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Abstract

Recall that Ry is the upper semilattice of recursively enumerable Tur-
ing degrees. We consider two fundamental, classical, unresolved issues
concerning Rr. The first issue is to find a specific, natural, recursively
enumerable Turing degree a € Rr which is > 0 and < 0’. The second
issue is to find a “smallness property” of an infinite, co-recursively enumer-
able set A C w which ensures that the Turing degree deg.(A) = a € Rr is
> 0 and < 0'. In order to address these issues, we embed R into a slightly
larger degree structure, P.,, which is much better behaved. Namely, P.,
is the lattice of weak degrees of mass problems associated with nonempty
I19 subsets of 2. We define a specific, natural embedding of R into P,
and we present some recent and new research results.
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Motivation

Recall that Dy is the upper semilattice consisting of all Turing degrees. Recall
also that Ry is the countable sub-semilattice of Dr consisting of the recur-



sively enumerable Turing degrees. Both of these semilattices have been princi-
pal objects of study in recursion theory for many decades. See for instance the
monographs of Sacks [39], Rogers [38], Soare [45], and Odifreddi [35, 36].

Two fundamental, classical, unresolved issues concerning R are:

Issue 1. To find a specific, natural, recursively enumerable Turing degree a €
R which is > 0 and < 0’.

Issue 2. To find a “smallness property” of an infinite, co-recursively enumer-
able set A C w which ensures that the Turing degree deg;(A) = a € Ry
is >0and < 0.

These unresolved issues go back to Post’s classical 1944 paper, Recursively enu-
merable sets of positive integers and their decision problems [37].

My recent interest in Issue 1 began in 1999 at a conference in Boulder, Col-
orado [10]. There I heard a talk by Shmuel Weinberger, a prominent topologist
and geometer. At the time Weinberger was trying to learn something about the
recursively enumerable Turing degrees, Ry, with an eye to applying them in the
study of moduli spaces in differential geometry [48], using recursion-theoretic
methods pioneered by Nabutovsky [33, 34]. Weinberger was visibly frustrated
by the fact that Ry does not appear to contain any specific, natural examples
of recursively enumerable Turing degrees, beyond the two standard examples
due to Turing, namely 0’ = the Turing degree of the Halting Problem, and 0 =
the Turing degree of solvable problems. Weinberger expressed his frustration
by lamenting the fact that there are no recursively enumerable Turing degrees
with specific names such as “Bill” or “Fred”.

The purpose of this paper is to show how to address Issues 1 and 2 by
passing from decision problems to mass problems. Specifically, we embed Rp
into a slightly larger degree structure, called P,,, which is much better behaved.
In the P,, context, we obtain satisfactory, positive answers to Issues 1 and 2.
In particular, we find that P, contains not only the degrees 0’ and 0 but also
many other specific, natural, intermediate degrees. These degrees are assigned
specific names such as “Carl”, “Stanley”, “Klaus”, “Léaszl6”, “Per”, “Wilhelm”,
and “Bjgrn”, as explained below.

What is this wonderful structure P,? Briefly, P, is the lattice of weak
degrees of mass problems associated with nonempty I1J subsets of 2. In order
to fully explain P,,, we must first explain (1) mass problems, (2) weak degrees,
and (3) nonempty I19 subsets of 2*.

Mass problems (informal discussion)

A “decision problem” is the problem of deciding whether a given n € w belongs
to a fixed set A C w or not. To compare decision problems, we use Turing
reducibility. Recall that A <p B means that A is Turing reducible to B, i.e., A
can be computed using an oracle for B.

A “mass problem” is a kind of generalized decision problem, whose solution is
not necessarily unique. (By contrast, a decision problem has only one solution.)



We identify a mass problem with the set of its solutions. Here the solutions
are identified with Turing oracles, i.e., elements of w*. The “mass problem”
associated with a set P C w* is the problem of “finding” an element of P. The
“solutions” of this problem are the elements of P.

A mass problem is said to be “solvable” if it has a computable solution. A
mass problem is said to be “reducible” to another mass problem if, given any
solution of the second problem, we can use it as a Turing oracle to compute a
solution of the first problem. T'wo mass problems are said to be “equivalent” or
“of the same degree of unsolvability”, if each is reducible to the other.

Mass problems and weak degrees (rigorous definition)

Let P and @ be subsets of w* = {f | f : w — w}. Viewing P and @ as mass
problems, we say that P is weakly reducible to Q if

(Vge Q) BfeP)(f<rg).

This is abbreviated P <,, Q. Thus P <,, @ means that, given any solution of
the mass problem (), we can use it as an oracle to compute a solution of the
mass problem P.

Definition 1. We define P, Q C w* to be weakly equivalent, abbreviated P =,,
Q,if P <, Q and Q <, P. The weak degrees are the equivalence classes under
=,. There is an obvious partial ordering of the weak degrees induced by weak
reducibility. Thus deg, (P) < deg, (Q) if and only if P <,, Q. The partial
ordering of all weak degrees is denoted D,,.

It can be shown that D,, is a complete distributive lattice. The bottom
element of D,, is denoted 0. This is the weak degree of solvable mass problems.
Thus deg,,(P) = 0 if and only if P NREC # 0.

Digression: weak vs. strong reducibility

Let P and ) be mass problems, i.e., subsets of w*. We make the following
definitions.

Definition 2.

1. As already stated, P is weakly reducible to @, abbreviated P <,, @Q, if for
all g € @ there exists e such that {e}9 € P.

2. P is strongly reducible to @, abbreviated P <, @, if there exists e such
that {e}9 € P for all g € Q.

Thus strong reducibility is a uniform variant of weak reducibility.

By a result of Nerode (see Rogers [38, Chapter 9, Theorem XIX]), we have
an analogy:

weak reducibility strong reducibility

Turing reducibility ~ truth-table reducibility




In this paper we shall deal only with weak reducibility.

As a historical note, we mention that weak reducibility goes back to Muchnik
1963 [32], while strong reducibility goes back to Medvedev 1955 [31]. Actually,
as mentioned by Terwijn [46], both of these notions ultimately derive from
ideas concerning the Brouwer/Heyting/Kolmogorov interpretation of intuition-
istic propositional calculus.

The lattice P, (rigorous definition)

Recall that Ry, the semilattice of recursively enumerable Turing degrees, is a
countable sub-semilattice of Dr, the semilattice of all Turing degrees. Analo-
gously we now define P,,, a certain countable sublattice of the lattice D,, of all
weak degrees. In defining P, our guiding analogy is:

P. _ Rr
Dw_DT.

The relevant notions are as follows. Let w® be the Baire space, i.e., the set
of all total functions f : w — w. Recall that a set P C w* is said to be II{ if it
is of the form P = {f € w* | Vn R(f,n)} where R is a recursive predicate. Here
n ranges over w, the set of natural numbers. It is well known that P C w* is H(f
if and only if P is the set of all paths through some recursive subtree of w<¥.
Here w<% denotes the tree of finite sequences of natural numbers. Recall also
that I19 subsets of w* are sometimes called effectively closed, because such a set
is just the complement of an effectively open set, i.e., the union of a recursive
sequence of basic open sets in w®.

Additionally, P C w* is said to be recursively bounded if there exists a
recursive function h in w* such that f(n) < h(n) for all f € P and all n € w.
Recall that recursively bounded IT{ subsets of w* are sometimes called effectively
compact.

Definition 3. P, is the set of weak degrees of nonempty, recursively bounded,
H(l) subsets of w*. There is an obvious partial ordering of P,, induced by weak
reducibility. Thus deg,,(P) < deg,,(Q) if and only if P <,, Q.

Remark. Many authors including Jockusch/Soare [22] and Groszek/Slaman
[19] have studied the Turing degrees of elements of IIY subsets of w* which
are nonempty and recursively bounded. This earlier research is part of the
inspiration for our current study of the weak degrees of mass problems associated
with such sets, i.e., P, .

Remark. It is well known that every recursively bounded IIY subset of w* is
recursively homeomorphic to a recursively bounded I set of a special kind,
namely, a I1{ subset of the Cantor space,

2% ={0,1}*={X | X : w — {0,1}}.

See for example [42, Theorem 4.10]. Here the recursive bounding function is the
constant function 2, i.e., h(n) = 2 for all n € w.



It follows that P, may be alternatively defined as the set of weak degrees of
nonempty II{ subsets of 2¢. Note also that P, as a subset of D,,, is partially
ordered by weak reducibility. See Figure 1.

X Y

/

P Q

Figure 1: Weak reducibility of I1Y subsets of 2*. In this figure, P <,, Q means
(VY € Q)(3X € P)(X <r Y). Here P and @ are given by infinite recursive
subtrees of the full binary tree {0,1}<% of all finite sequences of 0’s and 1’s.
Also, X and Y are infinite paths through P and @ respectively.

Remark. Some basic facts about P, are as follows.
1. P, is a countable sublattice of D,,.
2. The bottom element of P, is 0, the same as the bottom element of D,,.

3. The top element of P, is the weak degree of
PA = {completions of Peano Arithmetic}.

This goes back to Scott/Tennenbaum [40]. See also Jockusch/Soare [22].

Remark. Rr is usually regarded as the smallest or simplest natural sub-
semilattice of Dp. Similarly, P, may be regarded as the smallest or simplest
natural sublattice of D,,. In addition, P,, resembles Rt in other respects, as we
shall see below. In particular, P, includes a copy of Rp, as we now show.

Embedding Rt into P,

Recall that Ry = the semilattice of Turing degrees of recursively enumerable
subsets of w, and P,, = the lattice of weak degrees of nonempty II{ subsets of
2¢. The following embedding theorem was obtained by Simpson in 2002 [44].



Theorem 1. There is a specific, natural embedding
@Ry — Py .
The embedding ¢ is given by
¢ : degr(A) — deg,, (PAU{A}) .

Here ¢ is one-to-one and preserves the partial ordering <, the least upper bound
operation sup, and the top and bottom elements.

Remark. In Theorem 1, the fact that deg,, (PA U {A}) belongs to P, is not
obvious, because PA U {4} is usually not a II{ set. However, it turns out that
PA U {A} is always of the same weak degree as a 119 subset of 2. This fact is
a consequence of our Embedding Lemma [44, Lemma 3.3], Lemma 4 below.

Likewise, it may not be obvious that the embedding ¢ : Ry — P,, is one-
to-one. However, the one-to-oneness of ¢ can be shown as a consequence of a
famous theorem known as the Arslanov Completeness Criterion. This theorem
can be found in textbooks, e.g., Soare [45, Theorem V.5.1].

Convention. Throughout this paper, we shall identify R with its image in Py,
under the embedding ¢. We shall also identify each recursively enumerable Tur-
ing degree with the weak degree which is its image in P,, under the embedding
¢. In particular, we identify 0’,0 € Ry with the top and bottom elements of
Pw- See Figure 2.

Structural properties of P,

It can be shown that P, has many structural features which are similar to those
of Rp. Some of the similar features are as follows.

1. Py is a countable distributive lattice. Moreover, every countable distribu-
tive lattice is lattice embeddable in every initial segment of P,. This
result is due to Binns/Simpson [4, §].

2. The P, analog of the Sacks Splittting Theorem holds. In other words, for
all a,c > 0 in P, we can find by, by € P, such that a = sup(by,bs) and
b1 # ¢ and by # c. This result is due to Binns [4, 5].

3. We conjecture that the P, analog of the Sacks Density Theorem holds.
This would mean that for all a,b € P,, with a < b there exists ¢ € P,
such that a < c < b.

4. There are some degrees in P,, with interesting lattice-theoretic properties,
such as being meet-reducible or not, and joining to 0’ or not. See Theorem
3 below. See also Simpson [44, 42].

Note that these structural properties of P, are proved by means of priority argu-
ments, just as for Ry. On the other hand, there are some structural differences
between P, and Rr. For example:

5. Within P,,, the degree 0 is meet-irreducible. (This is trivial.)
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Figure 2: A picture of Py, the lattice of weak degrees of nonempty II{ subsets
of 2. Note that Ry, the upper semilattice of recursively enumerable Turing
degrees, is embedded in P,,. Moreover, 0’ and 0 are the top and bottom elements
of both Ry and P,,.

Response to Issue 1

Recall that Issue 1 posed the problem of finding a specific, natural example of a
recursively enumerable Turing degree which is > 0 and < 0’. We do not know
how to solve this problem.
However, in the slightly broader P, context, we [44, 42] have discovered
many specific, natural degrees which are > 0 and < 0’. See Figure 3.
Moreover, as noted in [44, 42], several of the specific, natural degrees in P,,
which we have discovered are related to foundationally interesting topics:

e reverse mathematics,

algorithmic randomness,

e subrecursive hierarchies,

computational complexity,
e diagonal nonrecursiveness.

See also the additional explanations below.
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Figure 3: Some specific, natural degrees in P,,. Note that each of these specific,
natural degrees in P,, is incomparable with all of the recursively enumerable
Turing degrees, except 0’ and 0.

Some specific, natural degrees in P,

Conside the following specific, natural, weak degrees. Let r,, be the weak degree
of the set of n-random reals [25]. Let d be the weak degree of the set of diagonally
nonrecursive functions [21]. Let drgc be the weak degree of the set of diagonally
nonrecursive functions which are recursively bounded.

Not all of these weak degrees belong to P,,. However, we have the following
theorem.

Theorem 2. In P,, we have
0 <d < dgrgc <11 < inf(rz,0") < 0.

Moreover, all of these specific, natural degrees in P, are incomparable with all
of the recursively enumerable Turing degrees, except 0' and 0.

Proof. See Simpson [44, 42]. The strict inequalities d < drgc < r; follow from
Kumabe [28] and Ambos-Spies et al [3]. O



We also have:
Theorem 3.

1. We may characterize r1 as the mazimum weak degree of a 11 subset of
2% which is of positive measure.

2. We may characterize inf(re,0') as the mazimum weak degree of a IIY
subset of 2¥ whose Turing upward closure is of positive measure.

3. FEach of the degrees r1 and inf(rs,0') is meet-irreducible and does not join
to 0.

Proof. See Simpson [44, 42]. O

Remark. The weak degrees r; and d have arisen in the reverse mathematics of
measure theory and of the Tietze Extension Theorem, respectively [9, 18]. See
also [41, Chapter X].

Remark. We hereby assign the names “Carl”, “Klaus”, and “Per” [21, 3, 30]
to the respective weak degrees d, drgc, and ry in P,,.

The Embedding Lemma and some of its consequences

Several of the results stated above are consequences of the following lemma, due
to Simpson [44, Lemma 3.3], which we call the Embedding Lemma:

If S Cw® is X9 and if P C 2% is nonempty 119, then deg,, (S U P) € Py.

Using the Embedding Lemma we can show that the weak degrees of many
specific, natural £ subsets of w* belong to P.

Examples.

1. Let By = {X € 2¥ | X is l-random}. Since R; is X9, it follows by the
Embedding Lemma that r; = deg,,(R1) € P,

2. Let Ry = {X € 2¥ | X is 2-random}. Since Ry is 39, it follows by the
Embedding Lemma that inf(re, 0’) = deg,,(R2 UPA) € Py,.

3. Let D = {f € w¥ | f is diagonally nonrecursive}. Since D is I1?, it follows
by the Embedding Lemma that d = deg,,(D) € Py.

4. Let Drec = {f € D | f is recursively bounded}. Since Dggc is X9, it
follows by the Embedding Lemma that drgc = deg,,(Drec) € Puw-

5. Let A C w be recursively enumerable. Since {A} is 19, it follows by the
Embedding Lemma that deg,,({A}UPA) € P,,. This gives our embedding
of Ry into Py,.



Proof of the Embedding Lemma
We restate the Embedding Lemma as follows.

Lemma 4 (The Embedding Lemma). Let S C w® be £9. Let P C 2¢ be
nonempty H(f. Then we can find Q@ C 2¥ nonempty H(f such that QQ =, S U P.

Proof. First use a Skolem function technique to reduce to the case when S is
9. Namely, letting S = {f € w* | 3k Vn Im R(f, k,n,m)} where R is recursive,
replace S by the set of all (k)™ (f @ g) € w* such that Vn R(f, k,n,g(n)) holds.
Clearly the latter set is =,, S and TIY.

Assuming now that S is a II{ subset of w*, let T's be a recursive subtree of
w<¥ such that S is the set of paths through T's. We may safely assume that, for
all 7 € Ts and all n < the length of 7, 7(n) > 2. Let Tp be a recursive subtree
of {0,1}<% such that P is the set of paths through Tp. Define T to be the set
of finite sequences p € w<* of the form

p=00"(mo)" 1" (m1)" -~ (mi_1) oy

such that (mg,m1,...,mi—1) € Ts, 00,01,...,0% € Tp, and p(n) < max(n,2)
for all n < the length of p. Thus Ty is a recursive subtree of w<*. Let Q C w¥
be the set of paths through Tg.

We claim that @ =, SU P. Let f € S be given. Since Tp is infinite,
it contains a recursive sequence of finite sequences 7, of length n for each n.
Setting g = 7¢(0) " (f(0))" -+ "Tpe) " (f(n))" -+, we have g € Q and g <7 f.
This shows that @ <,, S. Note also that Tg 2 Tp, hence @ 2 P, hence Q <, P.
We now have Q <,, SU P. Conversely, given g € @), set

I={nljgn)>2}={np<nm <---<np<--}

If T is infinite, then setting f(k) = ny for all k, we have f € S and f <p g.
If T is finite, say I = {ng < n1 < -+ < ng_1}, then setting n_; = —1 and
X (%) = g(ng—1+i+1) for all i, we have X € P and X <p g. Thus Q >, SUP
and our claim is proved.

Note that @ is IIY and recursively bounded, with bounding function h(n) =
max(n,2). Therefore, we can find a I1{ set Q* C 2 which is recursively home-
omorphic to @, hence weakly equivalent to Q). This proves our lemma. O

Some additional, specific degrees in P,

By the same method as in Theorem 2, we can use the Embedding Lemma to
identify some additional, specific, natural degrees in P,,. Some of these degrees
in P, are associated with computational complexity classes, as follows.

Definition 4. Let C' be a uniformly recursively enumerable class of total re-
cursive functions satisfying some mild closure conditions, as explained in [42,
Section 10]. Let d¢ be the weak degree of the set of diagonally nonrecursive
functions which are bounded by some h € C. As a consequence of the Embed-
ding Lemma, we have d¢ € P,,. See [42, Section 10] for a detailed justification
of our claim that these degrees d¢ are recursion-theoretically natural.
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Remark. If C* D C is another such class of recursive functions, then we have
deo- < de. Moreover, according to [3, Theorem 1.9], we have strict inequality
de- < dg provided C* contains a function which “grows much faster than” all
functions in C. There are some interesting problems here.

Examples. Let C be any of the following complexity classes:
1. PR = the class of primitive recursive functions
ER = the class of elementary recursive functions.
PTIME = the class of polynomial-time computable functions.
PSPACE = the class of polynomial-space computable functions.

EXPTIME = the class of exponential-time computable functions, etc.

&S o W N

C,, = the class of recursive functions at levels < w-(1+4«) of the transfinite
Ackermann hierarchy due to Wainer [47]. Here « is any ordinal number
< g9. Thus Cy = PR, C; = the class of functions which are primitive
recursive in the Ackermann function, etc.

For each of these classes C, we have a specific, natural degree d¢ in P,,. Thus
we have

r1 > dprive > dpspace > dexprive > der > dpr = do

in Py, corresponding to well-known complexity classes. Also, writing d,, = d¢,,
for each a < ¢g, we have

d0>d1>"'>da>da+1>"'>d50>dREC

in P,. Moreover, if « is a limit ordinal, then by [42, Remark 10.12] we have
da = infﬁ<a da~

Remark. We hereby assign the names “Wilhelm”, “Laszl6”, and “Stanley”
[1, 24, 47] to the respective weak degrees dg = dpr, dgr, and d., in P,,.

In addition, let d? be the weak degree of the set of f @ g such that f is
diagonally nonrecursive, and g is diagonally nonrecursive relative to f. More
generally [44, Section 4], we can define d” for all n > 1, and we can extend this
into the transfinite.

Theorem 5. In P, we have
d=d'<d’<---<d”<---<rp.
Proof. This is a consequence of Kumabe [28]. See Simpson [44, Section 4]. [

Remark. We conjecture that all of the d™’s, n > 2 are incomparable with all
of the d,’s, a < ¢, and with drgc.

11



Positive-measure domination

Up until this point, all of our examples of specific, natural degrees in P,, have
turned out to be incomparable with all of the recursively enumerable Turing
degrees, except 0’ and 0. We now present an example which behaves differently
in this respect.

Starting with Dobrinen/Simpson [14] and continuing with Cholak/Green-
berg/Miller [12], Binns et al [7], and Kjos-Hanssen [26], there has been a recent
upsurge of interest in domination properties related to the reverse mathematics
of measure theory. We consider one such property.

Definition 5. A € 2¥ is said to be positive-measure dominating if every I19
subset of 2¢ of positive measure includes a H?’A set of positive measure. This

notion was implicitly introduced in [14, Conjecture 3.1] and has been developed
in [26].

Remark. Positive-measure domination is related to the reverse mathematics
of the following measure-theoretic regularity statement:

Every Gs set of positive measure includes a closed set of positive
measure.

For more on the reverse mathematics of measure-theoretic regularity, see [14].
Remark. Kjos-Hanssen [26] has shown that the set
PMD = {A € 2¥ | A is positive-measure dominating}

is 9. Setting m = deg,, (PMD), we may apply the Embedding Lemma to con-
clude that inf(m, 0') € P,,. It follows from the results of [12, 7] that inf(m, Q") is
incomparable with d and that there exist recursively enumerable Turing degrees
a such that 0 < inf(m,0’) < a < 0" in P,. See Figure 4.

Remark. We hereby assign the name “Bjgrn” [26] to the specific, natural degree
inf(m, 0’) in Py,.

Note added June 30, 2006: Recently Kjos-Hanssen, Miller and Solomon
[27] have shown that A € 2% is positive-measure dominating if and only if A is
almost everywhere dominating, if and only if A is uniformly almost everywhere
dominating. In addition, Simpson [43] has shown that any such A is superhigh,
ie., A" >4, 07, ie., 0” is truth-table reducible to A’.

Some further specific, natural degrees in P,

We now mention some further examples of specific, natural, 9 subsets of w*
which, via the Embedding Lemma, give rise to specific, natural degrees in P,,.
These degrees are earmarked for future research.

Examples.

12
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Figure 4: Another specific, natural degree in P,,. Note that inf(m,0"), unlike
d, dgrgc, r1, and inf(ry,0’), is bounded above by some recursively enumer-
able Turing degrees which are strictly less than 0’. In addition, inf(m,0’) is
incomparable with d.

1. Let d* be the weak degree of the set of functions which are diagonally non-
recursive relative to the Halting Problem. This set of functions has arisen
in the reverse mathematics of Ramsey’s Theorem [20]. The Embedding
Lemma tells us that inf(d*,0") € P,,.

2. Let df;c = the weak degree of the set of functions which are (a) diagonally
nonrecursive relative to the Halting Problem, and (b) recursively bounded.
The Embedding Lemma tells us that inf(djgq, 0') € Pu.

3. For each computational complexity class C' as considered in Definition 4,
let df. = the weak degree of the set of functions which are (a) diago-
nally nonrecursive relative to the Halting Problem, and (b) bounded by a
function in C. The Embedding Lemma tells us that inf(dg, 0’) € P,,.

Remark. It should be interesting to explore the relationships among these
newly identified degrees inf(d*,0’), inf(djge,0'), inf(d},0') in Py, as well as

13



their relationships with the previously identified degrees d, drgc, d¢ in P,
and with reverse mathematics.

Remark. Another promising source of examples is as follows. Let Q C w* be
39 relative to the Halting Problem. Let s be the weak degree of S, where S is
either

{few’|3g(geQand g <y f')}

or

{few' |FggeQand g <y f®0)}.

Here <; denotes truth-table reducibility, and f’ denotes the Turing jump of
f. Since S is ¥Y, the Embedding Lemma applies. Moreover, if @ is specific
and natural, then so is s, hence so is inf(s,0') € P,. It should be interesting
to explore the relationships among these degrees and others in P,. The ideas
of Jockusch/Stephan [23] and Kjos-Hanssen [7, 26] concerning cohesiveness and
superhighness may be relevant.

Response to Issue 2

Issue 2 was the problem of finding a “smallness property” of infinite II{ (i.e.,
co-recursively enumerable) sets A C w which ensures that the Turing degree of
Ais >0 and < 0. We do not know how to do this.
However, in the P,, context, we have identified several “smallness properties”
of H(l) sets P C 2% which ensure that the weak degree of P is > 0 and < 0.
Here is one result of this type.

Definition 6. A H(l) set P C 2% is said to be thin if, for all H(l) sets Q C P,
P\ Q is T19. Equivalently, all II{ sets @ C P are of the form P N D where D is
clopen. A set P C 2% is said to be perfect if it has no isolated points.

Remark. Nonempty I1{ subsets of 2¢ which are thin and perfect have been
constructed by means of priority arguments. Much is known about them. For
example, any two such sets are automorphic in the lattice of IIY subsets of 2
under inclusion. See Martin/Pour-El [29], Downey/Jockusch/Stob [15, 16], and
Cholak et al [11].

Theorem 6. Let p = deg, (P) where P C 2% is 1Y, nonempty, thin, and
perfect. Then p is incomparable with r1. Hence 0 < p < 0.

Proof. See Simpson [42]. O

One may also consider other smallness properties. As above, let P be a
nonempty I1Y subset of 2¢. The following definition and theorem are due to
Binns [6].

Definition 7. P is small if there is no recursive function f such that for all n
there exist n members of P which differ at level f(n) in the binary tree {0,1}<%.
For example, let A C w be hypersimple, and let A = By U By where By, By are
recursively enumerable. Then P = {X € 2¥ | X separates Bi, By} is small.

14



Theorem 7. If P is small, then the weak degree of P is < 0.
Proof. See Binns [6]. O
The following definition and theorem are due to Simpson, unpublished.

Definition 8. P is h-small if there is no recursive, canonically indexed sequence
of pairwise disjoint clopen sets D,,, n € w, such that P N D,, # @ for all n.

Theorem 8. If P is h-small, then the weak degree of P is < 0.

Summary

We summarize this paper as follows.

There are basic, unresolved issues concerning R, the semilattice of recur-
sively enumerable Turing degrees. One of the issues is the lack of specific,
natural, recursively enumerable degrees.

In order to address this issue, we have embedded Rr into P, the lattice
of weak degrees of nonempty II9 subsets of 2¢. We identify Ry with its image
in P,. In the P, context, some of the unresolved issues can be satisfactorily
addressed. In particular, P, contains many specific, natural degrees which are
related to foundationally interesting topics: algorithmic randomness, reverse
mathematics, computational complexity.
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