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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 53, Number 2, June 1988 

PARTIAL REALIZATIONS OF HILBERT'S PROGRAM 

STEPHEN G. SIMPSON 

?0. Introduction. What follows is a write-up of my contribution to the 
symposium "Hilbert's Program Sixty Years Later" which was sponsored jointly by 
the American Philosophical Association and the Association for Symbolic Logic. 
The symposium was held on December 29, 1985 in Washington, D. C. The panelists 
were Solomon Feferman, Dag Prawitz and myself. The moderator was Wilfried 
Sieg. The research which I discuss here was partially supported by NSF Grant 
DMS-83 17874. 

I am grateful to the organizers of this timely symposium on an important topic. As 
a mathematician I particularly value the opportunity to address an audience 
consisting largely of philosophers. It is true that I was asked to concentrate on the 
mathematical aspects of Hilbert's program. But since Hilbert's program is 
concerned solely with the foundations of mathematics, the restriction to mathema- 
tical aspects is really no restriction at all. 

Hilbert assigned a special role to a certain restricted kind of mathematical 
reasoning known as finitistic. The essence of Hilbert's program was to justify all of 
set-theoretical mathematics by means of a reduction to finitism. It is now well 
known that this task cannot be carried out. Any such possibility is refuted by Gddel's 
theorem. Nevertheless, recent research has revealed the feasibility of a significant 
partial realization of Hilbert's program. Despite Gddel's theorem, one can give a 
finitistic reduction for a substantial portion of infinitistic mathematics including 
many of the best-known nonconstructive theorems. My purpose here is to call 
attention to these modern developments. 

I shall begin by reviewing Hilbert's original statement of his program. After that I 
shall explicate the program in precise terms which, although more formal than 
Hilbert's, remain completely faithful to his original intention. The formal version of 
the program is definitively refuted by Gddel's theorem. But the formal version also 
provides a context in which partial realizations can be studied in a precise and 
fruitful way. I shall use this context to discuss the modern developments which were 
alluded to above. In addition I shall explain how these developments are related to 
so-called "reverse mathematics". Finally I shall rebut some possible objections to 
this research and to the claims which I make for it. 

Received September 23, 1986. 
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350 STEPHEN G. SIMPSON 

?1. Hilbert's statement of his program. We must remember that in Hilbert's time 
all mathematicians were excited about the foundations of mathematics. Intense 
controversy centered around the problem of the legitimacy of abstract objects. 
Weierstrass had greatly clarified the role of the infinite in calculus. Cantor's set 
theory promised to raise mathematics to new heights of generality, clarity and rigor. 
But Frege's attempt to base mathematics on a general theory of properties led to an 
embarrassing contradiction. Great mathematicians such as Kronecker, Poincar6 
and Brouwer challenged the validity of all infinitistic reasoning. Hilbert vowed to 
defend the Cantorian paradise. The fires of controversy were fueled by revolution- 
ary developments in mathematical physics. There was a stormy climate of debate 
and criticism. The contrast with today's foggy atmosphere of intellectual exhaustion 
and compartmentalization could not be more striking. 

As the leading mathematician of his time, Hilbert considered it his personal duty 
to defend mathematics against all attackers and skeptics. This task was especially 
urgent in view of contemporary scientific developments. According to Hilbert, the 
most vulnerable point in the fortress of mathematics was the infinite. In order to 
defend the foundations of mathematics, it was above all necessary to clarify and 
justify the mathematician's use of the infinite [13]. 

Actually Hilbert saw the issue as having supramathematical significance. Math- 
ematics is not only the most logical and rigorous of the sciences but also the 
most spectacular example of the power of "unaided" human reason. If mathematics 
fails, then so does the human spirit. I was deeply moved by the following passage 
[13, pp. 370-371]: "The definitive clarification of the nature of the infinite has 
become necessary, not merely for the special interests of the individual sciences but 
for the honor of human understanding itself." 

Hilbert begins with the following question. To what if anything in reality does the 
mathematician's use of the infinite correspond? (In my opinion Hilbert's discussion 
of this point would have profited from an examination of Aristotle's distinction 
between actual and potential infinity. According to Aristotle, there is no actual 
infinity, but potential infinity exists and first manifests itself to us in the continuous, 
via infinite divisibility. See also Lear [18].) 

Hilbert accepts the picture of the world which is presented by contemporary 
physics. The atomic theory tells us that matter is not infinitely divisible. Quantum 
theory tells us that energy is likewise not infinitely divisible. And relativity theory 
tells us that space and time are unbounded but probably not infinite. Hilbert 
concludes that the mathematician's infinity does not correspond to anything in the 
physical world. (Consequently, the problem of justifying the mathematician's use of 
the infinite is even more urgent and difficult for Hilbert than it would have been for 
Aristotle.) 

Despite this uncomfortable conclusion, Hilbert boldly asserts that infinitistic 
mathematics can be fully validated. This is to be accomplished by means of a three- 
step program. 

1.1. The first step is to isolate the unproblematic, "finitistic" portion of math- 
ematics. This part of mathematics is indispensable for all scientific reasoning 
and therefore needs no special validation. Hilbert does not spell out a precise 
definition of finitism, but he does give some hints. Finitistic mathematics must 
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dispense completely with infinite totalities. This means that even ordinary logical 
operations such as negation are suspect when applied to formulas which contain a 
quantifier ranging over an infinite domain. In particular, the nesting of such 
quantifiers is illegal. Nevertheless, finitistic mathematics is to be adequate for 
elementary number-theoretic reasoning and for elementary reasoning about the 
manipulation of finite strings of symbols. 

1.2. The second step is to reconstitute infinitistic mathematics as a big, elaborate 
formal system. This big system (more fully described in Hilbert [14]) contains 
unrestricted classical logic, infinite sets galore, and special variables ranging over 
natural numbers, functions from natural numbers to natural numbers, countable 
ordinals, etc. The formulas of the big system are strings of symbols which, according 
to Hilbert, are meaningless in themselves but can be manipulated finitistically. 

1.3. The last step of Hilbert's program is to give a finitistically correct consistency 
proof for the big system. It would then follow that any H' sentence provable in the 
big system is finitistically true. (For an explanation of the role of H? sentences in 
Hilbert's program, see Kitcher [16] and Tait [25].) Thus the big system as a whole 
would be finitistically justified. The infinite objects of the big system would find 
meaning as valid auxiliary devices used to prove theorems about physically 
meaningful, finitistic objects. Hilbert viewed this as a new manifestation of the 
method of ideal elements. That method had already served mathematics well in 
many other contexts. 

Such was Hilbert's inspiring vision and program for the foundations of 
mathematics. 

I have only one negative comment. With hindsight, we can see that Hilbert's 
proposal in step 1.2 to view infinitistic formulas as meaningless let to an unnecessary 
intellectual disaster. Namely, it left Hilbert wide open to Brouwer's accusation of 
"empty formalism". Brouwer's accusation was clearly without merit. A balanced 
reading shows that Hilbert's overall intention was not to divest infinitistic formulas 
of meaning, but rather to invest them with meaning by reference to finitistic 
mathematics, the meaning of which is unproblematic. Nevertheless, this part of 
Hilbert's formulation was confusing and made it easy for Brouwer to step in and pin 
Hilbert with a false label. The whole drama had the bad effect of lending undeserved 
respectability to empty formalism. We are still paying the price of Hilbert's 
rhetorical flourish. 

?2. A precise explication of Hilbert's program. Hilbert's program was only that: a 
program or proposed course of action. Let us now ask: To what extent can the 
program be carried out? In order to study this question fruitfully, one must 
reformulate the program in more precise terms. I shall now do this. 

Hilbert's description of the "big system", corresponding to infinitistic mathema- 
tics, is already sufficiently precise. For my purposes here I shall identify the big 
system as Z2, i.e. second order arithmetic. Supplement IV of Hilbert and Bernays 
[15] shows that Z2 is more than adequate for the formal development of classical 
analysis, etc. It would not matter if we replaced Z2 by Z3, Z4, or even ZFC. 

The unacceptable imprecision occurs in Hilbert's discussion of finitism. There is 
room for disagreement over exactly which methods Hilbert would have allowed as 
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352 STEPHEN G. SIMPSON 

finitistic. This is not a defect in Hilbert's presentation. Hilbert's plan was to carry out 
a consistency proof which would be obviously finitistic. Had the plan been 
completely successful, there would have been no need for a precise specification of 
the outer limits of finitism. 

At this point I invoke the work of Tait [25]. Tait argues convincingly that 
Hilbert's finitism is captured by the formal system PRA of primitive recursive 
arithmetic (also known as Skolem arithmetic). This conclusion is based on a careful 
study of what Hilbert said about finitism in [13], [14], and elsewhere. There seems 
to be a certain naturalness about PRA which supports Tait's conclusion. PRA is 
certainly finitistic and "logic-free", yet sufficiently powerful to accommodate all 
elementary reasoning about natural numbers and manipulations of finite strings of 
symbols. PRA seems to embody just that part of mathematics which remains if we 
excise all infinitistic concepts and modes of reasoning. For my purposes here I am 
going to accept Tait's identification of finitism with PRA. 

I have now specified the precise version of steps 1.1 and 1.2 of Hilbert's program. 
Step 1.3 is then to show that the consistency of the formal system Z2 can be proved 
within the formal system PRA. If this could be done, it would follow that every H? 
sentence which is provable in Z2 would also be provable in PRA. We would describe 
this state of affairs by saying that Z2 is conservative over PRA with respect to H? 
sentences. This would constitute a precise and definitive realization of Hilbert's 
program. 

Unfortunately, Gddel's theorem [9] shows that any such realization of step 1.3 is 
impossible. There are plenty of H7 sentences which are provable in Z2 but not in 
PRA. (An example of such a sentence is the one which asserts the consistency of the 
formal system Z1 of first-order arithmetic. Other examples, with a more com- 
binatorial flavor, have been given by Friedman.) 

Note that Gddel's theorem does not challenge the correctness of Hilbert's 
formalization of infinitistic mathematics, nor does it undercut Tait's identification 
of finitistic mathematics with PRA. Gddel's accomplishment is merely to show that 
the wholesale reduction of infinitistic mathematics to finitistic mathematics, which 
Hilbert envisioned, cannot be pushed through. 

At this point I insert a digression concerning the relationship of Hilbert's program 
to other reductionist programs. 

In the philosophy of mathematics, a reductionist is anybody who wants to reduce 
all or part of mathematics to some restricted set of "acceptable" principles. Hilbert's 
plan to reduce all of mathematics to finitism is only one of many possible 
reductionist schemes. In the aftermath of Gddel's theorem, several authors have 
proposed reductionist programs which are quite different from Hilbert's. 

For instance, Feferman [5] has developed an elaborate program of predicative 
reductionism. (See also Simpson [22, pp. 152-154].) Certainly Feferman's pred- 
icative standpoint is very far away from finitism. It accepts full classical logic and 
allows the set of all natural numbers as a completed infinite totality. But it severely 
restricts the use of quantification over the domain of all subsets of the natural 
numbers. At this APA-ASL symposium, Feferman referred to predicative re- 
ductionism as a "relativized" form of Hilbert's program. 
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Similarly Gddel [10] has proposed an "extension" of the finitistic standpoint, by 
way of primitive recursive functionals of higher type. Also Bernays [1, p. 502] has 
discussed a program of intuitionistic reductionism which he regards as a "broaden- 
ing" or "enlarging" of proof theory. In his introductory remarks to this symposium, 
Sieg interpreted Bernays as calling for a "generalized Hilbert program." 

I would like to stress that these relativizations, extensions and generalizations are 
very different from the original program of Hilbert. Above all, Hilbert's purpose was 
to validate infinitistic mathematics by means of a reduction to finitistic reasoning. 
Finitism was of the essence because of its clear physical meaning and its 
indispensability for all scientific thought. By no stretch of the imagination can 
Feferman's predicativism, Gbdel's higher type functionals, Myhill's intuitionistic set 
theory or Gentzen's transfinite ordinals be viewed as finitistic. These proof-theoretic 
developments are ingenious and have great scientific value, but they are not 
contributions to Hilbert's program. 

?3. Partial realizations of Hilbert's program. Gddel's theorem shows that it is 
impossible to reduce all of infinitistic mathematics to finitistic mathematics. There 
remains the problem of validating as much of infinitistic mathematics as possible. In 
particular, what part of infinitistic mathematics can be reduced to finitistic 
reasoning? Using the precise explications in ?2, we may reformulate this question as 
follows. How much of infinitistic mathematics can be developed within subsystems of 
Z2 which are conservative over PRA with respect to Hn sentences? 

Recent investigations have revealed that the answer to the above question is: quite 
a large part. The purpose of this section is to explain these recent discoveries. I shall 
now do so. 

First, Friedman [6] has defined a certain interesting subsystem of Z2 known as 
WKLo. The language of WKLo is the same as that of Z2. The logic of WKLo is full 
classical logic including the unrestricted law of the excluded middle. Induction is 
assumed only for Zo formulas of the language of Z2. The mathematical axioms of 
WKLo imply that one can obtain new functions from arbitrary given ones by means 
of substitution, primitive recursion, and minimization. In particular WKLo includes 
PRA and hence all of finitistic mathematics. In addition WKLo includes a highly 
nonconstructive axiom which asserts that any infinite tree of finite sequences of 
zeros and ones has an infinite path. This powerful principle is known as weak Konig's 
lemma. Topologically, weak Konig's lemma amounts to the assertion that the 
Cantor space 2N is compact, i.e. enjoys the Heine-Borel covering property for 
sequences of basic open sets. Friedman pointed out that compactness of 2N implies, 
for instance, compactness of the closed unit interval [0, 1] within WKLo. 

Second, it has been shown that WKLo is conservative over PRA with respect to 
Ho sentences. This result is originally due to Friedman [7] who is fact obtained a 
stronger result: WKLo is conservative over PRA with respect to HO sentences. This 
means that any HO sentence which is provable in WKLo is already provable in PRA 
and hence is witnessed by a primitive recursive Skolem function. Friedman's proof 
of this result is model-theoretic and will be published by Simpson [24]. Subsequent- 
ly Sieg [20] used a Gentzen-style method to give an alternative proof of Friedman's 
result. Actually Sieg exhibited a primitive recursive proof transformation. Thus the 
reducibility of WKLo to PRA is itself provable in PRA. (These conclusions, due to 
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Sieg [20], could also have been derived from work of Parsons [19] and Harrington 
[12].) 

The above results of Friedman and Sieg may be summarized as follows. Any 
mathematical theorem which can be proved in WKLo is finitistically reducible in the 
sense of Hilbert's program. In particular, any H' consequence of such a theorem is 
finitistically true. 

Of course all of this would be pointless if WKLo were as weak as PRA with 
respect to infinitistic mathematics. But fortunately such is not the case. The ongoing 
efforts of Simpson and others have shown that WKLo is mathematically rather 
strong. For example, the following mathematical theorems are provable in WKLo. 

3.1. The Heine-Borel covering theorem for closed bounded subsets of Euclidean 
n-space (Simpson [21], [24]) or for closed subsets of a totally bounded complete 
separable metric space (Brown and Simpson [3], Brown [2]). 

3.2. Basic properties of continuous functions of several real variables. For 
instance, any continuous real-valued function on a closed bounded rectangle in R' is 
uniformly continuous and Riemann integrable and attains a maximum value 
(Simpson [21], [24]). 

3.3. The local existence theorem for solutions of systems of ordinary differential 
equations (Simpson [21]). 

3.4. The Hahn-Banach theorem and Alaoglu's theorem for separable Banach 
spaces (Brown and Simpson [3], Brown [2]). 

3.5. The existence of prime ideals in countable commutative rings (Friedman, 
Simpson and Smith [8]). 

3.6. Existence and uniqueness of the algebraic closure of a countable field 
(Friedman, Simpson and Smith [8]). 

3.7. Existence and uniqueness of the real closure of a countable formally real field 
(Friedman, Simpson and Smith [8]). 

These examples show that WKLo is strong enough to prove a great many 
theorems of classical infinitistic mathematics, including some of the best-known 
nonconstructive theorems. Combining this with the results of Friedman and Sieg, 
we see that a large and significant part of mathematical practice is finitistically 
reducible. Thus we have in hand a rather far-reaching partial realization of Hilbert's 
program. 

This partial realization of Hilbert's program has an interesting application to the 
problem of "elementary" proofs of theorems from analytic number theory. Using 
3.2 we can formalize the technique of contour integration within WKLo. Using 
conservativity of WKLo over PRA, we can then "eliminate" this technique. Our 
conclusion is that any H' number-theoretic theorem which is provable using 
contour integration can also be proved "elementarily", i.e. within PRA. 

I shall now announce some new results which extend the ones that were discussed 
above. Very recently, Brown and I defined a new subsystem of Z2. The new system 
properly includes WKLo and is properly included in ACAo. For lack of a better 
name, we are temporarily calling the new system WKL' .The axioms of WKL' are 
those of WKLo plus an additional scheme. Let 2IN denote the set of finite sequences 
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of zeros and ones. The new scheme says that, given a sequence of dense 
subcollections of 2<N which is arithmetically definable from a given set, there exists 
an infinite sequence of zeros and ones which meets each of the given dense 
subcollections. This amounts to a strong formal version of the Baire category 
theorem for the Cantor space 2N. Brown and I have used forcing to show that 
WKL' is conservative over RCAo for HI sentences. (Earlier Harrington [12] had 
used forcing to show that WKLo is conservative over RCAo for HI sentences. 
Harrington's proof will appear in Simpson [24].) Combining this with a result of 
Parsons [19], we see that WKL' is conservative over PRA for H' sentences and 
that this conservation result is itself demonstrable with in PRA. Thus we have finitis- 
tic reducibility of any mathematical theorem which is provable in WKL' . The point 
of all this is that WKL' includes several highly nonconstructive theorems of 
functional analysis which are apparently not provable in WKLo. Prominent among 
these are the open mapping theorem and the closed graph theorem for separable 
Banach spaces. Thus we have a finitistic reduction of these theorems as well. This 
represents further progress in our partial realization of Hilbert's program. There 
seems to be a possibility of defining even stronger subsystems of Z2 which would 
contain even more theorems of infinitistic mathematics yet remain finitistically 
reducible to PRA. This would represent still further progress. 

The results announced in the previous paragraph are not yet in final form. A 
version of them will appear in Brown's forthcoming Ph.D. thesis, which is now being 
written under my supervision [2]. 

?4. The role of reverse mathematics. The purpose of this section is to discuss 
reverse mathematics and its relationship to our previously described partial 
realization of Hilbert's program. 

Reverse mathematics is a highly developed research program whose purpose is to 
investigate the role of strong set existence axioms in ordinary mathematics. The 
main question is as follows. Given a specific theorem - of ordinary mathematics, which 
set existence axioms are needed in order to prove T? Reverse mathematics is a 
technique which frequently yields precise answers to special cases of this question. 

A fairly detailed survey of reverse mathematics will be found in my appendix to 
the forthcoming second edition of Takeuti's proof theory book [23]. Here I must 
confine myself to a very brief summary. 

Most of the work on reverse mathematics has been carried out in the context of 
subsystems of Z2. There are a great many different subsystems of Z2 which are 
distinguished from one another by their stronger or weaker set existence axioms. It 
turns out that almost every theorem - of ordinary mathematics can be stated in the 
language of Z2 and proved in some subsystem of Z2. For many specific theorems T, 

it turns out that there is a weakest natural subsystem S(z) of Z2 in which - is provable. 
Moreover S(z) is often one of a relatively small number of specific systems. The 
specific systems which most often arise in this context are RCAO, WKLO, ACAO, 
ATRo and H 1-CAo. Of these RCAo is the weakest and the others are listed in order 
of increasing strength. The system WKLo has already been discussed in ?3 above. 
For definitions of the other systems and an explanation of their role in reverse 
mathematics, see Simpson [23], [24]. 
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Given a mathematical theorem -r, the general procedure for identifying S(-r) is to 
show that the principal set existence axiom of S(-r) is equivalent to -r, the equivalence 
being provable in some weaker system in which -r itself is not provable. For instance, 
the way to show that S(-c) = WKLo is to show that -r is equivalent to weak Kdnig's 
lemma, the equivalence being provable in the weaker system RCAo. Our slogan 
"reverse mathematics" arises in the following way. The usual pattern of mathemat- 
ical reasoning is to deduce a theorem from some axioms. This might be called 
"forward mathematics". But in order to establish that the axioms are needed for a 
proof of the theorem, one must reverse the process and deduce the axioms from the 
theorem. Hence "reverse mathematics". 

As an example, consider the local existence theorem for solutions of ordinary 
differential equations. Given an initial value problem y' = f(x, y), y(O) = 0, where 
f(x, y) is defined and continuous is some neighborhood of (0,0), there exists a 
continuously differentiable solution y = 4(x) which is defined in some neighbor- 
hood of 0. This theorem can be formulated as a sentence Tr in the language of Z2. 
We may then consider the following special case of the main question. Which set 
existence axioms are needed for a proof of Trp? 

The standard textbook proof of Tr proceeds by way of the Ascoli lemma. With 
some effort we can show that the Ascoli lemma is provable in ACAo. We then see 
fairly easily that -rp is provable in ACAo. But, in order to prove Trp, were the set 
existence axioms of ACAo really needed? Motivated by this question, we try to 
"reverse" both the Ascoli lemma and Tr by showing that each of them is equivalent to 
ACAo over the weaker system RCAo. This attempt succeeds for the Ascoli lemma 
but fails in the case of -rp. We therefore try to prove -rp in the next system weaker than 
ACAO, namely WKLo. This attempt is ultimately successful, but the resulting proof 
of Tr in WKLo turns out to be much more difficult than the textbook proof. This was 
to be expected since we already knew that the Ascoli lemma is not provable in 
WKLo. Finally we tie up the remaining loose ends by showing that T1 is equivalent 
to WKLo over RCAo. We are thus left with a precise answer to the above-mentioned 
special case of the main question. (For details see Simpson [21].) This is a solid 
contribution to reverse mathematics. 

As a byproduct of this work in reverse mathematics, we see that T1 is provable in 
WKLo. Combining this with the results of ??2 and 3, we have a solid contribution to 
Hilbert's program. Namely, we see that -rp is in a certain precise sense finitistically 
reducible. 

The above example illustrates the general relationship between reverse mathema- 
tics and Hilbert's program. Our method for Hilbert's program is to prove specific 
mathematical theorems within certain subsystems of Z2 such as WKLo or WKLt. 
Reverse mathematics helps us to find the theorems for which this is possible. In 
many cases, the failure of an attempt to "reverse" a theorem vis-a-vis ACAo leads to 
the discovery that the theorem is in fact provable in one of the weaker systems 
WKLo or WKL'. Thus reverse mathematics plays a negative yet valuable heuristic 
role. 

More fundamentally, reverse mathematics helps us to uncover the subsystems of 
Z2 which are relevant to partial realizations of Hilbert's program. It is a fact that 
WKLo and WKL' were first discovered in the context of reverse mathematics. They 
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arose naturally as candidates for the weakest subsystems of Z2 in which to prove 
certain mathematical theorems. 

I do not mean to imply that reverse mathematics is coextensive with partial 
realizations of Hilbert's program. It certainly is not. I only assert the existence of a 
certain mutually reinforcing relationship between these two lines of research. 

I hope that I have adequately addressed Takeuti's concerns [26] about the 
connection between Hilbert's program and reverse mathematics. 

?5. Answers to some possible objections. In this section I shall rebut some possible 
objections which might be raised against the research which was reported in the 
previous sections. 

5.1. The purpose of Hilbert's program is to defend mathematics against skeptics. But 
why is mathematics in need of any defense? Doesn't everyone agree that mathematics is 
both valid and useful? 

As to the usefulness of mathematics, opinion is divided. Some see mathematics as 
both a supreme achievement of human reason and, via science and industry, the 
benefactor of all mankind. (This is my own view.) Others believe that mathematics 
causes only alienation and war. Still others see mathematics as a useless but 
harmless pastime. The utility of mathematics can be argued only as part of a broad 
defense of reason, science, technology and Western civilization. 

What chiefly concerns us here is not utility but scientific truth. Of course the two 
issues are related. Pragmatists might argue that mathematics is useful and therefore 
valid. But such an inference can cover only applied mathematics and is anyhow a non 
sequitur. It makes much more sense to argue that mathematics is true and therefore 
useful. In the last analysis, the only way to demonstrate that mathematics is valid is 
to show that it refers to reality. 

And make no mistake about it-the validity of mathematics is under siege. In a 
widely cited article [28], Wigner declares that there is no rational explanation for the 
usefulness of mathematics in the physical sciences. He goes on to assert that all but 
the most elementary parts of mathematics are nothing but a miraculous formal 
game. Kline, in his influential book Mathematics: the loss of certainty [17], deploys 
a wide assortment of mathematical arguments and historical references to show that 
"there is no truth in mathematics." Kline's book was published by the Oxford 
University Press and reviewed favorably in the New York Times. (For a much more 
insightful review, see Corcoran [4].) Neither Wigner nor Kline is viewed as an 
enemy of mathematics. But with friends like these, who needs enemies? Arguments 
like those of Kline and Wigner turn up with alarming frequency in coffee-room 
discussions and in the popular press. Russell's famous characterization of mathema- 
tics, as "the science in which we never know what we are talking about, nor whether 
what we say is true", is gleefully cited by every wisecracking sophist. 

In the face of the attack on mathematics, what defense is offered by the existing 
schools of the philosophy of mathematics? Consider first the logicists. They say that 
mathematics is logic, logic consists of analytic truths, and analytic truths are those 
which are independent of subject matter. In short, mathematics is a science with no 
subject matter. What about the formalists? According to them, mathematics is a 
process of manipulating symbols which need not symbolize anything. Then there 
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are the intuitionists, who say that mathematics consists of mental constructions 
which have no necessary relation to external reality, if indeed there is any such thing 
as external reality. Finally we come to the Platonists. They are better than the others 
because at least they allow mathematics to have some subject matter. But the subject 
matter which they postulate is a separate universe of objects and structures which 
bear no necessary relation to the real world of entities and processes. (They use the 
term "real world" referring not to the real real world but to their ideal universe of 
mathematical objects. The real real world is absent from their theory.) I submit that 
none of these schools is in a position to defend mathematics against the Russells and 
the Klines. 

The four schools discussed in the previous paragraph are not very far apart. Each 
of them is based on some variant of Kantianism. Frequently they merge and blend. 
Most mathematicians and mathematical logicians lean toward an uneasy mixture of 
formalism and Platonism. Uneasiness flows from the implicit realization that 
neither formalism nor Platonism nor the mixture supports a comprehensive view 
of mathematics and its applications. There is urgent need for a philosophy of 
mathematics which would supply what Wigner lacks, viz. a rational explanation of 
the usefulness of mathematics in the physical sciences. Some form of finitistic 
reductionism may be relevant here. 

I have argued elsewhere that the attack on mathematics is part of a general assault 
against reason. But this is not the burden of my remarks today. What is clear is that 
mathematicians and philosophers of mathematics ought to get on with the task of 
defending their discipline. 

5.2. Hilbert's program is exclusively concerned with the problem of validating 
infinitistic mathematics. But what's the big problem about the infinite? Isn't finitistic 
mathematics in equal need of validation? 

There is a long history of doubts about the role of the infinite in mathematics. 
Aristotle's discussion of the infinite is more acute than modern ones but still 
inconclusive. Euclid achieved rigor in part by avoiding all reference to the infinite. 
Archimedes used infinite limit processes but never rigorously justified them. Later, 
infinitesimals in calculus were the occasion of intense philosophic controversy. 
Doubts about infinitesimals were exploited by Bishop Berkeley in his mystical 
assault on science and Enlightenment values. Weierstrass' arithmetization of 
calculus restored clarity and rigor, but the respite was only temporary. Controversy 
about the infinite was never more intense than in our own century. 

The problem is that the infinite does not obviously correspond to anything in 
reality. The real world is made up of finite entities and processes. Everything that 
exists has a definite nature and is therefore in some sense limited. Aristotle argues for 
the real-world existence of the infinite, but only by recourse to a distinction between 
potential and actual infinity. Hilbert uses physical arguments to deny the existence 
of the infinite anywhere except in thought. Certainly any convincing account of the 
relationship between the infinite and the real world would have to be fairly subtle. 

By contrast, the formulas of finitistic mathematics refer in a relatively unprob- 
lematic, common-sense way to various discrete or cyclical real-world processes. 
For this reason, finitistic mathematics has always been much less controversial than 
infinitistic mathematics. Only in our own time has there arisen an ultrafinitist school 
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which posits bounds on the length of the natural number sequence. And the 
ultrafinitists have neither refuted finitistic mathematics nor shown us what an 
ultrafinitist textbook would look like. Finitistic mathematics is as firmly grounded 
as a science can be. 

5.3. The essence of Hilbert's program is to reduce infinitistic mathematics to 
finitistic mathematics. But what is the point of such a reduction? Does it really 
increase the reliability of infinitistic mathematics? 

I grant that the reduction of infinitistic proofs to finitistic ones does not increase 
confidence in the formal correctness of infinitistic proofs. What such a reduction 
does accomplish is to show that finitistically meaningful end-formulas of infinitistic 
proofs are true in the real world. Hence formulas which occur in infinitistic proofs 
become more reliable in that they are seen to correspond with reality. 

5.4. Why should we concern ourselves exclusively with finitistic reductionism? What 
about predicativistic or intuitionistic reductionism? 

This objection has been partially answered in the digression at the end of ?2. 
Finitism is much more restricted than either predicativism or intuitionism. Finitistic 
reasoning is unique because of its clear real-world meaning and its indispensability 
for all scientific thought. Nonfinitistic reasoning can be accused of referring not to 
anything in reality but only to arbitrary mental constructions. Hence nonfinitistic 
mathematics can be accused of being not science but merely a mental game played 
for the amusement of mathematicians. Proponents of predicativism and intuition- 
ism have never tried to defend their respective doctrines against such accusations. 
Finitistic reductionism is an attempt to defend infinitistic mathematics by showing 
that at least some of it is more than a mental game and does correspond to some- 
thing in reality. It is difficult to imagine how any such goal could be advanced by 
predicativistic or intuitionistic reductionism. 

5.5. Are the possibilities of finitism really exhausted by PRA? Didn't Hilbert himself 
allow for an extended notion of finitism which would transcend the primitive recursive 
functions? 

One might try to insist that certain multiply recursive functions such as the 
Ackermann function ought to be allowed as finitistic. However, reverse mathematics 
seems to indicate that such relatively minor changes would not significantly enlarge 
thIe class of finitistically reducible theorems. Hence the conclusions of ?3 would 
remain essentially unaffected. 

It is also true that Hilbert [13, p. 389] discussed a certain rather wide class of 
recursions of higher type. But Hilbert did not assert that such recursions are prima 
facie finitistic. Rather he presented them as part of his alleged proof of the 
continuum hypothesis, based on his incorrect belief that all of infinitistic 
mathematics is finitistically reducible. Certainly the recursions in question do not 
satisfy Hilbert's own criteria for finitism. (See also Tait [25, pp. 544-545].) 

There are other possible objections to the identification of finitism with PRA. All 
such objections have been dealt with adequately by Tait [25]. 

5.6. The development of mathematics within Z2 or subsystems of Z2 involves a 
fairly heavy coding machinery. Doesn't this vitiate the claim of such subsystems to 
reflect mathematical practice? 

It is true that the language of Z2 requires mathematical objects such as real 
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numbers, continuous functions, complete separable metric spaces, etc. to be encoded 
as subsets of N in a somewhat arbitrary way. (See [3], [8], [21] and [24].) However, 
this coding in subsystems of Z2 is not more arbitrary or burdensome than the coding 
which takes place when we develop mathematics within, say, ZFC. Besides, the 
coding machinery could be eliminated by passing to appropriate conservative 
extensions with special variables ranging over real numbers, etc. If this were done, 
the codes would appear only in the proofs of the conservation results. I do not 
believe that the coding issue has any important effect on the program of finitistic 
reductionism. 

5.7. The systems WKLo and WKL' do not capture the full range of standard, 
infinitistic mathematics. Many well-known standard theorems cannot be proved at all 
in these systems. And even when a standard theorem is provable in WKLo or WKL', 
the proof there is sometimes much more complicated than the standard proof. Doesn't 
this undercut the claim of WKLo and WKL' to embody a partial realization of 
Hilbert's program? 

Gddel's theorem and reverse mathematics imply that many well-known standard 
mathematical theorems are not finitistically reducible at all. Therefore, the fact that 
these theorems are not provable in WKLo or WKL' does not disturb us in the least. 
It merely prevents our partial realization of Hilbert's program from being a total 
one. 

Somewhat more worrisome is the gap between standard proofs and proofs in 
WKLo or WKL'. However, this gap is certainly not wider than the one between 
Eulerian infinitistimal analysis and Weierstrassian e-3 arguments. Moreover Hilbert 
explicitly embraced Weierstrass' reconstruction of analysis as a model for his own 
program if not an integral part of it. "Just as operations with the infinitely small 
were replaced by processes in the finite that have quite the same results and lead to 
quite the same elegant formal relations, so the modes of inference employing the 
infinite must be replaced generally by finite processes that have precisely the same 
results, that is, that permit us to carry out proofs along the same lines and to use 
the same methods of obtaining formulas and theorems." These words of Hilbert 
[13, p. 370] make me doubt that he would have been troubled by the above- 
mentioned gap. 

5.8. The systems WKLo and WKL' do not seem to correspond to any coherent, 
sharply defined philosophical or mathematical doctrine. Aren't WKLo and WKL'0 
mere ad hoc creations? 

No, they are not mere ad hoc creations. The axioms of WKLo and WKL' embody 
compactness and Baire category respectively. These two principles are well known 
to be pervasive in infinitistic mathematics. (They are two different ways of affirming 
the existence of "enough points" in continuous media.) Moreover, the principal 
axiom of WKLo is known to be equivalent over RCAo to a number of key 
mathematical theorems. For instance, each of the theorems 3.1 through 3.7, which 
were listed in ?3 as being provable in WKLO, is in fact equivalent to WKLo over 
RCAo. These equivalences come from reverse mathematics and provide further 
evidence of the naturalness of WKLo. 

Perhaps WKLo and WKL' do not correspond to any set of a prior ontological 
commitments such as might be proposed by philosophers unacquainted with the 
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history and current state of mathematics. However, mathematics is entitled to define 
its own principles in accordance with its own needs, so long as these principles are 
compatible with the needs of the other sciences and with sound philosophy. This 
seems to leave room for systems such as WKLo and WKL'. 

5.9. The claimed partial realization of Hilbert's program is only patchwork. 
Infinitistic theorems are validated one at a time by laboriously reestablishing them 
within WKLo or WKL+ or similar systems Doesn't such a piecemeal procedure lack 
the "once and for all" grandeur of Hilbert's visionary proposal? 

Let me say first that the work reported in ?3 is much more systematic than it may 
appear from the outside. Many branches of infinitistic mathematics depend on a few 
key nonconstructive existence theorems. If these theorems or a reasonable 
substitute can be proved within WKLO, the rest follows routinely. Thus WKLO 
includes whole branches of mathematics and not only the theorems which were 
mentioned in ?3 for illustrative purposes. It seems that most of the "applicable" or 
"concrete" branches of mathematics fall into this category. For example, the Artin- 
Schreier solution of Hilbert's seventeenth problem can be carried out within WKLo. 
(See Friedman, Simpson and Smith [8].) I would estimate that at least 85% of 
existing mathematics can be formalized with in WKLO or WKLo+ or stronger systems 
which are conservative over PRA with respect to I70 sentences. Of course highly 
set-theoretical topics are excluded, but it is remarkable how many topics which at 
first may seem highly set-theoretical turn out not to be so. For instance, the 
Hahn-Banach theorem for separable Banach spaces turns out to be provable in 
WKLo. (See Brown and Simpson [3].) 

Having said this, I must admit that my plodding procedure lacks the grand sweep 
of Hilbert's plan. But to some extent this is inevitable in view of Gddel's theorem. In 
any case, if there is a better procedure, I challenge the questioner to find it. Granted, 
it would be desirable to have a wholesale finitistic reduction of a large and easily 
identifiable part of infinitistic mathematics. But we do not know whether this is 
possible. In the meantime it seems desirable to establish finitistic reducibility for as 
much of infinitistic mathematics as we can. Moreover, the experience so gained may 
turn out to be useful in the larger task of validating infinitistic mathematics by 
methods not restricted to finitistic reductionism. It seems reasonable to hope that 
patience will pay off here. 

5.10. The deduction of axioms from theorems seems like a very strange activity. 
Certainly such a wrong-headed enterprise would never have been tolerated by Hilbert. 
Can't we dismiss as mere propaganda the attempt to associate reverse mathematics 
with Hilbert's program? 

No, we cannot. It is true that the deduction of axioms from theorems is absent 
from Hilbert's formulation of his program. It is likewise absent from the final form 
of our results, discussed in ?3 above, which constitute partial realizations of 
Hilbert's program. However, reverse mathematics has played and will continue to 
play an important behind-the-scenes heuristic role in the discovery of such results. 
As explained and illustrated in ?4, the interplay between "forward mathematics" and 
reverse mathematics leads to the discovery of formal systems such as WKLo and 
WKL+. That same interplay is essential to the ongoing process whereby we delimit 
the parts of mathematics that can be developed in such systems. 
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The fact that Hilbert's vision did not encompass reverse mathematics is of no 
consequence. Hilbert mistakenly thought that it would be possible to reduce all of 
infinitistic mathematics to finitism. Had he been right, there would have been no 
need to delimit the finitistically reducible parts of mathematics. Reverse mathemat- 
ics is instrumental in exploring the extent to which Hilbert's own program can be 
carried out. For this reason I think that Hilbert would have recognized something of 
his own intention in the research which I have reported here. 

5.1 1. What is the point of going on with Hilbert's program once Gbdel showed it to be 
impossible? Why not give up on finitistic reductionism and turn to some other method 
of validating infinitistic mathematics? For instance, why not appeal to Platonic 
intuition about the cumulative hierarchy? (This objection or one very much like it was 
raised at the symposium by Nick Goodman.) 

The obituary for Hilbert's program is premature to say the least. Gddel's theorem 
rules out only the most thoroughgoing total realizations of Hilbert's program. It 
does not rule out significant partial realizations. The results of ?3 show that a 
substantial portion of the program can in fact be carried out. (See also my answer to 
5.9, above.) This is a remarkable vindication of Hilbert. It is also an embarrassing 
defeat for those who gleefully trumpeted Gddel's theorem as the death knell of 
finitistic reductionism. 

The need to defend the integrity of mathematics has not abated. On the contrary, 
Gddel's theorem made this need more urgent than ever. Gbdel supplied heavy 
artillery for all would-be assailants of mathematics. Authors such as Kline [17] cite 
Godel with monotonous repetition and devastating effect. The assault rages as never 
before. 

Platonic intuition is unsuitable as a weapon with which to defend the validity of 
mathematics. Only the first few levels of the cumulative hierarchy bear any 
resemblance to external reality. The rest are a huge extrapolation based on a crude 
model of abstract thought processes. Godel himself comes close to admitting as 
much [11, pp. 483-484]. Arguing in favor of the cumulative hierarchy, G6del [11, 
pp. 477 and 485] proposes a validation in terms of testable number-theoretic 
consequences. Unfortunately such tests seem hard to carry out. 

Finitistic reductionism is not the only plausible method by which to validate 
infinitistic mathematics. One might try to show that a substantial part of infinitistic 
mathematics is directly interpretable in the real world. Continuous real-world 
processes have not been sufficiently exploited. Aristotle's notion of potential infinity 
could be of value. Nevertheless, of all the possible approaches, the indirect one 
via finitism seems to be the most convincing. 
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