^{*} & =\bigcap_{k \in I \wedge k<n} P_{k}^{*}\left[\sigma, \tau_{k}\right] .
\end{aligned}
$$

Proposition 2.4. The following partial functions are \mathcal{O}-recursive:
(a) The partial function $\rho(\sigma, e) \simeq\left\langle\sigma_{0}, \sigma_{1}\right\rangle$ where σ_{0}, σ_{1} are minimal incompatible extensions of σ which have extensions in P_{e}^{*} and σ_{0} is lexicographically less than σ_{1}, whenever σ has at least two extensions in P_{e}^{*}, otherwise diverging.
(b) The partial function $\operatorname{ext}\left(\left\langle e_{1}, \ldots, e_{N}\right\rangle, \sigma,\left\langle\tau_{1}, \ldots, \tau_{N}\right\rangle\right) \simeq\left(\tilde{\sigma},\left\langle\tilde{\tau_{1}}, \ldots, \tilde{\tau_{N}}\right\rangle\right)$ where $\left(\tilde{\sigma},\left\langle\tilde{\tau}, \ldots, \tilde{\tau_{N}}\right\rangle\right)$ is the lexicographically least pair such that

1. $\sigma \subsetneq \tilde{\sigma}$ and $\tau_{k} \subsetneq \tilde{\tau_{k}}$ for $1 \leq k \leq N$ and
2. $\bigcap_{k=1}^{N} P_{e_{k}}^{*}\left[\tilde{\sigma}, \tilde{\tau_{k}}\right] \neq \varnothing$
whenever $\bigcap_{k=1}^{N} P_{e_{k}}^{*}\left[\sigma, \tau_{k}\right] \neq \varnothing$, otherwise diverging.
Proof.
(a) Using \mathcal{O}, search for the first string ν such that $P_{e}^{*}\left[\sigma^{\wedge} \nu^{\wedge}\langle i\rangle,\langle \rangle\right] \neq \varnothing$ for $i=0,1$. Once such ν has been found, $\rho(\sigma, e) \downarrow=\left\langle\sigma^{\wedge} \nu^{\wedge}\langle 0\rangle, \sigma^{\wedge} \nu^{\wedge}\langle 1\rangle\right\rangle$.
(b) Using \mathcal{O}, search for the first of $i=0,1$ for which $\bigcap_{k=1}^{N} P_{e_{k}}^{*}\left[\sigma^{\wedge}\langle i\rangle, \tau_{k}\right] \neq \varnothing$, then search for the lexicographically least $\left\langle j_{1}, \ldots, j_{N}\right\rangle \in\{0,1\}^{N}$ such that $\bigcap_{k=1}^{N} P_{e_{k}}^{*}\left[\sigma^{\sim}\langle i\rangle, \tau_{k}{ }^{\sim}\left\langle j_{k}\right\rangle\right] \neq \varnothing$. If no such i or j_{1}, \ldots, j_{N} are found, then diverge. Otherwise, $\operatorname{ext}\left(\left\langle e_{1}, \ldots, e_{N}\right\rangle, \sigma,\left\langle\tau_{1}, \ldots, \tau_{N}\right\rangle\right) \downarrow=$ $\left(\sigma^{\curvearrowright}\langle i\rangle,\left\langle\tau_{1}{ }^{\wedge}\left\langle j_{1}\right\rangle, \ldots, \tau_{N}{ }^{\wedge}\left\langle j_{N}\right\rangle\right)\right.$.

Let ρ_{0}, ρ_{1} be defined by

$$
\rho(\sigma, e) \simeq\left\langle\rho_{0}(\sigma, e), \rho_{1}(\sigma, e)\right\rangle
$$

We use the ordinal notation description of \mathcal{O} (and, more generally, \mathcal{O}^{Y} for $Y \in\{0,1\}^{\mathbb{N}}$) described in [11] and use the following well-known lemma to describe hyperarithmetical reducibility in terms of H-sets.
Notation. For $X \in\{0,1\}^{\mathbb{N}}$ and $n \in \mathbb{N}$, define

$$
(X)_{n}:=\left\{x \in \mathbb{N} \mid 2^{n} \cdot 3^{x} \in X\right\} .
$$

Lemma 2.5. Suppose X and Y are reals in $\{0,1\}^{\mathbb{N}}$. Then $X \leq_{\text {HYP }} Y$ if and only if there exists $b \in \mathcal{O}^{Y}$ and $n \in \mathbb{N}$ such that $X=\left(H_{b}^{Y}\right)_{n}$.
Proof. Suppose $X \leq_{\text {HYP }} Y$, so that there is $b \in \mathcal{O}^{Y}$ such that $X \leq_{\mathrm{T}} H_{b}^{Y}$. Let e be the index of such a Turing reduction, i.e., let e be such that $X=\varphi_{e}^{(1), H_{b}^{Y}}$. By definition [11], $2^{b} \in \mathcal{O}^{Y}$ and

$$
H_{2^{b}}^{Y}:=\left\{2^{n} 3^{x} \mid \varphi_{n}^{(1), H_{b}^{Y}}(x) \downarrow\right\}
$$

Let f be an index such that

$$
\varphi_{f}^{(1), H_{b}^{Y}}(x) \downarrow \Longleftrightarrow \varphi_{e}^{(1), H_{b}^{Y}}(x) \downarrow=1
$$

Then

$$
\begin{aligned}
\left(H_{2^{b}}^{Y}\right)_{f} & =\left\{x \in \mathbb{N} \mid \varphi_{f}^{(1), H_{b}^{Y}}(x) \downarrow\right\} \\
& =\left\{x \in \mathbb{N} \mid \varphi_{e}^{(1), H_{b}^{Y}}(x) \downarrow=1\right\} \\
& =X
\end{aligned}
$$

Conversely, suppose there is $b \in \mathcal{O}^{Y}$ and $n \in \mathbb{N}$ such that $X=\left(H_{b}^{Y}\right)_{n}$. Let e be an index such that

$$
\varphi_{e}^{(1), Z}(x)= \begin{cases}1 & \text { if } x \in(Z)_{n} \\ 0 & \text { if } x \notin(Z)_{n}\end{cases}
$$

for any $Z \in\{0,1\}^{\mathbb{N}}$. Then $\varphi_{e}^{(1), H_{b}^{Y}}=X$, showing that $X \leq_{\mathrm{T}} H_{b}^{Y}$.
Proof of Theorem 2.1. By the Gandy Basis Theorem [11, Theorem III.1.4, pg. 54], assume without loss of generality that $\omega_{1}^{Y}=\omega_{1}^{\mathrm{CK}}$ for all $Y \in K$.

In order to control the hyperjump \mathcal{O}^{B}, we choose B to be an element of an intersection of Σ_{1}^{1} subsets

$$
K=K_{0} \supseteq K_{1} \supseteq \cdots \supseteq K_{n} \supseteq \cdots
$$

In order for B to be an element of $K_{n}=P_{j(n)}^{*}$ for each n, there must be $g_{n} \in \mathbb{N}^{\mathbb{N}}$ such that $B \oplus g_{n} \in P_{j(n)}$, where $j(n)$ is some index of K_{n}. Such g_{n} depend on B. Thus, we additionally define sequences of strings

$$
\begin{array}{ccccccccc}
\sigma_{0} & \subseteq & \sigma_{1} & \subseteq & \cdots & \subseteq & \sigma_{n} & \subseteq & \cdots \\
\tau_{0,0} & \subseteq & \tau_{1,0} & \subseteq & \cdots & \subseteq & \tau_{n, 0} & \subseteq & \cdots \\
\tau_{0,1} & \subseteq & \tau_{1,1} & \subseteq & \cdots & \subseteq & \tau_{n, 0} & \subseteq & \cdots \\
\tau_{0,2} & \subseteq & \tau_{1,2} & \subseteq & \cdots & \subseteq & \tau_{n, 0} & \subseteq & \cdots \\
\vdots & & \vdots & & \ddots & & \vdots & & \ddots
\end{array}
$$

so that $B=\bigcup_{n \in \omega} \sigma_{n}$ and $g_{k}=\bigcup_{n \in \omega} \tau_{n, k}$. We also define a sequence of finite subsets of \mathbb{N}

$$
I_{0} \subseteq I_{1} \subseteq \cdots \subseteq I_{n} \subseteq \cdots
$$

encoded as finite sequences $\left\{e_{1}, \ldots, e_{N}\right\} \mapsto\left\langle e_{1}, \ldots, e_{N}\right\rangle$ which keep track of the indices e of Σ_{1}^{1} classes we have committed to intersecting, so that $K_{n}=\bigcap_{k \in I_{n}} P_{k}^{*}\left[\sigma_{n}, \tau_{n, k}\right]$. A function $j: \mathbb{N} \rightarrow \mathbb{N}$ keeps track of the index of K_{n}, i.e.,

$$
K_{n}=P_{j(n)}^{*}
$$

In the course of the proof, we assume that j encodes all of the information from previous steps (i.e., a course-of-value computation) though we avoid making this precise to ease the burden of notation.

To ease in the notation and exposition, we set the following temporary definitions. An intersection system consists of the following data:
(i) a finite subset $I \subseteq \mathbb{N}$,
(ii) a string σ, and
(iii) a sequence of strings $\left\langle\tau_{k} \mid k \in I\right\rangle$
subject to the constraint that $\bigcap_{k \in I} P_{k}^{*}\left[\sigma, \tau_{k}\right]$ is nonempty. If $k \notin I$, then we assign the value $\left\rangle\right.$ to τ_{k}.

By adding P_{e}^{*} to the intersection system $I, \sigma,\left\langle\tau_{k} \mid k \in I\right\rangle$, we mean the following procedure, where $K=\bigcap_{k \in I} P_{k}^{*}\left[\sigma, \tau_{k}\right]$:
Case 1: $K \cap P_{e}^{*}=\varnothing$. Let $\tilde{I}=I, \tilde{K}=K, \tilde{\sigma}=\sigma$, and $\tilde{\tau_{k}}=\tau_{k}$ for each k.
Case 2: $K \cap P_{e}^{*} \neq \varnothing$. Let $\tilde{I}=I \cup\{e\}$, and let $\tilde{\sigma}$ and, simultaneously for all $k \in \tilde{I}, \tilde{\tau_{k}}$ be the lexicographically least proper extensions of σ and τ_{k}, respectively, such that $\bigcap_{k \in \tilde{I}} P_{k}^{*}\left[\tilde{\sigma}, \tilde{\tau_{k}}\right] \neq \varnothing$.
The resulting intersection system is $\tilde{I}, \tilde{\sigma},\left\langle\tilde{\tau_{k}} \mid k \in \tilde{I}\right\rangle$. Note that from $I, \sigma,\left\langle\tau_{k} \mid k \in I\right\rangle$ and e, the new intersection system $\tilde{I}, \tilde{\sigma},\left\langle\tilde{\tau_{k}} \mid k \in \tilde{I}\right\rangle$ can be determined in a uniform way recursively in \mathcal{O} : representing I as $\left\langle e_{1}, \ldots, e_{N}\right\rangle$ and writing $e_{N+1}=e$, then

$$
\begin{aligned}
\tilde{I} & = \begin{cases}\left\langle e_{1}, \ldots, e_{N}, e_{N+1}\right\rangle & \text { if } K \cap P_{e}^{*} \neq \varnothing \\
I & \text { otherwise }\end{cases} \\
\left(\tilde{\sigma},\left\langle\tilde{\tau_{k}} \mid k \in \tilde{I}\right\rangle\right) & = \begin{cases}\operatorname{ext}\left(\tilde{I}, \sigma,\left\langle\tau_{e_{1}}, \ldots, \tau_{e_{N}},\langle \rangle\right\rangle\right) & \text { if } K \cap P_{e}^{*} \neq \varnothing \\
\left(\sigma,\left\langle\tau_{k} \mid k \in I\right\rangle\right) & \text { otherwise. }\end{cases}
\end{aligned}
$$

In particular, the index $U\left(\tilde{I}, \tilde{\sigma},\left\langle\tilde{\tau}_{k} \mid k<\max I\right\rangle\right)$ of \tilde{K} can be determined uniformly from the intersection system $I, \sigma,\left\langle\tau_{k} \mid k \in I\right\rangle$ using \mathcal{O} as an oracle.

Now we proceed with the construction. As K is Σ_{1}^{1}, there is e_{0} such that $K=P_{e_{0}}^{*}$.
Stage $n=0$: Define

$$
K_{0}:=K, \quad \sigma_{0}:=\langle \rangle, \quad \tau_{0, k}:=\langle \rangle, \quad j(0):=e_{0}, \quad I_{0}:=\left\{e_{0}\right\}
$$

Note that $P_{j(0)}^{*}=K_{0}=\bigcap_{k \in I_{0}} P_{k}^{*}\left[\sigma_{0}, \tau_{0, k}\right]$.
Stage $n=3 e+1$: Let $I_{n}, \sigma_{n},\left\langle\tau_{n, k} \mid k \in I_{n}\right\rangle$ be the result of adding P_{e}^{*} to the intersection system $I_{n-1}, \sigma_{n-1},\left\langle\tau_{n-1, k} \mid k \in I_{n-1}\right\rangle$, and let $K_{n}:=\bigcap_{k \in I_{n}} P_{k}^{*}\left[\sigma_{n}, \tau_{n, k}\right]$ and $j(n)$ be an index for K_{n}.

Stage $n=3 e+2$: At this stage we encode $A(e)$ into B.
By construction,

$$
P_{j(n-1)}^{*}=K_{n-1}=\bigcap_{k \in I_{n-1}} P_{k}^{*}\left[\sigma_{n-1}, \tau_{n-1, k}\right] \neq \varnothing .
$$

As K_{n-1} is uncountable, there are infinitely many pairwise-incompatible extensions of σ_{n-1} which extend to elements of K_{n-1}. Thus, let

$$
\sigma_{n}:=\rho_{A(e)}\left(\sigma_{n-1}, j(n-1)\right)
$$

Define

$$
\begin{aligned}
K_{n} & :=\bigcap_{k \in I_{n-1}} P_{k}^{*}\left[\sigma_{n}, \tau_{n-1, k}\right]=P_{U\left(\sigma_{n}, I_{n-1},\left\langle\tau_{n-1,0}, \ldots, \tau_{n-1, n-1}\right\rangle\right)} \\
\tau_{n, k} & :=\tau_{n-1, k}, \quad(\text { for all } k) \\
I_{n} & :=I_{n-1} \\
j(n) & :=U\left(\sigma_{n}, I_{n-1},\left\langle\tau_{n-1,0}, \ldots, \tau_{n-1, n-1}\right\rangle\right)
\end{aligned}
$$

Stage $n=3^{b+1} \cdot 5^{e} \cdot 7^{f}$: Suppose $b \in \mathcal{O}$. Let $m \in \mathbb{N}$ be the least natural number for which there are $Y_{1}, Y_{2} \in K_{n-1}$ such that $\varphi_{f}^{(1), H_{b}^{Y_{1}}}\left(2^{e} \cdot 3^{m}\right)$ and $\varphi_{f}^{(1), H_{b}^{Y_{2}}}\left(2^{e} \cdot 3^{m}\right)$ are both defined and unequal. For $i \in\{0,1\}$, let

$$
K_{n-1}^{i}=\left\{Y \in K_{n-1} \mid \varphi_{f}^{(1), H_{b}^{Y_{1}}}\left(2^{e} \cdot 3^{m}\right) \downarrow=i\right\}
$$

Because $K_{n-1}^{0} \cap K_{n-1}^{1}=\varnothing$, there is a least $k \in \mathbb{N}$ and $i \in\{0,1\}$ such that $\left\{Y \in K_{n-1}^{0} \mid\right.$ $Y(k)=i\}$ and $\left\{Y \in K_{n-1}^{1} \mid Y(k) \neq i\right\}$ are nonempty. Let $i_{0}=i$ and $i_{1}=1-i$.
Let $I_{n}, \sigma_{n},\left\langle\tau_{n, k} \mid k \in I_{n}\right\rangle$ be the result of adding the (uniformly in b, e, f, m, k, and i, given $Z(m)) \Sigma_{1}^{1}$ class $\left\{Y \in\{0,1\}^{\mathbb{N}} \mid \varphi_{f}^{(1), H_{b}^{Y}}\left(2^{e} \cdot 3^{m}\right) \downarrow \neq Z(m) \wedge Y(k) \neq i_{Z(m)}\right\}$ to the intersection system $I_{n-1}, \sigma_{n-1},\left\langle\tau_{n-1, k} \mid k \in I_{n-1}\right\rangle$, and let $K_{n}:=\bigcap_{k \in I_{n}} P_{k}^{*}\left[\sigma_{n}, \tau_{n, k}\right]$ and $j(n)$ be an index for K_{n}.
If $b \notin \mathcal{O}$ or no such m exists, do nothing, i.e., let

$$
K_{n}:=K_{n-1}, \quad \sigma_{n}:=\sigma_{n-1}, \quad \tau_{n, k}:=\tau_{n-1, k}, \quad j(n):=j(n-1), \quad I_{n}:=I_{n-1}
$$

All Other Stages n : Do nothing, i.e., let

$$
K_{n}:=K_{n-1}, \quad \sigma_{n}:=\sigma_{n-1}, \quad \tau_{n, k}:=\tau_{n-1, k}, \quad j(n):=j(n-1), \quad I_{n}:=I_{n-1}
$$

This completes the construction.
Define

$$
B:=\bigcup_{n \in \mathbb{N}} \sigma_{n} \quad \text { and } \quad g_{k}:=\bigcup_{n \in \mathbb{N}} \tau_{n, k}
$$

We start by claiming $B \in \bigcap_{n \in \mathbb{N}} K_{n}$: by construction, for $k \in \bigcap_{n \in \mathbb{N}} I_{n}$, we have $B \oplus g_{k} \in P_{k}$, showing $B \in P_{k}^{*}$. Additionally, by construction $B \in P_{k}^{*}\left[\sigma_{n}, \tau_{n, k}\right]$ for every n and every $k \in \bigcap_{n \in \mathbb{N}} I_{n}$, so $B \in \bigcap_{k \in I_{n}} P_{k}^{*}\left[\sigma_{n}, \tau_{n, k}\right]=K_{n}$. Thus, $B \in \bigcap_{n \in \mathbb{N}} K_{n}$. In particular, $B \in K_{0}=K$, so $\omega_{1}^{B}=\omega_{1}^{\text {CK }}$.

If $Z \leq_{\text {HYP }} B$, then Lemma 2.5 shows there are $c \in \mathcal{O}^{B}$ and $e \in \mathbb{N}$ such that $Z=\left(H_{b}^{B}\right)_{e}$. Because $\omega_{1}^{B}=\omega_{1}^{\mathrm{CK}}$, there exists $b \in \mathcal{O}$ such that $|b|=|c|$ and hence $H_{b}^{B} \equiv_{\mathrm{T}} H_{c}^{B}$ by Spector's Uniqueness Theorem [11, Corollary II.4.6, pg. 40]. Let f be an index such that $\varphi_{f}^{(1), H_{b}^{B}}=H_{c}^{B}$, so that $Z=\left(\varphi_{f}^{(1), H_{b}^{B}}\right)_{e}$. By construction, at Stage $n=3^{b+1} \cdot 5^{e} \cdot 7^{f}$ it must have been the case that no m and $Y_{1}, Y_{2} \in K_{n-1}$ existed with $\varphi_{f}^{(1), H_{b}^{Y_{1}}}\left(2^{e} \cdot 3^{m}\right)$ and
$\varphi_{f}^{(1), H_{b}^{Y_{2}}}\left(2^{e} \cdot 3^{m}\right)$ both defined and unequal. In particular, $\varphi_{f}^{(1), H_{b}^{B}}$ is a Σ_{1}^{1} singleton, and so hyperarithmetical. But then $H_{c}^{B} \equiv_{\mathrm{T}} H_{b}^{B}$ is hyperarithmetical, hence $Z=\left(H_{c}^{B}\right)_{e}$ is hyperarithmetical, a contradiction. Thus, $Z \not \ddagger_{\mathrm{HYP}} B$.

We now make the following observations: assuming $j(n-1)$ is known (and utilizing the implicit course-of-values procedure to yield $\left.I_{n-1}, \sigma_{n-1},\left\langle\tau_{n-1, k}\right\rangle_{k \in \mathbb{N}}\right)$, then...
\ldots in Stage $n=3 e+1$, the determination of $I_{n}, \sigma_{n},\left\langle\tau_{n, k}\right\rangle_{k \in \mathbb{N}}$ (and hence also $j(n)$) is recursive in \mathcal{O} by Proposition 2.4.
\ldots in Stage $n=3 e+2$, the determination of $I_{n}, \sigma_{n},\left\langle\tau_{n, k}\right\rangle_{k \in \mathbb{N}}$ (and hence also $j(n)$) is recursive in A (by construction) or $B \oplus \mathcal{O}$ (by determining the unique i for which $\left.\rho_{i}\left(\sigma_{n-1}, j(n-1)\right) \subset B\right)$ by Proposition 2.4
\ldots in Stage $n=3^{b+1} \cdot 5^{e} \cdot 7^{f}$, the determination of $I_{n}, \sigma_{n},\left\langle\tau_{n, k}\right\rangle_{k \in \mathbb{N}}$ (and hence also $\left.j(n)\right)$ is recursive in $B \oplus \mathcal{O}$ (the determination of whether $b \in \mathcal{O}$ and whether there exists an m and $Y_{1}, Y_{2} \in K_{n-1}$ for which $\varphi_{f}^{(1), H_{b}^{Y_{1}}}\left(2^{e} \cdot 3^{m}\right)$ and $\varphi_{f}^{(1), H_{b}^{Y_{2}}}\left(2^{e} \cdot 3^{m}\right)$ are both defined and unequal may be performed recursively in \mathcal{O} since it corresponds to checking whether a particular Σ_{1}^{1} class is nonempty, and once the least such m is found, we may determine the least k and $i \in\{0,1\}$ for which $\left\{Y \in K_{n-1}^{0} \mid Y(k)=i\right\}$ and $\left\{Y \in K_{n-1}^{1} \mid Y(k)=1-i\right\}$ are nonempty; finally, checking whether $B(k)=i$ or $B(k)=1-i$ determines whether we intersected $\left\{Y \in\{0,1\}^{\mathbb{N}} \mid \varphi_{f}^{(1), H_{b}^{Y}}\left(2^{e} \cdot 3^{m}\right) \downarrow=0 \wedge Y(k)=i\right\}$ or $\left\{Y \in\{0,1\}^{\mathbb{N}} \mid\right.$ $\left.\varphi_{f}^{(1), H_{b}^{Y}}\left(2^{e} \cdot 3^{m}\right) \downarrow=1 \wedge Y(k)=1-i\right\}$, respectively) or A (as before, the determination of whether $b \in \mathcal{O}$ and of the existence of such an m may be done recursively in $\mathcal{O} \leq_{\mathrm{T}} A$, and $Z \leq_{\mathrm{T}} A$).
\ldots in all other Stages n, the determination of $I_{n}, \sigma_{n},\left\langle\tau_{n, k}\right\rangle_{k \in \mathbb{N}}$ (and hence also $\left.j(n)\right)$ is recursive.

In particular, $j \leq_{\mathrm{T}} A$ and $j \leq_{\mathrm{T}} B \oplus \mathcal{O}$.
We make the following final observations:

- $A \leq_{\mathrm{T}} j \oplus \mathcal{O}$ as $A(e)=i$ if and only if $j(n)=U\left(\rho_{i}\left(\sigma_{n-1}, j(n-1)\right), I_{n-1},\left\langle\tau_{n-1,0}, \ldots, \tau_{n-1, n-1}\right\rangle\right)$, where $n=3 e+2$.
- $\mathcal{O}^{B} \leq_{\mathrm{T}} j \oplus \mathcal{O}$ as $B \in P_{e}^{*}$ if and only if $v(j(n-1), e) \notin\left\{i \mid P_{i}^{*}=\varnothing\right\} \equiv_{\mathrm{T}} \mathcal{O}$. The determination $v(j(n-1), e) \notin\left\{i \mid P_{i}^{*}=\varnothing\right\} \equiv_{\mathrm{T}} \mathcal{O}$ can be made recursively in $j \oplus \mathcal{O}$.

Thus, we find that

$$
A \leq_{\mathrm{T}} j \oplus \mathcal{O} \leq_{\mathrm{T}} B \oplus \mathcal{O} \leq_{\mathrm{T}} \mathcal{O}^{B} \leq_{\mathrm{T}} j \oplus \mathcal{O} \leq_{\mathrm{T}} A
$$

so we have Turing equivalence throughout.
The following corollary is originally due to Macintyre [7, Theorem 3, pg. 9].
Corollary 2.6. Suppose A is a real such that $\mathcal{O} \leq_{\mathrm{T}} A$. Then there exists B such that

$$
A \equiv_{\mathrm{T}} \mathcal{O}^{B} \equiv_{\mathrm{T}} B \oplus \mathcal{O}
$$

The following corollary is "folklore", being unpublished but known to researchers and stated in [1, Exercise 2.5.6, pg. 40] without proof or references. Other than [1, Exercise 2.5 .6 , pg. 40] we have not seen any statement of Corollary 2.7 in the literature.

Corollary 2.7. Suppose K is a nonempty Σ_{1}^{1} class. Then there exists $B \in K$ such that $\mathcal{O} \equiv{ }_{\mathrm{T}} \mathcal{O}^{B} \equiv_{\mathrm{T}} B \oplus \mathcal{O}$.

Proof. If K is uncountable, then we apply Theorem 2.1 with $Z=A=\mathcal{O}$.
If K is countable, then its elements are hyperarithmetical [11, Theorem III.6.2, pg. 72] and so any $B \in K$ satisfies $\mathcal{O} \equiv_{\mathrm{T}} \mathcal{O}^{B} \equiv_{\mathrm{T}} B \oplus \mathcal{O}$.

We can generalize Theorem 2.1, replacing the real Z by a sequence of reals, as follows.
Theorem 2.8. Suppose K is an uncountable Σ_{1}^{1} class and Z and A are reals such that $Z \oplus \mathcal{O} \leq_{\mathrm{T}} A$ and $0<_{\mathrm{HYP}}(Z)_{k}$ for each $k \in \mathbb{N}$. Then there exists $B \in K$ such that

$$
A \equiv_{\mathrm{T}} \mathcal{O}^{B} \equiv_{\mathrm{T}} B \oplus \mathcal{O}
$$

and $(Z)_{k} \not$ HYP B for all k.
Proof. The proof of Theorem 2.1 may be adapted by replacing Stage $n=3^{b+1} \cdot 5^{e} \cdot 7^{f}$ with $n=3^{b+1} \cdot 5^{e} \cdot 7^{f} \cdot 11^{k}$ and replacing therein Z with $(Z)_{k}$.

3 Posner-Robinson for Turing Degrees of Hyperjumps

Theorem 3.1 (Posner-Robinson for Turing Degrees of Hyperjumps). Suppose Z and A are reals such that $Z \oplus \mathcal{O} \leq_{\mathrm{T}} A$ and $0<_{\mathrm{HYP}} Z$. Then there exists B such that

$$
A \equiv_{\mathrm{T}} \mathcal{O}^{B} \equiv_{\mathrm{T}} B \oplus Z \equiv_{\mathrm{T}} B \oplus \mathcal{O} .
$$

Theorem 3.1 is essentially due to Slaman [13. The rest of this section is devoted to a proof of Theorem 3.1. The key to the proof is a forcing notion known as Kumabe-Slaman forcing, which was originally introduced in [12].

3.1 Kumabe-Slaman Forcing

In order to prove Theorem 3.1, we will use Turing functionals and an associated notion of forcing to construct the desired B.

Definition 3.2 (Turing Functionals). [12, 9] A Turing functional Φ is a set of triples $(x, y, \sigma) \in \mathbb{N} \times\{0,1\} \times\{0,1\}^{*}$ (called computations in $\left.\Phi\right)$ such that if $\left(x, y_{1}, \sigma_{1}\right),\left(x, y_{2}, \sigma_{2}\right) \in$ Φ and σ_{1} and σ_{2} are compatible, then $y_{1}=y_{2}$ and $\sigma_{1}=\sigma_{2}$.

A Turing functional Φ is use-monotone if:
(i) For all $\left(x_{1}, y_{1}, \sigma_{1}\right)$ and $\left(x_{2}, y_{2}, \sigma_{2}\right)$ are elements of Φ and $\sigma_{1} \subset \sigma_{2}$, then $x_{1}<x_{2}$.
(ii) For all x_{1} and $\left(x_{2}, y_{2}, \sigma_{2}\right) \in \Phi$ where $x_{2}>x_{1}$, then there are y_{1} and σ_{1} such that $\sigma_{1} \subseteq \sigma_{2}$ and $\left(x_{1}, y_{1}, \sigma_{1}\right) \in \Phi$.
Remark 3.3. Despite the terminology, a Turing functional Φ is not assumed to be recursive or even recursively enumerable.

Definition 3.4 (Computations along a Real). [12, 9 Suppose Φ is a Turing functional and $X \in\{0,1\}^{\mathbb{N}}$. Then $(x, y, \sigma) \in \Phi$ is a computation along X if $\sigma \subset X$, in which case we write $\Phi(X)(x)=y$. If for every $x \in \mathbb{N}$ there exists $y \in\{0,1\}$ and $\sigma \subset X$ such that $(x, y, \sigma) \in \Phi$, then $\Phi(X)$ defines an element of $\{0,1\}^{\mathbb{N}}$ (otherwise it is a partial function).

Lemma 3.5. Suppose Φ is a Turing functional, $X \in\{0,1\}^{\mathbb{N}}$, and $\Phi(X) \in\{0,1\}^{\mathbb{N}}$. Then

$$
\Phi(X) \leq_{\mathrm{T}} \Phi \oplus X
$$

Proof. Obvious from the definition of $\Phi(X)$.
Definition 3.6 (Kumabe-Slaman Forcing). [12, 9 Define the poset (\mathbb{P}, \leq) as follows:
(i) Elements of \mathbb{P} are pairs (Φ, \mathbf{X}) where Φ is a finite use-monotone Turing functional and \mathbf{X} is a finite subset of $\{0,1\}^{\mathbb{N}}$.
(ii) If $p=\left(\Phi_{p}, \mathbf{X}_{p}\right)$ and $q=\left(\Phi_{q}, \mathbf{X}_{q}\right)$ are in \mathbb{P}, then $p \leq q$ if
(a) $\Phi_{p} \subseteq \Phi_{q}$ and for all $\left(x_{q}, y_{q}, \sigma_{q}\right) \in \Phi_{q} \backslash \Phi_{p}$ and all $\left(\mathbf{X}_{p}, y_{p}, \sigma_{p}\right) \in \Phi_{p}$, the length of σ_{q} is greater than the length of σ_{p}.
(b) $\mathbf{X}_{p} \subseteq \mathbf{X}_{q}$.
(c) For every x, y, and $X \in \mathbf{X}$, if $\Phi_{q}(X)(x)=y$, then $\Phi_{p}(X)(x)=y$.

In other words, a stronger condition than p can add longer computations to Φ_{p}, provided they don't apply to any element of \mathbf{X}_{p}.

In the remainder of $\S 3$, we will be discussing Kumabe-Slaman forcing over countable ω-models of ZFC ${ }^{1}$. Unlike in the forcing constructions in axiomatic set theory, it will be important here that the countable ground model M is not well-founded. We now introduce some conventions for discussing such models.

Let M be a countable non-well-founded ω-model of ZFC. Let $\theta\left(x_{1}, \ldots, x_{n}\right)$ be a sentence in the language of ZFC with parameters x_{1}, \ldots, x_{n} from M. We write $\theta^{M}\left(x_{1}, \ldots, x_{m}\right)$ or $M \vDash \theta\left(x_{1}, \ldots, x_{n}\right)$ to mean that $\theta\left(x_{1}, \ldots, x_{n}\right)$ holds in M. In particular, $x_{1} \epsilon^{M} x_{2}$ means that $M \vDash x_{1} \in x_{2}$, etc. We tacitly identity the natural number system of M with the standard natural number system, the reals of M with standard reals, etc. In particular, let \mathbb{P}^{M} be the set of pairs (Φ, X) such that $M \vDash "(\Phi, X)$ is a Kumabe-Slaman forcing condition". In this case, Φ is identified with a finite Turing functional, X is identified with a finite set of reals belonging to M, etc., so (Φ, X) actually is a Kumabe-Slaman forcing condition.

The key property of Kumabe-Slaman Forcing is the following:
Lemma 3.7. [9, based on Lemma 3.10, pg. 23] Suppose M is an ω-model of ZFC, $D \in M$ is dense in \mathbb{P}^{M}, and $X_{1}, \ldots, X_{n} \in\{0,1\}^{\mathbb{N}}$. Then for any $p \in \mathbb{P}^{M}$, there exists $q \geq p$ such that $q \in D$ and Φ_{q} does not add any new computations along any X_{k}.

Proof. Suppose $p=\left(\Phi_{p}, \mathbf{X}_{p}\right) \in \mathbb{P}^{M}$. Say that an n-tuple of strings $\vec{\tau}$ is essential for (p, D) if $q>p$ and $q \in D$ implies the existence of $(x, y, \sigma) \in \Phi_{q} \backslash \Phi_{p}$ such that σ is compatible with some component of $\vec{\tau}$, i.e., any extension of p in D adds a computation along a string compatible with a component of $\vec{\tau}$. Being essential for (p, D) is definable in M.

Define

$$
T_{n}(p, D):=\left\{\vec{\tau} \in\left(\{0,1\}^{*}\right)^{n} \mid \vec{\tau} \text { is essential for }(p, D) \text { and }\left|\tau_{1}\right|=\cdots=\left|\tau_{n}\right|\right\}
$$

Being essential for (p, D) is closed under taking (component-wise) initial segments, so $T_{n}(p, D)$ is a finitely branching tree in M.

[^0]Suppose for the sake of a contradiction that for every $q>p$, either $q \notin D$ or else q adds a new computation along some X_{k}. We claim that $\left\langle X_{1} \upharpoonright m, \ldots, X_{n} \upharpoonright m\right\rangle$ is essential for (p, D) for all $m \in \mathbb{N}$. Given $q>p$ with $q \in D$, by hypothesis there is some computation $(x, y, \sigma) \in \Phi_{q} \backslash \Phi_{p}$ along some X_{k}. This means that $\sigma \subset X_{k}$ (outside of M), so σ is compatible with $X_{k} \upharpoonright m$.

This shows that $T_{n}(p, D)$ is infinite. As M is a model of ZFC, it follows that $T_{n}(p, D)$ has a path through it. The requirement that the components of any element of $T_{n}(p, D)$ are of the same length implies that such a path is of the form $\left(Y_{1}, \ldots, Y_{n}\right)$ for $Y_{1}, \ldots, Y_{n} \in$ $M \cap\{0,1\}^{\mathbb{N}}$.

Consider $p_{1}=\left(\Phi_{p}, \mathbf{X}_{p} \cup\left\{Y_{1}, \ldots, Y_{n}\right\}\right)$. Suppose $q \geq p_{1}$ and $q \in D$. Each n-tuple $\left\langle Y_{1} \upharpoonright m, \ldots, Y_{n} \upharpoonright m\right\rangle$ is essential for (p, D) for each m, so there exists $\left(x_{m}, y_{m}, \sigma_{m}\right) \in \Phi_{q} \backslash \Phi_{p}$ such that σ_{m} is compatible with $Y_{k} \upharpoonright m$ for some k. As Φ_{q} is finite, letting m be sufficiently large shows that there is $(x, y, \sigma) \in \Phi_{q} \backslash \Phi_{p}$ for which σ is an initial segment of Y_{k} for some k. However, this is not possible since $q \leq p_{1}$ implies $Y_{k} \in \mathbf{X}_{q}$. This provides the needed contradiction.

Suppose G is an M-generic filter for \mathbb{P}^{M}. Then for every X

$$
X \subseteq^{M} \mathbb{N} \Longleftrightarrow \text { there is } p \in G \text { with } X \in \mathbf{X}_{p}
$$

since for any $X \subseteq^{M} \mathbb{N}$, the set $\left\{p \in \mathbb{P}^{M} \mid(\varnothing,\{X\}) \leq p\right\}^{M}$ is a dense open subset of \mathbb{P}^{M} in M. Thus, the essential parts of an M-generic filter G are the Turing functionals Φ_{p} for $p \in G$.

Definition 3.8. A Turing functional Φ is M-generic for \mathbb{P}^{M} if and only if there exists an M-generic filter G such that

$$
(x, y, \sigma) \in \Phi \Longleftrightarrow \text { there exists } p \in G \text { such that }(x, y, \sigma) \epsilon^{M} \Phi_{p}
$$

Φ may be identified with an element $(\dot{\Phi})_{G}$ in $M[G]$, where

$$
M \vDash \dot{\Phi}=\left\{(p, \dot{c}) \mid p \in \mathbb{P}^{M} \wedge c \in \Phi_{p}\right\}
$$

and \dot{c} is a canonical name for $c \in M$, defined by transfinite recursion in M to be the unique element in M for which

$$
M \vDash \dot{c}=\mathbb{P}^{M} \times\{\dot{b} \mid b \in c\}
$$

Lemma 3.9. The following are equivalent for a Turing functional Φ :
(i) Φ is an M-generic Turing functional for \mathbb{P}^{M}.
(ii) For every dense open subset $D \subseteq^{M} \mathbb{P}^{M}$, there exists $p \epsilon^{M} D$ such that

$$
(x, y, \sigma) \epsilon^{M} \Phi_{p} \Longrightarrow(x, y, \sigma) \in \Phi
$$

Proof.
$(i) \Longrightarrow(i i)$ Let G be an M-generic filter for \mathbb{P}^{M} such that

$$
(x, y, \sigma) \in \Phi \Longleftrightarrow \text { there exists } p \in G \text { such that }(x, y, \sigma) \epsilon^{M} \Phi_{p}
$$

Suppose $D \subseteq^{M} \mathbb{P}^{M}$ is dense open. By definition, there exists $p \in G$ such that $p \epsilon^{M} D$. Then by definition,

$$
(x, y, \sigma) \epsilon^{M} \Phi_{p} \Longrightarrow(x, y, \sigma) \in \Phi
$$

(ii) $\Longrightarrow(i)$ For $p \epsilon^{M} \mathbb{P}^{M}$, temporarily write $p<\Phi$ if $(x, y, \sigma) \epsilon^{M} \Phi_{p}$ implies $(x, y, \sigma) \in \Phi$. Define

$$
G:=\{q \mid \exists p(p<\Phi \wedge M \vDash(p \leq q))\} .
$$

We claim that G is an M-generic filter for \mathbb{P}^{M}.
Upwards closed: Suppose $q \in G$ and $M \vDash\left(q \leq q^{\prime}\right)$. Let $p<\Phi$ be such that $M \vDash p \leq q$. Then $M \vDash p \leq q^{\prime}$ since $M \vDash$ (\leq is transitive), so $q^{\prime} \in G$.
Downwards directed: Suppose $q, q^{\prime} \in G$. Let $p, p^{\prime}<\Phi$ be such that $M \vDash\left(p \leq q \wedge p^{\prime} \leq\right.$ $\left.q^{\prime}\right)$. Then the unique $p^{\prime \prime}$ for which $M \vDash p^{\prime \prime}=\left(\Phi_{p} \cap \Phi_{p^{\prime}}, \varnothing\right)$ satisfies $p^{\prime \prime}<\Phi$ and $M \vDash\left(p^{\prime \prime} \leq q \wedge p^{\prime \prime} \leq q^{\prime}\right)$.
M-generic: Suppose $D \subseteq^{M} \mathbb{P}^{M}$ is dense open. By hypothesis, there exists $p<\Phi$ such that $p \epsilon^{M} D$. By definition of $G, p \in G$.

By defining an M-generic Turing functional Φ for \mathbb{P}^{M} by means of approximations, Lemmas 3.7 and 3.10 allow us to meet dense sets without affecting $\Phi(Z)$, which can then be arranged independently.

3.2 Proof of Posner-Robinson for Hyperjumps

Now we proceed with the proof of Theorem 3.1.
Lemma 3.10. Suppose Z and A are reals such that $Z \oplus \mathcal{O} \leq_{\mathrm{T}} A$ and $0<_{\mathrm{HYP}} Z$. Then there exists a (code for a) countable ω-model M of ZFC such that $\mathcal{O}^{M} \equiv_{\mathrm{T}} A$ and $Z \notin M$.

Proof. The set of codes for countable ω-models of ZFC is Σ_{1}^{1}, so the existence of a code of such an M follows from Theorem 2.1

Proof of Theorem 3.1: The main idea of the proof is due to Slaman [13].
We shall construct an M-generic Turing functional Φ with $B=\Phi$ the desired real. Assume without loss of generality that no initial segment of Z is an initial segment of \mathcal{O}. By arranging for $\Phi(Z) \in\{0,1\}^{\mathbb{N}}$ and $\Phi(Z)=\mathcal{O}^{\Phi}$ and $\Phi(\mathcal{O})=A$, this will complete the proof.

By Lemma 3.10, there exists a countable ω-model M of ZFC such that $\mathcal{O}, Z \notin M$ and $\mathcal{O}^{M} \equiv_{\mathrm{T}} A$. Without loss of generality, $M=\langle\omega, E\rangle$.

Let $D_{0}, D_{1}, D_{2}, \ldots$ be an enumeration, recursive in A, of the dense open subsets of \mathbb{P}^{M} in M (M is countable and $\mathcal{O}^{M} \equiv_{\mathrm{T}} A$, so this is possible). To construct our M-generic Φ, we approximate it by finite initial segments

$$
p_{0} \leq p_{1} \leq \cdots \leq p_{n} \leq \cdots
$$

During our construction, we alternate between meeting dense sets, arranging for $\Phi(\mathcal{O})=A$, and arranging for $\Phi(Z) \equiv_{\mathrm{T}} \mathcal{O}^{\Phi}$.

Stage $n=0$: Define $p_{0}:=(\varnothing, \varnothing)$.
Stage $n=2^{m}$: Suppose p_{n-1} has been constructed. By Lemma 3.7, there exists $q \in D_{n}$ extending p_{n-1} which does not add any new computations along Z or \mathcal{O}. Let p_{n} be the least such condition.

Stage $n=2^{m} \cdot 3$: We extend p_{n-1} to p_{n} by adding $(m, A(m), \sigma)$ where $\sigma \subset \mathcal{O}$ is a sufficiently long initial segment of \mathcal{O} (i.e., the shortest initial segment of \mathcal{O} which is longer than any existing strings in elements of $\Phi_{p_{n-1}}$).

Stage $n=2^{m} \cdot 5$: Suppose p_{n-1} has been constructed. By construction, there is no y and $\sigma \subset Z$ such that $(m, y, \sigma) \in \Phi_{p_{n-1}}$. Now proceed as follows:
Substage 1: Consider the set D (in M) containig all $q \in \mathbb{P}^{M}$ such that one of the following conditions hold:
(i) $q \Vdash\left(m\right.$ encodes a Φ-recursive linear order on $\omega \wedge m \in \mathcal{O}^{\Phi} \wedge \exists \alpha\left(\alpha \in \operatorname{Ord}^{M} \wedge|m|=\right.$ $\alpha)$),
(ii) $q \Vdash\left(m\right.$ encodes a Φ-recursive linear order on $\left.\omega \wedge m \notin \mathcal{O}^{\Phi}\right)$, or
(iii) $q \Vdash \neg(m$ encodes a Φ-recursive linear order on $\omega)$.
D is dense. By Lemma 3.7, there exists $q \in D$ extending p_{n-1} which does not add any new computations along Z or \mathcal{O}. Let q be minimal with that property.
Substage 2: Extend q to p_{n} by adding (m, y, σ), where $\sigma \subset Z$ is a sufficiently long initial segment of Z (i.e., the shortest initial segment of Z which is longer than any existing strings in elements of Φ_{q}) and y depends on the following cases:
Case 1: If $q \Vdash\left(m\right.$ encodes a Φ-recursive linear order on $\omega \wedge m \in \mathcal{O}^{\Phi} \wedge \exists \alpha(\alpha \in$ $\left.\operatorname{Ord}^{M} \wedge|m|=\alpha\right)$), then we break into two subcases:
Case 1a: If α is in the standard part of Ord^{M}, then α is actually an ordinal and m does encode a Φ-recursive linear order on ω. Thus, set $y:=1$.
Case 1b: If α is not in the standard part of Ord^{M}, then α is not actually well-ordered (it is only well-ordered when viewed in M) so m does not encode a Φ-recursive linear order on ω. Thus, set $y:=0$.
Case 2: If $q \Vdash\left(m\right.$ encodes a Φ-recursive linear order on $\left.\omega \wedge m \notin \mathcal{O}^{\Phi}\right)$, then m cannot encode a Φ-recursive well-ordering of ω. Thus, set $y:=0$.
Case 3: If $q \Vdash \neg(m$ encodes a Φ-recursive linear order on $\omega)$, then set $y:=0$.
All Other Stages n : Let $p_{n}=p_{n-1}$.
Define Φ to be the unique set such that

$$
(x, y, \sigma) \in \Phi \Longleftrightarrow \text { there exists } n \in \mathbb{N} \text { such that }(x, y, \sigma) \in^{M} \Phi_{p_{n}}
$$

Thanks to Stages $n=2^{m}$ and Lemma 3.9, Φ is an M-generic Turing functional. Thanks to Stages $n=2^{m} \cdot 3, \Phi(\mathcal{O})=A$. Thanks to Stages $n=2^{m} \cdot 5, \Phi(Z)=\mathcal{O}^{\Phi}$.

We also note that in the above construction of Φ, (assuming p_{n-1} is given)...
\ldots Stage $n=2^{m}$ is recursive in $\mathcal{O}^{M} \oplus Z \oplus \mathcal{O} \leq_{\mathrm{T}} A$,
\ldots Stage $n=2^{m} \cdot 3$ is recursive in $\mathcal{O} \leq_{\mathrm{T}} A$,
\ldots Stage $n=2^{m} \cdot 5$ (Substage 1) is recursive in $\mathcal{O} \oplus \mathcal{O}^{M} \oplus Z \leq_{\mathrm{T}} A$,
\ldots Stage $n=2^{m} \cdot 5$ (Substage 2) is recursive in $Z \leq_{\mathrm{T}} A$, and
\ldots Stage n (for all other n) is recursive.

Thus,

$$
\Phi \leq_{\mathrm{T}} M \oplus\left(\mathcal{O}^{M} \oplus Z\right) \oplus A \leq_{\mathrm{T}} A .
$$

Applying Lemma 3.5 we find

$$
A=\Phi(\mathcal{O}) \leq_{\mathrm{T}} \mathcal{O} \oplus \Phi \leq_{\mathrm{T}} \mathcal{O}^{\Phi} \equiv_{\mathrm{T}} \Phi(Z) \leq_{\mathrm{T}} Z \oplus \Phi \leq_{\mathrm{T}} Z \oplus A \equiv_{\mathrm{T}} A
$$

so we have Turing equivalence throughout. $B=\Phi$ is hence the desired real.
Theorem 3.1 can be generalized, replacing the real Z by a sequence of reals.
Theorem 3.11. Suppose Z and A are reals such that $Z \oplus \mathcal{O} \leq_{\mathrm{T}} A$ and $0<_{\mathrm{HYP}}(Z)_{k}$ for every $k \in \mathbb{N}$. Then there exists B such that for every $k \in \mathbb{N}$

$$
A \equiv_{\mathrm{T}} \mathcal{O}^{B} \equiv_{\mathrm{T}} B \oplus(Z)_{k} \equiv_{\mathrm{T}} B \oplus \mathcal{O}
$$

Proof. The proof of Theorem 3.1 may be adapted by making the following adjustments. First, we replace the use of Lemma 3.10 with the following lemma:

Lemma 3.12. Suppose Z and A are reals such that $Z \oplus \mathcal{O} \leq_{\mathrm{T}} A$ and $0<_{\mathrm{HYP}}(Z)_{k}$ for every $k \in \mathbb{N}$. Then there exists a (code for a) countable ω-model M of ZFC such that $\mathcal{O}^{M} \equiv_{\mathrm{T}} A$ and $(Z)_{k} \notin M$ for every $k \in \mathbb{N}$.
Proof. Replace the usage of Theorem 2.1 in the proof of Lemma 3.10 with Theorem 2.8.
This yields a (code for a) countable ω-model M of ZFC such that $\mathcal{O},(Z)_{0},(Z)_{1}, \ldots \notin M$ and $\mathcal{O}^{M} \equiv_{\mathrm{T}} A$. We assume without loss of generality that $\mathcal{O} \neq(Z)_{k}$ for each k.

The adjustments to the construction are the following:

- In Stages $n=2^{m}$ and $n=2^{m} \cdot 3$, we avoid adding new computations along $(Z)_{0}, \ldots,(Z)_{n}$ and \mathcal{O}.
- Replace Stage $n=2^{m} \cdot 5$ with Stages $n=2^{m} \cdot 5^{k+1}$, and at the beginning of Stage $n=2^{m} \cdot 5^{k+1}$, first check if there exists y and $\sigma \subset(Z)_{k}$ such that $(m, y, \sigma) \in \Phi_{p_{n-1}}$. If such a y and σ are found, do nothing and proceed to the next stage. Otherwise, proceed as in Stage $n=2^{m} \cdot 5$ of the proof of Theorem 3.1, with the same adjustment of avoiding adding new computations along $(Z)_{0}, \ldots,(Z)_{n}$ and \mathcal{O} as above.
Note that it is no longer necessarily the case that $\Phi\left((Z)_{k}\right)=\mathcal{O}^{\Phi}$ for every $k \in \mathbb{N}$, as early stages may have added computations to Φ which make $\Phi\left((Z)_{k}\right)$ disagree with \mathcal{O}^{Φ}. However, after Stage k, no other stages add new computations along $(Z)_{k}$ except for those purposely added (i.e., in Stages $\left.n=2^{m} \cdot 5^{k+1}\right)$. It follows that $\Phi\left((Z)_{k}\right)$ and \mathcal{O}^{Φ} differ only on a finite set of indices, so $\Phi\left((Z)_{k}\right) \equiv_{\mathrm{T}} \mathcal{O}^{\Phi}$.

In the resulting construction of Φ, (assuming p_{n-1} is given)
\ldots Stage $n=2^{m}$ is recursive in $\mathcal{O}^{M} \oplus \oplus_{i=0}^{n}(Z)_{i} \oplus \mathcal{O} \leq_{\mathrm{T}} A$,
\ldots Stage $n=2^{m} \cdot 3$ is recursive in $\mathcal{O} \leq_{\mathrm{T}} A$,
\ldots Stage $n=2^{m} \cdot 5^{k+1}$ (Substage 1) is recursive in $\mathcal{O} \oplus \mathcal{O}^{M} \oplus \oplus_{i=0}^{n}(Z)_{i} \leq_{\mathrm{T}} A$,
\ldots Stage $n=2^{m} \cdot 5^{k+1}$ (Substage 2) is recursive in $(Z)_{k} \leq_{\mathrm{T}} A$, and
\ldots Stage n (for all other n) is recursive.
Thus,

$$
\Phi \leq_{\mathrm{T}} M \oplus\left(\mathcal{O}^{M} \oplus Z\right) \oplus A \equiv_{\mathrm{T}} A .
$$

The proof concludes as in the proof of Theorem 3.1.

4 Open Problems

In light of Theorems 2.1 and 3.1 , it is natural to ask whether they can be combined into one theorem. In other words, for which uncountable Σ_{1}^{1} classes $K \subseteq\{0,1\}^{\mathbb{N}}$ do the following properties hold?

Property 4.1. Suppose Z and A are reals such that $Z \oplus \mathcal{O} \leq_{\mathrm{T}} A$ and $0<_{\mathrm{HYP}}(Z)_{k}$ for every $k \in \mathbb{N}$. Then there exists $B \in K$ such that

$$
A \equiv_{\mathrm{T}} \mathcal{O}^{B} \equiv_{\mathrm{T}} B \oplus Z \equiv_{\mathrm{T}} B \oplus \mathcal{O}
$$

Property 4.2. Suppose Z and A are reals such that $Z \oplus \mathcal{O} \leq_{\mathrm{T}} A$ and $0<_{\mathrm{HYP}}(Z)_{k}$ for every $k \in \mathbb{N}$. Then there exists $B \in K$ such that for every k

$$
A \equiv_{\mathrm{T}} \mathcal{O}^{B} \equiv_{\mathrm{T}} B \oplus(Z)_{k} \equiv_{\mathrm{T}} B \oplus \mathcal{O}
$$

The following theorem answers some special cases of this problem.
Theorem 4.3. Let $L_{\mathrm{T}}=\left\{X \mid \mathcal{O}^{X} \equiv_{\mathrm{T}} X \oplus \mathcal{O}\right\}$. Suppose K is an uncountable Σ_{1}^{1} class which is Turing degree upward closed in L_{T}, i.e., whenever $X, Y \in L_{\mathrm{T}}, X \in K$, and $X \leq_{\mathrm{T}} Y$, then there is $Y_{0} \in K$ such that $Y \equiv_{\mathrm{T}} Y_{0}$. Then K has Properties 4.1 and 4.2.

Proof. This theorem is analogous to [3, Lemma 3.3]. By Theorem 2.1, let C be such that

$$
\begin{equation*}
A \equiv_{\mathrm{T}} \mathcal{O}^{C} \equiv_{\mathrm{T}} C \oplus Z \equiv_{\mathrm{T}} C \oplus \mathcal{O} \tag{*}
\end{equation*}
$$

Theorem 2.1. relativized to C, yields $B_{0} \in K$ such that

$$
\mathcal{O}^{C} \equiv_{\mathrm{T}} \mathcal{O}^{B_{0} \oplus C} \equiv_{\mathrm{T}} B_{0} \oplus \mathcal{O}^{C}
$$

Combining (\dagger) and $(*)$ shows that $\mathcal{O}^{B_{0} \oplus C} \equiv_{\mathrm{T}} B_{0} \oplus C \oplus \mathcal{O}$. As $B_{0} \leq_{\mathrm{T}} B_{0} \oplus C$, there is $B \in K$ such that $B \equiv_{\mathrm{T}} B_{0} \oplus C$ by hypothesis. In particular,

$$
\mathcal{O}^{C} \equiv_{\mathrm{T}} \mathcal{O}^{B} \equiv_{\mathrm{T}} B \oplus \mathcal{O}
$$

Moreover, in combination with (*),

$$
A \equiv_{\mathrm{T}} \mathcal{O}^{B} \equiv_{\mathrm{T}} B \oplus \mathcal{O} \equiv_{\mathrm{T}} B \oplus Z
$$

This shows that K has Property 4.1
To show that K has Property 4.2, repeat the above argument using Theorem 2.8 instead of Theorem 2.1.

Remark 4.4. The proof of Theorem 4.3 is easily adapted to prove the same result with $L_{\mathrm{T}}=\left\{X \mid \mathcal{O}^{X} \equiv_{\mathrm{T}} X \oplus \mathcal{O}\right\}$ replaced by $L_{\mathrm{HYP}}=\left\{X \mid \mathcal{O}^{X} \equiv_{\mathrm{HYP}} X \oplus \mathcal{O}\right\}$.

The hyperarithmetical analog of the Pseudojump Inversion Theorem [4, Theorem 2.1, pg. 601] also remains open. Namely, suppose V_{e}^{X} is an effective enumeration of the $\Pi_{1}^{1, X}$ predicates, uniformly in X. Define the e-th pseudo-hyperjump by

$$
\operatorname{HJ}_{e}(X):=X \oplus V_{e}^{X}
$$

Does the following result hold?

Conjecture 4.5. Suppose $e \in \mathbb{N}$ and A is a real such that $\mathcal{O} \leq_{\mathrm{T}} A$. Then there exists B such that

$$
\begin{equation*}
A \equiv_{\mathrm{T}} \mathrm{HJ}_{e}(B) \equiv_{\mathrm{T}} B \oplus \mathcal{O} \tag{1}
\end{equation*}
$$

Even if Conjecture 4.5 holds, this leaves open the question of characterizing the Σ_{1}^{1} classes $K \subseteq\{0,1\}^{\mathbb{N}}$ with the following properties:

Property 4.6. Suppose $e \in \mathbb{N}$ and A is a real such that $\mathcal{O} \leq_{\mathrm{T}} A$. Then there exists $B \in K$ such that Equation (1) holds.

Property 4.7. Suppose $e \in \mathbb{N}$ and Z and A are reals such that $Z \oplus \mathcal{O} \leq_{\mathrm{T}} A$ and $0<_{\mathrm{HYP}}(Z)_{k}$ for each $k \in \mathbb{N}$. Then there exists $B \in K$ such that Equation (1) holds and $(Z)_{k} \not \ddagger_{\mathrm{HYP}} B$ for every $k \in \mathbb{N}$.

Property 4.8. Suppose $e \in \mathbb{N}$ and Z and A are reals such that $Z \oplus \mathcal{O} \leq_{\mathrm{T}} A$ and $0<_{\text {HYP }} Z$. Then there exists $B \in K$ such that

$$
A \equiv_{\mathrm{T}} \mathrm{HJ}_{e}(B) \equiv_{\mathrm{T}} B \oplus Z \equiv_{\mathrm{T}} B \oplus \mathcal{O} .
$$

References

[1] Chi Tat Chong and Liang Yu, Recursion Theory: Computational Aspects of Definability, Walter de Gruyter GmbH \& Co KG, 2015, xiii + 306 pages.
[2] Leo Harrington, A powerless proof of a theorem of Silver, unpublished manuscript, 8 pages, 1976.
[3] Hayden R. Jananthan and Stephen G. Simpson, Pseudojump inversion in special r.b. Π_{1}^{0} classes, 2020, 19 pages, submitted for publication in Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, 2020.
[4] Carl G. Jockusch and Richard A. Shore, Pseudojump operators. I: The r.e. case, Transactions of the American Mathematical Society 275 (1983), no. 2, 599-609.
[5] _ Pseudo-jump operators. II: Transfinite iterations, hierarchies and minimal covers, The Journal of Symbolic Logic 49 (1984), no. 4, 1205-1236.
[6] Carl G. Jockusch and Robert I. Soare, Π_{1}^{0} classes and degrees of theories, Transactions of the American Mathematical Society 173 (1972), 35-56.
[7] John M. Macintyre, Transfinite extensions of Friedberg's completeness criterion 1, The Journal of Symbolic Logic 42 (1977), no. 1, 1-10.
[8] David B. Posner and Robert W. Robinson, Degrees joining to 0', The Journal of Symbolic Logic 46 (1981), no. 4, 714-722.
[9] Jan Reimann and Theodore A. Slaman, Effective randomness for continuous measures, 2018, preprints, arXiv:1808.10102v1, 2018, 57 pages, and arXiv:1808.10102v2, 2020, 62 pages.
[10] Hartley Rogers, Jr, Theory of Recursive Functions and Effective Computability, McGraw-Hill Series in Higher Mathematics, McGraw-Hill, 1967, xix +482 pages.
[11] Gerald E. Sacks, Higher Recursion Theory, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1990, xv + 344 pages. MR 1080970
[12] Richard A. Shore and Theodore A. Slaman, Defining the Turing jump, Mathematical Research Letters 6 (1999), no. 5/6, 711-722.
[13] Theodore A. Slaman, private communication, November 2018.

[^0]: ${ }^{1}$ Here ZFC denotes Zermelo-Fraenkel Set Theory with the Axiom of Choice. However, for the purposes of this paper, our ω-models need not satisfy ZFC but only a small subsystem of ZFC or actually of second-order arithmetic.

