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1 Introduction

What follows is a write-up of my contribution to the symposium “Hilbert’s
Program Sixty Years Later” which was sponsored jointly by the American
Philosophical Association and the Association for Symbolic Logic. The sym-
posium was held on December 29, 1985 in Washington, D. C. The panelists
were Solomon Feferman, Dag Prawitz and myself. The moderator was Wil-
fried Sieg. The research which I discuss here was partially supported by NSF
Grant DMS-8317874.

I am grateful to the organizers of this timely symposium on an important
topic. As a mathematician I particularly value the opportunity to address
an audience consisting largely of philosophers. It is true that I was asked
to concentrate on the mathematical aspects of Hilbert’s Program. But since
Hilbert’s Program is concerned solely with the foundations of mathematics,
the restriction to mathematical aspects is really no restriction at all.

Hilbert assigned a special role to a certain restricted kind of mathematical
reasoning known as finitistic. The essence of Hilbert’s Program was to justify
all of set-theoretical mathematics by means of a reduction to finitism. It is
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now well known that this task cannot be carried out. Any such possibility is
refuted by Gödel’s Theorem. Nevertheless, recent research has revealed the
feasibility of a significant partial realization of Hilbert’s Program. Despite
Gödel’s Theorem, one can give a finitistic reduction for a substantial portion
of infinitistic mathematics including many of the best-known nonconstructive
theorems. My purpose here is to call attention to these modern developments.

I shall begin by reviewing Hilbert’s original statement of his program.
After that I shall explicate the program in precise terms which, although
more formal than Hilbert’s, remain completely faithful to his original inten-
tion. This formal version of the program is definitively refuted by Gödel’s
Theorem. But the formal version also provides a context in which partial
realizations can be studied in a precise and fruitful way. I shall use this
context to discuss the modern developments which were alluded to above.
In addition I shall explain how these developments are related to so-called
“reverse mathematics.” Finally I shall rebut some possible objections to this
research and to the claims which I make for it.

2 Hilbert’s Statement of His Program

We must remember that in Hilbert’s time all mathematicians were excited
about the foundations of mathematics. Intense controversy centered around
the problem of the legitimacy of abstract objects. Weierstrass had greatly
clarified the role of the infinite in calculus. Cantor’s set theory promised
to raise mathematics to new heights of generality, clarity and rigor. But
Frege’s attempt to base mathematics on a general theory of properties led
to an embarrassing contradiction. Great mathematicians such as Kronecker,
Poincaré and Brouwer challenged the validity of all infinitistic reasoning.
Hilbert vowed to defend the Cantorian paradise. The fires of controversy
were fueled by revolutionary developments in mathematical physics. There
was a stormy climate of debate and criticism. The contrast with today’s
foggy atmosphere of intellectual exhaustion and compartmentalization could
not be more striking.

As the leading mathematician of his time, Hilbert considered it his per-
sonal duty to defend mathematics against all attackers and skeptics. This
task was especially urgent in view of contemporary scientific developments.
According to Hilbert, the most vulnerable point in the fortress of mathemat-
ics was the infinite. In order to defend the foundations of mathematics, it
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was above all necessary to clarify and justify the mathematician’s use of the
infinite [13].

Actually Hilbert saw the issue as having supramathematical significance.
Mathematics is not only the most logical and rigorous of the sciences but
also the most spectacular example of the power of “unaided” human reason.
If mathematics fails, then so does the human spirit. I was deeply moved
by the following passage [13], pp. 370–371. “The definitive clarification of
the nature of the infinite has become necessary, not merely for the special
interests of the individual sciences but for the honor of human understanding
itself.”

Hilbert begins with the following question. To what if anything in reality
does the mathematician’s use of the infinite correspond? (In my opinion
Hilbert’s discussion of this point would have profited from an examination
of Aristotle’s distinction between actual and potential infinity. According to
Aristotle, there is no actual infinity, but potential infinity exists and first
manifests itself to us in the continuous, via infinite divisibility. See also Lear
[18].)

Hilbert accepts the picture of the world which is presented by contempo-
rary physics. The atomic theory tells us that matter is not infinitely divisible.
The quantum theory tells us that energy is likewise not infinitely divisible.
And relativity theory tells us that space and time are unbounded but proba-
bly not infinite. Hilbert concludes that the mathematician’s infinity does not
correspond to anything in the physical world. (Consequently, the problem
of justifying the mathematician’s use of the infinite is even more urgent and
difficult for Hilbert than it would have been for Aristotle.)

Despite this uncomfortable conclusion, Hilbert boldly asserts that infini-
tistic mathematics can be fully validated. This is to be accomplished by
means of a three step program.

2.1. The first step is to isolate the unproblematic, “finitistic” portion
of mathematics. This part of mathematics is indispensable for all scientific
reasoning and therefore needs no special validation. Hilbert does not spell
out a precise definition of finitism, but he does give some hints. Finitistic
mathematics must dispense completely with infinite totalities. This means
that even ordinary logical operations such as negation are suspect when ap-
plied to formulas which contain a quantifier ranging over an infinite domain.
In particular, the nesting of such quantifiers is illegal. Nevertheless, finitistic
mathematics is to be adequate for elementary number theoretic reasoning and
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for elementary reasoning about the manipulation of finite strings of symbols.

2.2. The second step is to reconstitute infinitistic mathematics as a big,
elaborate formal system. This big system (more fully described in Hilbert
[14]) contains unrestricted classical logic, infinite sets galore, and special
variables ranging over natural numbers, functions from natural numbers to
natural numbers, countable ordinals, etc. The formulas of the big system are
strings of symbols which, according to Hilbert, are meaningless in themselves
but can be manipulated finitistically.

2.3. The last step of Hilbert’s Program is to give a finitistically correct
consistency proof for the big system. It would then follow that any Π0

1 sen-
tence provable in the big system is finitistically true. (For an explanation of
the role of Π0

1 sentences in Hilbert’s Program, see Kitcher [16] and Tait [25].)
Thus the big system as a whole would be finitistically justified. The infinite
objects of the big system would find meaning as valid auxiliary devices used
to prove theorems about physically meaningful, finitistic objects. Hilbert
viewed this as a new manifestation of the method of ideal elements. That
method had already served mathematics well in many other contexts.

Such was Hilbert’s inspiring vision and program for the foundations of
mathematics.

I have only one negative comment. With hindsight, we can see that
Hilbert’s proposal in step 2.2 to view infinitistic formulas as meaningless led
to an unnecessary intellectual disaster. Namely, it left Hilbert wide open
to Brouwer’s accusation of “empty formalism.” Brouwer’s accusation was
clearly without merit. A balanced reading shows that Hilbert’s overall inten-
tion was not to divest infinitistic formulas of meaning, but rather to invest
them with meaning by reference to finitistic mathematics, the meaning of
which is unproblematic. Nevertheless, this part of Hilbert’s formulation was
confusing and made it easy for Brouwer to step in and pin Hilbert with a
false label. The whole drama had the bad effect of lending undeserved re-
spectability to empty formalism. We are still paying the price of Hilbert’s
rhetorical flourish.
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3 A Precise Explication of Hilbert’s Program

Hilbert’s Program was only that: a program or proposed course of action.
Let us now ask: To what extent can the program be carried out? In order
to study this question fruitfully, one must reformulate the program in more
precise terms. I shall now do this.

Hilbert’s description of the “big system,” corresponding to infinitistic
mathematics, is already sufficiently precise. For my purposes here I shall
identify the big system as Z2, i.e. second order arithmetic. Supplement IV of
Hilbert and Bernays [15] shows that Z2 is more than adequate for the formal
development of classical analysis, etc. It would not matter if we replaced Z2

by Z3, Z4, or even ZFC.
The unacceptable imprecision occurs in Hilbert’s discussion of finitism.

There is room for disagreement over exactly which methods Hilbert would
have allowed as finitistic. This is not a defect in Hilbert’s presentation.
Hilbert’s plan was to carry out a consistency proof which would be obviously
finitistic. Had the plan been completely successful, there would have been
no need for a precise specification of the outer limits of finitism.

At this point I invoke the work of Tait [25]. Tait argues convincingly that
Hilbert’s finitism is captured by the formal system PRA of primitive recur-
sive arithmetic (also known as Skolem arithmetic). This conclusion is based
on a careful study of what Hilbert said about finitism in [13, 14] and else-
where. There seems to be a certain naturalness about PRA which supports
Tait’s conclusion. PRA is certainly finitistic and “logic-free” yet sufficiently
powerful to accommodate all elementary reasoning about natural numbers
and manipulations of finite strings of symbols. PRA seems to embody just
that part of mathematics which remains if we excise all infinitistic concepts
and modes of reasoning. For my purposes here I am going to accept Tait’s
identification of finitism with PRA.

I have now specified the precise version of steps 2.1 and 2.2 of Hilbert’s
Program. Step 2.3 is then to show that the consistency of the formal system
Z2 can be proved within the formal system PRA. If this could be done, it
would follow that every Π0

1 sentence which is provable in Z2 would also be
provable in PRA. We would describe this state of affairs by saying that Z2 is
conservative over PRA with respect to Π0

1 sentences. This would constitute
a precise and definitive realization of Hilbert’s Program.

Unfortunately, Gödel’s Theorem [9] shows that any such realization of
step 2.3 is impossible. There are plenty of Π0

1 sentences which are provable in
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Z2 but not in PRA. (An example of such a sentence is the one which asserts
the consistency of the formal system Z1 of first order arithmetic. Other
examples, with a more combinatorial flavor, have been given by Friedman.)

Note that Gödel’s Theorem does not challenge the correctness of Hilbert’s
formalization of infinitistic mathematics, nor does it undercut Tait’s identifi-
cation of finitistic mathematics with PRA. Gödel’s accomplishment is merely
to show that the wholesale reduction of infinitistic mathematics to finitistic
mathematics, which Hilbert envisioned, cannot be pushed through.

∗ ∗ ∗

At this point I insert a digression concerning the relationship of Hilbert’s
Program to other reductionist programs.

In the philosophy of mathematics, a reductionist is anybody who wants
to reduce all or part of mathematics to some restricted set of “acceptable”
principles. Hilbert’s plan to reduce all of mathematics to finitism is only one
of many possible reductionist schemes. In the aftermath of Gödel’s Theorem,
several authors have proposed reductionist programs which are quite different
from Hilbert’s.

For instance, Feferman [5] has developed an elaborate program of pred-
icative reductionism. (See also Simpson [22], pp. 152–154.) Certainly Fefer-
man’s predicative standpoint is very far away from finitism. It accepts full
classical logic and allows the set of all natural numbers as a completed infinite
totality. But it severely restricts the use of quantification over the domain
of all subsets of the natural numbers. At this APA-ASL symposium, Fefer-
man referred to predicative reductionism as a “relativized” form of Hilbert’s
Program.

Similarly Gödel [10] has proposed an “extension” of the finitistic stand-
point, by way of primitive recursive functionals of higher type. Also Bernays
[1], p. 502, has discussed a program of intuitionistic reductionism which he
regards as a “broadening” or “enlarging” of proof theory. In his introduc-
tory remarks to this symposium, Sieg interpreted Bernays as calling for a
“generalized Hilbert program.”

I would like to stress that these relativizations, extensions and general-
izations are very different from the original Program of Hilbert. Above all,
Hilbert’s purpose was to validate infinitistic mathematics by means of a re-
duction to finitistic reasoning. Finitism was of the essence because of its
clear physical meaning and its indispensability for all scientific thought. By
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no stretch of the imagination can Feferman’s predicativism, Gödel’s higher
type functionals, Myhill’s intuitionistic set theory or Gentzen’s transfinite
ordinals be viewed as finitistic. These proof-theoretic developments are in-
genious and have great scientific value, but they are not contributions to
Hilbert’s Program.

4 Partial Realizations of Hilbert’s Program

Gödel’s Theorem shows that it is impossible to reduce all of infinitistic math-
ematics to finitistic mathematics. There remains the problem of validating
as much of infinitistic mathematics as possible. In particular, what part of
infinitistic mathematics can be reduced to finitistic reasoning? Using the
precise explications in §3, we may reformulate this question as follows. How
much of infinitistic mathematics can be developed within subsystems of Z2

which are conservative over PRA with respect to Π0
1 sentences?

Recent investigations have revealed that the answer to the above question
is: quite a large part. The purpose of this section is to explain these recent
discoveries. I shall now do so.

First, Friedman [6] has defined a certain interesting subsystem of Z2

known as WKL0. The language of WKL0 is the same as that of Z2. The
logic of WKL0 is full classical logic including the unrestricted law of the ex-
cluded middle. Induction is assumed only for Σ0

1 formulas of the language
of Z2. The mathematical axioms of WKL0 imply that one can obtain new
functions from arbitrary given ones by means of substitution, primitive re-
cursion, and minimization. In particular WKL0 includes PRA and hence all
of finitistic mathematics. In addition WKL0 includes a highly nonconstruc-
tive axiom which asserts that any infinite tree of finite sequences of 0’s and
1’s has an infinite path. This powerful principle is known as Weak König’s
Lemma. Topologically, Weak König’s Lemma amounts to the assertion that
the Cantor space 2N is compact, i.e. enjoys the Heine–Borel covering property
for sequences of basic open sets. Friedman pointed out that compactness of
2N implies, for instance, compactness of the closed unit interval [0, 1] within
WKL0.

Second, it has been shown that WKL0 is conservative over PRA with
respect to Π0

1 sentences. This result is originally due to Friedman [7] who in
fact obtained a stronger result: WKL0 is conservative over PRA with respect
to Π0

2 sentences. This means that any Π0
2 sentence which is provable in WKL0
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is already provable in PRA and hence is witnessed by a primitive recursive
Skolem function. Friedman’s proof of this result is model-theoretic and will
be published by Simpson [24]. Subsequently Sieg [20] used a Gentzen-style
method to give an alternative proof of Friedman’s result. Actually Sieg
exhibited a primitive recursive proof transformation. Thus the reducibility
of WKL0 to PRA is itself provable in PRA. (These conclusions due to Sieg
[20] could also have been derived from work of Parsons [19] and Harrington
[12].)

The above results of Friedman and Sieg may be summarized as follows.
Any mathematical theorem which can be proved in WKL0 is finitistically re-
ducible in the sense of Hilbert’s Program. In particular, any Π0

2 consequence
of such a theorem is finitistically true.

Of course all of this would be pointless if WKL0 were as weak as PRA
with respect to infinitistic mathematics. But fortunately such is not the
case. The ongoing efforts of Simpson and others have shown that WKL0

is mathematically rather strong. For example, the following mathematical
theorems are provable in WKL0.

4.1. The Heine–Borel covering theorem for closed bounded subsets of Eu-
clidean n-space (Simpson [21, 24]) or for closed subsets of a totally bounded
complete separable metric space (Brown–Simpson [3], Brown [2]).

4.2. Basic properties of continuous functions of several real variables. For in-
stance, any continuous real-valued function on a closed bounded rectangle in
Rn is uniformly continuous and Riemann integrable and attains a maximum
value (Simpson [21, 24]).

4.3. The local existence theorem for solutions of systems of ordinary differ-
ential equations (Simpson [21]).

4.4. The Hahn–Banach Theorem and Alaoglu’s Theorem for separable Ba-
nach spaces (Brown–Simpson [3], Brown [2]).

4.5. The existence of prime ideals in countable commutative rings (Friedman–
Simpson–Smith [8]).

4.6. Existence and uniqueness of the algebraic closure of a countable field
(Friedman–Simpson–Smith [8]).
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4.7. Existence and uniqueness of the real closure of a countable formally real
field (Friedman–Simpson–Smith [8]).

These examples show that WKL0 is strong enough to prove a great many
theorems of classical infinitistic mathematics, including some of the best-
known nonconstructive theorems. Combining this with the results of Fried-
man and Sieg, we see that a large and significant part of mathematical prac-
tice is finitistically reducible. Thus we have in hand a rather far-reaching
partial realization of Hilbert’s Program.

This partial realization of Hilbert’s Program has an interesting applica-
tion to the problem of “elementary” proofs of theorems from analytic number
theory. Using 4.2 we can formalize the technique of contour integration within
WKL0. Using conservativity of WKL0 over PRA, we can then “eliminate” this
technique. Our conclusion is that any Π0

2 number-theoretic theorem which
is provable using contour integration can also be proved “elementarily,” i.e.
within PRA.

∗ ∗ ∗

I shall now announce some new results which extend the ones that were
discussed above. Very recently, Brown and I defined a new subsystem of Z2.
The new system properly includes WKL0 and is properly included in ACA0.
For lack of a better name, we are temporarily calling the new system WKL+

0 .
The axioms of WKL+

0 are those of WKL0 plus an additional scheme. Let 2<N

denote the set of finite sequences of 0’s and 1’s. The new scheme says that,
given a sequence of dense subcollections of 2<N which is arithmetically defin-
able from a given set, there exists an infinite sequence of 0’s and 1’s which
meets each of the given dense subcollections. This amounts to a strong for-
mal version of the Baire Category Theorem for the Cantor space 2N. Brown
and I have used forcing to show that WKL+

0 is conservative over RCA0 for
Π1

1 sentences. (Earlier Harrington [12] had used forcing to show that WKL0

is conservative over RCA0 for Π1
1 sentences. Harrington’s proof will appear

in Simpson [24].) Combining this with a result of Parsons [19], we see that
WKL+

0 is conservative over PRA for Π0
2 sentences and that this conservation

result is itself demonstrable within PRA. Thus we have finitistic reducibil-
ity of any mathematical theorem which is provable in WKL+

0 . The point of
all this is that WKL+

0 includes several highly nonconstructive theorems of
functional analysis which are apparently not provable in WKL0. Prominent
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among these are the Open Mapping Theorem and the Closed Graph The-
orem for separable Banach spaces. Thus we have a finitistic reduction of
these theorems as well. This represents further progress in our partial re-
alization of Hilbert’s Program. There seems to be a possibility of defining
even stronger subsystems of Z2 which would contain even more theorems
of infinitistic mathematics yet remain finitistically reducible to PRA. This
would represent still further progress.

The results announced in the previous paragraph are not yet in final form.
A version of them will appear in Brown’s forthcoming Ph. D. thesis which
is now being written under my supervision [2].

5 The Role of Reverse Mathematics

The purpose of this section is to discuss Reverse Mathematics and its rela-
tionship to our previously described partial realization of Hilbert’s Program.

Reverse Mathematics is a highly developed research program whose pur-
pose is to investigate the role of strong set existence axioms in ordinary
mathematics. The Main Question is as follows. Given a specific theorem τ
of ordinary mathematics, which set existence axioms are needed in order to
prove τ? Reverse Mathematics is a technique which frequently yields precise
answers to special cases of this question.

A fairly detailed survey of Reverse Mathematics will be found in my
appendix to the forthcoming second edition of Takeuti’s proof theory book
[23]. Here I must confine myself to a very brief summary.

Most of the work on Reverse Mathematics has been carried out in the
context of subsystems of Z2. There are a great many different subsystems
of Z2 which are distinguished from one another by their stronger or weaker
set existence axioms. It turns out that almost every theorem τ of ordinary
mathematics can be stated in the language of Z2 and proved in some sub-
system of Z2. For many specific theorems τ , it turns out that there is a
weakest natural subsystem S(τ) of Z2 in which τ is provable. Moreover S(τ)
is often one of a relatively small number of specific systems. The specific
systems which most often arise in this context are RCA0, WKL0, ACA0, ATR0

and Π1
1-CA0. Of these RCA0 is the weakest and the others are listed in order

of increasing strength. The system WKL0 has already been discussed in §4
above. For definitions of the other systems and an explanation of their role
in Reverse Mathematics, see Simpson [23, 24].
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Given a mathematical theorem τ , the general procedure for identifying
S(τ) is to show that the principal set existence axiom of S(τ) is equivalent
to τ , the equivalence being provable in some weaker system in which τ itself
is not provable. For instance, the way to show that S(τ) = WKL0 is to
show that τ is equivalent to Weak König’s Lemma, the equivalence being
provable in the weaker system RCA0. Our slogan “reverse mathematics”
arises in the following way. The usual pattern of mathematical reasoning
is to deduce a theorem from some axioms. This might be called “forward
mathematics.” But in order to establish that the axioms are needed for a
proof of the theorem, one must reverse the process and deduce the axioms
from the theorem. Hence “reverse mathematics.”

As an example, consider the local existence theorem for solutions of or-
dinary differential equations. Given an initial value problem y′ = f(x, y),
y(0) = 0 where f(x, y) is defined and continuous in some neighborhood of
(0, 0), there exists a continuously differentiable solution y = φ(x) which is
defined in some neighborhood of 0. This theorem can be formulated as a
sentence τ in the language of Z2. We may then consider the following special
case of the Main Question. Which set existence axioms are needed for a
proof of τ?

The standard textbook proof of τ proceeds by way of the Ascoli Lemma.
With some effort we can show that the Ascoli Lemma is provable in ACA0. We
then see fairly easily that τ is provable in ACA0. But, in order to prove τ , were
the set existence axioms of ACA0 really needed? Motivated by this question
we try to “reverse” both the Ascoli Lemma and τ by showing that each of
them is equivalent to ACA0 over the weaker system RCA0. This attempt
succeeds for the Ascoli Lemma but fails in the case of τ . We therefore try to
prove τ in the next system weaker than ACA0, namely WKL0. This attempt
is ultimately successful, but the resulting proof of τ in WKL0 turns out to be
much more difficult than the textbook proof. This was to be expected since
we already knew that the Ascoli Lemma is not provable in WKL0. Finally
we tie up the remaining loose ends by showing that τ is equivalent to WKL0

over RCA0. We are thus left with a precise answer to the above-mentioned
special case of the Main Question. (For details see Simpson [21].) This is a
solid contribution to Reverse Mathematics.

As a byproduct of this work in Reverse Mathematics, we see that τ is
provable in WKL0. Combining this with the results of §§3 and 4, we have a
solid contribution to Hilbert’s Program. Namely we see that τ is in a certain
precise sense finitistically reducible.
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The above example illustrates the general relationship between Reverse
Mathematics and Hilbert’s Program. Our method for Hilbert’s Program is to
prove specific mathematical theorems within certain subsystems of Z2 such
as WKL0 or WKL+

0 . Reverse Mathematics helps us to find the theorems for
which this is possible. In many cases, the failure of an attempt to “reverse”
a theorem vis-á-vis ACA0 leads to the discovery that the theorem is in fact
provable in one of the weaker systems WKL0 or WKL+

0 . Thus Reverse Math-
ematics plays a negative yet valuable heuristic role.

More fundamentally, Reverse Mathematics helps us to uncover the sub-
systems of Z2 which are relevant to partial realizations of Hilbert’s Program.
It is a fact that WKL0 and WKL+

0 were first discovered in the context of
Reverse Mathematics. They arose naturally as candidates for the weakest
subsystems of Z2 in which to prove certain mathematical theorems.

I do not mean to imply that Reverse Mathematics is coextensive with
partial realizations of Hilbert’s Program. It certainly is not. I only assert
the existence of a certain mutually reinforcing relationship between these two
lines of research.

I hope that I have adequately addressed Takeuti’s concerns [26] about the
connection between Hilbert’s Program and Reverse Mathematics.

6 Answers to Some Possible Objections

In this section I shall rebut some possible objections which might be raised
against the research which was reported in the previous sections.

6.1. The purpose of Hilbert’s Program is to defend mathematics against
skeptics. But why is mathematics in need of any defense? Doesn’t everyone
agree that mathematics is both valid and useful?

As to the usefulness of mathematics, opinion is divided. Some see math-
ematics as both a supreme achievement of human reason and, via science
and industry, the benefactor of all mankind. (This is my own view.) Others
believe that mathematics causes only alienation and war. Still others see
mathematics as a useless but harmless pastime. The utility of mathematics
can be argued only as part of a broad defense of reason, science, technology
and Western civilization.

What chiefly concerns us here is not utility but scientific truth. Of course
the two issues are related. Pragmatists might argue that mathematics is
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useful and therefore valid. But such an inference can cover only applied
mathematics and is anyhow a non sequitur. It makes much more sense to
argue that mathematics is true and therefore useful. In the last analysis, the
only way to demonstrate that mathematics is valid is to show that it refers
to reality.

And make no mistake about it — the validity of mathematics is under
siege. In a widely cited article [28], Wigner declares that there is no ratio-
nal explanation for the usefulness of mathematics in the physical sciences.
He goes on to assert that all but the most elementary parts of mathemat-
ics are nothing but a miraculous formal game. Kline, in his influential book
Mathematics: The Loss of Certainty [17], deploys a wide assortment of math-
ematical arguments and historical references to show that “there is no truth
in mathematics.” Kline’s book was published by the Oxford University Press
and reviewed favorably in the New York Times. (For a much more insightful
review, see Corcoran [4].) Neither Wigner nor Kline is viewed as an enemy
of mathematics. But with friends like these, who needs enemies? Argu-
ments like those of Kline and Wigner turn up with alarming frequency in
coffee-room discussions and in the popular press. Russell’s famous charac-
terization of mathematics, as “the science in which we never know what we
are talking about, nor whether what we say is true,” is gleefully cited by
every wisecracking sophist.

In the face of the attack on mathematics, what defense is offered by
the existing schools of the philosophy of mathematics? Consider first the
logicists. They say that mathematics is logic, logic consists of analytic truths,
and analytic truths are those which are independent of subject matter. In
short, mathematics is a science with no subject matter. What about the
formalists? According to them, mathematics is a process of manipulating
symbols which need not symbolize anything. Then there are the intuitionists,
who say that mathematics consists of mental constructions which have no
necessary relation to external reality, if indeed there is any such thing as
external reality. Finally we come to the Platonists. They are better than the
others because at least they allow mathematics to have some subject matter.
But the subject matter which they postulate is a separate universe of objects
and structures which bear no necessary relation to the real world of entities
and processes. (They use the term “real world” referring not to the real
real world but to their ideal universe of mathematical objects. The real real
world is absent from their theory.) I submit that none of these schools is in
a position to defend mathematics against the Russells and the Klines.
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The four schools discussed in the previous paragraph are not very far
apart. Each of them is based on some variant of Kantianism. Frequently
they merge and blend. Most mathematicians and mathematical logicians lean
toward an uneasy mixture of formalism and Platonism. Uneasiness flows from
the implicit realization that neither formalism nor Platonism nor the mixture
supports a comprehensive view of mathematics and its applications. There
is urgent need for a philosophy of mathematics which would supply what
Wigner lacks, viz. a rational explanation of the usefulness of mathematics in
the physical sciences. Some form of finitistic reductionism may be relevant
here.

I have argued elsewhere that the attack on mathematics is part of a
general assault against reason. But this is not the burden of my remarks
today. What is clear is that mathematicians and philosophers of mathematics
ought to get on with the task of defending their discipline.

6.2. Hilbert’s Program is exclusively concerned with the problem of vali-
dating infinitistic mathematics. But what’s the big problem about the infinite?
Isn’t finitistic mathematics in equal need of validation?

There is a long history of doubts about the role of the infinite in mathe-
matics. Aristotle’s discussion of the infinite is more acute than modern ones
but still inconclusive. Euclid achieved rigor in part by avoiding all reference
to the infinite. Archimedes used infinite limit processes but never rigor-
ously justified them. Later, infinitesimals in calculus were the occasion of
intense philosophic controversy. Doubts about infinitesimals were exploited
by Bishop Berkeley in his mystical assault on science and Enlightenment val-
ues. Weierstrass’ arithmetization of calculus restored clarity and rigor, but
the respite was only temporary. Controversy about the infinite was never
more intense than in our own century.

The problem is that the infinite does not obviously correspond to any-
thing in reality. The real world is made up of finite entities and processes.
Everything that exists has a definite nature and is therefore in some sense
limited. Aristotle argues for the real-world existence of the infinite, but only
by recourse to a distinction between potential and actual infinity. Hilbert uses
physical arguments to deny the existence of the infinite anywhere except in
thought. Certainly any convincing account of the relationship between the
infinite and the real world would have to be fairly subtle.

By contrast, the formulas of finitistic mathematics refer in a relatively
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unproblematic, common-sense way to various discrete or cyclical real-world
processes. For this reason, finitistic mathematics has always been much
less controversial than infinitistic mathematics. Only in our own time has
there arisen an ultrafinitist school which posits bounds on the length of the
natural number sequence. And the ultrafinitists have neither refuted finitistic
mathematics nor shown us what an ultrafinitist textbook would look like.
Finitistic mathematics is as firmly grounded as a science can be.

6.3. The essence of Hilbert’s Program is to reduce infinitistic mathematics
to finitistic mathematics. But what is the point of such a reduction? Does it
really increase the reliability of infinitistic mathematics?

I grant that the reduction of infinitistic proofs to finitistic ones does not
increase confidence in the formal correctness of infinitistic proofs. What
such a reduction does accomplish is to show that finitistically meaningful
end-formulas of infinitistic proofs are true in the real world. Hence formulas
which occur in infinitistic proofs become more reliable in that they are seen
to correspond with reality.

6.4. Why should we concern ourselves exclusively with finitistic reduc-
tionism? What about predicativistic or intuitionistic reductionism?

This objection has been partially answered in the digression at the end of
§3. Finitism is much more restricted than either predicativism or intuition-
ism. Finitistic reasoning is unique because of its clear real-world meaning
and its indispensability for all scientific thought. Nonfinitistic reasoning can
be accused of referring not to anything in reality but only to arbitrary men-
tal constructions. Hence nonfinitistic mathematics can be accused of being
not science but merely a mental game played for the amusement of mathe-
maticians. Proponents of predicativism and intuitionism have never tried to
defend their respective doctrines against such accusations. Finitistic reduc-
tionism is an attempt to defend infinitistic mathematics by showing that at
least some of it is more than a mental game and does correspond to some-
thing in reality. It is difficult to imagine how any such goal could be advanced
by predicativistic or intuitionistic reductionism.

6.5. Are the possibilities of finitism really exhausted by PRA? Didn’t
Hilbert himself allow for an extended notion of finitism which would transcend
the primitive recursive functions?
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One might try to insist that certain multiply recursive functions such as
the Ackermann function ought to be allowed as finitistic. However, Reverse
Mathematics seems to indicate that such relatively minor changes would not
significantly enlarge the class of finitistically reducible theorems. Hence the
conclusions of §4 would remain essentially unaffected.

It is also true that Hilbert [13], p. 389, discussed a certain rather wide
class of recursions of higher type. But Hilbert did not assert that such
recursions are prima facie finitistic. Rather he presented them as part of
his alleged proof of the Continuum Hypothesis, based on his incorrect belief
that all of infinitistic mathematics is finitistically reducible. Certainly the
recursions in question do not satisfy Hilbert’s own criteria for finitism. (See
also Tait [25], pp. 544–545.)

There are other possible objections to the identification of finitism with
PRA. All such objections have been dealt with adequately by Tait [25].

6.6. The development of mathematics within Z2 or subsystems of Z2

involves a fairly heavy coding machinery. Doesn’t this vitiate the claim of
such subsystems to reflect mathematical practice?

It is true that the language of Z2 requires mathematical objects such as
real numbers, continuous functions, complete separable metric spaces, etc. to
be encoded as subsets of N in a somewhat arbitrary way. (See [3, 8, 21, 24].)
However, this coding in subsystems of Z2 is not more arbitrary or burdensome
than the coding which takes place when we develop mathematics within,
say, ZFC. Besides, the coding machinery could be eliminated by passing to
appropriate conservative extensions with special variables ranging over real
numbers, etc. If this were done, the codes would appear only in the proofs
of the conservation results. I do not believe that the coding issue has any
important effect on the program of finitistic reductionism.

6.7. The systems WKL0 and WKL+
0 do not capture the full range of stan-

dard, infinitistic mathematics. Many well-known standard theorems cannot
be proved at all in these systems. And even when a standard theorem is prov-
able in WKL0 or WKL+

0 , the proof there is sometimes much more complicated
than the standard proof. Doesn’t this undercut the claim of WKL0 and WKL+

0

to embody a partial realization of Hilbert’s Program?

Gödel’s Theorem and Reverse Mathematics imply that many well-known
standard mathematical theorems are not finitistically reducible at all. There-
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fore, the fact that these theorems are not provable in WKL0 or WKL+
0 does not

disturb us in the least. It merely prevents our partial realization of Hilbert’s
Program from being a total one.

Somewhat more worrisome is the gap between standard proofs and proofs
in WKL0 or WKL+

0 . However, this gap is certainly not wider than the one
between Eulerian infinitesimal analysis and Weierstrassian ε-δ arguments.
Moreover Hilbert explicitly embraced Weierstrass’ reconstruction of analy-
sis as a model for his own Program if not an integral part of it. “Just as
operations with the infinitely small were replaced by processes in the finite
that have quite the same results and lead to quite the same elegant formal
relations, so the modes of inference employing the infinite must be replaced
generally by finite processes that have precisely the same results, that is, that
permit us to carry out proofs along the same lines and to use the same meth-
ods of obtaining formulas and theorems.” These words of Hilbert [13], p. 370,
make me doubt that he would have been troubled by the above-mentioned
gap.

6.8. The systems WKL0 and WKL+
0 do not seem to correspond to any co-

herent, sharply defined philosophical or mathematical doctrine. Aren’t WKL0

and WKL+
0 mere ad hoc creations?

No, they are not mere ad hoc creations. The axioms of WKL0 and WKL+
0

embody compactness and Baire category respectively. These two principles
are well known to be pervasive in infinitistic mathematics. (They are two
different ways of affirming the existence of “enough points” in continuous
media.) Moreover, the principal axiom of WKL0 is known to be equivalent
over RCA0 to a number of key mathematical theorems. For instance, each
of the Theorems 4.1 through 4.7, which were listed in §4 as being provable
in WKL0, is in fact equivalent to WKL0 over RCA0. These equivalences come
from Reverse Mathematics and provide further evidence of the naturalness
of WKL0.

Perhaps WKL0 and WKL+
0 do not correspond to any set of a priori on-

tological commitments such as might be proposed by philosophers unac-
quainted with the history and current state of mathematics. However, math-
ematics is entitled to define its own principles in accordance with its own
needs, so long as these principles are compatible with the needs of the other
sciences and with sound philosophy. This seems to leave room for systems
such as WKL0 and WKL+

0 .
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6.9. The claimed partial realization of Hilbert’s Program is only patch-
work. Infinitistic theorems are validated one at a time by laboriously reestab-
lishing them within WKL0 or WKL+

0 or similar systems. Doesn’t such a piece-
meal procedure lack the “once and for all” grandeur of Hilbert’s visionary
proposal?

Let me say first that the work reported in §4 is much more systematic
than it may appear from the outside. Many branches of infinitistic math-
ematics depend on a few key nonconstructive existence theorems. If these
theorems or a reasonable substitute can be proved within WKL0, the rest fol-
lows routinely. Thus WKL0 includes whole branches of mathematics and not
only the theorems which were mentioned in §4 for illustrative purposes. It
seems that most of the “applicable” or “concrete” branches of mathematics
fall into this category. For example, the Artin–Schreier solution of Hilbert’s
17th Problem can be carried out within WKL0. (See Friedman–Simpson–
Smith [8].) I would estimate that at least 85% of existing mathematics can
be formalized within WKL0 or WKL+

0 or stronger systems which are conserva-
tive over PRA with respect to Π0

2 sentences. Of course highly set-theoretical
topics are excluded, but it is remarkable how many topics which at first may
seem highly set-theoretical turn out not to be so. For instance, the Hahn–
Banach Theorem for separable Banach spaces turns out to be provable in
WKL0. (See Brown–Simpson [3].)

Having said this, I must admit that my plodding procedure lacks the
grand sweep of Hilbert’s plan. But to some extent this is inevitable in view
of Gödel’s Theorem. In any case, if there is a better procedure, I challenge
the questioner to find it. Granted, it would be desirable to have a wholesale
finitistic reduction of a large and easily identifiable part of infinitistic math-
ematics. But we do not know whether this is possible. In the meantime it
seems desirable to establish finitistic reducibility for as much of infinitistic
mathematics as we can. Moreover, the experience so gained may turn out to
be useful in the larger task of validating infinitistic mathematics by methods
not restricted to finitistic reductionism. It seems reasonable to hope that
patience will pay off here.

6.10. The deduction of axioms from theorems seems like a very strange
activity. Certainly such a wrong-headed enterprise would never have been
tolerated by Hilbert. Can’t we dismiss as mere propaganda the attempt to
associate Reverse Mathematics with Hilbert’s Program?
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No, we cannot. It is true that the deduction of axioms from theorems
is absent from Hilbert’s formulation of his program. It is likewise absent
from the final form of our results, discussed in §4 above, which constitute
partial realizations of Hilbert’s Program. However, Reverse Mathematics has
played and will continue to play an important behind-the-scenes heuristic
rôle in the discovery of such results. As explained and illustrated in §4, the
interplay between “forward mathematics” and Reverse Mathematics leads
to the discovery of formal systems such as WKL0 and WKL+

0 . That same
interplay is essential to the ongoing process whereby we delimit the parts of
mathematics that can be developed in such systems.

The fact that Hilbert’s vision did not encompass Reverse Mathematics
is of no consequence. Hilbert mistakenly thought that it would be possible
to reduce all of infinitistic mathematics to finitism. Had he been right,
there would have been no need to delimit the finitistically reducible parts of
mathematics. Reverse Mathematics is instrumental in exploring the extent
to which Hilbert’s own Program can be carried out. For this reason I think
that Hilbert would have recognized something of his own intention in the
research which I have reported here.

6.11. What is the point of going on with Hilbert’s Program once Gödel
showed it to be impossible? Why not give up on finitistic reductionism and
turn to some other method of validating infinitistic mathematics? For in-
stance, why not appeal to Platonic intuition about the cumulative hierarchy?
(This objection or one very much like it was raised at the symposium by Nick
Goodman.)

The obituary for Hilbert’s Program is premature to say the least. Gödel’s
Theorem rules out only the most thoroughgoing total realizations of Hilbert’s
Program. It does not rule out significant partial realizations. The results of
§4 show that a substantial portion of the Program can in fact be carried
out. (See also my answer to 6.9, above.) This is a remarkable vindication of
Hilbert. It is also an embarrassing defeat for those who gleefully trumpeted
Gödel’s Theorem as the death knell of finitistic reductionism.

The need to defend the integrity of mathematics has not abated. On the
contrary, Gödel’s Theorem made this need more urgent than ever. Gödel
supplied heavy artillery for all would-be assailants of mathematics. Authors
such as Kline [17] cite Gödel with monotonous repetition and devastating
effect. The assault rages as never before.
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Platonic intuition is unsuitable as a weapon with which to defend the
validity of mathematics. Only the first few levels of the cumulative hierarchy
bear any resemblance to external reality. The rest are a huge extrapolation
based on a crude model of abstract thought processes. Gödel himself comes
close to admitting as much ([11], pp. 483–484). Arguing in favor of the
cumulative hierarchy, Gödel ([11], pp. 477 and 485) proposes a validation in
terms of testable number-theoretic consequences. Unfortunately such tests
seem hard to carry out.

Finitistic reductionism is not the only plausible method by which to vali-
date infinitistic mathematics. One might try to show that a substantial part
of infinitistic mathematics is directly interpretable in the real world. Con-
tinuous real-world processes have not been sufficiently exploited. Aristotle’s
notion of potential infinity could be of value. Nevertheless, of all the possible
approaches, the indirect one via finitism seems to be the most convincing.
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[9] K. Gödel, On formally undecidable propositions of Principia Mathemat-
ica and related systems I, translated by J. van Heijenoort, in: [27], pp.
596–616.

[10] K. Gödel, Über eine bisher noch nicht benützte Erweiterung des finiten
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