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Abstract

Given a problem P , one associates to P a degree of unsolvability, i.e., a quantity which measures
the amount of algorithmic unsolvability which is inherent in P . We focus on two degree structures:
the semilattice of Turing degrees, DT, and its completion, Dw = D̂T, the lattice of Muchnik degrees.
We emphasize specific, natural degrees and their relationship to reverse mathematics. We show how
Muchnik degrees can be used to classify tiling problems and symbolic dynamical systems of finite
type. We describe how the category of sheaves over Dw forms a model of intuitionistic mathematics,
known as the Muchnik topos. This model is a rigorous implementation of Kolmogorov’s nonrigorous
1932 interpretation of intuitionism as a “calculus of problems.”
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1 Turing degrees

The existence of unsolvable1 mathematical problems was discovered by Turing [83]. Indeed, Turing
exhibited a specific, natural example2 of such a problem: the halting problem for Turing machines.
Later, in the 1950s and 1960s, it was discovered that there are specific, natural, unsolvable problems in
virtually every branch of mathematics: number theory (Hilbert’s Tenth Problem [16]), geometry (the
homeomorphism problem for finite simplicial complexes, the diffeomorphism problem for compact
manifolds [46, Appendix]), group theory (the word problem [1] and the triviality problem [51] for
finitely presented groups), combinatorics (the problem of tileability of the plane with a finite set of
tiles [7, 53]), mathematical logic (the validity problem for predicate calculus [14, 83], the decision
problem for first-order arithmetic [81]), and even elementary calculus (the problem of integrability in
finite terms [52]).

A scheme for classifying unsolvable problems was developed by Post [50] and Kleene/Post [37].
Two reals3 X and Y are said to be Turing equivalent if each is computable using the other as a Turing
oracle. The Turing degree of a real is its equivalence class under this equivalence relation. Each of the
specific, natural, unsolvable problems mentioned above is a decision problem and may therefore be
straightforwardly described or “encoded”4 as a real. It was then shown that each of these problems is
of the same Turing degree as the halting problem. This Turing degree is denoted 0′. Thus the specific
Turing degree 0′ is extremely useful and important.

Given a real X, the Turing degree of X is denoted degT(X). If a = degT(X) and b = degT(Y )
are the Turing degrees of reals X and Y respectively, we write X ≤T Y or a ≤ b to mean that Y is
“at least as unsolvable as” X in the following sense: X is computable using Y as a Turing oracle. We
also write X <T Y or a < b to mean that X ≤T Y and Y �T X. Let DT be the set of all Turing
degrees. Clearly ≤ is a partial ordering of DT, and every pair of degrees in DT has a supremum, i.e.,
a least upper bound. In other words, DT is a semilattice. Kleene and Post proved that there are
infinitely many degrees in DT which are less than 0′, and there are uncountably many other degrees in
DT which are incomparable with 0′. Thus DT has a rich algebraic structure. However, despite recent
remarkable progress [63, 77], no one has yet discovered a specific, natural example of an unsolvable
problem of Turing degree � 0′.

Given a real X, let X ′ be a real which encodes the halting problem relative to X, i.e., with X used
as a Turing oracle. If a is the Turing degree of X, let a′ be the Turing degree of X ′. It can be shown
that a′ is independent of the choice of X such that degT(X) = a. The operator a 7→ a′ : DT → DT

is called the Turing jump operator. Generalizing Turing’s proof of the unsolvability of the halting
problem, one shows that a < a′. In other words, X ′ is “more unsolvable than” X. Inductively we
write a(0) = a and a(n+1) = (a(n))′ for all natural numbers n. Extending this induction into the
transfinite, it is possible to define a(α) where α ranges over a large initial segment of the ordinal
numbers including the constructibly countable ordinal numbers. We then have a(α) < a(β) whenever
α < β. See [57, Part A] and [30, 64].

Let 0 be the bottom degree in DT, i.e., the Turing degree of any solvable decision problem. We

1By unsolvable we mean algorithmically unsolvable, i.e., not solvable by a Turing program.
2We are not offering a rigorous definition of what is meant by “specific and natural.” However, it is well known that

considerations of specificity and naturalness play an important role in mathematics. Without such considerations, it
would be difficult or impossible to pursue the ideal of “exquisite taste” in mathematical research, as famously enunciated
by von Neumann.

3In this paper we take reals to be points in the Baire space NN, i.e., functions X : N → N where N = {0, 1, 2, . . .} =
the natural numbers.

4More specifically, each of the mentioned problems amounts to the question of deciding whether or not a given finite
string of symbols from a fixed finite alphabet belongs to a particular set of such strings. The problem is then identified
with the characteristic function of the set of Gödel numbers of the finite strings which belong to the set.
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then have a transfinite hierarchy of specific, natural Turing degrees

0 < 0′ < 0′′ < · · · < 0(α) < 0(α+1) < · · ·

where α ranges over a large initial segment of the ordinal numbers [64]. Moreover, this hierarchy
of specific, natural Turing degrees has been useful for the classification of unsolvable mathematical
problems. See for instance [47] and [54, §14.8] and §4 below. However, no other specific, natural
Turing degrees are known.

The semilattice DT is large and complicated, so it is reasonable to examine subsemilattices which
are hopefully more manageable. One such subsemilattice has been studied in great depth. A Turing
degree is said to be recursively enumerable5 if it is the Turing degree of the characteristic function of
a subset of N which is the range of a recursive function. Let ET be the subsemilattice of DT consisting
of the recursively enumerable Turing degrees. The top and bottom degrees in ET are 0′ and 0. It is
known that ET is structurally rich. Two key results due to Sacks [55, 56] are the Splitting Theorem6

and the Density Theorem7, and many other results have been obtained [40, 41, 62, 78]. For instance,
the Turing degree of the first-order theory of ET is 0(ω) [49]. However, except for 0′ and 0 no specific,
natural, recursively enumerable Turing degrees are known.

2 Muchnik degrees

There are many specific, natural, unsolvable problems to which it is impossible to assign a Turing
degree.

As an example, let T be an effectively essentially undecidable theory. For instance, we could take
T = PA = Z1 = first-order arithmetic, or T = Z2 = second-order arithmetic [66], or T = ZFC =
Zermelo/Fraenkel set theory [28], or T = Q = Robinson’s arithmetic [81], or T = any consistent
recursively axiomatizable extension of one of these. Consider the problem C(T ) of “finding” a com-
plete and consistent theory which extends T . A solution of the problem would be any such theory.
Lindenbaum’s Lemma implies that such theories exist, and by [81] no such theory is algorithmically
decidable.8 In this sense the problem C(T ) is algorithmically unsolvable. On the other hand, the
problem C(T ) cannot correspond to a Turing degree, because for any solution X of C(T ) there exists
a solution Y of C(T ) such that Y <T X.

In order to overcome this limitation of the Turing degrees, we now extend DT to its completion,
Dw, the lattice of Muchnik degrees.

A mass problem is defined to be a set of reals.9 The idea here is that a mass problem P “represents”
(i.e., is the solution set of) the problem of “finding” or “computing” some real X which belongs to
P . Accordingly, a mass problem P is said to be unsolvable if it contains no Turing computable real,
i.e., if P ∩ REC = ∅ where REC = {X | X is computable}. Following the same idea, we generalize
the notion of Turing reducibility as follows. For mass problems P and Q, we say that P is Muchnik

reducible to Q, abbreviated P ≤w Q, if every solution of Q can be used as a Turing oracle to compute
some solution of P . In other words, P ≤w Q if and only if ∀Y (Y ∈ Q⇒ ∃X (X ∈ P and X ≤T Y )).10

We say that P is Muchnik equivalent to Q, abbreviated P ≡w Q, if P ≤w Q and Q ≤w P . The
Muchnik degree of P , written degw(P ), is the equivalence class of P under ≡w. Let Dw be the set of
all Muchnik degrees, partially ordered by letting degw(P ) ≤ degw(Q) if and only if P ≤w Q. It is easy

5A.k.a., computably enumerable [79].
6The Sacks Splitting Theorem says that ET satisfies ∀x (x > 0 ⇒ ∃u ∃v (u < x and v < x and sup(u, v) = x)).
7The Sacks Density Theorem says that ET satisfies ∀x∀y (x < y ⇒ ∃z (x < z < y)).
8When speaking of decidable and undecidable theories, we identify a theory with the characteristic function X ∈

{0, 1}N of the set of Gödel numbers of theorems of the theory.
9This concept is from Medvedev [42]. As in footnote 3 a real is a function X ∈ NN.

10This is Muchnik’s notion of weak reducibility [44, Definition 2].
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to see that Dw is a lattice. Given a real X, we identify X with the mass problem {X} = the singleton
set whose only member is X. Thus degT(X) = degw({X}) and DT is now a subset of Dw.

The relationship between DT and Dw may be viewed as an instance of a general construction.
Namely, for any partially ordered set K, let K̂ be the set of upwardly closed subsets U ⊆ K, partially
ordered by reverse inclusion, i.e., U ≤ V if and only if U ⊇ V . Identifying a ∈ K with the upwardly
closed set Ua = {x ∈ K | x ≥ a} ∈ K̂, we see that K is a subordering of K̂, i.e., a ≤ b if and only
if Ua ≤ Ub. Thus K̂ is a complete and completely distributive lattice, the completion of K. There is
a unique isomorphism of Dw onto D̂T which extends the identity map on DT, and in this sense Dw

is the completion of DT. The upshot here is that Muchnik degrees can be identified with upwardly
closed sets of Turing degrees.11 This remark will be important in §5 below.

In the above example, let us identify C(T ) with the mass problem {X | X is a complete and
consistent extension of T}. Under this identification, C(T ) is Muchnik reducible to the halting prob-
lem.12 However, the halting problem is not Muchnik reducible to C(T ), because the halting problem
has a Turing degree while C(T ) does not. Thus, letting 1 = the Muchnik degree of C(T ), we have
0 < 1 < 0′. Furthermore, the particular Muchnik degree 1 = degw(C(T )) can be characterized ab-
stractly in a way which does not depend on T . We now see that 1 is a very specific, very natural, very
important Muchnik degree which is not a Turing degree.

In addition to the Muchnik degree 1 and the Turing degrees 0(α) for ordinal numbers α =
0, 1, 2, . . . , ω, ω+1, . . ., there are many other specific, natural Muchnik degrees. Here are some examples
and references.

1. Let λ be the fair coin probability measure on {0, 1}N. A set S ⊆ {0, 1}N is said to be effectively

null if S ⊆
⋂

n Un for some uniformly effectively open sequence of sets Un such that λ(Un) ≤ 2−n

for all n. A real Z ∈ {0, 1}N is said to be Martin-Löf random [19, 48] if it does not belong to any
effectively null set. Let r1 = degw({Z ∈ {0, 1}N | Z is Martin-Löf random}). It is not difficult
to show that 0 < r1 < 1.

2. More generally, for any constructibly countable ordinal number α, let rα = degw({Z | (∀ξ <
α) (Z is Martin-Löf random relative to 0(ξ))}). It is not difficult to show that 0 = r0 < r1 <

r2 < · · · < rα < rα+1 < · · ·. Moreover, each rα for α ≥ 2 is incomparable with 1.

3. A partial recursive function ψ : ⊆ N → N is said to be universal if for each partial recursive
function ϕ : ⊆ N → N there exists a recursive function p : N → N such that ϕ(n) ≃ ψ(p(n)) for
all n.13 Fix such a function ψ and let d = degw({Z ∈ NN | Z ∩ ψ = ∅}) and dREC = degw({Z ∈
NN | Z ∩ ψ = ∅ and Z is recursively bounded}). Clearly d and dREC are independent14 of our
choice of ψ. By [3, 29] we have 0 < d < dREC < r1.

4. Given a recursive function f : N → N, define Z ∈ {0, 1}N to be f -complex if

∃c∀n (K(Z↾{1, . . . , n}) > f(n)− c)

where K denotes Kolmogorov complexity. In this way each specific, natural,15 recursive function
f gives rise to a specific, natural Muchnik degree kf = degw({Z ∈ {0, 1}N | Z is f -complex}), and

11For a more precise statement, see [5, Theorem 5.8].
12This follows from a theorem of Kleene [36, page 398]. See also [32, 61].
13Here E1 ≃ E2 means that E1 and E2 are both undefined or both defined and equal.
14Let ϕn, n ∈ N be a fixed, standard, partial recursive enumeration of the partial recursive functions. A function

Z ∈ NN is said to be diagonally nonrecursive [3, 26, 29, 35, 69] if Z ∩ψ = ∅ where ψ is the well known diagonal function,
defined by ψ(n) ≃ ϕn(n). Letting DNR = {Z ∈ NN | Z is diagonally nonrecursive} and DNRREC = {Z ∈ DNR | Z is
recursively bounded}, we have d = deg

w
(DNR) and dREC = deg

w
(DNRREC).

15For example, f(n) could be n/2 or n/3 or
√
n or 3

√
n or log2 n or log3 n or log2 log2 n, etc., or f could be the inverse

Ackermann function.
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there is also kREC = degw({Z ∈ {0, 1}N | Z is f -complex for some unbounded recursive function
f}). By [35] we have kREC = dREC, and by [19, Theorem 6.2.3] we have k1 = r1 where 1 : N → N
is the identity function. Building on the methods of Miller [43], Hudelson [27] has shown that
dREC < kf < kg ≤ r1 holds for many pairs of unbounded recursive functions f, g. In particular,
this holds whenever ∀n (f(n) ≤ f(n+ 1) ≤ f(n) + 1 and f(n) + 2 log2 f(n) ≤ g(n) ≤ n).

5. Let MLRX = {Z ∈ {0, 1}N | Z is Martin-Löf random relative to X}. We say that X is LR-
reducible to Y , abbreviated X ≤LR Y , if MLRX ⊇ MLRY [19, 48]. Letting bα = degw({Y |
0(α) ≤LR Y }), it is not difficult to show that 0 = b0 < b1 < b2 < · · · < bα < bα+1 < · · ·. On
the other hand, by [72] we know that the Muchnik degrees bα for α ≥ 1 are incomparable with
the Muchnik degrees d, 1, and rα for all α ≥ 1.

6. A partial recursive function ψ : ⊆ N → N is said to be linearly universal if it is “universal
via linear functions,” i.e., for each partial recursive function ϕ : ⊆ N → N there exist a, b ∈ N
such that ϕ(n) ≃ ψ(an + b) for all n. Let D = {Z ∈ NN | Z ∩ ψ = ∅ for some linearly
universal partial recursive function ψ}, and let DREC = {Z ∈ D | Z is recursively bounded}).
Clearly degw(D) = d and degw(DREC) = dREC where d and dREC are as above. However,
letting Dh = {Z ∈ D | Z is h-bounded} where h is a specific recursive function, we get a
family of Muchnik degrees dh = degw(Dh) which are of considerable interest [68, §10] [34]. In
particular, for any unbounded recursive function h such that ∀n (1 ≤ h(n) ≤ h(n+ 1)) we know
by [3, 26, 76] and [8, §7.3] that dREC < dh < 1, and if

∑
n h(n)

−1 < ∞ then dh < r1, and if∑
n h(n)

−1 = ∞ then dh is incomparable with rα for all α ≥ 1. Also of interest is the Muchnik
degree dslow = degw({Z | Z ∈ Dh for some recursive function h such that ∀n (h(n) ≤ h(n + 1))
and

∑
n h(n)

−1 = ∞}).

7. There are many other examples of specific, natural Muchnik degrees. See for instance the
Computability Menagerie16 [33]. Our choice of examples in this paper is oriented toward §3
below.

3 The lattices Ew and Sw

The lattice Dw is large and complicated, so it is desirable to consider more manageable sublattices.
The smallest such sublattice which comes immediately to mind is the countable lattice Ew consisting
of the Muchnik degrees of nonempty, effectively closed subsets of {0, 1}N. The explicit study of Ew was
undertaken only relatively recently [9, 11, 65, 67, 68] but was implicit in some much older literature
[25, 31, 32, 58, 59]. By [59] the top and bottom degrees in Ew are 1 and 0, and by [11] every countable
distributive lattice is lattice-embeddable into Ew. The only Turing degree in Ew is 0, but there is an
obvious analogy

Ew
Dw

=
ET
DT

and indeed the Splitting Theorem and the Density Theorem hold for Ew [9, 10]. The Turing degree of

the first-order theory of Ew is known to be ≥ 0′ [60] and conjectured to be = 0(ω
CK
1

+ω) [15, page 127]
[73, Remark 3.2.3].

An advantage of Ew over ET is that Ew contains a great variety of specific, natural Muchnik degrees
in addition to its top and bottom degrees 1 and 0. In particular, it is not difficult [69, §3] to show
that the Muchnik degrees d,dREC,kf , r1,dh, and dslow which were discussed in §2 belong to Ew.

16The inhabitants of the Computability Menagerie are downwardly closed sets of Turing degrees, and the complements
of such sets are essentially the same thing as Muchnik degrees.
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Figure 1: A picture of Ew.

Also of interest is the countable lattice Sw consisting of the Muchnik degrees of nonempty, effec-
tively closed subsets of NN. An easy argument [73, Lemma 3.3.5] shows that Sw has an alternative
characterization as the lattice of Muchnik degrees of nonempty, lightface Σ0

3 subsets of NN. This is
important, because it implies that Sw contains many specific, natural Muchnik degrees beyond those
which are already in Ew. In particular, the Muchnik degree r2 which was discussed in §2 belongs to Sw,
as do the Turing degrees 0(α) and the Muchnik degrees bα for all recursive ordinal numbers α < ωCK

1

[72].
Trivially Ew is a sublattice of Sw, and by [73, Theorem 3.3.1] we know that Ew is an initial segment

of Sw. This is important, because it means that we have a specific, natural, lattice homomorphism
s 7→ inf(s,1) : Sw → Ew. With this homomorphism, each of the specific, natural Muchnik degrees
in Sw has a specific, natural image in Ew. In particular, the Muchnik degrees inf(r2,1) [69, §3] and
inf(bα,1) for all ordinal numbers α < ωCK

1 [70, 72] belong to Ew.
Clearly ET is a subsemilattice of Sw, and by the Arslanov Completeness Criterion [29, Theorem 1]

(see also [69, §5]) our homomorphism of Sw onto Ew is one-to-one when restricted to ET. Thus we have
a semilattice embedding a 7→ inf(a,1) : ET →֒ Ew which carries the top and bottom degrees 0′,0 ∈ ET
to the top and bottom degrees 1,0 ∈ Ew. Unfortunately, the range of this embedding does not appear
to contain any specific, natural Muchnik degrees other than 1 and 0. Thus the problem of finding a
specific, natural, recursively enumerable Turing degree in the range 0 < a < 0′ remains open.

Figure 1 is a picture of Ew. In this picture, a is any recursively enumerable Turing degree in the
range 0 < a < 0′. The black dots other than inf(a,1) denote some of the specific, natural Muchnik
degrees which we have discussed.

4 Applications

We briefly mention an application of Ew to tiling problems. A Wang tile is a unit square with colored
edges. Given a finite set A of Wang tiles, let PA be the problem of tiling the plane with copies of tiles
from A. More formally, PA is the set of mappings X : Z × Z → A such that for all (i, j) ∈ Z× Z the
right edge of X(i, j) matches the left edge of X(i+1, j) and the top edge of X(i, j) matches the bottom
edge of X(i, j + 1). Clearly degw(PA) ∈ Ew provided PA 6= ∅. It turns out [20, 74] that conversely,
every Muchnik degree in Ew is degw(PA) for some finite set A of Wang tiles. This result plus the
existence of an infinite independent set of degrees in Ew has a recursion-theory-free consequence for
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symbolic dynamics. Namely, there exists an infinite collection of 2-dimensional symbolic dynamical
systems of finite type which are strongly independent of each other with respect to symbolic products,
symbolic disjoint unions, and symbolic morphisms. For details see [74, §3].

We briefly mention the connection between degrees of unsolvability and reverse mathematics. From
my book [66] it is clear that basic recursion-theoretic concepts such as Turing reducibility [66, Remark
I.7.5], the Turing jump operator [66, Remark I.3.4], basis theorems [66, §§VII.1,VIII.2], the hyperarith-
metical hierarchy [66, §VIII.3], the hyperjump [66, Remark I.5.4], and algorithmic randomness [66,
§X.1] are highly relevant to reverse mathematics. More recently [72] it emerged that some advanced
recursion-theoretic concepts such as LR-reducibility are also highly relevant to reverse mathematics.
Beyond this, there is an obvious correspondence between the so called “Big Five” subsystems of Z2 [66,
Chapters II–VI] and certain degrees of unsolvability. Namely, the systems RCA0, WKL0, ACA0, ATR0,

and Π1
1-CA0 correspond to the Muchnik degrees 0, 1, 0′, 0(α) for α < ωCK

1 , and 0(ω
CK
1

) respectively,
where ωCK

1 is the least nonrecursive ordinal. In addition, the system WWKL0 [66, §X.1] corresponds
to the Muchnik degree r1.

5 The Muchnik topos

From Medvedev’s 1955 paper introducing mass problems [42] and Muchnik’s 1963 paper introducing
Muchnik reducibility [44]17, it is evident that both authors were motivated by Kolmogorov’s nonrig-
orous 1932 interpretation of intuitionistic propositional calculus as a “calculus of problems” [38, 39].
Kolmogorov’s idea was to view intuitionistic propositions as “problems,” and intuitionistic proofs of
propositions as “solutions” of the corresponding “problems.” Intuitionistic propositional connectives
are then viewed as methods of combining “problems” to form new “problems.” Two “problems” are
viewed as being “equivalent” if from any solution of either of them a “solution” of the other can be
“easily” or “immediately” extracted. We cannot expect the Law of the Excluded Middle to hold, be-
cause it would mean that for any proposition there should be an “easy” proof of either the proposition
or its negation.

Muchnik’s rigorous implementation of Kolmogorov’s idea [44, Theorem 4] is based on mass prob-
lems, Muchnik reducibility, and lattice operations in Dw. Given two Muchnik degrees p and q, we
interpret p∧ q as sup(p,q), p∨q as inf(p,q), p ⇒ q as inf({x | sup(p,x) ≥ q}), “true” as 0, “false”
as degw(∅), and p ⊢ q as p ≥ q. For more details and references, see [73, §4] and [71, 80].

Recently Muchnik’s interpretation of intuitionistic propositional calculus [44] has been extended
to an interpretation of intuitionistic mathematics as a whole [5]. The extension is based on a category
which we call the Muchnik topos. The idea here is to consider DT as a topological space in which the
open sets are the upwardly closed sets of Turing degrees.18 In general, for any topological space T , a
sheaf over T consists of a topological space X together with a local homeomorphism p : X → T . A
sheaf morphism from a sheaf p : X → T to a sheaf q : Y → T is a continuous function f : X → Y such
that p(x) = q(f(x)) for all x ∈ X . The sheaves and sheaf morphisms over T form a category called
Sh(T ). As noted by Fourman and Scott [24], Sh(T ) is a topos and provides a model of intuitionistic
higher-order logic in which the truth values are the open subsets of T . The Muchnik topos is then the
special case Sh(DT) with truth values in Dw. All of this background material concerning sheaves and
intuitionistic higher-order logic is explained at length in our paper [5].

Within the Muchnik topos Sh(DT), there are two versions of the real number system R: the sheaf
RC = R × DT of Cauchy reals, and the sheaf RM = {(r,a) ∈ RC | degT(r) ≤T a} of Muchnik reals.
Roughly speaking, the difference between RC and RM is that a Cauchy real can exist anywhere within
the topological space DT, but a Muchnik real can exist only where we have enough Turing oracle

17See also the English translation in [45].
18This topological space was considered by Muchnik [44, page 1332] [45, page 52].
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power to compute it. For precise definitions, see [5]. It turns out [5, Theorem 5.19] that the Muchnik
topos satisfies a Choice and Bounding Principle:

(∀x∃yΦ(x, y)) ⇒ ∃w ∃z ∀x (wx ≤T (x, z) ∧ Φ(x,wx))

where x, y, z are variables ranging over Muchnik reals, w is a variable ranging over functions from
Muchnik reals to Muchnik reals, and Φ(x, y) is any formula of intuitionistic higher-order logic in
which w and z do not occur. Our Choice and Bounding Principle reflects a well known intuitonistic
idea: if for all real numbers x there exists a real number y which bears a certain relationship to x,
then there should be a function x 7→ y which computes such a y using x as a Turing oracle.

We feel that, among various interpretations of intuitionistic mathematics, our interpretation in
terms of the Muchnik topos stands out because of its relationship to the ideas of Kolmogorov,
Medvedev, and Muchnik.
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