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1 The Hilbert problems and Hilbert’s Program

In 1900 the great mathematician David Hilbert laid down a list of 23 mathemat-
ical problems [32] which exercised a great influence on subsequent mathematical
research. From the perspective of foundational studies, it is noteworthy that
Hilbert’s Problems 1 and 2 are squarely in the area of foundations of mathemat-
ics, while Problems 10 and 17 turned out to be closely related to mathematical
logic.!

1. Cantor’s Problem of the Cardinal Number of the Continuum.

2. Compatibility of the Arithmetical Axioms.
10. Determination of the Solvability of a Diophantine Equation.

17. Expression of Definite Forms by Squares.

*The author’s research is supported by the Grove Endowment, the Templeton Foundation,
and NSF Grants DMS-0600823 and DMS-0652637. This paper is an expanded and updated
version of a talk which the author gave as part of an international symposium, Hilbert’s
Problems Today, which was held April 5-7, 2001 at the University of Pisa.

IMoreover Problems 3, 4, and 5 were an outgrowth of Hilbert’s interest in the foundations
of geometry. I learned this from Professor Bottazzini’s talk at the symposium in Pisa. One
should also mention the so-called 24th Hilbert Problem discovered by R. Thiele [86] in an
unpublished manuscript of Hilbert. Certainly the 24th Problem is foundationally motivated,
and I will argue in a future publication that it points to Reverse Mathematics.



Our starting point here is Problem 2, the consistency (= “compatibility”) of
the arithmetical axioms. In a later paper [33] published in 1926, Hilbert further
elaborated his ideas on the importance of consistency proofs. Hilbert’s Program
[33] asks for a finitistic consistency proof for all of mathematics. Although we
are not concerned with consistency proofs in Hilbert’s sense, we are interested
in certain logical structures which grew out of Hilbert’s original concerns.

In answer to Hilbert’s Problem 2 [32] and Hilbert’s Program [33], Godel
[30] proved the famous Incompleteness Theorems. Let T' be any theory in the
predicate calculus satisfying certain well-known mild conditions. Then we have
the following results:

e T is incomplete (First Incompleteness Theorem, Godel 1931).

e The statement “T is consistent” is not a theorem of T'
(Second Incompleteness Theorem, Godel 1931).

e The problem of deciding whether a given formula is a theorem of T is
algorithmically unsolvable (Godel, Turing, Rosser, Church, Tarski, ... ).

Some commentators have asserted that the Incompleteness Theorems mark
the end of the axiomatic method. However, I would argue that this view fails
to take account of developments in the foundations of mathematics subsequent
to 1931. The purpose of this paper is to call attention to some relatively re-
cent research which reveals a large amount of logical regularity and structure
arising from the Incompleteness Theorems and from the axiomatic approach to
foundations of mathematics.? We shall comment on the following topics:

e The Go&del Hierarchy.

Reverse Mathematics.

Foundational consequences of Reverse Mathematics.

A partial realization of Hilbert’s Program.

2 The Godel Hierarchy

Using the Second Incompleteness Theorem as our jumping-off point, we define
an ordering of theories as follows. Let T and T, be two theories as above. We
write

Ty < T

to mean that the statement “T} is consistent” is a theorem of T5. One sometimes
says that the consistency strength of Tj is less than that of T5. Often this goes
hand-in-hand with saying that 73 is interpretable in T3 and not vice versa. We
may think of 75 > Ti as meaning that T is “more abstract” or “harder to

2 Another line of research which reveals a great deal of structure is Gentzen-style proof
theory as carried on by many researchers including Schiitte [62] and Takeuti [81].



interpret” or “less concrete” or “less meaningful” or “less surely consistent”
than T;.

It is known that the < ordering gives rise to a hierarchy of foundationally
significant theories, ordered by consistency strength. We dub this the Godel
Hierarchy, because it seems to us that the possibility of such a hierarchy became
apparent through the work of Gédel. In any case, the Godel Hierarchy has been
a central object of study in foundations of mathematics subsequent to 1931. It
turns out that the Gédel Hierarchy exhibits a number of remarkable regularities,
including a kind of linearity.

A schematic representation of the Goédel Hierarchy is in Table 1. Each of
the theories in Table 1 is of considerable significance for the foundations of
mathematics. Generally speaking, the idea of Table 1 is that the lower theories
are below the higher theories with respect to the < ordering. The exception
is that PRA, RCAg, and WKLy are all of the same consistency strength. A
number of these theories will be described below in connection with Reverse
Mathematics.

It is striking that a great many foundational theories are linearly ordered
by <. Of course it is possible to construct pairs of artificial theories which are
incomparable under <. However, this is not the case for the “natural” or non-
artificial theories which are usually regarded as significant in the foundations of
mathematics. The problem of explaining this observed regularity is a challenge
for future foundational research.

As an alternative to the < ordering, one may consider a somewhat different
ordering, the inclusion ordering. Our jumping-off point here is the First Incom-
pleteness Theorem. Assuming that the language of T3 is part of the language
of Ty, let us write

T1 C TQ

to mean that the sentences which are theorems of T; form a proper subset of
the sentences in the language of T which are theorems of T5. We may think of
To O T1 as meaning that T5 is “more powerful” or “stronger” than 7;. In many
cases the < ordering and the C ordering coincide. In Table 1 the lower theories
are always below the higher theories with respect to the C ordering.

In addition to the observed linearity noted above, another kind of observed
regularity is the existence of repeating patterns at various levels of the Gddel
Hierarchy. For example, the foundationally significant analogies

RCAy _ A%—CAO

WKLy, ATRg
and

WKLy, ATRg

ACA, I13-CAy

have been explored by Simpson [72, Remark 1.11.7, Chapter VIII].



strong

medium

weak

supercompact cardinal

measurable cardinal

ZFC (Zermelo/Fraenkel set theory)
ZC (Zermelo set theory)
simple type theory

Zy (second-order arithmetic)

I13-CA¢ (I1} comprehension)
I3-CAq (I1} comprehension)
ATR( (arithmetical transfinite recursion)

ACAq (arithmetical comprehension)

WKLy (weak Konig’s lemma)

RCAq (recursive comprehension)
PRA (primitive recursive arithmetic)
EFA (elementary function arithmetic)

bounded arithmetic

Table 1: Some benchmarks in the Godel Hierarchy.



3 Foundations of mathematics

Foundations of mathematics (f.o.m.) is the study of the most basic concepts
and logical structure of mathematics as a whole. Among the most basic math-
ematical concepts are: number, shape, set, function, algorithm, computability,
randomness, mathematical proof, mathematical definition, mathematical ax-
iom, mathematical theorem.

I set up the FOM list in 19972 and ran it during the years 1997-2002 as an
electronic forum for lively discussion of issues and programs in f.o.m. Currently
the FOM list resides at http://www.cs.nyu.edu/mailman/listinfo/fom/ and is
moderated by Martin Davis with the help of an editorial board. Both the FOM
list and my book Subsystems of Second Order Arithmetic [72] were developed
in order to promote a sometimes controversial idea:

Mathematical logic is or ought to be driven by f.o.m. considerations.
A crucially important f.o.m. question which we shall study below is:

What axioms are needed in order to prove particular mathematical
theorems?

4 Subsystems of second-order arithmetic

Second-order arithmetic, denoted Zs, is a theory with two sorts of variables.
There are number variables m,n, ... intended to range over the set of natural
numbers N = {0,1,2,...} and set variables X,Y,... intended to range over
subsets of N. In addition the language of Zs includes the predicates + and X
intended to denote addition and multiplication on N, as well as the membership
predicate € intended to denote the membership relation

e = {(n,X)|neX} C NxP(N)

on N x P(N). Here P(N) is the powerset of N; i.e., the set of all subsets of N. In
addition Z5 has the usual apparatus of the predicate calculus including proposi-
tional connectives =, A, V, =, <, number quantifiers Vn, In, and set quantifiers
vX,3X.

The axioms of Zs express basic properties of N and P(N). Among the axioms
are all instances of the full comprehension scheme consisting of the universal
closures of all formulas of the form

AXVn(n € X & ®(n))

where ®(n) is any formula in which the set variable X does not occur freely.
A basic foundational discovery essentially due to Hilbert/Bernays [34, Sup-
plement IV] is that it is possible to formalize the vast majority* of rigorous core

3During 1997-1999 I received much advice, help, and encouragement concerning the FOM
list from Harvey Friedman.

40f course we must make exceptions for extremely abstract branches of mathematics such
as set-theoretical topology and the arithmetic of uncountable cardinal numbers.



mathematics within Z5. Virtually every theorem of rigorous core mathematics
(including the key theorems of analysis, algebra, geometry, combinatorics, etc.)
can be formalized as a sentence in the language of of Zo, and in virtually all
cases these sentences are then provable as theorems of Z,.

Later Kreisel [45] emphasized the importance of subsystems of Z;. By a
subsystem of Zo we mean any theory in the language of Zs which is C Z5. For
example, if we restrict the comprehension scheme of Z5 to formulas ®(n) with
a fixed finite number of set quantifiers, the resulting theory is both < Zy and
C Z,. Thus we have infinitely many different subsystems of Z5. It can be shown
that Z, itself is not finitely axiomatizable, but trivially each theorem of Zs is
provable in some finitely axiomatizable subsystem of Zs obtained by discarding
all but finitely many of the axioms of Zy. Therefore, in view of Hilbert/Bernays
[34, Supplement IV], it becomes interesting to try to correlate particular the-
orems of rigorous mathematics with the subsystems of Zy in which they are
provable. Thus subsystems of Zs emerge as benchmarks for the classification
of rigorous mathematical theorems according to their “logical strength.” This
kind of calibration was apparently first pioneered by Kreisel.

Subsequently subsystems of Z, were investigated by a number of researchers
including Kreisel [45, 46], Feferman [17, 18], Friedman [23, 24, 25], Simpson
(numerous publications including [72]) and Simpson’s Ph.D. students.® Some
interesting subsystems of Zy appear in Table 1: RCAy, WKLy, ACAq, ATRy,
I13-CAg, T13-CAg.% As an outcome of ongoing research, it is now fair to say
that subsystems of Zy are basic for our current understanding of the logical
structure of contemporary rigorous mathematics. An important component of
this understanding is Reverse Mathematics, as we shall now explain.

5Among the Ph.D. theses supervised by Simpson on subsystems of Za and Reverse Math-
ematics are Steel 1976 [79], Smith 1979 [77], Brackin 1984 [6], Brown 1987 [7], Hirst 1987
[36], Yu 1987 [89], Ferreira 1988 [22], Hatzikiriakou 1989 [31], Marcone 1993 [49], Humphreys
1996 [37], Giusto 1998 [29], and Mummert 2005 [54]. Some key papers in Reverse Mathe-
matics are Simpson [68, 71], Friedman/Simpson/Smith [27, 28], Friedman/McAloon/Simpson
[26], Brown/Simpson [9, 10], Brown/Giusto/Simpson [8], Humphreys/Simpson [38, 39],
Mummert/Simpson [55], Shioji/Tanaka [64], Solomon [78], Tanaka [82, 83, 84], and
Tanaka/Yamazaki [85]. The basic reference for subsystems of Zz and Reverse Mathemat-
ics is Simpson [72].

6These particular subsystems of Za and many others were first introduced by Friedman [25].
The subscript 0 denotes restricted induction, i.e., the systems in question assume induction
only for a restricted class of formulas. For RCAg and WKLg this class consists of the E(l)
formulas, while for stronger systems it consists of the quantifier-free formulas. The advantages
of systems with restricted induction over the corresponding systems with full induction are:
(a) the former are finitely axiomatizable while the latter are not, (b) the former are below
the latter in the Godel Hierarchy, (c) results in Reverse Mathematics for the former subsume
corresponding results for the latter.



5 Reverse Mathematics

Given a mathematical theorem 7, let S, be the “weakest natural”” subsystem

of Z5 in which 7 is provable. The following widespread phenomena have been
observed:

e Often it is possible to determine S, exactly. In other words, S, F 7 and
there is no “natural” S C S, such that S+ 7.

e In such cases it often turns out that S, and 7 are logically equivalent
over a much weaker subsystem S. In other words, S F S, < 7 for some
S C S;. (In particular S; is finitely axiomatizable over S.)

e Only a relatively small number of subsystems of Z5 tend to arise repeatedly
as S, in this context.

Thus we obtain an illuminating classification of mathematical theorems up to
logical equivalence over weak base theories in which the theorems in question
are not provable.

As an example, consider the well-known Perfect Set Theorem: every un-
countable closed set in Euclidean space includes a perfect set. It has been shown
(see [72, Theorem V.5.5]) that the Perfect Set Theorem is logically equivalent
to ATRg over the much weaker system RCAy. Thus we have S, = ATRy where
7 is the Perfect Set Theorem as formalized in the language of Zs.

As a second example, consider the Lusin Separation Theorem in descriptive
set theory: any disjoint pair of analytic sets is separated by a Borel set. The
Reverse Mathematics investigations of Simpson [72, Sections V.3 and V.5] have
shown that Lusin’s Theorem, like the Perfect Set Theorem, is logically equivalent
to ATRg over RCAq.

As a third example, define a countable bipartite graph to be a set £ C NxN.
A matching is a set M C E such that ¢ = m if and only if j = n for all
(i,7) € M and (m,n) € M. A covering is a set C' C N such that for all
(i,j) € E at least one of i,j belongs to C. A Kénig covering consists of a
matching M and a covering C such that for all (i,7) € M exactly one of i,
belongs to C. The Podewski/Steffens Theorem [59] asserts that every count-
able bipartite graph has a Konig covering. The Reverse Mathematics investi-
gations of Aharoni/Magidor/Shore [2] and Simpson [71] have shown that the
Podewski/Steffens Theorem, like the Perfect Set Theorem and Lusin’s Theorem,
is logically equivalent to ATRy over RCA.

Combining these three examples, we obtain the odd-looking result that the
Perfect Set Theorem, Lusin’s Theorem, and the Podewski/Steffens Theorem are
pairwise logically equivalent (over RCAp). Thus these three theorems coming
from completely different branches of mathematics have been classified into
precisely the same equivalence class (modulo logical equivalence over RCAg)

"Later in this paper we shall propose a rigorous criterion of “mathematical naturalness”
for subsystems of Zs.



and calibrated at precisely the same level of consistency strength in the Godel
Hierarchy.

Remarkably, a series of case studies of this kind has revealed a clear pattern
which is documented in my book [72]. Namely, a large number of mathematical
theorems (several hundreds at least) fall into a small number of equivalence
classes (five).

This completes our broad outline of the ongoing program of Reverse Math-
ematics as developed in [72, Part A] and in many research papers. The founda-
tional significance of this program will be discussed below.

The basic reference on Reverse Mathematics is Part A of my 1999 book [72].
A more up-to-date reference on Reverse Mathematics is the 2005 volume [67]
which includes papers by a number of prominent researchers.

6 The Big Five

The five most important subsystems of Zs for Reverse Mathematics are:

1. RCAgy (Recursive Comprehension Axiom). This is a kind of formalized
recursive or computable mathematics. The w-models of RCAq are precisely
the nonempty subsets of P(N) which are closed under Turing reducibility.
The smallest w-model of RCAq is REC = {X | X is recursive}.

2. WKLy (Weak Konig’s Lemma). This consists of RCAg plus a compactness
principle: every infinite subtree of the full binary tree has an infinite path.
The w-models of WKLg are precisely the Scott systems [63]. REC is not
an w-model of WKLg, but it is the intersection of all such models.

3. ACAq (Arithmetical Comprehension Axiom). This consists of RCAq plus
the comprehension scheme restricted to formulas ®(n) with no set quan-
tifiers. The w-models of ACA are the nonempty subsets of P(N) which
are closed under Turing reducibility and the Turing jump operator. The
smallest w-model of ACAq is ARITH = {X | In (X <7 00")} where 0(™)
is the nth Turing jump of 0.

4. ATRp (Arithmetical Transfinite Recursion). This consists of RCA( plus an
axiom saying that the Turing jump operator, or equivalently arithmetical
comprehension, can be iterated along any countable well-ordering. Each
w-model of ATRy is closed under relative hyperarithmeticity. The w-model
HYP = {X | X is hyperarithmetical} is not itself an w-model of ATRy, but
it is the intersection of all such models. In fact, HYP is the intersection
of all f-models of ATRy (Simpson [72, VII.2.7 and VIII1.6.11]).

5. II1-CA¢ (II3 Comprehension Axiom). This consists of RCAg plus the com-
prehension scheme restricted to formulas ®(n) with exactly one set quan-
tifier. The smallest S-model of TT}-CAq is {X | In (X <7 0(™)} where
0(" is the nth hyperjump of 0.



RCAy | WKLy | ACAq | ATRy | IT1}-CA,

analysis (separable):

differential equations X X

continuous functions X X X

completeness, etc. X X X

Banach spaces X X X X

open and closed sets X X X X

Borel and analytic sets X X X
algebra (countable):

countable fields X X X

commutative rings X X X

vector spaces X X

Abelian groups X X X X
miscellaneous:

mathematical logic X X

countable ordinals X X X

infinite matchings X X X

the Ramsey property X X X

infinite games X X X

Table 2: Mathematics in the Big Five.




These five systems correspond to Chapters II through VI of my book [72] and are
colloquially known as “the Big Five.” Table 2 gives a rough indication of which
kinds of mathematical theorems are provable in which of these subsystems of Z.
Each x in the table indicates that there are some theorems in the given branch
of mathematics which fall at the given level of the Godel Hierarchy. Some of
these results are listed below.

In Reverse Mathematics to date, the most useful base theory has been RCA,
and the most useful benchmark systems have been WKLy, ACAg, ATRy and H%—
CAp. We shall now list some of these results. References for these results may
be found in [72].

6.1 Reverse Mathematics for WKL,

WKL, is equivalent over RCAq to each of the following mathematical theorems:

1. The Heine/Borel Covering Lemma: Every covering of [0, 1] by a sequence
of open intervals has a finite subcovering.

2. Every covering of a compact metric space by a sequence of open sets has
a finite subcovering.

3. Every continuous real-valued function on [0, 1] (or on any compact metric
space) is bounded (uniformly continuous, Riemann integrable).

4. The Maximum Principle: Every continuous real-valued function on [0, 1]
(or on any compact metric space) has (or attains) a supremum.

5. The local existence theorem for solutions of (finite systems of) ordinary
differential equations.

6. Godel’s Completeness Theorem: every consistent finite (or countable) set
of sentences in the predicate calculus has a countable model.

7. Godel’s Compactness Theorem: a countable set of sentences in the predi-
cate calculus is satisfiable if and only if it is finitely satisfiable.

8. Every countable commutative ring has a prime ideal.

9. Every countable field (of characteristic 0) has a unique algebraic closure.
10. Every countable formally real field is orderable.
11. Every countable formally real field has a (unique) real closure.

12. Brouwer’s Fixed Point Theorem: Every (uniformly) continuous function
¢ :[0,1]™ — [0,1]™ has a fixed point.

13. The Separable Hahn/Banach Theorem: If f is a bounded linear functional
on a subspace of a separable Banach space, and if ||f|| < 1, then f has an
extension f to the whole space such that || f]| < 1.

10



14. Banach’s Theorem: In a separable Banach space, given two disjoint convex
open sets A and B, there exists a closed hyperplane H such that A is on
one side of H and B is on the other.

15. The existence and uniqueness of Haar measure on separable, locally com-
pact groups.

16. Every countable k-regular bipartite graph has a perfect matching.

6.2 Reverse Mathematics for ACA,
ACA( is equivalent over RCA to each of the following mathematical theorems:

1. Every bounded, or bounded increasing, sequence of real numbers has a
least upper bound.

2. The Bolzano/Weierstrafl Theorem: Every bounded sequence of real num-
bers, or of points in R™, has a convergent subsequence.

3. Every sequence of points in a compact metric space has a convergent
subsequence.

4. The Ascoli Lemma: Every bounded equicontinuous sequence of real-valued
continuous functions on a bounded interval has a uniformly convergent
subsequence.

5. Every countable commutative ring has a maximal ideal.

6. Every countable vector space (over Q) has a basis.

7. Every countable field (of characteristic 0) has a transcendence basis.

8. Every countable Abelian group has a unique divisible closure.

9. Koénig’s Lemma: Every infinite, finitely branching tree has an infinite path.

10. Ramsey’s Theorem for colorings of [N]? (or of [N]¥ for any fixed k > 3).

6.3 Reverse Mathematics for ATR,
ATRy is equivalent over RCAq to each of the following mathematical theorems:
1. Any two countable well-orderings are comparable.

2. Ulm’s Theorem: Any two countable reduced Abelian p-groups which have
the same Ulm invariants are isomorphic.

3. The Perfect Set Theorem: Every uncountable closed, or analytic, set has
a perfect subset.

4. Lusin’s Separation Theorem: Any two disjoint analytic sets can be sepa-
rated by a Borel set.

11



o.
6.
7.
8.

6.4

The domain of any single-valued Borel set in the plane is a Borel set.
Every clopen (or open) game in NV is determined.
Every clopen (or open) subset of [N]N has the Ramsey property.

Every countable bipartite graph admits a Konig covering.

Reverse Mathematics for I13-CA,

I13-CAy is equivalent over RCAq to each of the following mathematical theorems:

1.
2.

7

Every tree has a largest perfect subtree.

The Cantor/Bendixson Theorem: Every closed subset of R (or of any
complete separable metric space) is the union of a countable set and a
perfect set.

. Every countable Abelian group is the direct sum of a divisible group and

a reduced group.

. Every difference of two open sets in the Baire space NV is determined.
. Every Gs set in [N] has the Ramsey property.

. Silver’s Theorem: For every Borel (or coanalytic, or F,) equivalence rela-

tion with uncountably many equivalence classes, there exists a perfect set
of inequivalent elements.

. For every countable set S in the dual X* of a separable Banach space X

(or in I3 = ¢f)), there exists a smallest weak-*-closed subspace of X* (or
of I; respectively) containing S.

. For every norm-closed subspace Y of l; = ¢, the weak-*-closure of Y

exists.

Foundational implications

Reverse Mathematics and the Big Five have a number of implications for the
foundations of mathematics. We briefly mention some of these implications.

7.1

Formalization

In Reverse Mathematics, specific mathematical theorems are classified according
to the subsystems of Z, in which they are formally provable. This kind of
classification provides data which are of obvious interest from the viewpoint of
the Russell/Whitehead formalization program.

12



7.2 Mathematical naturalness

As a byproduct of Reverse Mathematics, certain specific subsystems of Z5 are
identified as being mathematically natural, and the naturalness is rigorously
demonstrated.

Namely, a subsystem S of Z, is to be considered mathematically natural
if we can find one or more core mathematical theorems 7 such that S < 7 is
provable over a weak base theory.® In particular, there is abundant evidence
(some of which has been presented above) that WKL, ACAg, ATRy, and IT{-CA,
are mathematically natural in this sense.

7.3 Consequences of foundational programs

With the help of Reverse Mathematics, we can explore the consequences of
particular f.o.m. doctrines and programs, including:

1. computable analysis (see Aberth [1], Pour-El/Richards [60]).
2. finitistic reductionism (see Hilbert [33]).
3. predicativity (see Weyl [87, 88], Kreisel [45], Feferman [17, 18, 21]).

4. predicative reductionism (see Feferman [19], Simpson [73], and Fried-
man/McAloon/Simpson [26]).

5. impredicative or Il analysis (see Buchholz et al. [11]).

From the foundational viewpoint, it is desirable to understand what each of
these programs would mean in terms of their consequences for mathematical
practice. Reverse Mathematics provides data which can be of great importance
for such understanding.

Note first that each of the above programs focuses on a certain restricted
portion of mathematics which is asserted to be of special foundational signif-
icance. Moreover, in each case, the portion of mathematics in question is at
least roughly identifiable as that which can be developed within a particular
subsystem of Zs. Thus certain subsystems of Zs are seen to be of foundational
interest. See Table 3. The question then arises, which mathematical theorems
would be “lost” by such a restriction? Reverse Mathematics provides rigorous
answers to such questions, by telling us which mathematical theorems are and
are not provable in which subsystems of Z,.

We now discuss two examples: the Cing Lettres Program [3] and Hilbert’s
Program [33].

8We regard this as a sufficient (and possibly also necessary) condition for a subsystem of
Z> to be considered mathematically natural.

13



RCAq computable mathematics | Pour-El/Richards

WKLy finitistic reductionism Hilbert

ACAq predicativity Weyl, Feferman

ATRg predicative reductionism | Feferman, Friedman, Simpson
I3-CAq | impredicativity Buchholz et al.

Table 3: Foundational programs and the Big Five.

7.4 The Cinq Lettres Program

An interesting exchange of letters among Baire, Borel, Hadamard and Lebesgue
concerning the foundations of set theory has been preserved in [3]. These great
mathematicians were horrified by the existence of arbitrary or pathological sets
of points in Euclidean space. To remedy this difficulty, they proposed to restrict
attention to well-behaved sets, such as Lebesgue measurable sets or Borel sets.

As a result of relatively recent research in Reverse Mathematics [72, Section
V.3], it is now known that the basic theory of Borel and analytic sets (the
Lusin Separation Theorem, etc.) can be developed in ATRy. Moreover, it is
known proof-theoretically (see Friedman/McAloon/Simpson [26]) that ATRy is
[I}-conservative over Feferman’s systems of predicative mathematics [17, 18].
Thus all II} or arithmetical theorems of Borel mathematics are predicatively
provable, and it becomes possible to argue that restricted mathematics in the
Cinq Lettres style is predicatively reducible in this sense.

7.5 A partial realization of Hilbert’s Program

Hilbert’s Program [33] calls for all of mathematics to be reduced to finitism.
Namely, each finitistically meaningful theorem is to be given a finitistic proof.
The Second Incompleteness Theorem of Gédel [30] implies that Hilbert’s Pro-
gram cannot be completely realized. For instance, the statement “finitism is
consistent” (assuming a precise formal analysis of finitism) is finitistically mean-
ingful yet not finitistically provable.

Nevertheless, a significant partial realization of Hilbert’s Program has been
obtained:

1. Tait [80] has argued that PRA (Primitive Recursive Arithmetic) embodies
all of finitistic mathematics.

2. Parsons [58] and Friedman (unpublished, but see [72, Section 1X.3])? have
shown that WKLy is conservative'® over PRA for I1J sentences. Moreover,

9See also Sieg [66] and Kohlenbach [44].
10Note however that not all proofs of conservativity are of equal value. It is arguable that

14



Tait’s argument shows that this class of sentences includes all finitistically
meaningful sentences.

3. A large portion of core mathematics, including many of the best known
nonconstructive theorems, can be carried out in WKLy. A sampling of
these results is included in the above discussion of Reverse Mathematics
in WKLg. See also Simpson [72, Chapter IV].

4. In addition to WKL there are other subsystems of Zo which are likewise
I19-conservative over PRA and which suffice to prove even more core math-
ematical theorems concerning measure theory and Baire category theory.
See for instance Brown/Simpson [10] and Brown/Giusto/Simpson [8].

Thus we see that a large portion of rigorous core mathematics is finitistically
reducible. The general intellectual significance of this partial realization of
Hilbert’s Program has been argued vigorously in Simpson [70].

8 Beyond the Big Five

In addition to the Big Five, a number of other subsystems of Z, have arisen in
Reverse Mathematics.

The most striking recent discovery is the existence of Reverse Mathematics at
the level of I3 comprehension,!! thus going far beyond the Big Five as measured
by the Godel Hierarchy. We now describe this result briefly.

Mummert [54] and Mummert/Simpson [55] have initiated the Reverse Math-
ematics of general topology. The relevant definitions are as follows. Let P be a
partially ordered set. A filter'? on P is a set F' C P such that (a) p€ F,p < ¢
imply g € F, and (b) p € F,q € F imply 3r (r € F,r < p,r < ¢). A mazimal
filter on P is a filter on P which is not properly included in any other filter on
P. Let MF(P) be the topological space whose points are the maximal filters
on P and whose basic open sets are of the form {F € MF(P) | p € F} where
p € P. It can be shown that all complete metric spaces and many nonmetrizable
topological spaces are homeomorphic to spaces of the form MF(P) where P is
a partially ordered set. Moreover, every complete separable!® metric space is
homeomorphic to MF(P) for some countable partially ordered set P.

A topological space is said to be completely metrizable if it is homeomorphic
to a complete metric space. A topological space is said to be regular if its
topology has a base consisting of closed sets. It is well-known and easy to see
that every metrizable topological space is regular. Let MFMT be the following
metrization theorem:

Hilbert’s Program of finitistic reductionism requires conservativity proofs which are themselves
finitistic. See for instance the careful discussion by Burgess [12] in this volume.

1By I11 comprehension we mean I13-CAo, i.e., Z2 with the comprehension scheme restricted
to formulas ®(n) with exactly two set quantifiers.

12Note that this is just the usual notion of filter which figures prominently in forcing over
models of axiomatic set theory. See for instance Kunen [47].

13 A metric space is said to be separable if it has a countable dense subset. Most of the
topological spaces occurring in core mathematics arise from complete separable metric spaces.
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Given a countable partially ordered set P, the topological space
MF(P) is completely metrizable if and only if it is regular.

It can be shown (see [55]) that MFMT is an easy consequence of well-known
metrization theorems due to Urysohn and Choquet. It is straightforward to
formalize MFMT as a sentence in the language of Zs.

Mummert/Simpson [55] have shown that MFMT is equivalent to I13-CAg
over I13-CAg. Thus we have a convincing instance of Reverse Mathematics at
the level of II3 comprehension.

In addition to Mummert/Simpson [55], a number of researchers have discov-
ered Reverse Mathematics at other levels of the Gddel Hierarchy. We now list
and describe these developments in order of increasing consistency strength.

1.

Simpson/Smith [76] (see also [72, Section X.4]) introduced a system RCA
which is < RCAg and C RCAg. They showed that

RCA; = RCA; + %Y induction

and that RCA{ can replace RCAg as the base theory in much of Reverse
Mathematics. Moreover, a number of core mathematical theorems (e.g.,
the fact that every polynomial can be factored into irreducible polynomi-
als) are equivalent to RCAg over RCAg.

. Yu [89] introduced a system WWKL, which arises repeatedly in the Re-

verse Mathematics of measure theory. For example, WWKL, is equivalent
over RCA¢ to a formal statement of the Vitali Covering Theorem [8]. It
turns out that WWKL is strictly intermediate between RCAy and WKLq
and is closely related to algorithmic randomness in the sense of Martin/Lof
[50]. See also Simpson [72, Section X.1] and Brown/Giusto/Simpson [8].

Cholak/Jockusch/Slaman [14] and Hirschfeldt/Shore [35] have studied a
number of Reverse Mathematics questions centering around

RT(2) = Ramsey’s Theorem for exponent 2.

A problem which remains open is to determine exactly the consistency
strength of RCAg+RT(2). It is also open whether WKLy, € RCAy+RT(2).
It is known that not all w-models of WKLg satisfy RT(2).

Beginning with Dobrinen/Simpson [16] there has been an explosion of
activity in the Reverse Mathematics of measure-theoretic regularity. This
turns out to be closely related to the study of low-for-randomness in the
sense of Kuéera/Terwijn [48]. In addition to [16] see also Binns et al. [4],
Cholak/Greenberg/Miller [13], Kjos-Hanssen [42], Simpson [74, 75], and
Kjos-Hanssen/Miller /Solomon [43].

Simpson [69] has performed an axiomatic study of so-called basis theorems
for ideals in commutative and noncommutative rings, leading to Reverse
Mathematics at the levels
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RCAq + w¥ is well-ordered
and
RCAy + w*” is well-ordered

in the Godel Hierarchy. It is known that these theories are strictly inter-
mediate between RCAy and ACAg with respect to the < and C orderings,
and incomparable with WKL, with respect to the C ordering.

Rathjen/Weiermann [61] (building on unpublished work of H. Friedman)
have performed an axiomatic study of Kruskal’s Theorem in graph theory,
leading to Reverse Mathematics at the level

RCAy + 99 is well-ordered

where 92 is the Ackermann ordinal, a.k.a., the small Veblen ordinal.
It is known that this theory is strictly intermediate between ATRy and
IT3-CAq with respect to the < ordering and incomparable with ACAg and
ATR( with respect to the C ordering.

Tanaka [83, 84] (see also [72, Section VI.7]) and his colleagues MedSalem
and Nemoto (see [51, 56, 57]) have investigated the Reverse Mathematics
of determinacy at various levels of the arithmetical hierarchy. Some of the

subsystems of Zs which arise in this way are strictly intermediate between
H%—CAO and H%—CAO

Thus we see that the Godel Hierarchy and Reverse Mathematics can be expected
to persist as significant f.o.m. research areas for a long time to come.
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