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Abstract

Consider the countable semilattice RT consisting of the recursively
enumerable Turing degrees. Although RT is known to be structurally rich,
a major source of frustration is that no specific, natural degrees in RT have
been discovered, except the bottom and top degrees, 0 and 0

′. In order to
overcome this difficulty, we embed RT into a larger degree structure which
is better behaved. Namely, consider the countable distributive lattice Pw

consisting of the weak degrees (a.k.a., Muchnik degrees) of mass problems
associated with nonempty Π0

1 subsets of 2ω. It is known that Pw contains a
bottom degree 0 and a top degree 1 and is structurally rich. Moreover, Pw

contains many specific, natural degrees other than 0 and 1. In particular,
we show that in Pw one has 0 < d < r1 < inf(r2, 1) < 1. Here d is the
weak degree of the diagonally nonrecursive functions, and rn is the weak
degree of the n-random reals. It is known that r1 can be characterized
as the maximum weak degree of a Π0

1 subset of 2ω of positive measure.
We now show that inf(r2,1) can be characterized as the maximum weak
degree of a Π0

1 subset of 2ω whose Turing upward closure is of positive
measure. We exhibit a natural embedding of RT into Pw which is one-to-
one, preserves the semilattice structure of RT , carries 0 to 0, and carries
0
′ to 1. Identifying RT with its image in Pw, we show that all of the

degrees in RT except 0 and 1 are incomparable with the specific degrees
d, r1, and inf(r2,1) in Pw.
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1 Introduction

A principal object of study in recursion theory going back to the seminal work
of Turing [36] and Post [25] has been the countable upper semilattice RT of
recursively enumerable Turing degrees, i.e., Turing degrees of recursively enu-
merable sets of positive integers. See the monographs of Sacks [27], Rogers [26],
Soare [35], and Odifreddi [22, 23].

A major difficulty or obstacle in the study of RT has been the lack of natural
examples. Although it has long been known that RT is infinite and structurally
rich, to this day no specific, natural examples of recursively enumerable Turing
degrees are known, beyond the two examples originally noted by Turing: 0′ =
the Turing degree of the Halting Problem, and 0 = the Turing degree of solvable
problems. Furthermore, 0′ and 0 are respectively the top and bottom elements
of RT . This paucity of examples in RT is striking, because it is widely recognized
that most other branches of mathematics are motivated and nurtured by a rich
stock of examples. Clearly it ought to be of interest to somehow overcome this
deficiency in the study of RT .

In 1999 [30, 31] we defined a degree structure, here denoted Pw, which is
closely related to RT , but superior to RT in at least two respects. First, Pw

exhibits better structural behavior than RT , in the sense that Pw is a countable
distributive lattice, while RT is not even a lattice. Second and more importantly,
there are plenty of specific, natural degrees in Pw which are intermediate be-
tween 1 and 0, the top and bottom elements of Pw. Thus Pw does not suffer
from the above-mentioned lack of examples, which plagues RT .

In more detail, let Pw be the lattice of weak degrees (a.k.a., Muchnik degrees)
of mass problems given by nonempty Π0

1 subsets of 2ω. In 1999 [30] we showed
that among the intermediate degrees in Pw is the specific degree r1 associated
with the set of 1-random reals. The concept of 1-randomness was already well
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known from algorithmic information theory [19]. After 1999, we and other
authors [2, 3, 4, 5, 32, 33, 34] continued the study ofPw, using priority arguments
to prove structural properties, just as for RT . In addition, we [33] discovered
families of specific, natural, intermediate degrees in Pw related to foundationally
interesting topics such as reverse mathematics, Gentzen-style proof theory, and
computational complexity. Some additional degrees of this kind are presented
in Sections 3 and 4 below.

The purpose of the present paper is to further clarify the relationship between
the semilattice RT and the lattice Pw. Namely, we exhibit a specific, natural
embedding φ : RT → Pw which is one-to-one, preserves the semilattice structure
of RT , and carries the top and bottom elements of RT to the top and bottom
elements of Pw. See Theorem 5.5 below. By identifying RT with its image in Pw,
we place the recursively enumerable Turing degrees into a wider context, where
natural intermediate degrees occur. We view this as a step toward overcoming
the above-mentioned difficulties concerning RT .

At the same time, our embedding of RT into Pw fails to solve the long
standing open problem of finding a specific, natural, intermediate degree within
RT itself. Indeed, we shall see below (Theorem 5.6) that, regrettably, all of the
intermediate degrees belonging to the image of RT under our embedding are
incomparable with all of the known natural intermediate degrees in Pw.

2 Background: RT and Pw

In this section we review some basic information concerning the semilattice RT

and the lattice Pw.
Throughout this paper we shall use standard recursion-theoretic notation

from Rogers [26] and Soare [35]. For special aspects of mass problems and Π0
1

sets, a convenient reference is [33].
We write ω = {0, 1, 2, . . .} for the set of natural numbers, ωω for the space

of total functions from ω into ω, and 2ω for the space of total functions from ω
into {0, 1}. We sometimes identify a set A ⊆ ω with its characteristic function
χA ∈ 2ω given by χA(n) = 1 if n ∈ A, 0 if n /∈ A. For e, n, m ∈ ω and f ∈ ωω

we write {e}f(n) = m to mean that the Turing machine with Gödel number e
and oracle f and input n eventually halts with output m. In the absence of an
oracle f , we write {e}(n) = m. For P ⊆ ωω we consider recursive functionals

Φ : P → ωω given by Φ(f)(n) = {e}f(n) for some e ∈ ω and all f ∈ P and
n ∈ ω. A function h : ω → ω is said to be recursive if there exists e ∈ ω such that
h(n) = {e}(n) for all n ∈ ω. A set A ⊆ ω is said to be recursively enumerable if
it is the image of a recursive function, i.e., A = {m | ∃n (h(n) = m)} for some
recursive h : ω → ω.

For f, g ∈ ωω we write f ≤T g to mean that f is Turing reducible to g, i.e.,
∃e ∀n (f(n) = {e}g(n)). The Turing degree of f , denoted degT (f), is the set
of all g such that f ≡T g, i.e., f ≤T g and g ≤T f . The set DT of all Turing
degrees is partially ordered by putting degT (f) ≤ degT (g) if and only if f ≤T g.
Under this partial ordering, the bottom element of DT is 0 = {f ∈ ωω | f
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is recursive}. Within DT , the least upper bound of degT (f) and degT (g) is
degT (f ⊕ g) where (f ⊕ g)(2n) = f(n) and (f ⊕ g)(2n + 1) = g(n) for all n ∈ ω.
A Turing degree a is said to be recursively enumerable if a = degT (χA) where
A ⊆ ω is recursively enumerable. The set of all recursively enumerable Turing
degrees is denoted RT . It is easy to see that RT is closed under the least upper
bound operation inherited from DT . The top and bottom elements of RT are
0′ and 0 respectively, where 0′ = degT (H) is the Turing degree of the Halting
Problem, H = {e | ∃m ({e}(0) = m)}. Thus RT is a countable upper semilattice
with a top and bottom element.

Definition 2.1. Let P, Q be subsets of ωω. We say that P is weakly reducible

to Q, written P ≤w Q, if for all g ∈ Q there exists f ∈ P such that f ≤T g.
The weak degree of P , written degw(P ), is the set of all Q such that P ≡w Q,
i.e., P ≤w Q and Q ≤w P . The set Dw of all weak degrees is partially ordered
by putting degw(P ) ≤ degw(Q) if and only if P ≤w Q. The concept of weak
reducibility goes back to Muchnik [21] and has sometimes been called Muchnik

reducibility.

Theorem 2.2. Dw is a complete distributive lattice.

Proof. The least upper bound of degw(P ) and degw(Q) in Dw is degw(P × Q)
where

P × Q = {f ⊕ g | f ∈ P and g ∈ Q}.

The greatest lower bound of degw(P ) and degw(Q) in Dw is degw(P ∪Q). The
bottom element of Dw is

0 = {P ⊆ ωω | ∃f (f ∈ P and f is recursive)}.

Note that P ≤w Q if and only if P̂ ⊇ Q̂, where P̂ is the Turing upward closure

of P ,
P̂ = {g ∈ ωω | (∃f ∈ P ) (f ≤T g)}.

Thus the lattice of weak degrees, Dw, is inversely isomorphic to the lattice of
subsets of ωω which are upward closed with respect to ≤T . It follows that Dw

is a complete distributive lattice. �

Remark 2.3. There is an obvious, natural embedding of DT into Dw given by
degT (f) 7→ degw({f}). Here {f} is the singleton set whose only member is f .
This embedding is one-to-one, preserves the partial ordering relation and least
upper bound operation from DT , and carries 0 to 0. Compare this with our
embedding of RT into Pw in Theorem 5.5 below.

Definition 2.4. A predicate R ⊆ ωω × ω is said to be recursive if

∃e ∀f ∀n ({e}f(n) = 1 if R(f, n), and {e}f(n) = 0 if ¬R(f, n)).

A set P ⊆ ωω is said to be Π0
1 if there exists a recursive predicate R ⊆ ωω × ω

such that P = {f | ∀n R(f, n)}. A set S ⊆ ωω is said to be Σ0
3 if there exists a re-

cursive predicate R ⊆ ωω×ω×ω×ω such that S = {f | ∃k ∀m ∃n R(f, k, m, n)}.
Other levels of the arithmetical hierarchy are defined similarly.
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Definition 2.5. A set P ⊆ ωω is said to be recursively bounded if there exists
a recursive function h such that ∀n (f(n) < h(n)) for all f ∈ P .

Definition 2.6. For P, Q ⊆ ωω, a recursive homeomorphism of P onto Q is a
recursive functional Φ : P → Q mapping P one-to-one onto Q such that the
inverse functional Φ−1 : Q → P is recursive. In this case we say that P and Q
are recursively homeomorphic.

Theorem 2.7. P ⊆ ωω is recursively bounded Π0
1 if and only if P is recursively

homeomorphic to a Π0
1 set P ∗ ⊆ 2ω.

Proof. See [33, Theorems 4.7 and 4.10]. �

Corollary 2.8. The weak degrees of nonempty recursively bounded Π0
1 sets are

the same as the weak degrees of nonempty Π0
1 subsets of 2ω.

Proof. This is immediate from Theorem 2.7. �

Definition 2.9. Pw is the set of weak degrees of nonempty Π0
1 subsets of 2ω.

Theorem 2.10. Pw is a countable distributive lattice with a top and bottom

element, denoted 1 and 0 respectively.

Proof. If P and Q are Π0
1 subsets of 2ω, then so are P × Q and P ∪ Q. Thus

Pw is closed under the least upper bound and greatest lower bound operations
inherited from Dw. Clearly Pw is countable, because there are only countably
many Π0

1 subsets of 2ω. Clearly 0 = degw(2ω) is the bottom element of Pw.
Let PA be the set of completions of Peano Arithmetic. Identifying sentences
with their Gödel numbers, we may view PA as a Π0

1 subset of 2ω. By Scott [29],
degw(PA) = 1 is the top element of Pw. See also [33, Section 6]. �

Remark 2.11. Just like the countable semilattice RT , the countable distribu-
tive lattice Pw is known to be structurally rich. Binns/Simpson [2, 5] have
shown that every countable distributive lattice is lattice embeddable in every
nontrivial initial segment of Pw. Binns [2, 3] has obtained the Pw analog of
the Sacks Splitting Theorem for RT [27]. Namely, for all p,q > 0 in Pw there
exist q1,q2 ∈ Pw such that q1,q2 6≥ p and sup(q1,q2) = q. (The Pw analog
of the Sacks Density Theorem for RT [28] remains as an open problem.) These
structural results for Pw are proved by means of priority arguments. They in-
vite comparison with the older, known results for RT , which were also proved
by means of priority arguments.

We end this section by mentioning some technical notions and results con-
cerning trees and almost recursiveness.

A finite sequence of natural numbers σ = 〈σ(0), . . . , σ(k − 1)〉 is called a
string of length k. The set of all strings is denoted ω<ω. The set of strings of
0’s and 1’s is denoted 2<ω. If σ, τ are strings of length k, l respectively, then the
concatenation

σaτ = 〈σ(0), . . . , σ(k − 1), τ(0), . . . , τ(l − 1)〉
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is a string of length k + l. We write σ ⊆ τ if σaρ = τ for some ρ. If σ is a string
of length k, then for all f ∈ ωω we have σaf ∈ ωω defined by (σaf)(i) = σ(i)
for i < k, f(i − k) for i ≥ k. We write σ ⊂ f if σag = f for some g ∈ ωω.

A tree is a set T ⊆ ω<ω such that, for all σ ⊆ τ ∈ T , σ ∈ T . A path through
T is an f ∈ ωω such that (∀σ ⊂ f) (σ ∈ T ). The set of all paths through T is
denoted [T ]. We sometimes identify a string σ with its Gödel number #(σ) ∈ ω.
A tree T is said to be recursive if {#(σ) | σ ∈ T } is recursive.

Theorem 2.12. P ⊆ ωω is Π0
1 if and only if P = [T ] for some recursive tree

T ⊆ ω<ω. P ⊆ 2ω is Π0
1 if and only if P = [T ] for some recursive tree T ⊆ 2<ω.

Proof. See [33, Theorem 4.3]. �

Definition 2.13. We say that g ∈ ωω is almost recursive if for all f ≤T g there
exists a recursive function h such that ∀n (f(n) < h(n)).

Theorem 2.14. Suppose g is almost recursive. Then for all f ≤T g we have

f = Φ(g) for some total recursive functional Φ : ωω → ωω.

Proof. See [33, Theorem 4.18]. �

The following result is known as the Almost Recursive Basis Theorem.

Theorem 2.15. If P ⊆ 2ω is Π0
1 and nonempty, then there exists g ∈ P such

that g is almost recursive.

Proof. This is a restatement of the Hyperimmune-Free Basis Theorem of [15,
Theorem 2.4]. See also [33, Theorem 4.19]. �

3 Some specific degrees in Pw

In this section we identify and characterize some specific, natural degrees in Pw,
and we investigate their degree-theoretic properties.

Definition 3.1. Let µ be the “fair coin” probability measure on 2ω given by
µ({f ∈ 2ω | f ⊃ σ}) = 1/2|σ| for all σ ∈ 2<ω. Let C be a Turing oracle. A
point f ∈ 2ω is said to be C-random if there does not exist a recursive sequence
of Σ0,C

1 sets UC
i ⊆ 2ω, i ∈ ω, such that µ(UC

i ) ≤ 1/2i and f ∈
⋂∞

i=0 UC
i . If

C = 0(n−1) = the (n−1)st Turing jump of 0, where 0 is recursive and n ≥ 1,
then f is said to be n-random.

Thus f is 1-random if and only if f is random in the sense of Martin-Löf [20],
and f is 2-random if and only if f is random relative to the Halting Problem.
For a thorough treatment of randomness and n-randomness, see Kautz [16] or
Downey/Hirschfeldt [8]. We write

Rn = {f ∈ 2ω | f is n-random}.

Note that µ(Rn) = 1.
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Lemma 3.2. Rn is Σ0
n+1. In particular, R1 is Σ0

2, and R2 is Σ0
3.

Proof. It is is well known (see for instance [33, Theorem 8.3]) that R = R1 is

Σ0
2. Relativizing to C we see that RC = {f ∈ 2ω | f is C-random} is Σ0,C

2 , i.e.,
Σ0

2 relative to C. Putting C = 0(n−1), we see that Rn is Σ0
2 relative to 0(n−1).

From this it follows easily that Rn is Σ0
n+1. �

Lemma 3.3. Let S ⊆ ωω be Σ0
3, and let P ⊆ 2ω be nonempty Π0

1. Then we can

find a nonempty Π0
1 set Q ⊆ 2ω such that Q ≡w S ∪ P .

Proof. First use a Skolem function technique to reduce to the case where S is Π0
1.

Namely, fix a recursive predicate R such that S = {f | ∃k ∀n ∃m R(f, k, n, m)},
and replace S by the set of all 〈k〉a(f ⊕ g) ∈ ωω such that ∀n R(f, k, n, g(n))
holds. Clearly the latter set is ≡w S and Π0

1. Assuming now that S is a Π0
1

subset of ωω, let TS be a recursive subtree of ω<ω such that S is the set of paths
through TS . We may safely assume that, for all τ ∈ TS and n < the length of τ ,
τ(n) ≥ 2. Let TP be a recursive subtree of 2<ω such that P is the set of paths
through TP . Define TQ to be the set of strings ρ ∈ ω<ω of the form

ρ = σ0
a〈m0〉

aσ1
a〈m1〉

a · · ·a〈mk−1〉
aσk

where 〈m0, m1, . . . , mk−1〉 ∈ TS , σ0, σ1, . . . , σk ∈ TP , and ρ(n) ≤ max(n, 2) for
all n < the length of ρ. Thus TQ is a recursive subtree of ω<ω. Let Q ⊆ ωω be
the set of paths through TQ. (Compare the construction of T in Jockusch/Soare
[14].) It is straightforward to verify that Q ≡w S ∪ P . Note that Q is Π0

1 and
recursively bounded. By Theorem 2.7 we can find a Π0

1 set Q∗ ⊆ 2ω which is
recursively homeomorphic to Q. This completes the proof. �

Lemma 3.4. There exist Π0
1 sets P1, P2 ⊆ 2ω such that P1 ≡w R1 and

P2 ≡w R2 ∪ PA.

Proof. By Lemmas 3.2 and 3.3 we can find Π0
1 sets P1, P2 ⊆ 2ω such that

P1 ≡w R1 ∪ PA and P2 ≡w R2 ∪ PA. Since R1 is nonempty and Σ0
2, there

is a nonempty Π0
1 set Q ⊆ R1. Then Q ≤w PA, hence R1 ≤w PA, hence

P1 ≡w R1 ∪ PA ≡w R1. �

Definition 3.5. We write rn = degw(Rn) and

r∗n = inf(rn,1) = degw(Rn ∪ PA).

Theorem 3.6. We have r1 ∈ Pw and r∗2 ∈ Pw and 0 < r1 < r∗2 < 1.

Proof. By Lemma 3.4 there are Π0
1 sets P1, P2 ⊆ 2ω such that r1 = degw(P1)

and r∗2 = degw(P2). Thus r1, r
∗
2 ∈ Pw and r1, r

∗
2 ≤ 1. Clearly R1 ⊇ R2, hence

r1 ≤ r2. Clearly R1 has no recursive member, i.e., r1 > 0. By [33, Section
7] or [15, Corollary 5.4], the Turing upward closure of PA is of measure 0, i.e.,
PA 6≤w S for all S ⊆ 2ω of positive measure. In particular PA 6≤w R2, i.e.,
1 6≤ r2. Summarizing, we have now shown that 0 < r1 ≤ inf(r2,1) = r∗2 < 1.
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It remains to show that r1 6≥ r∗2, i.e., R1 6≥w R2 ∪ PA. By Lemma 3.2, let
P be a nonempty Π0

1 subset of R1. By the Almost Recursive Basis Theorem
2.15, let g ∈ P be almost recursive. By Kautz [16, Theorem IV.2.4(iv)] or
Dobrinen/Simpson [7, Remark 2.8], there is no almost recursive f ∈ R2. In
particular, there is no f ∈ R2 such that f ≤T g. Suppose there were f ∈ PA
such that f ≤T g. By Theorem 2.14 let Φ : 2ω → 2ω be a total recursive
functional such that f = Φ(g). Put P = {g ∈ P | Φ(g) ∈ PA}. We have
Φ(g) = f ∈ PA, hence g ∈ P , hence P is nonempty. Since P and PA are Π0

1,
it follows by [33, Theorem 4.4] that P ⊆ P ⊆ R1 is Π0

1. Hence, by [33, Lemma
8.8], P is of positive measure. Since Φ : P → PA, it follows that the Turing
upward closure of PA is of positive measure, but this is a contradiction. We
have now shown that, for a particular g ∈ R1, there is no f ≤T g such that
f ∈ R2 ∪ PA. Thus R2 ∪ PA 6≤w R1, and this completes the proof. �

Remark 3.7. As an application of Theorem 3.6, we can find essentially un-
decidable, finitely axiomatizable theories T1 and T2 in the first-order predicate
calculus, with the following properties: every 1-random real computes a com-
pletion of T1; every 2-random real but not every 1-random real computes a
completion of T2. This follows from Theorem 3.6 plus the well known, general
relationship between Π0

1 subsets of 2ω and finitely axiomatizable theories. See
[32, Theorem 3.18 and Remark 3.19] and Peretyatkin [24].

Theorem 3.8. We can characterize r1 as the maximum weak degree of a Π0
1

subset of 2ω of positive measure. We can characterize r∗2 as the maximum weak

degree of a Π0
1 subset of 2ω whose Turing upward closure is of positive measure.

Proof. The first statement is [33, Theorem 8.10]. For the second statement,

assume that Q is a Π0
1 subset of 2ω whose Turing upward closure Q̂ is of positive

measure. A computation in the style of Tarski and Kuratowski (compare Rogers

[26, Section 14.3]) shows that Q̂ is Σ0
3. Since Q̂ is Σ0

3 of positive measure,

let Q′ ⊆ Q̂ be Π0
2 of positive measure. By Kautz [16, Lemma II.1.4(ii)] or

Dobrinen/Simpson [7, Theorem 3.3], we may assume that Q′ is Π0
1 relative to

0′. Relativizing [33, Lemma 8.7] to 0′, we have Q′ ≤w R2. Since Q′ ⊆ Q̂, it

follows that Q̂ ≤w R2, hence Q ≤w R2. Furthermore, since Q is a nonempty
Π0

1 subset of 2ω, we have Q ≤w PA. We now see that Q ≤w R2 ∪ PA, i.e.,
degw(Q) ≤ r∗2. On the other hand, by Theorem 3.6 let P2 be a Π0

1 subset of 2ω

such that degw(P2) = r∗2. Note that P̂2 ⊇ R2, hence P̂2 is of positive measure.

We have now shown that r∗2 is the maximum degw(Q) ∈ Pw such that Q̂ is of
positive measure. This completes the proof of our theorem. �

Corollary 3.9. Let Q be a nonempty Π0
1 subset of 2ω. Then Q ≤w R2 if and

only if Q̂ is of positive measure.

Proof. If Q ≤w R2 then trivially Q̂ ⊇ R2, hence Q̂ is of measure 1. Conversely,
if Q̂ is of positive measure, then by Theorem 3.8 we have Q ≤w R2. �
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Corollary 3.10. We can find a Π0
1 set Q ⊆ 2ω whose Turing upward closure

Q̂ is of positive measure yet does not include any Π0
1 set of positive measure.

Proof. By Theorem 3.6 let Q ⊆ 2ω be Π0
1 such that degw(Q) = r∗2. By The-

orem 3.8, Q̂ is of positive measure. If there were a Π0
1 set P ⊆ Q̂ of positive

measure, then by Theorem 3.8 we would have r1 ≥ degw(P ) ≥ degw(Q) = r∗2,
contradicting Theorem 3.6. �

Theorem 3.11. Let p,q ∈ Pw. If r1 ≥ inf(p,q) then either r1 ≥ p or r1 ≥ q.

If r∗2 ≥ inf(p,q) then either r∗2 ≥ p or r∗2 ≥ q.

Proof. The first statement is [33, Theorem 8.12, part 3]. For the second state-
ment, let P, Q ⊆ 2ω be nonempty Π0

1 subsets of 2ω with p = degw(P ) and

q = degw(Q). Trivially inf(p,q) = degw(P ∪ Q). Moreover P̂ ∪ Q = P̂ ∪ Q̂,

hence P̂ ∪ Q is of positive measure if and only if at least one of P̂ and Q̂ is of
positive measure. By Corollary 3.9 this means that r∗2 ≥ inf(p,q) if and only if
r∗2 ≥ at least one of p and q. �

Definition 3.12. As in [33, Section 7], say that s ∈ Pw is separating if there is
a pair of disjoint, recursively enumerable sets A, B ⊆ ω such that s = degw(S)
where S = {f ∈ 2ω | f separates A, B}. In particular, 1 is separating.

Theorem 3.13. If s is separating and s ≤ sup(q, rn), then s ≤ q.

Proof. This is a special case of [33, Theorem 7.5]. �

Corollary 3.14. For all weak degrees q < 1, we have sup(q, r∗2) < 1.

Proof. Assume q < 1. By the definition of r∗2, we have r∗2 ≤ 1, hence
sup(q, r∗2) ≤ 1. Since 1 is separating and q 6≥ 1, Theorem 3.13 tells us that
sup(q, r2) 6≥ 1, hence sup(q, r∗2) 6≥ 1. �

Corollary 3.15. Within the lattice Pw, the degrees r1 and r∗2 are meet-irreducible

and do not join to 1.

Proof. This follows from Theorem 3.11 and Corollary 3.14. �

4 Some additional, specific degrees in Pw

In this section we identify some additional specific, natural, intermediate degrees
in Pw related to diagonal nonrecursiveness.

Definition 4.1. A function g : ω → ω is said to be diagonally nonrecursive if
g(n) 6= {n}(n) for all n ∈ ω. We put d = degw(DNR) where

DNR = {g ∈ ωω | g is diagonally nonrecursive}.
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The Turing degrees of diagonally nonrecursive functions have been studied by
Jockusch [12]. In particular, a Turing degree contains a diagonally nonrecursive
function if and only if it contains a fixed point free function, if and only if
it contains an effectively immune set, if and only if it contains an effectively
biimmune set. Thus we see that the weak degree d is recursion-theoretically
natural.

Theorem 4.2. We have d ∈ Pw.

Proof. Put DNR2 = {g ∈ 2ω | g is diagonally nonrecursive}. Obviously DNR2

is a nonempty Π0
1 subset of 2ω. By Lemma 3.3 we can find a nonempty Π0

1 set
Q ⊆ 2ω such that Q ≡w DNR ∪ DNR2. But DNR ⊇ DNR2, hence Q ≡w DNR.
We now see that d = degw(DNR) = degw(Q) ∈ Pw. �

Theorem 4.3. In Pw we have

0 < d < r1 < r∗2 < 1.

Proof. By Theorem 3.6 we have 0 < r1 < r∗2 < 1. Clearly DNR has no recursive
member, i.e., d > 0. By Giusto/Simpson [11, Lemma 6.18], for all f ∈ R1 there
exists g ≤T f such that g ∈ DNR. Thus we have 0 < d ≤ r1. It remains to
show that d 6≥ r1. By Kumabe [18] there is a diagonally nonrecursive function
which is of minimal Turing degree. But if f ∈ 2ω is 1-random, then f is not
of minimal Turing degree, because the functions g and h defined by f = g ⊕ h
are Turing incomparable (see for instance van Lambalgen [37]). This proves
d 6≥ r1. An alternative reference for the conclusion d 6≥ r1 is Ambos-Spies et al
[1, Theorems 1.4 and 2.1]. �

Definition 4.4. Let DNRREC be the set of recursively bounded DNR functions.
Thus we have

DNRREC = {g ∈ DNR | (∃ recursive h)∀n (g(n) < h(n))}.

Put dREC = degw(DNRREC). For an extended discussion of the recursion-
theoretic naturalness of dREC and related weak degrees, see [33, Section 10].

Theorem 4.5. We have dREC ∈ Pw and

0 < d < dREC < r1 < r∗2 < 1.

Proof. A Tarski/Kuratowski computation shows that DNRREC is Σ0
3. Let DNR2

be as in the proof of Theorem 4.2. By Lemma 3.3 we can find a nonempty Π0
1 set

QREC ⊆ 2ω such that QREC ≡w DNRREC ∪ DNR2 = DNRREC. Thus dREC =
degw(DNRREC) = degw(QREC) ∈ Pw. By Ambos-Spies et al [1, Theorems 1.4,
1.8, 1.9] we have d < dREC < r1, and the rest is from Theorem 4.3. �

Definition 4.6. For all f ∈ ωω put

DNRf = {g ∈ ωω | ∀n (g(n) 6= {n}f(n))},
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the set of functions which are diagonally nonrecursive relative to f . Put DNR1 =
DNR and, for each n ≥ 1,

DNRn+1 = {f ⊕ g | f ∈ DNRn and g ∈ DNRf}.

Clearly DNRn is a Π0
1 subset of ωω. Put dn = degw(DNRn).

Remark 4.7. Trivially d1 = d and dn ≤ dn+1 for all n ≥ 1. The proofs
of Theorems 4.2 and 4.3 show that dn ∈ Pw and dn < r1 for all n ≥ 1. By
Kumabe [18] we have d1 < d2, and we conjecture that dn < dn+1 for all n.
Thus in Pw we apparently have

0 < d = d1 < d2 < · · · < dn < dn+1 < · · · < r1 < r∗2 < 1.

Note also that the sequence d1 < · · · < dn < · · · can be extended into the
transfinite.

Remark 4.8. We conjecture that, for all n ≥ 2, dn is incomparable with dREC.
Note also that these dn’s are not to be confused with the dα’s of Simpson [33,
Example 10.14]. Indeed, we conjecture that, for all n ≥ 2 and α ≥ 0, dn is
incomparable with dα.

Remark 4.9. We do not know of any specific, natural degrees in Pw outside
the interval from d to r∗2, except 0 and 1. On the other hand, by Theorem 4.5
and Remarks 4.7 and 4.8, the interval from d to r∗2 within Pw appears to be
remarkably rich in specific, natural degrees.

5 Embedding RT into Pw

In this section we exhibit a specific, natural embedding of the countable upper
semilattice RT into the countable distributive lattice Pw.

Definition 5.1. A Π0
2 singleton is a point f ∈ ωω such that the singleton set

{f} is Π0
2.

Lemma 5.2. Given a Π0
2 singleton f , we have degw({f} ∪ PA) ∈ Pw. Thus

φ : degT (f) 7→ degw({f} ∪ PA) (1)

is an upper semilattice homomorphism of the Turing degrees of Π0
2 singletons

into Pw.

Proof. The first statement is the special case of Lemma 3.3 with S = {f} and
P = PA. For the second statement, note that for any f, g ∈ ωω and P ⊆ ωω we
have {f⊕g}∪P ≡w ({f}∪P )×({g}∪P ), and f ≤T g implies {f}∪P ≤w {g}∪P .
In particular this holds when f and g are Π0

2 singletons and P = PA. �

Lemma 5.3. We have an upper semilattice homomorphism φ of the Turing

degrees ≤ 0′ into Pw, given by (1). Moreover, φ(0) = 0 and φ(0′) = 1.
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Proof. The first statement is a special case of Lemma 5.2, because degT (f) ≤ 0′

if and only if f is ∆0
2 (see Kleene [17, Theorem XI, page 293]), which implies that

f is a Π0
2 singleton. It is easy to see that φ(0) = 0. To show that φ(0′) = 1, by

Kleene [17, Theorem 38*, pages 401–402] let f ∈ PA be ∆0
2. Then degT (f) ≤ 0′

and φ(degT (f)) = degw({f} ∪ PA) = degw(PA) = 1, hence φ(0′) = 1. �

Lemma 5.4. If a,b are Turing degrees ≤ 0′, and if b ∈ RT , then a ≤ b if and

only if φ(a) ≤ φ(b). In particular, the restriction of φ to RT is one-to-one.

Proof. Let f, g ∈ ωω be such that degT (f) = a and degT (g) = b. We must
show that f ≤T g if and only if {f} ∪ PA ≤w {g} ∪ PA. The “only if” part
is trivial. For the “if” part, suppose {f} ∪ PA ≤w {g} ∪ PA. In particular,
{f} ∪ PA ≤w {g}. If f 6≤T g, then PA ≤w {g}, hence DNR ≤w {g}, hence
degT (g) = 0′ by the Arslanov Completeness Criterion [12], hence f ≤T g, a
contradiction. Thus f ≤T g. This proves our lemma. �

We now obtain our main result.

Theorem 5.5. We have an embedding φ : RT → Pw given by (1). The embed-

ding φ is one-to-one, preserves the partial ordering relation and the least upper

bound operation from RT , carries 0 to 0, and carries 0′ to 1.

Proof. This result is obtained by combining Lemmas 5.3 and 5.4. �

Theorem 5.6. Let φ : RT → Pw be the embedding given by (1). Let a ∈
RT be a recursively enumerable Turing degree other than 0 and 0′. Then the

weak degree φ(a) ∈ Pw is incomparable with each of the specific weak degrees

d, r1, r
∗
2 ∈ Pw of Theorem 4.3.

Proof. By the Arslanov Completeness Criterion [12] we have φ(a) 6≥ d. It
remains to show that φ(a) 6≤ r∗2. This is obvious, because for any nonrecursive
A we have µ({f ∈ 2ω | A ≤T f}) = 0 [27, §10, Theorem 1]. �

We finish by noting some generalizations of Theorem 5.5.

Remark 5.7. A set A ⊆ ω is said to be n-REA if A = A1 ⊕ · · · ⊕ An where
A1 is recursively enumerable and, for each i = 1, . . . , n − 1, Ai+1 is recursively
enumerable relative to Ai and ≥T Ai. A Turing degree is said to be n-REA if
it contains an n-REA set. Note that any n-REA set is a Π0

2 singleton. Hence
by Lemma 5.2 we have φ(a) ∈ Pw for all n-REA Turing degrees a. Jockusch
et al [13, Theorem 5.1] have generalized the Arslanov Completeness Criterion
to n-REA Turing degrees. In our terms, their result says that if a is an n-REA
Turing degree for some n ∈ ω, then φ(a) ≥ d if and only if a ≥ 0′, in which case
φ(a) = 1. Therefore, letting R∗

T (≤ 0′) denote the set of Turing degrees which
are ≤ 0′ and n-REA for some n ∈ ω, we have as in Theorem 5.5 an embedding

φ : R∗
T (≤ 0′) → Pw

which is one-to-one, preserves the partial ordering relation and the least upper
bound operation from R∗

T (≤ 0′), and carries 0 to 0 and 0′ to 1. Moreover, for
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all a ∈ R∗
T (≤ 0′) other than 0 and 0′, we have as in Theorem 5.6 that φ(a) is

incomparable with d, r1, r
∗
2.

Remark 5.8. More generally, given q ∈ Pw such that q ≥ d, we have an
embedding

φq : R∗
T (≤ 0′) → Pw(≤ q)

defined by φq(a) = inf(φ(a),q). The embedding φq is one-to-one, preserves
the partial ordering relation and least upper bound operation from R∗

T (≤ 0′),
carries 0 to 0, and carries 0′ to q. If we set q = 1, we recover the embedding
φ : R∗

T (≤ 0′) → Pw of Remark 5.7. If we set q = 1 and restrict to RT , we
recover the embedding φ : RT → Pw of Theorem 5.5.
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