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Abstract

Let Pw and PM be the countable distributive lattices of Muchnik and
Medvedev degrees of non-empty Π0

1 subsets of 2ω, under Muchnik and
Medvedev reducibility, respectively. We show that all countable distribu-
tive lattices are lattice-embeddable below any non-zero element of Pw.
We show that many countable distributive lattices are lattice-embeddable
below any non-zero element of PM .

1 Introduction

In this paper ω denotes the set of natural numbers, ωω denotes the set of total
functions from ω to ω, and 2ω denotes the set of total functions from ω to {0, 1}.

The concepts of Medvedev reducibility and Muchnik reducibility have been
defined and investigated in [11], [22], [12] and [13]. A set P ⊆ ωω is Medvedev
reducible to Q ⊆ ωω, written P ≤M Q, if there exists some recursive functional,
Φ : Q → P . That is, there exists e ∈ ω such that {e}f ∈ P for all f ∈ Q.
Muchnik reducibility is a non-uniform version of Medvedev reducibility. P is
said to be Muchnik reducible to Q, written P ≤w Q, if for each f ∈ Q there is
a recursive functional Φ such that Φ(f) ∈ P .
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In this paper we will restrict these reducibilities to Π0
1 classes, i.e., Π0

1 subsets
of 2ω. P is said to be a Π0

1 class if there is some recursive relation R ⊆ ω × 2ω

such that
f ∈ P ↔ ∀n R(n, f).

Π0
1 classes have an alternative characterisation which is both instructive and

useful: P is a Π0
1 class if and only if P is the set of infinite paths through some

recursive binary tree. For technical reasons we restrict attention to non-empty
Π0

1 classes, i.e., P 6= ∅.
Two non-empty Π0

1 classes, P and Q, are Medvedev (Muchnik) equivalent,
P ≡M Q (P ≡w Q), if P ≤M Q and Q ≤M P (P ≤w Q and Q ≤w P ). The set
of equivalence classes (Medvedev (Muchnik) degrees) with the induced partial
order forms a countable distributive lattice with a top and bottom element.
These lattices will be denoted PM and Pw respectively. The top element of
PM (Pw) is the Medvedev (Muchnik) degree of the set of completions of Peano
Arithmetic, and the bottom element, i.e., zero, is the Medvedev (Muchnik)
degree of any Π0

1 set containing a recursive member. The least upper bound
operation in PM and Pw is given by

P ∨Q = {f ⊕ g | f ∈ P, g ∈ Q}

where (f ⊕ g)(2n) = f(n) and (f ⊕ g)(2n + 1) = g(n) for all n. The greatest
lower bound operation in PM and Pw is given by

P ∧Q = {〈0〉af | f ∈ P} ∪ {〈1〉ag | g ∈ Q}.

See [16]. The study of PM and Pw was initiated in Simpson [17]. Introductions
to and some basic results about PM and Pw can be found in [2], [16], [3], [19],
[4] and [20].

In this paper we prove the existence of certain sublattices of the lattices Pw
and PM . Our main results are, in essence, as follows:

1. The free countable Boolean Algebra, FB(ω), is embeddable into Pw.

2. The free countable distributive lattice, FD(ω), is embeddable into PM .

3. If L1 (L2) denotes the lattice of finite (co-finite) subsets of ω, then L1×L2

is embeddable into PM .

Here, and in the rest of the paper, an “embedding” is a lattice embedding.
Result 1 is as general as possible, as every countable distributive lattice is

embeddable into FB(ω). We conjecture that FB(ω) is embeddable into PM , but
we have been unable to prove this. Result 2 implies that every finite distributive
lattice can be embedded into PM , as every such lattice can be embedded into
FD(ω). Result 3 is not implied by result 2, as neither L1 nor L2 is embeddable
into FD(ω). Below we shall give references for the relevant lattice-theoretic
facts.

In addition, we show that results 1 through 3 are relativised in the sense
that the embeddings can be made below any non-zero element of Pw and PM ,
respectively.
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This paper is in four sections. Section 2 consists of two priority arguments.
These construct Π0

1 subsets of 2ω that have certain useful independence prop-
erties. Both build on the constructions in [9], and use a Sacks preservation
argument (see [21], Section VII.3). The second argument is only sketched. If,
at first, the reader wishes only to skim Section 2 and accept Theorems 2.1 and
2.7, he or she should still find Sections 3 and 4 completely accessible. Results 1
through 3 above are proved in Sections 3 and 4.

Notation and Preliminaries

We will first establish some standard notation. A binary string is a finite se-
quence of 0’s and 1’s. The set of binary strings is denoted 2<ω. We use σ, τ, ρ
and λ to denote binary strings. The length of σ will be written |σ|. The con-
catenation of σ and τ is denoted σaτ . The notation {e}σs (n) = m means that
the Turing machine with Gödel number e using oracle information σ started
with input n halts in ≤ s steps with output m. {e}σs denotes the longest binary
string, τ , such that |τ | ≤ s and {e}σs (n) = τ(n) for all n < |τ |. The empty string
is denoted by 〈〉, and {e}σ is short for {e}σ|σ|. Thus for f ∈ 2ω and m,n ∈ ω we
have {e}f(m) = n if and only if there exists σ ⊂ f such that {e}σ(m) = n. All
of this is standard recursion-theoretic notation from Rogers [13] and Soare [21].
The restriction of σ to {0, 1, 2, . . . , n− 1} is denoted σ

∣∣
n
.

A binary tree is a subset of 2<ω that is closed under taking initial segments.
If T is a binary tree, then [T ] ⊆ 2ω denotes the set of infinite paths through T ,
i.e., [T ] = {f ∈ 2ω : ∀n f

∣∣
n
∈ T }. It is well known that P ⊆ 2ω is a Π0

1 class if
and only if P = [T ] for some recursive binary tree. Furthermore, if P ⊆ 2ω is
a Π0

1 class, then P = [Ext(P )], where Ext(P ) ⊆ 2<ω is defined to be the set of
extendible nodes of P , i.e.,

Ext(P ) = {σ : ∃f ∈ P σ ⊂ f}.

Note that Ext(P ) is a binary tree, but is not necessarily recursive. The advan-
tage of Ext(P ) over T is that Ext(P ) has no end nodes.

The following notation is introduced specifically for our purposes. Let S
be the class of finite sequences of finite strings. The uppercase Greek letters,
Σ, Γ and Λ will be used to denote elements of S. For ease of notation, a
sequence of strings will sometimes be identified with its range, so that σ ∈ Σ
means σ ∈ rng(Σ); Σ ⊆ Γ means Σ is a subsequence of Γ, and σ ∈ Σ r Γ that
σ ∈ rng(Σ) r rng(Γ). We will reserve the symbol Σm to mean the sequence of
all binary strings of length m in lexicographical order.

If Σ = 〈σi〉ni=1 and Γ = 〈γi〉mi=1, we will say Σ extends Γ if m = n and σi ⊇ γi
for all i ≤ n. Σ properly extends Γ if, in addition, σk ) γk for at least one
k ≤ n. If f1, f2, . . . fn are members of 2ω, then 〈f1, f2, . . . fn〉 extends Σ is defined
similarly. We sometimes identify the finite sequence 〈fi〉ni=1 = 〈f1, . . . , fn〉 with
its range.

If Σ = 〈σi〉ni=1 ⊆ Σm and f ∈ 2ω, we will make the following definitions:

• f− ∈ 2ω is such that, for all n ∈ ω, f−(n) = f(n+ 1).
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•
⊕

Σ =
⊕n

i=1 σi ∈ 2<ω is such that(⊕
Σ
)

(k) = σi(j),

for all k = nj + i− 1, 1 ≤ i ≤ n, 0 ≤ j ≤ m− 1. That is,

⊕
Σ =

n⊕
i=1

σi = 〈σ1(0), . . . , σn(0), . . . , σ1(m− 1), . . . , σn(m− 1)〉.

• If 〈fi〉ni=1 is a sequence of members of 2ω. Then
⊕n

i=1 fi ∈ 2ω is defined
to be such that, for all j, (

n⊕
i=1

fi

)
(k) = fi(j),

where, as before, k = nj + i− 1.

• For an arbitrary Γ = 〈γi〉ni=1 ∈ S (with the γi of possibly different lengths),
we define ⊕

Γ =
n⊕
i=1

γi =
n⊕
i=1

γi
∣∣
l
,

where l = min{|γi| : 1 ≤ i ≤ n}.

Although
⊕

is not associative, it does have the useful property that if 〈f1, f2, . . . fn〉
extends Σ ⊆ Σm, then

⊕n
i=1 fi ⊃

⊕
Σ. If no confusion can result, we will write⊕

fi for
⊕n

i=1 fi.

2 Two Constructions

A Π0
1 class P is said to be special if it is non-empty and contains no recursive

member.

Theorem 2.1. For any special Π0
1 class, P , there is a non-empty Π0

1 set Q ⊆ 2ω,
with the properties, for all sequences, 〈fi〉ni=1 ⊂ Q,

I. ∀f ∈ Qr 〈fi〉ni=1, f 6≤T
⊕
fi,

II. ∀f ∈ P, f 6≤T
⊕
fi.

Proof. The proof will closely follow the proof of Theorem 4.7 in [9]. A recursive
sequence, 〈ψs〉s∈ω , of recursive functions from 2<ω to 2<ω will be constructed
with the properties that, for all σ ∈ 2<ω and s ∈ ω,

1. ψs(σa〈0〉) and ψs(σa〈1〉) are incompatible extensions of ψs(σ),

2. range(ψs+1) ⊆ range(ψs),
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3. ψ(σ) = limt ψt(σ) exists.

Each ψs determines a recursive tree, namely,

Ts = {τ : for some σ, ψs(σ) ⊇ τ}.

The required Q will then be
⋂
s∈ω[Ts]. Q will be non-empty as 〈[Ts]〉s∈ω is a

nested sequence of nonempty closed subsets of 2ω. It will be a Π0
1 set because,

f ∈ Q ≡ ∀sf ∈ [Ts] ≡ ∀s∀n∃σ[|σ| = n ∧ ψs(σ) ⊂ f ],

and ∃σ[|σ| = n ∧ ψs(σ) ⊂ f ] is a recursive predicate.
Each ψs will induce a mapping, Ψs : S → S, defined by

Ψs(Γ) = 〈ψs(γi)〉ni=1,

where Γ = 〈γi〉ni=1. When it is proved that ψ(σ) exists for all σ, it will be clear
that Ψ(Σ) = lims Ψs(Σ) exists for all Σ ∈ S.

We will define 〈ψs〉s∈ω so that, for every m ∈ ω, Γ ⊆ Σm and e ≤ m, Q
satisfies the requirements:

PmΓ,e ≡ for all 〈fi〉ni=1 extending Ψ(Γ), {e}
⊕
fi /∈ P,

RmΓ,e ≡ for all 〈fi〉ni=1 extending Ψ(Γ), and for all σ ∈ Σm r Γ, {e}
⊕
fi 6⊃

ψ(σ).

The P requirements guarantees that Q has property II. of the theorem, and the
R requirements guarantee property I. The set of requirements can be ordered
lexicographically, first on m, then on e and finally with the conventions that,
for all m, and Γ,Γ′ ∈ Σm,

i. PmΓ,e precedes RmΓ′,e, and,

ii. PmΓ,e precedes PmΓ′,e and RmΓ,e precedes RmΓ′,e whenever Γ precedes Γ′ in the
lexicographical ordering on Σm.

Priority is given to the requirements in reverse lexicographical order so that
reqirement S0 has higher priority than requirement S1 if it precedes it in the
ordering.

Let TP be some fixed recursive binary tree such that P = [TP ]. PmΓ,e is said
to be satisfied at stage s if

{e}
⊕

Ψs(Γ) /∈ TP .
RmΓ,e is said to be satisfied at stage s if, for all σ ∈ Σm r Γ,

{e}
⊕

Ψs(Γ) 6⊇ ψs(σ).

We now define ψs as follows:
Stage s = 0: ψ0(σ) = σ for all σ ∈ 2<ω.
Stage s+1: We say PmΓ,e requires attention at stage s + 1 if PmΓ,e is not sat-

isfied at stage s+ 1 and there is a Λ = 〈λi〉ni=1 properly extending Γ such that
max{|λj | : λj ∈ Λ} ≤ s+ 1 and,
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i. {e}
⊕

Ψs(Λ) ∈ TP ,

ii. {e}
⊕

Ψs(Λ) ) {e}
⊕

Ψs(Γ).

We say RmΓ,e requires attention at stage s+1 if RmΓ,e is not satisfied at stage s+1
and there is a Λ = 〈λi〉ni=1, properly extending Γ, such that max{|λj | : λj ∈
Λ} ≤ s+ 1 and,

{e}
⊕

Ψs(Λ) ⊇ ψs(σa〈x〉), for some x ∈ {0, 1} and σ ∈ Σm r Γ.

If PmΓ,e has priority greater than the priority of P sΣs,s and is the highest priority
requirement requiring attention at stage s+1, let Λ witness this fact and define,

ψs+1(ν) =

{
ψs(λ

a
i ν
′) if ν = γai ν

′ for some γi ∈ Γ
ψs(ν) if ν 6⊇ γi for any γi ∈ Γ.

If RXm,e has priority greater than the priority of P sΣs,s and is the highest priority
requirement requiring attention at stage s+ 1, let Λ, σ and x witness this and
define,

ψs+1(ν) =


ψs(λ

a
i ν
′) if ν = γai ν

′ for some γi ∈ Γ,
ψs(σa〈1− x〉aν′) if ν = σaν′,
ψs(ν) if ν 6⊇ τ for any τ ∈ Γ ∪ {σ} .

If no requirement of priority greater than the priority of P sΣs,s requires attention
at stage s+ 1, then let ψs+1 = ψs.

The following lemmas establish the theorem.

Lemma 2.2. For any requirement, S, there is a stage, s0, such that S does not
require attention at any stage t > s0.

Proof. Assume not and let S be the highest priority requirement requiring at-
tention infinitely often. If S = PmΓ,e, then let t be a stage such that PmΓ,e has
priority greater than P tΣt,t and such that all higher priority requirements are
satisfied for all stages ≥ t. Let s1, s2, s3, . . . be an infinite increasing sequence
of stages greater than t at which S requires attention. At each of these stages S
will be the highest priority requirement requiring attention and so s1, s2, s3, . . .
will generate a recursive sequence,

{e}
⊕

Ψs1(Γ) ( {e}
⊕

Ψs2(Γ) ( {e}
⊕

Ψs3(Γ) ( . . . ,

of elements of TP . But then
⋃
i{e}

⊕
Ψsi (Γ) is a recursive infinite path through

TP , contradicting the original assumption that P is special.
Next suppose S = RmΓ,e. If t is such that the priority of RmΓ,e is greater than

P tΣt,t, all higher priority requirements are permanently satisfied at stage t, and
S requires attention at stage t, then S will be satisfied at stage t+ 1. Suppose,
at some stage u > t, a lower priority requirement, T , requires attention. If
T = Pm

′

Λ,e′ or T = Rm
′

Λ,e′ with m′ > m, and any Λ and e′, then Ψu+1(Γ) = Ψu(Γ)
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and S will remain satisfied at stage u + 1. If T = RmΛ,e′ or T = PmΛ,e′ , then
Ψu+1(Γ) ⊇ Ψu(Γ) and so S will remain satisfied at stage u+ 1. We then argue
by induction that S will remain satisfied, and hence not require attention, at
all stages u ≥ t, contradicting the assumption.

Lemma 2.3. ψ(σ) = lims ψs(σ) exists for all σ.

Proof. Let σ ∈ 2<ω be arbitrary. By Lemma 2.2, there exists a stage, t, such
that for all m ≤ |σ|, and all Γ ⊆ Σm, the requirements RmΓ,e and PmΓ,e do not
require attention after stage t. Then ψt1(σ) = ψt2(σ) for all t1, t2 > t.

Lemma 2.4. If m ∈ ω, e ≤ m and Γ ⊆ Σm are such that {e}
⊕

Ψ(Γ) ∈ TP ,
then there does not exist a Λ properly extending Γ such that {e}

⊕
Ψ(Λ) ∈ TP

and {e}
⊕

Ψ(Λ) ) {e}
⊕

Ψ(Γ).

Proof. Suppose such a Λ existed for m, e and Γ. Take t so large that Ψt(Γ) =
Ψ(Γ) and Ψt(Λ) = Ψ(Λ). Then,

{e}
⊕

Ψt(Λ) = {e}
⊕

Ψ(Λ) ) {e}
⊕

Ψ(Γ) = {e}
⊕

Ψt(Γ),

and so, at some stage u ≥ t, PmΓ,e would be the highest priority requirement
requiring attention, implying,

{e}
⊕

Ψu+1(Γ) ) {e}
⊕

Ψu(Γ) = {e}
⊕

Ψt(Γ) = {e}
⊕

Ψ(Γ),

contradicting the fact that Ψu+1(Γ) = Ψ(Γ).

Lemma 2.5. If 〈fi〉ni=1 ⊆ Q then, for all f ∈ P , f 6≤T
⊕
fi.

Proof. We can assume without losing generality that 〈fi〉ni=1 is in lexicographic
order. Suppose the lemma is false and let {e}

⊕
fi ∈ P . Let m ∈ ω and Γ ⊆ Σm

be such that,

i. e ≤ m,

ii. 〈fi〉ni=1 extends Ψ(Γ)

Such a Γ can be found because 〈fi〉ni=1 is in lexicographic order. But {e}
⊕

Ψ(Γ) ∈
TP , so there must be a Λ ) Γ such that {e}

⊕
Ψ(Λ) ∈ TP and {e}

⊕
Ψ(Λ) )

{e}
⊕

Ψ(Γ), contradicting Lemma 2.4.

Lemma 2.6. For all 〈fi〉ni=1 ⊆ Q and all f ∈ Qr 〈fi〉ni=1,

f 6≤T
⊕

fi

Proof. Suppose not and let {e}
⊕
fi = f ∈ Q. Let m ∈ ω, Γ ⊆ Σm and

σ ∈ Σm r Γ be such that,

i. e ≤ m,

ii. 〈fi〉ni=1 extends Ψ(Γ),
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iii. f ⊃ ψ(σ), (again we are assuming 〈fi〉ni=1 is in lexicographic order).

Let t be such that Ψu(Γ) = Ψ(Γ) and ψu(σa〈x〉) = ψ(σa〈x〉) for all u ≥ t and
x ∈ {0, 1}. By the supposition, there must be a stage, s ≥ t and a Λ extending
Γ such that

{e}Ψs(Λ) ⊇ ψs(σa〈x〉) for some x ∈ {0, 1}.
So there will be a stage, v ≥ s, at which RmΓ,e requires attention and is, in fact,
the highest priority requirement requiring attention. But then,

Ψv+1(Γ) 6= Ψv(Γ) = Ψ(Γ),

contradicting the fact that v ≥ u.

To finish the proof of Theorem 2.1, note that Lemmas 2.5 and 2.6 prove that
Q has properties I. and II. as required.

Theorem 2.7. Given any special Π0
1 class, P , there is an infinite recursive

sequence of Π0
1 sets, 〈Qi : i ∈ ω〉, with the properties, for all i, j ∈ ω such that

i 6= j,

I. ∀f ∈ Qi ∀g ∈ Qj f 6≤T g,

II. ∀f ∈ Qi ∀g ∈ P g 6≤T f.

Proof (sketch). A recursive sequence of recursive functions, ψi : 2<ω → 2<ω,
is constructed, the range of each function is the tree Ti and then Qi will be
[Ti]. Each ψi is constructed as the limit of a recursive sequence of recursive
functions, 〈ψis〉s and will be defined so that, for every m ∈ ω, ψi satisfies the
requirements:

for all e ≤ m; j ≤ m; σ ∈ Σm and for all f extending ψi(σ),

Pm ≡ {e}f /∈ P,

Rm ≡ j 6= i⇒ {e}f 6⊇ ψj(σ).

These requirements are then further specified by indexing them according to
i, j, σ and e (bounded as above), and an exhaustive priority ordering is given to
them. The same method as in Theorem 2 is then used to ensure all are satis-
fied. If at any stage of construction an Rm requirement is the highest priority
requirement requiring attention then the requirement is satisfied (permanently)
at the next stage.

If at some stage of the construction a Pm requirement is the highest priority
requirement requiring attention, then the function being constructed is adapted
to keep the requirement unsatisfied (as per Sacks’ preservation strategy, see [21]
Section VII.3). A (nonconstructive) argument is then made to show that this
strategy will eventually fail (because P has no recursive members) and Pm will
eventually be satisfied. These are essentially the arguments of Lemmas 2.5 and
2.6.
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3 FD(ω) ↪→ PM
The following is result 2 of the Introduction. Recall that FD(ω) is the free
distributive lattice on ω generators.

Theorem 3.1. Given any special Π0
1 class, P , FD(ω) can be embedded into

PM below P .

Proof. Let P be any special Π0
1 class and suppose Q and ψ are as in Theorem

2.1. Let {σi : i ∈ ω} be a set of binary strings defined by:

i. |σi| = i+ 1,

ii. σi(n) =

{
1 if n = i,

0 otherwise.

Then {σi : i ∈ ω} is a pairwise incomparable set of strings and hence so is
{ψ(σi) : i ∈ ω}. Denote by Qi the set of members of Q extending ψ(σi), and
let Pi = P ∧Qi. The set {Pi : i ∈ ω} then generates a sublattice of PM strictly
below P . To see this note that if X is a non-empty finite subset of ω,∨

i∈X
Pi <M P,

because
∨
i∈X Pi ≤M P , and if

∨
i∈X Pi ≥M P then P ∧

∨
i∈X Qi ≥M P and

some member of
∨
i∈X Qi would compute an member of P , contradicting prop-

erty II. of Theorem 2.1. This is enough to show that all elements of the generated
sublattice are strictly below P .

We shall show that the lattice generated by the Pi’s is free. By a standard
lattice-theoretic result – Theorem II.2.3 in [8] – it suffices to prove the following
claim: For all finite sets X,Y ⊆ ω, if

∧
i∈X Pi ≤M

∨
i∈Y Pi then X ∩ Y 6= ∅. To

prove the claim, note that ∧
i∈X Pi ≤M

∨
i∈Y Pi,

⇒ P ∧
∧
i∈X Qi ≤M P ∧

∨
i∈Y Qi,

⇒ P ∧
∧
i∈X Qi ≤M

∨
i∈Y Qi.

Fix
⊕

i∈Y fj ∈
∨
i∈Y Qi. Then there is g ≤T

⊕
i∈Y fi such that either g ∈ P or

g ∈ Qi for some i ∈ X . But g /∈ P by property II. of Theorem 2.1. So let i ∈ X
be such that g ∈ Qi. By property I. of Theorem 2.1 we have that i ∈ Y . Thus
X ∩ Y 6= ∅ as was to be shown.

Corollary 3.2. Every finite distributive lattice can be embedded into PM .

Proof. This follows immediately from Theorem 3.1 and the fact that every finite
distributive lattice is embeddable in FD(ω). This seems to have first been
observed by Simpson [18]. The proof is presented in [3], along with a different
proof of this corollary.
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4 FB(ω) ↪→ Pw
In the section we give the second principal embedding theorem – that the free
Boolean algebra on ω generators, FB(ω), is embeddable into Pw, the lattice
of Muchnik degrees. This is result 1 of the Introduction. We represent FB(ω)
as an algebra of recursive sets and then give an explicit embedding into Pw.
As before, the argument will use Π0

1 sets constucted using a priority argument,
this time on the Π0

1 sets of Theorem 2.7. Then we show that all countable
distributive lattices embed into FB(ω). Finally we establish result 3 of the
Introduction.

We require the following definitions. Let 〈Pi : i ∈ ω〉 be a recursive sequence
of Π0

1 classes. This means that each Pi is a Π0
1 class and furthermore {(x, i) : x ∈

Pi} is Π0
1 subset of 2ω × ω. Let ∅ 6= A ⊆ ω be recursive. Let (·, ·) : ω × ω → ω

be a recursive bijection.

Definition 4.1. If x ∈ 2ω, we define
(
x
)
i
∈ 2ω by(

x
)
i
(n) = x((i, n)).

The recursive join of 〈Pi : i ∈ A〉, denoted
∨
i∈A Pi, is given by

x ∈
∨
i∈A

Pi ⇔
(
x
)
i
∈ Pi for all i ∈ A.

Clearly
∨
i∈A Pi is a Π0

1 class, as

x ∈
∨
i∈A

Pi ≡ ∀i
(
i ∈ A⇒

(
x
)
i
∈ Pi

)
.

Also, note that there is no restriction on
(
x
)
i

if i /∈ A.
We will now define a recursive meet. Let A and 〈Pi : i ∈ ω〉 be as above and,

for each i ∈ ω, let Ti be a recursive tree such that [Ti] = Pi. In addition, fix a
nonempty Π0

1 class P which is Medvedev complete, i.e., Q ≤M P for all nonempty
Π0

1 classes Q. (For example, we may take P to be the set of completions of Peano
arithmetic.) Fix a recursive tree T such that [T ] = P . Let 〈σj : j ∈ ω〉 be the
sequence, in lexicographical order, of all binary strings σ such that σ ∈ T but
σa〈0〉, σa〈1〉 /∈ T . The sequence will be infinite as [T ] has no recursive member.
Define

T ∗ = T ∪ {σai τ : i ∈ A, τ ∈ Ti}.

Definition 4.2. The recursive meet of 〈Pi : i ∈ A〉, denoted
∧
i∈A Pi, is [T ∗],

the set of infinite paths through T ∗.

Note that if A is finite, the recursive meet and join are Medvedev equivalent
to the standard, lattice-theoretic meet and join respectively, allowing us some
ambiguity of notation. However, it is not to be assumed that these constructions
necessarily give the greatest lower or least upper bounds when A is infinite.
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Now let 〈Qi : i ∈ ω〉 be as in Theorem 2.7 (with P arbitrary). Define

Q̂i =
∧
j 6=i

Qj,

and, for any recursive, non-empty set, A, let

Q̂(A) =
∨
i∈A

Q̂i.

Lemma 4.3. If A,B 6= ∅ and A 6= B, then Q̂(A) 6≡w Q̂(B) (and therefore
Q̂(A) 6≡M Q̂(B)).

Proof. Suppose that A and B are as above and that, without losing generality,
j ∈ B rA. Choose any x ∈ Qj and define x̄ by,(

x̄
)
i

= σaj x for all i ∈ ω.

Then x̄ ∈ Q̂(A) as σaj x ∈ Q̂i for all i 6= j and, in particular, for all i ∈ A. Now
let y ∈ Q̂j be arbitrary. There are two cases.

Case 1. y = σai z for some i 6= j and z ∈ Qi. Then,

y ≡T z 6≤T x ≡T x̄,

(z 6≤T x as z ∈ Qi and x ∈ Qj , with i 6= j).
Case 2. y ∈ [T ], where [T ] is the Medvedev complete Π0

1 class used in the
construction of the recursive meet. Then for any i ∈ ω, there is a z ∈ Qi such
that y ≥T z. We choose some i 6= j, and then fix z. If x̄ ≥T y, we would have,

Qj 3 x ≡T x̄ ≥T y ≥T z ∈ Qi, with i 6= j,

contrary to construction of 〈Qi : i ∈ ω〉.
Therefore, in both cases we have y 6≤T x̄. As y was arbitrary, Q̂j 6≤w Q̂(A).

But Q̂j ≤w Q̂(B) via the map x 7→
(
x
)
j

so it must be that Q̂(B) 6≤w Q̂(A) and

therefore that Q̂(B) 6≡w Q̂(A), as required.

Lemma 4.4. If A and B are non-empty and recursive, then

Q̂(A ∪B) ≡M Q̂(A) ∨ Q̂(B).

Proof.

Q̂(A ∪B) = {x : ∀i ∈ A ∪B,
(
x
)
i
∈ Q̂i},

= {x : ∀i ∈ A,
(
x
)
i
∈ Q̂i} ∩ {x : ∀i ∈ B,

(
x
)
i
∈ Q̂i},

= Q̂(A) ∩ Q̂(B).

11



So, x 7→ x ⊕ x, is a map from Q̂(A ∪ B) to Q̂(A) ∨ Q̂(B), and therefore,
Q̂(A ∪ B) ≥M Q̂(A) ∨ Q̂(B) . Conversely, let x ⊕ y ∈ Q̂(A) ∨ Q̂(B). Define,
z ∈ 2ω by, (

z
)
i

=

{(
x
)
i

if i ∈ A(
y
)
i

if i ∈ ω rA.

Then z ≤T x⊕ y and for all i ∈ A∪B,
(
z
)
i
∈ Q̂i, so z ∈ Q̂(A ∪B). Therefore,

Q̂(A ∪B) ≤M Q̂(A) ∨ Q̂(B) as required.

Lemma 4.5. If A and B are recursive and A ∩B 6= ∅, then

Q̂(A ∩B) ≡w Q̂(A) ∧ Q̂(B).

Proof. First, Q̂(A ∩ B) ≤w Q̂(A) ∧ Q̂(B) (in fact, ≤M ). If x ∈ Q̂(A) ∧ Q̂(B),
then define z ∈ Q̂(A ∩B) by,(

z
)
i

=
(
x−
)
i

for all i ∈ ω.

If
(
x
)
i
(0) = 0, then, for all i ∈ A,

(
z
)
i
∈ Q̂i, and, a fortiori, for all i ∈

A∩B,
(
z
)
i
∈ Q̂i. So z ∈ Q̂(A∩B). There is a similar argument if

(
x
)
i
(0) = 1.

Next, Q̂(A ∩ B) ≥w Q̂(A) ∧ Q̂(B). Modulo the following two claims, the
argument will be:

Q̂(A ∩B) =
∨
i∈A∩B Q̂i,

≥w
∨
i∈A

∨
j∈B Q̂i ∧ Q̂j (in fact, ≥M ; this is Claim 1),

≥w
∨
i∈A Q̂i ∧

∨
j∈B Q̂j (this is Claim 2),

= Q̂(A) ∧ Q̂(B).

Proof of Claim 1. Let x ∈
∨
i∈A∩B Q̂i and take any k ∈ A∩B. So

(
x
)
k
∈ Q̂k.

We define (recursively in x) z ∈
∨
i∈A

∨
j∈B Q̂i ∧ Q̂j by defining

((
z
)
i

)
j

for all
i, j ∈ ω, such that,((

z
)
i

)
j
∈ Q̂i ∧ Q̂j for all i ∈ A and j ∈ B.

To this end, let,

((
z
)
i

)
j

=


〈0〉a

(
x
)
i

if i = j,

〈0〉a
(
x
)
k

if i 6= j and
(
x
)
k
6⊇ σi,

〈1〉a
(
x
)
k

if i 6= j and
(
x
)
k
⊇ σi.

So, suppose that i ∈ A and j ∈ B. If i = j, then i ∈ A ∩ B and
((
z
)
i

)
j

=

〈0〉a
(
x
)
i
∈ Q̂i ∧ Q̂j . If i 6= j and

(
x
)
k
6⊇ σi, then

(
x
)
k
∈ Q̂i, and

((
z
)
i

)
j

=

〈0〉a
(
x
)
k
∈ Q̂i ∧ Q̂j . If i 6= j and

(
x
)
k
⊇ σi, then

(
x
)
k
∈ Q̂j and

((
z
)
i

)
j

=
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〈1〉a
(
x
)
k
∈ Q̂i ∧ Q̂j . These three cases are exhaustive and so Claim 1 is estab-

lished. Note that the above is a uniform procedure for computing z from an
arbitrary x, and so the stronger, Medvedev reducibility has been shown.

Proof of Claim 2. Let x ∈
∨
i∈A

∨
j∈B Q̂i ∧ Q̂j . We will construct z ≤T x

such that z ∈
∨
i∈A Q̂i ∧

∨
j∈B Q̂j . There are two cases.

Case 1. ∃i ∈ ArB ∀j ∈ B rA
((
x
)
i

)
j
(0) = 1.

Fix such an i, set z(0) = 1 and let,

(
z−
)
k

=

{((
x
)
i

)−
k

if k /∈ A ∩B,((
x
)
k

)−
k

if k ∈ A ∩B.

Then, if k ∈ B r A,
(
z−
)
k

=
((
x
)
i

)−
k
∈ Q̂k and if k ∈ B ∩ A,

(
z−
)
k

=((
x
)
k

)−
k
∈ Q̂k. So, for all k ∈ B,

(
z−
)
k
∈ Q̂k, giving z− ∈

∨
j∈B Q̂j and

z ∈
∨
i∈A Q̂i ∧

∨
j∈B Q̂j .

Case 2. ∀i ∈ ArB ∃j ∈ B rA
((
x
)
i

)
j
(0) = 0.

Let z(0) = 0 and define,

f(i) =

{
the least such j if i ∈ ArB,
0 otherwise.

Then f ≤T x, and
((
x
)
i

)−
f(i)
∈ Q̂i for all i ∈ ArB. We can then define,

(
z−
)
k

=

{((
x
)
k

)−
f(k)

if k /∈ A ∩B,((
x
)
k

)−
k

if k ∈ A ∩B.

As above we have
(
z−
)
k
∈ Q̂k, if k ∈ A ∩ B and if k ∈ A r B then

(
z−
)
k

=((
x
)
k

)−
f(k)
∈ Q̂k. So z− ∈

∨
i∈A Q̂i, and z ∈

∨
i∈A Q̂i∧

∨
j∈B Q̂j , as required.

We would like to improve Lemma 4.5 by showing that Q̂(A∩B) ≡M Q̂(A)∧
Q̂(B), but the division into cases in the proof of Claim 2 is non-effective and we
have only been able to show the weaker result. However, we can improve the
result under the stricter conditions of the following lemma.

Lemma 4.6. If A and B are recursive and A ∩ B 6= ∅ and their symmetric
difference

A4B = (ArB) ∪ (B rA)

is finite, then
Q̂(A ∩B) ≡M Q̂(A) ∧ Q̂(B).

Proof. The proof is identical with the proof of 4.5 noting that, in the proof of
Claim 2, the division into two cases is now effective as both A rB and B r A
are finite.

We are now in a position to prove the theorem in the title of the section.
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Theorem 4.7. The free Boolean algebra on countably many generators, FB(ω),
is lattice-embeddable into Pw.
Proof. Consider the mapping A 7→ Q̂(A). Lemmas 4.3, 4.4 and 4.5 prove that
this is an embedding of the lattice of non-empty, recursive subsets of ω under
∩ and ∪ into Pw. So to prove the theorem it is sufficient to show that FB(ω)
can be represented by a collection of non-empty, recursive subsets of ω.

Let pj be the jth prime number and let Bj = {npj : n ∈ ω}. Define
B̃j = (ωrBj)∪{0}. The set {Bj : j ∈ ω} generates a distributive lattice under
operations of intersection and union. Further, this lattice can be extended to
a Boolean algebra with 1 represented by ω, 0 represented by {0} and B̃j the
Boolean complement of Bj . It would, perhaps, seem more natural to have ∅ as
the minimum element and ω r Bj as the Boolean complement. However, the
text definition ensures that each element of the Boolean algebra is non-empty.
This Boolean algebra is in fact free and therefore a representation of FB(ω). To
show this it is sufficient to show (Exercise II.3.43 [8]) that for all finite X,Y ⊆ ω,⋂

i∈X
Bi ⊆

⋃
j∈Y

Bj ⇒ X ∩ Y 6= ∅.

But this is easily seen as
∏
i∈X pi ∈

⋂
i∈X Bi and so, if the antecedent holds,∏

i∈X pi ∈ Bj for some j ∈ Y . By primality, this means pj = pi for some i ∈ X ,
giving X ∩ Y 6= ∅.

Corollary 4.8. FB(ω) is lattice-embeddable into Pw below any given special
Π0

1 class, P .

Proof. Let such a P be given and let 〈Qi : i ∈ ω〉 be as in Theorem 2.7. The
required embedding will be,

A 7→ P ∧ Q̂(A).

The fact that this is a homomorphism follows from the lattice-theoretic identi-
ties: (

P ∧
∧
i∈A

Q̂i
)
∧
(
P ∧

∧
i∈B

Q̂i
)

= P ∧
( ∧
i∈A

Q̂i ∧
∧
i∈B

Q̂i
)
,

(
P ∧

∧
i∈A

Q̂i
)
∨
(
P ∧

∧
i∈B

Q̂i
)

= P ∧
( ∧
i∈A

Q̂i ∨
∧
i∈B

Q̂i
)
,

and the fact that A 7→ Q̂(A) describes a lattice homomorphism. To see that it’s
an embedding, suppose that A 6= B and take j ∈ B rA, x ∈ Qj and x̄ ∈ Q̂(A)
as in the proof of Lemma 4.3. Let x̄1 = 〈1〉ax̄ ∈ P ∧ Q̂(A). Suppose that there
is a y ∈ P ∧ Q̂(B) such that y ≤T x̄1. By the proof of Lemma 4.3 we know
that y− /∈ Q̂(B) (or else x̄ ≡T x̄1 ≥T y ≡T y− ∈ Q̂(B), contradiction). But, if
y− ∈ P , then,

P 3 y− ≤T x̄1 ≡T x ∈ Qj,
contrary to the construction of 〈Qi : i ∈ ω〉. So there is no y ∈ P ∧ Q̂(B), such
that y ≤T x̄1. Therefore, P ∧ Q̂(B) 6≤M P ∧ Q̂(A), as required.
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Theorem 4.9. Every countable distributive lattice can be embedded into Pw
below any given special Π0

1 class.

To prove Theorem 4.9, we show that every countable distributive lattice em-
beds into FB(ω) and then apply Theorem 4.7. It suffices to prove the following
lemma. Although this lemma is surely well known, we have not found it in the
literature.

Lemma 4.10. Every countable distributive lattice is isomorphic to a sublattice
of FB(ω).

Proof. All the lattice-theoretic background can be found in [8] or [10]. Stone’s
Representation Theorem says that every distributive lattice is isomorphic to a
lattice of sets under ∪, ∩. It follows immediately that every countable distribu-
tive lattice is a sublattice of a countable Boolean algebra. Thus, it suffices to
show that for every countable Boolean algebra B there exists a Boolean injection
of B into FB(ω).

We find it convenient to work with the Stone spaces of our Boolean alge-
bras. Recall that, under Stone duality, Boolean homomorphisms correspond to
continuous mappings. In particular, Boolean injections correspond to contin-
uous surjections, and Boolean surjections correspond to continuous injections.
Since the Stone space of FB(ω) is homeomorphic to 2ω, the Stone space of any
countable Boolean algebra is homeomorphic to a nonempty closed subset of 2ω.

Thus, it suffices to prove the following lemma (attributed to Sierpiński in
[14] page 46):

Lemma 4.11. For every nonempty closed set K ⊆ 2ω there exists a continuous
surjection ψ : 2ω −→ K.

Proof. Recall that Ext(K) = {σ ∈ 2<ω : ∃f ∈ K f ⊃ σ}. We will define
a surjection φ : 2<ω −→ Ext(K), which will then induce the required map
ψ : 2ω → K. Let

φ(〈〉) = 〈〉,
and, for i ∈ {0, 1},

φ(σa〈i〉) =

{
φ(σ)a〈i〉 if φ(σ)a〈i〉 ∈ Ext(K),

φ(σ)a〈1− i〉 otherwise.

It is clear that φ induces a continuous surjection ψ : 2ω → K defined by ψ(f) =⋃
{φ(σ) : σ ⊂ f}. This ψ is in fact a retraction of 2ω onto K, i.e., ψ(f) = f for

all f ∈ K. See also [14] page 46.

The proofs of Lemma 4.10 and Theorem 4.9 are now complete.

The next theorem is result 3 of the Introduction.

Theorem 4.12. Let L1 (L2) be the lattice of finite (co-finite) subsets of ω under
∩ and ∪. Then, for any special Π0

1 class, P , there is an embedding of L1 × L2

into PM below P .
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Proof. Let E be any infinite, co-infinite recursive subset of ω (for example the
even numbers). Let K be the distributive lattice {X ⊆ ω : X4E is finite}
with the operations of ∩ and ∪. Then K ∼= L1 × L2 . (Represent L1 by finite
subsets of odd numbers and L2 by (relatively) co-finite sets of even numbers.
The isomorphism is given by (X,Y ) 7→ X∪Y .) The symmetric difference of any
two elements of K is finite, so Lemmas 4.3, 4.4, 4.6 and the proof of Corollary
4.8 give the result.

Corollary 4.13. L1 and L2 are embeddable in PM below any special Π0
1 class.

Proof. Immediate, as L1 and L2 are sublattices of K, above.

Note that Theorem 4.12 and Corollary 4.13 are not immediate consequences
of Theorem 3.1, because by Balbes [1, Theorem 4.6] neither L1 nor L2 is em-
beddable in FD(ω).
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