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Abstract

Let P, and Pas be the countable distributive lattices of Muchnik and
Medvedev degrees of non-empty IIY subsets of 2, under Muchnik and
Medvedev reducibility, respectively. We show that all countable distribu-
tive lattices are lattice-embeddable below any non-zero element of P,.
We show that many countable distributive lattices are lattice-embeddable
below any non-zero element of Pyys.

1 Introduction

In this paper w denotes the set of natural numbers, w* denotes the set of total
functions from w to w, and 2* denotes the set of total functions from w to {0, 1}.

The concepts of Medvedev reducibility and Muchnik reducibility have been
defined and investigated in [11], [22], [12] and [13]. A set P C w* is Medvedev
reducible to Q C w®, written P <j; @, if there exists some recursive functional,
® : Q — P. That is, there exists e € w such that {e}/ € P for all f € Q.
Muchnik reducibility is a non-uniform version of Medvedev reducibility. P is
said to be Muchnik reducible to @, written P <,, @, if for each f € @ there is
a recursive functional ® such that ®(f) € P.
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In this paper we will restrict these reducibilities to IT{ classes, i.e., I1{ subsets
of 2¢. P is said to be a H(l) class if there is some recursive relation R C w x 2%
such that
feP—VnR(n,f).

19 classes have an alternative characterisation which is both instructive and
useful: P is a 1Y class if and only if P is the set of infinite paths through some
recursive binary tree. For technical reasons we restrict attention to non-empty
I19 classes, i.e., P # 0.

Two non-empty I19 classes, P and @, are Medvedev (Muchnik) equivalent,
P=yQ(P=,Q),fP<pQand Q<p P (P<,QandQ <, P). The set
of equivalence classes (Medvedev (Muchnik) degrees) with the induced partial
order forms a countable distributive lattice with a top and bottom element.
These lattices will be denoted Pps and P, respectively. The top element of
Par (Py) is the Medvedev (Muchnik) degree of the set of completions of Peano
Arithmetic, and the bottom element, i.e., zero, is the Medvedev (Muchnik)
degree of any II{ set containing a recursive member. The least upper bound
operation in Py; and P, is given by

PvQ = {foglfePgel}

where (f @ ¢g)(2n) = f(n) and (f @ g)(2n + 1) = g(n) for all n. The greatest
lower bound operation in Py; and P, is given by

PAQ = {(0)"ffePru{(1)7glge @}

See [16]. The study of Pas and P, was initiated in Simpson [17]. Introductions
to and some basic results about Py; and P, can be found in [2], [16], [3], [19],
[4] and [20].

In this paper we prove the existence of certain sublattices of the lattices P,
and Pps. Our main results are, in essence, as follows:

1. The free countable Boolean Algebra, F B(w), is embeddable into P,,.
2. The free countable distributive lattice, F D(w), is embeddable into Pay.

3. If £1 (L2) denotes the lattice of finite (co-finite) subsets of w, then £q x Lo
is embeddable into Pjy.

Here, and in the rest of the paper, an “embedding” is a lattice embedding.

Result 1 is as general as possible, as every countable distributive lattice is
embeddable into F' B(w). We conjecture that F'B(w) is embeddable into Py, but
we have been unable to prove this. Result 2 implies that every finite distributive
lattice can be embedded into Py, as every such lattice can be embedded into
FD(w). Result 3 is not implied by result 2, as neither £4 nor £ is embeddable
into FD(w). Below we shall give references for the relevant lattice-theoretic
facts.

In addition, we show that results 1 through 3 are relativised in the sense
that the embeddings can be made below any non-zero element of P,, and Py,
respectively.



This paper is in four sections. Section 2 consists of two priority arguments.
These construct IT{ subsets of 2% that have certain useful independence prop-
erties. Both build on the constructions in [9], and use a Sacks preservation
argument (see [21], Section VIL.3). The second argument is only sketched. If,
at first, the reader wishes only to skim Section 2 and accept Theorems 2.1 and
2.7, he or she should still find Sections 3 and 4 completely accessible. Results 1
through 3 above are proved in Sections 3 and 4.

Notation and Preliminaries

We will first establish some standard notation. A binary string is a finite se-
quence of 0’s and 1’s. The set of binary strings is denoted 2<%. We use o, T, p
and A to denote binary strings. The length of o will be written |o|. The con-
catenation of o and 7 is denoted 0~ 7. The notation {e}J(n) = m means that
the Turing machine with Goédel number e using oracle information o started
with input n halts in < s steps with output m. {e}? denotes the longest binary
string, 7, such that |7| < s and {e}?(n) = 7(n) for all n < |7|. The empty string
is denoted by (), and {e}? is short for {e}{ . Thus for f € 2 and m,n € w we
have {e}/(m) = n if and only if there exists o C f such that {e}?(m) = n. All
of this is standard recursion-theoretic notation from Rogers [13] and Soare [21].
The restriction of o to {0,1,2,...,n — 1} is denoted U‘n.

A binary tree is a subset of 2<% that is closed under taking initial segments.
If T is a binary tree, then [T] C 2¢ denotes the set of infinite paths through T,
ie, [T|={fe2v: an|n € T}. Tt is well known that P C 2¢ is a IIY class if
and only if P = [T] for some recursive binary tree. Furthermore, if P C 2% is
a 119 class, then P = [Ext(P)], where Ext(P) C 2<% is defined to be the set of
extendible nodes of P, i.e.,

Ext(P)={o:3f € PoC f}.

Note that Ext(P) is a binary tree, but is not necessarily recursive. The advan-
tage of Ext(P) over T is that Ext(P) has no end nodes.

The following notation is introduced specifically for our purposes. Let S
be the class of finite sequences of finite strings. The uppercase Greek letters,
3, I and A will be used to denote elements of S. For ease of notation, a
sequence of strings will sometimes be identified with its range, so that o € X
means ¢ € rng(X); ¥ C I' means ¥ is a subsequence of I', and o € ¥ \ T that
o € rng(X) \ rng(T"). We will reserve the symbol £ to mean the sequence of
all binary strings of length m in lexicographical order.

IfY = (o)), and ' = (y;),, we will say ¥ extendsT'if m =n and o; D ;
for all ¢ < n. X properly extends T if, in addition, o 2 % for at least one
kE <n.1If f1, fa,... fn are members of 2% then (f1, fa, ... fn) extends ¥ is defined
similarly. We sometimes identify the finite sequence (f;)?_; = (fi,..., fn) with
its range.

If ¥ = (o)1 CE™ and f € 2¥, we will make the following definitions:

e f~ €2¥issuch that, foralln € w, f~(n) = f(n+1).



e DX = @;;1 0; € 2<% is such that

(Dz) k) =aili),

forallk=nj+:—1,1<i<n,0<j<m—1. That is,
n
Pr=Poi=(01(0),...,00(0),...,01(m = 1),...,00(m — 1)).
i=1

o If (f;)7, is a sequence of members of 2. Then @B, fi € 2 is defined
to be such that, for all j,

(@ fi) (k) = f(4),

where, as before, k =nj +i — 1.

e For an arbitrary I' = (y;)"_; € S (with the 7; of possibly different lengths),

we define . .
@F = @%‘ = @%“l,
i=1 i=1

where | = min{|v;| : 1 <i < n}.

Although @ is not associative, it does have the useful property that if {f1, fa, ... fn)
extends ¥ C ™, then @, f; D @ . If no confusion can result, we will write

@ fi for B, fi-

2 Two Constructions

A TIY class P is said to be special if it is non-empty and contains no recursive
member.

Theorem 2.1. For any special 11§ class, P, there is a non-empty 119 set Q C 2%,
with the properties, for all sequences, {fi)?, C Q,

L VfeQ~{(fi)yiey, [ £7 D fi,

Proof. The proof will closely follow the proof of Theorem 4.7 in [9]. A recursive
sequence, (1s)sew, of recursive functions from 2<% to 2<% will be constructed
with the properties that, for all ¢ € 2<% and s € w,

1. 9s(07(0)) and vs(c7 (1)) are incompatible extensions of (o),

2. range(vs+1) C range(vs),



3. Y(0) = limy ¢ (o) exists.
Each v, determines a recursive tree, namely,
T, = {7 : for some o, ¥s(c) 2D 7}.

The required @ will then be (M, [Ts]. @ will be non-empty as ([T])sc. is a
nested sequence of nonempty closed subsets of 2¢. It will be a II{ set because,

f€Q=Vsf €[Ts] =Vs¥nio||o] =n Ais(o) C f],

and Jo[lo| = n As(o) C f] is a recursive predicate.
Each v, will induce a mapping, ¥, : S — S, defined by

Us(T) = (¥s(vi))iza

where I' = (;)7_,. When it is proved that (o) exists for all o, it will be clear
that (%) = lim, U4(X) exists for all ¥ € S.

We will define (1)5)secw so that, for every m € w, ' C £™ and e < m, Q
satisfies the requirements:

P, = for all (f;)? ; extending ¥(T'), {e}GB fi ¢ P,

R, = for all (f;)i; extending ¥(I'), and for all ¢ € ¥™ \ T, {e}®fi 5
¥(0).

The P requirements guarantees that Q has property II. of the theorem, and the
R requirements guarantee property I. The set of requirements can be ordered
lexicographically, first on m, then on e and finally with the conventions that,
for all m, and I', TV € ¥™,

L. P, precedes Rf; ., and,

ii. P, precedes Pi and Ry, precedes Ry . whenever I' precedes I' in the
lexicographical ordering on ™.

Priority is given to the requirements in reverse lexicographical order so that
reqgirement Sy has higher priority than requirement Sy if it precedes it in the
ordering.
Let Tp be some fixed recursive binary tree such that P = [Tp]. Py, is said
to be satisfied at stage s if
{e}éB T, (I) ¢ Tp.

Rf", is said to be satisfied at stage s if, for all o € ¥ \ T,

{e}® 71 2 4y(0).

We now define v as follows:

Stage s = 0: Yg(0) = o for all o € 2<%,

Stage s+1: We say Pp", requires attention at stage s + 1 if P, is not sat-
isfied at stage s + 1 and there is a A = (Ai)7—, properly extending T such that
max{|\;| : A\; € A} <s+1 and,



i. {e}®YWN) e Tp,
ii. {6}69 Ys(A) 5 {G}EB\PS(F)
We say R, requires altention at stage s+1if R, is not satisfied at stage s+1

and there is a A = (\;)_,, properly extending I', such that max{|\;| : A\; €
A} < s+1 and,

{e}® YN 5y (67 (x)), for some z € {0,1} and o € X" \ T

If Py, has priority greater than the priority of Pg. , and is the highest priority
requlrement requiring attention at stage s+ 1, let A witness this fact and define,

werl( ) {wS(

V') ifv =~ for somey; €T
¥s(v) if v 2 ~; for any ~; € T

If Rﬁ ¢ has priority greater than the priority of I%i. ; and is the highest priority
requirement requiring attention at stage s + 1, let A, ¢ and x witness this and
define,

Ps(A; V) if v =~ V' for some v; € T,
Vs (v) = QUs(0™(1 —2)") ifv=0"1,
¥s(v) ifv 271 forany r €T U{o} .

If no requirement of priority greater than the priority of P%. ; requires attention
at stage s + 1, then let 1541 = 5.
The following lemmas establish the theorem.

Lemma 2.2. For any requirement, S, there is a stage, sg, such that S does not
require attention at any stage t > sg.

Proof. Assume not and let S be the highest priority requirement requiring at-
tention infinitely often. If S = P{",, then let ¢ be a stage such that Py, has
priority greater than PEt , and such that all higher priority requlrements are
satisfied for all stages > t. Let $1, 82, S3,... be an infinite increasing sequence
of stages greater than t at which S requires attention. At each of these stages S
will be the highest priority requirement requiring attention and so s1, 2, S3, ...
will generate a recursive sequence,

{e}@%l(F) c {e}ea%m C {e}GB‘I'sg(F) C...,
of elements of Tp. But then |J;{e}® ¥+ is a recursive infinite path through
Tp, contradicting the original assumption that P is special.

Next suppose S = Rf",. If ¢ is such that the priority of Rf", is greater than
P%,,’t, all higher priority requirements are permanently satisfied at stage ¢, and
S requires attention at stage t, then S will be satisfied at stage ¢t + 1. Suppose,
at some stage u > t, a lower priority requirement, T', requires attention. If
T = P]{?;, orT = RKf/e, with m’ > m, and any A and €, then ¥, 41(T") = ¥, (T")



and S will remain satisfied at stage v+ 1. If T' = R}, or T = P}, then
W, 1(T) D W, (T) and so S will remain satisfied at stage u + 1. We then argue
by induction that S will remain satisfied, and hence not require attention, at
all stages u > ¢, contradicting the assumption. O

Lemma 2.3. (o) = lim, ¢5(0) exists for all o.

Proof. Let o € 2<% be arbitrary. By Lemma 2.2, there exists a stage, t, such
that for all m < [o|, and all ' C ¥™, the requirements Rf’, and Py, do not
require attention after stage t. Then ¢, (o) = 94, (0) for all t1,t2 > t. O

Lemma 2.4. If m € w, e < m and T C X™ are such that {e}PY") € Tp,
then there does not exist a A properly extending T' such that {}®Y) ¢ Tp

Proof. Suppose such a A existed for m,e and I'. Take ¢ so large that U, (") =
U(T) and ¥4 (A) = ¥(A). Then,

{e}EB We(A) — {e}@\p(A) ) {e}EB w(T) — {6}@ vl

and so, at some stage u > ¢, P, would be the highest priority requirement
requiring attention, implying,

{G}EB%H(F) ) {e}EB Vo () — {G}EB%(F) - {6}69 vy

contradicting the fact that ¥,41(I') = ¥(T). O
Lemma 2.5. If (fi)?; € Q then, for all f € P, f L1  fi.

Proof. We can assume without losing generality that (f;)? ; is in lexicographic
order. Suppose the lemma is false and let {e}® /i € P. Let m € w and ' C ¥
be such that,

i. e<m,
ii. (fi), extends ¥(T)

Such a T can be found because (f;)?, is in lexicographic order. But {e}®¥™) ¢
Tp, so there must be a A D T such that {e}PYN) € Tp and {}PYW) O
{e}®¥T) | contradicting Lemma 2.4. O

Lemma 2.6. For all (f;)1 CQ and all f € Q ~ {fi)l,,

f£r P #

Proof. Suppose not and let {e}®/i = f € Q. Let m € w, T C ¥™ and
o € X™ N\ T be such that,

i. e<m,

ii. (fi)", extends U(T),



ili. f D (o), (again we are assuming (f;)_; is in lexicographic order).

Let ¢t be such that ¥, (T') = (") and ¥, (07 (z)) = (o0 (z)) for all u > t and
x € {0,1}. By the supposition, there must be a stage, s > ¢ and a A extending
I' such that

{e}¥s@) D 4p (67 (z)) for some z € {0,1}.

So there will be a stage, v > s, at which Ry, requires attention and is, in fact,
the highest priority requirement requiring attention. But then,

Wyp1 (D) # Wy (1) = ¥(T),
contradicting the fact that v > wu. O

To finish the proof of Theorem 2.1, note that Lemmas 2.5 and 2.6 prove that
() has properties I. and II. as required. O

Theorem 2.7. Given any special 119 class, P, there is an infinite recursive
sequence of IV sets, (Q; : i € w), with the properties, for all i,j € w such that

i # s
I VfeQivVgeQ; f£ry,
1L VfEing€Pg$Tf.

Proof (sketch). A recursive sequence of recursive functions, ¢? : 2<% — 2<¢
is constructed, the range of each function is the tree T; and then @Q; will be
[T;]. Each ¢ is constructed as the limit of a recursive sequence of recursive
functions, (1) and will be defined so that, for every m € w, ' satisfies the
requirements:

for all e < m; j < m; o € ¥™ and for all f extending v(o),
{e}/ ¢ P,
R™= j#i={e}) 2¢(0).

These requirements are then further specified by indexing them according to
i,7,0 and e (bounded as above), and an exhaustive priority ordering is given to
them. The same method as in Theorem 2 is then used to ensure all are satis-
fied. If at any stage of construction an R™ requirement is the highest priority
requirement requiring attention then the requirement is satisfied (permanently)
at the next stage.

If at some stage of the construction a P requirement is the highest priority
requirement requiring attention, then the function being constructed is adapted
to keep the requirement unsatisfied (as per Sacks’ preservation strategy, see [21]
Section VII.3). A (nonconstructive) argument is then made to show that this
strategy will eventually fail (because P has no recursive members) and P, will
eventually be satisfied. These are essentially the arguments of Lemmas 2.5 and
2.6. O

Pm



3 FD(w)— Pu

The following is result 2 of the Introduction. Recall that FD(w) is the free
distributive lattice on w generators.

Theorem 3.1. Given any special TIY class, P, FD(w) can be embedded into
Prr below P.

Proof. Let P be any special I1Y class and suppose @ and ) are as in Theorem
2.1. Let {o; : i € w} be a set of binary strings defined by:

i |0i| :Z—|—1,

1 ifn=i
ii. o;(n) :{ st

0 otherwise.

Then {o; : i € w} is a pairwise incomparable set of strings and hence so is
{¥(0) : i € w}. Denote by @; the set of members of @ extending ¥ (o;), and
let P, = PAQ;. The set {P; : i € w} then generates a sublattice of Py strictly
below P. To see this note that if X is a non-empty finite subset of w,

\/ Pi <M Pa

ieX
because \/;cx P; <y P, and if \/;cx P; >p P then PAV, x Q; >y P and
some member of \/, .y @; would compute an member of P, contradicting prop-
erty II. of Theorem 2.1. This is enough to show that all elements of the generated
sublattice are strictly below P.

We shall show that the lattice generated by the P;’s is free. By a standard
lattice-theoretic result — Theorem I1.2.3 in [8] — it suffices to prove the following
claim: For all finite sets X, Y C w, if \;cx Pi <ar Viey P then X NY # 0. To
prove the claim, note that

/\ieX P <um VieY P,
= PANex@i <m PAViey Qi
= PANex @i <u Viey Qi

Fix @;cy fj € Viey Qi- Then there is g <1 @,y fi such that either g € P or
g € Q; for some ¢ € X. But g ¢ P by property II. of Theorem 2.1. So let i € X
be such that g € Q;. By property 1. of Theorem 2.1 we have that i € Y. Thus
X NY # 0 as was to be shown. O

Corollary 3.2. FEwvery finite distributive lattice can be embedded into Pyy.

Proof. This follows immediately from Theorem 3.1 and the fact that every finite
distributive lattice is embeddable in FD(w). This seems to have first been
observed by Simpson [18]. The proof is presented in [3], along with a different
proof of this corollary. O



4 FB(w)<— Py,

In the section we give the second principal embedding theorem — that the free
Boolean algebra on w generators, F'B(w), is embeddable into P,,, the lattice
of Muchnik degrees. This is result 1 of the Introduction. We represent F'B(w)
as an algebra of recursive sets and then give an explicit embedding into P,,.
As before, the argument will use I19 sets constucted using a priority argument,
this time on the II9 sets of Theorem 2.7. Then we show that all countable
distributive lattices embed into F'B(w). Finally we establish result 3 of the
Introduction.

We require the following definitions. Let (P; : ¢ € w) be a recursive sequence
of TI{ classes. This means that each P; is a II9 class and furthermore {(z,i) : x €
P;} is TIY subset of 2% x w. Let § # A C w be recursive. Let (+,+) t w X w — w
be a recursive bijection.

Definition 4.1. If x € 2%, we define (:c)l €2¥ by

(z),(n) = =((i,n)).

The recursive join of (P; : i € A), denoted \/;c 4 P;, is given by

T € \/Pi<:>(x)i€Piforalli€A.
i€A

Clearly \/;c 4 Pi is a II{ class, as

ze\/ P=vi(ic A= (2),€P).
ieA

Also, note that there is no restriction on (x)z ifi¢ A

We will now define a recursive meet. Let A and (P; : i € w) be as above and,
for each i € w, let T; be a recursive tree such that [T;] = P;. In addition, fix a
nonempty I1{ class P which is Medvedev complete, i.e., @ <ps P for all nonempty
119 classes Q. (For example, we may take P to be the set of completions of Peano
arithmetic.) Fix a recursive tree T such that [T] = P. Let (0; : j € w) be the
sequence, in lexicographical order, of all binary strings o such that o € T but
07(0),07(1) ¢ T. The sequence will be infinite as [T'] has no recursive member.
Define

T*=TU{o;7:i€ A, T €T;}.

Definition 4.2. The recursive meet of (P; : i € A), denoted N\, 4 P;, is [T"],
the set of infinite paths through T*.

Note that if A is finite, the recursive meet and join are Medvedev equivalent
to the standard, lattice-theoretic meet and join respectively, allowing us some
ambiguity of notation. However, it is not to be assumed that these constructions
necessarily give the greatest lower or least upper bounds when A is infinite.

10



Now let (Q; : i € w) be as in Theorem 2.7 (with P arbitrary). Define
Qi =)\ Q)
J#i
and, for any recursive, non-empty set, A, let

Q) =\ Q.

i€EA

Lemma 4.3. If A,B # () and A # B, then @(A) Zw CA)(B) (and therefore

~ ~

Q(A) #m Q(B)).

Proof. Suppose that A and B are as above and that, without losing generality,
Jj € B~ A. Choose any z € (); and define Z by,

(i)i = 0’;.23 for all 7 € w.

Then z € @(A) as o, w € @z for all ¢ # j and, in particular, for all i € A. Now
let y € @; be arbitrary. There are two cases.
Case 1. y = o] z for some i # j and z € @);. Then,

y =1z ¥%4r T =7 1T,

(z £r x as z € Q; and x € @, with 7 # j).

Case 2. y € [T], where [T] is the Medvedev complete I1{ class used in the
construction of the recursive meet. Then for any i € w, there is a z € @; such
that y >7 z. We choose some i # j, and then fix z. If £ >7 y, we would have,

QjBiL‘ETIEZTyZTZEQi, with i # j,

contrary to construction of (Q; : i € w).

Therefore, in both cases we have y £r Z. As y was arbitrary, Q; €., Q(A).
But Q; <. Q(B) via the map z — (x)j so it must be that Q(B) £, Q(A) and
therefore that @(B) Zw @(A), as required. O

Lemma 4.4. If A and B are non-empty and recursive, then

~

Q(AUB) =y Q(A) vV Q(B).

Proof.
QAUB) = {z:Vie AUB, (x)ie Qi
= {Aa::Vi € A, (z), € Qi}n{xz:Vie B, (x)ieéi},
= QA)NQ(B).

11



So, © — x @z, is a map from @(A U B) to @(A) \Y @(B), and therefore,
Q(AUB) >p Q(A) vV Q(B) . Conversely, let z @y € Q(A) V Q(B). Define,

z € 2¥ by,
z), ifieA
(Z)i:{E )Z e
y)z ifi € w~\ A

Then z <p x @y and for all i € AU B, (z)z € @i, S0 z € @(AU B). Therefore,
@(A UB) <um @(A) v @(B) as required. O

Lemma 4.5. If A and B are recursive and AN B # 0, then
Q(ANB) =, Q(A) AQ(B).

Proof. First, Q(AN B) <, Q(A) AQ(B) (in fact, <u). If z € Q(A) A Q(B),
then define z € @(A N B) by,

(z)i = (m_)i for all 7 € w.

If (x)Z(O) = 0, then, for all i € A, (z)z € Qi, and, a fortiori, for all i €
ANB, (z)l €Qi. Soze @(ADB). There is a similar argument if (m)Z(O) =1.

Next, CA)(A N B) >y @(A) A @(B) Modulo the following two claims, the
argument will be:

~

Q(A N B) \/ieAmB in = .
w VieaVjep @i AQ; (in fact, >p; this is Claim 1),
w \Zie,q Qz‘A/\ VjeB Q; (this is Claim 2),

Q(A) A Q(B).

Proof of Claim 1. Let z € \/;c 5 Q. and take any k € ANB. So (J?)k € Qr.
We define (recursively in ) z € ;4 Vep Qi A @j by defining ((z)z)] for all
1,J € w, such that,

VIV,

((z)i)j € @i A @j foralli € A and j € B.
To this end, let,

0)~(x), ifi=j,
((Z)z)J = (O)”(x)k if i # 7 and (x)k 2 oi,
(x)k if i # j and (:c)kgai.

7

(0)"(:5)1. €Q; A@j. If i # j and (x)k 2 o;, then (x)k € Qi, and ((z)z)j =

<O>“(m)k € @i /\@j. If i # 7 and (x)k D o;, then (m)k € @j and ((z)) =

e

So, suppose that i € A and j € B. If i = j, then i € AN B and ((z))j =

12



n- (x)k € @i A Qj. These three cases are exhaustive and so Claim 1 is estab-
lished. Note that the above is a uniform procedure for computing z from an
arbitrary x, and so the stronger, Medvedev reducibility has been shown.

Proof of Claim 2. Let = € VzeA Vjen Qi A Qj We will construct z <r x

such that z € \/; 4 Qi A Vien Q]. There are two cases.
Casel. € ANBVje BN A ((x)z)](O) =1.
Fix such an ¢, set z2(0) = 1 and let,

(7). = ((x),), ifk¢ANB,

" l((=),), ifkeAnB.
Then, if £k € B\ A, (z‘)k = ((x)z); € @k and if £k € BN A, (z_)k =
((z),), € Qr. So, for all k € B, (27), € Qr, giving 2~ € Vjen Q; and

2€VieaQiNVep Qs
Case 2. Vi€ ANB3je BN A ((2),),(0)=0.
Let z(0) = 0 and define,

) the least such j ifi € A\ B,
fi) = .
0 otherwise.

Then f <7 z, and ((x)i);(i) € Q; for all i € A~ B. We can then define,

o J@)) s ifkEANB,
(=)= {((m)k)z( " tkedns,

As above we have (z_)k € @k, ifke ANB and if k € A~ B then (z‘)k =
((m)k);(k) €Qk. Soz™ € Ve, Qiyand z € ;4 Qi/\VjeB Qj, asrequired. O

We would like to improve Lemma 4.5 by showing that @(AOB) =M @(A) A

@(B ), but the division into cases in the proof of Claim 2 is non-effective and we
have only been able to show the weaker result. However, we can improve the
result under the stricter conditions of the following lemma.

Lemma 4.6. If A and B are recursive and AN B # () and their symmetric
difference
AAB = (AN B)U(B\ A)

18 finite, then R R R
QAN B) =m Q(A) A Q(B).

Proof. The proof is identical with the proof of 4.5 noting that, in the proof of
Claim 2, the division into two cases is now effective as both A\ B and B \ A
are finite. 0

We are now in a position to prove the theorem in the title of the section.

13



Theorem 4.7. The free Boolean algebra on countably many generators, F B(w),
1s lattice-embeddable into Py,.

Proof. Consider the mapping A +— @(A) Lemmas 4.3, 4.4 and 4.5 prove that
this is an embedding of the lattice of non-empty, recursive subsets of w under
N and U into P,. So to prove the theorem it is sufficient to show that F'B(w)
can be represented by a collection of non-empty, recursive subsets of w.

Let p; be the j*® prime number and let B; = {np; : n € w}. Define
E = (w~ B;)U{0}. The set {B; : j € w} generates a distributive lattice under
operations of intersection and union. Further, this lattice can be extended to
a Boolean algebra with 1 represented by w, 0 represented by {0} and B; the
Boolean complement of B;. It would, perhaps, seem more natural to have () as
the minimum element and w \ B; as the Boolean complement. However, the
text definition ensures that each element of the Boolean algebra is non-empty.
This Boolean algebra is in fact free and therefore a representation of F'B(w). To
show this it is sufficient to show (Exercise I1.3.43 [8]) that for all finite X, Y C w,

ﬂBig UBj:>XﬁY7é@.
ieX jeY

But this is easily seen as [[;cx pi € [);cx Bi and so, if the antecedent holds,
[I;cx pi € Bj for some j € Y. By primality, this means p; = p; for some i € X,
giving X NY # 0. O

Corollary 4.8. FB(w) is lattice-embeddable into Py, below any given special
19 class, P.

Proof. Let such a P be given and let (Q; : i € w) be as in Theorem 2.7. The
required embedding will be,

A— PAQA).
The fact that this is a homomorphism follows from the lattice-theoretic identi-
ties:
(P/\/\Qi)/\(P/\/\Qi):P/\(/\Qi/\/\Qi)7
icA i€B icA i€B
(P/\/\@i)\/(P/\/\@i):P/\(/\@i\//\@i)a
icA i€B icA i€B

and the fact that A — @(A) describes a lattice homomorphism. To see that it’s
an embedding, suppose that A # B and take j € BN A, v € Q; and T € @(A)
as in the proof of Lemma 4.3. Let 1 = (1)"Z € P A @(A) Suppose that there
isay e PA Q(B) such that y <p Z;. By the proof of Lemma 4.3 we know
that y~ ¢ @(B) (orelsez=r 21 >ry=ry € @(B), contradiction). But, if
y~ € P, then,
P>y <rzi=rzeQy

contrary to the construction of (Q; : i € w). So there is no y € P A @(B), such
that y <7 Z1. Therefore, P A @(B) Ly P A @(A), as required. O
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Theorem 4.9. FEvery countable distributive lattice can be embedded into P
below any given special TI9 class.

To prove Theorem 4.9, we show that every countable distributive lattice em-
beds into F'B(w) and then apply Theorem 4.7. It suffices to prove the following
lemma. Although this lemma is surely well known, we have not found it in the
literature.

Lemma 4.10. FEvery countable distributive lattice is isomorphic to a sublattice
of FB(w).

Proof. All the lattice-theoretic background can be found in [8] or [10]. Stone’s
Representation Theorem says that every distributive lattice is isomorphic to a
lattice of sets under U, N. It follows immediately that every countable distribu-
tive lattice is a sublattice of a countable Boolean algebra. Thus, it suffices to
show that for every countable Boolean algebra B there exists a Boolean injection
of B into FB(w).

We find it convenient to work with the Stone spaces of our Boolean alge-
bras. Recall that, under Stone duality, Boolean homomorphisms correspond to
continuous mappings. In particular, Boolean injections correspond to contin-
uous surjections, and Boolean surjections correspond to continuous injections.
Since the Stone space of F'B(w) is homeomorphic to 2, the Stone space of any
countable Boolean algebra is homeomorphic to a nonempty closed subset of 2.

Thus, it suffices to prove the following lemma (attributed to Sierpinski in
[14] page 46):

Lemma 4.11. For every nonempty closed set K C 2“ there exists a continuous
surjection ¢ : 2¥ — K.

Proof. Recall that Ext(K) = {0 € 2<% : 3f € K f D o}. We will define
a surjection ¢ : 2<“ — Ext(K), which will then induce the required map
P2 — K. Let

and, for ¢ € {0, 1},

$(o)” (i) if (o)™ (i) € Ext(K),
¢(0)"~(1 —i) otherwise.

¢l (1) = {

It is clear that ¢ induces a continuous surjection ¢ : 2¢ — K defined by ¢(f) =
U{¢(0) : ¢ C f}. This ¢ is in fact a retraction of 2* onto K, i.e., ¥(f) = f for
all f € K. See also [14] page 46. O

The proofs of Lemma 4.10 and Theorem 4.9 are now complete. o

The next theorem is result 3 of the Introduction.

Theorem 4.12. Let £y (L3) be the lattice of finite (co-finite) subsets of w under
N and U. Then, for any special 119 class, P, there is an embedding of L1 x Lo
into Pys below P.
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Proof. Let E be any infinite, co-infinite recursive subset of w (for example the
even numbers). Let K be the distributive lattice {X C w : XAF is finite}
with the operations of N and U. Then K 2 £; x L5 . (Represent £4 by finite
subsets of odd numbers and Ly by (relatively) co-finite sets of even numbers.
The isomorphism is given by (X,Y) — X UY".) The symmetric difference of any
two elements of KC is finite, so Lemmas 4.3, 4.4, 4.6 and the proof of Corollary
4.8 give the result. O

Corollary 4.13. L1 and Lo are embeddable in Py below any special T1Y class.
Proof. Immediate, as £1 and L, are sublattices of I, above. O

Note that Theorem 4.12 and Corollary 4.13 are not immediate consequences
of Theorem 3.1, because by Balbes [1, Theorem 4.6] neither £; nor £y is em-
beddable in FD(w).
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