Turing degrees and Muchnik degrees of recursively bounded DNR functions*

Stephen G. Simpson
Department of Mathematics
Vanderbilt University
Nashville, TN 37240, USA
http://www.math.psu.edu/simpson
sgslogic@gmail.com

First draft: January 7, 2015
This draft: August 24, 2016

To be published in a Festschrift in honor of Rod Downey's 60 th birthday.

Contents

1 Introduction 1
2 When $\sum_{i} p(i)^{-1}<\infty \quad 2$
3 When $\sum_{i} p(i)^{-1}=\infty \quad 3$
4 Linear universality 5
5 Some Muchnik degrees in $\mathcal{E}_{\mathrm{w}} \quad 7$
References 8

1 Introduction

Let $\varphi_{i}, i \in \mathbb{N}$ be a standard enumeration of the 1-place partial recursive functions $\varphi: \subseteq \mathbb{N} \rightarrow \mathbb{N}$. A function $Y: \mathbb{N} \rightarrow \mathbb{N}$ is said to be diagonally nonrecursive (with respect to the given enumeration), abbreviated $D N R$, if $\forall i\left(Y(i) \neq \varphi_{i}(i)\right)$. Such a Y is said to be recursively bounded if there exists a recursive function $p: \mathbb{N} \rightarrow \mathbb{N}$ such that $\forall i(Y(i)<p(i))$. In this situation it is known that the growth rate of p has a strong influence on the Turing degree of Y. For example,

[^0]it follows from [1] (see also $[15, \S 10]$) that the Turing degrees of elementaryrecursively bounded DNR functions form a proper subclass of the Turing degrees of primitive-recursively bounded DNR functions. Additional results in this vein may be found in [11, Chapter 3], and still other results may be obtained by translating theorems about partial randomness [8, 9] into the context of recursively bounded DNR functions [12, 13].

In this note we exposit two striking results along these lines due to Joseph S. Miller. Roughly speaking, the results are as follows. Let $p: \mathbb{N} \rightarrow \mathbb{N}$ be a nondecreasing recursive function such that $p(0) \geq 2$.

1. If $\sum_{i} p(i)^{-1}<\infty$, then every Martin-Löf random real computes a p bounded DNR function.
2. If $\sum_{i} p(i)^{-1}=\infty$, then no Martin-Löf random real computes a p-bounded DNR function unless it is Turing complete.

Note that 2 may be viewed as a vast generalization of a theorem of Stephan [20]. Combining results 1 and 2 , we see that $\sum_{i} p(i)^{-1}<\infty$ if and only if the Turing upward closure of the set of p-bounded DNR functions is of full measure.

In order to formulate results 1 and 2 precisely, we find it convenient to replace the class DNR by the closely related class LDNR of linearly DNR functions. As a by-product of this move, we use LDNR to identify some specific, natural Muchnik degrees in $\mathcal{E}_{\text {w }}$ which are associated with 1 and 2.

In our exposition of Miller's results, we draw heavily on the ideas of Bienvenu and Porter [3]. Of course [3] contains many other interesting results concerning other topics such as shift-complexity. Our intention here is to break down the proofs of Miller's results into easily manageable components.

2 When $\sum_{i} p(i)^{-1}<\infty$

Let $\mathbb{N}=\{0,1,2,, \ldots\}=$ the natural numbers. Let MLR $=\left\{X \in\{0,1\}^{\mathbb{N}} \mid X\right.$ is Martin-Löf random\}. The following theorem is a slight generalization of [3, Theorem 7.6(i)]. See also Kurtz's earlier result in [10, Proposition 3].

Definition 2.1. Given a function $p: \mathbb{N} \rightarrow \mathbb{N}$, we write

$$
\prod p=\prod_{i=0}^{\infty}\{j \mid j<p(i)\}=\left\{Y \in \mathbb{N}^{\mathbb{N}} \mid \forall i(Y(i)<p(i))\right\}
$$

denoting the set of p-bounded functions.
Theorem 2.2 (Miller). Let $p: \mathbb{N} \rightarrow \mathbb{N}$ be a recursive function such that $\forall i(p(i) \geq 2)$ and $\sum_{i=0}^{\infty} p(i)^{-1}<\infty$. Let $\psi: \subseteq \mathbb{N} \rightarrow \mathbb{N}$ be a partial recursive function. Then $(\forall X \in \operatorname{MLR})\left(\exists Y \leq_{\mathrm{T}} X\right)\left(Y \in \prod p\right.$ and $\left.Y \cap \psi=\emptyset\right)$.

Proof. For each i let $q(i)$ be such that $2^{q(i)} \leq p(i)<2^{q(i)+1}$. Note that $q: \mathbb{N} \rightarrow \mathbb{N}$ is recursive and $\forall i(q(i) \geq 1)$. For all $X \in\{0,1\}^{\mathbb{N}}$ define $\Psi^{X}: \mathbb{N} \rightarrow \mathbb{N}$ by $\Psi^{X}(i)=$
$\sum_{j<q(i)} X(j) 2^{j}<2^{q(i)}$. Let $U_{i}=\left\{X \mid \Psi^{X}(i)=\psi(i)\right\}$, and let λ be the fair coin probability measure on $\{0,1\}^{\mathbb{N}}$. Clearly U_{i} is uniformly Σ_{1}^{0} and $\lambda\left(U_{i}\right) \leq 2^{-q(i)}$, hence $\sum_{i} \lambda\left(U_{i}\right) \leq \sum_{i} 2^{-q(i)}=2 \sum_{i} 2^{-q(i)-1}<2 \sum_{i} p(i)^{-1}<\infty$. Hence by Solovay's Lemma [16, Lemma 3.5] we have $(\forall X \in \operatorname{MLR}) \exists n(\forall i \geq n)\left(X \notin U_{i}\right)$, i.e., $(\forall X \in \operatorname{MLR}) \exists n(\forall i \geq n)\left(\Psi^{X}(i) \neq \psi(i)\right)$. Given $X \in$ MLR, fix such an n and define $Y: \mathbb{N} \rightarrow \mathbb{N}$ by

$$
Y(i)= \begin{cases}1 & \text { if } i<n \text { and } \psi(i)=0 \\ 0 & \text { if } i<n \text { and } \psi(i) \neq 0 \\ \Psi^{X}(i) & \text { if } i \geq n\end{cases}
$$

Then Y differs at most finitely from Ψ^{X}, hence $Y \leq_{\mathrm{T}} X$, and it is also clear that $\forall i\left(Y(i)<2^{q(i)} \leq p(i)\right.$ and $\left.Y(i) \neq \psi(i)\right)$.

Definition 2.3. Let $\mathrm{DNR}=\left\{Y \in \mathbb{N}^{\mathbb{N}} \mid \forall i\left(Y(i) \neq \varphi_{i}(i)\right)\right\}$ where $\varphi_{e}, e \in \mathbb{N}$ is some fixed standard enumeration of the 1-place partial recursive functions. Given $p: \mathbb{N} \rightarrow \mathbb{N}$, let $\mathrm{DNR}_{p}=\mathrm{DNR} \cap \prod p$, and let $\mathrm{DNR}_{\mathrm{REC}}=\left\{Y \mid Y \in \mathrm{DNR}_{p}\right.$ for some recursive function $p\}$.

Corollary 2.4. Let $p: \mathbb{N} \rightarrow \mathbb{N}$ be a recursive function such that $\forall i(p(i) \geq 2)$ and $\sum_{i=0}^{\infty} p(i)^{-1}<\infty$. Then $(\forall X \in \operatorname{MLR})\left(\exists Y \in \operatorname{DNR}_{p}\right)\left(Y \leq_{\mathrm{T}} X\right)$.

Proof. This is the special case of Theorem 2.2 with $\psi(i) \simeq \varphi_{i}(i)$.

$3 \quad$ When $\sum_{i} p(i)^{-1}=\infty$

The following definition and theorem are slight generalizations of [3, Definition 4.1(i), Theorem 5.3].

Definition 3.1.

1. We write $\mathbb{N}^{*}=\bigcup_{n=0}^{\infty} \mathbb{N}^{n}$ denoting the set of finite sequences of natural numbers. We use σ as a variable ranging over \mathbb{N}^{*}. Let $[0,1]$ denote the unit interval in the real line, and let \mathbb{Q} denote the set of rational numbers.
2. A continuous semimeasure on \mathbb{N}^{*} is a function $M: \mathbb{N}^{*} \rightarrow[0,1]$ such that $\forall \sigma\left(M(\sigma) \geq \sum_{i \in \mathbb{N}} M\left(\sigma^{\sim}\langle i\rangle\right)\right)$.
3. A continuous semimeasure M on \mathbb{N}^{*} is said to be left recursively enumerable, abbreviated left r.e., if there exists a recursive function $(s, \sigma) \mapsto$ $M_{s}(\sigma): \mathbb{N} \times \mathbb{N}^{*} \rightarrow \mathbb{Q}$ such that $\forall \sigma\left(M(\sigma)=\lim _{s} M_{s}(\sigma)\right.$ and $\forall s(0 \leq$ $\left.\left.M_{s}(\sigma) \leq M_{s+1}(\sigma)\right)\right)$. We may safely assume that $\forall s\left(M_{s}\right.$ is a continuous semimeasure on \mathbb{N}^{*} and $\left\{\sigma \mid M_{s}(\sigma)>0\right\}$ is finite).
4. A left r.e. continuous semimeasure M on \mathbb{N}^{*} is said to be universal if for all left r.e. continuous semimeasures \bar{M} on \mathbb{N}^{*} we have $\exists c \forall \sigma(\bar{M}(\sigma)<$ $c \cdot M(\sigma))$. It is straightforward to prove the existence of such an M.
5. Throughout this note we let M denote a fixed universal left r.e. continuous semimeasure on \mathbb{N}^{*}, and we fix $M_{s}(\sigma)$ as above. Our definitions and results will not depend on the choice of M and $M_{s}(\sigma)$.
6. Given $Q \subseteq \mathbb{N}^{\mathbb{N}}$ and $n \in \mathbb{N}$, let $Q \upharpoonright n=\{Y \upharpoonright n \mid Y \in Q\}$. Note that $Q \upharpoonright n$ is a subset of \mathbb{N}^{n}, which is a prefix-free subset of \mathbb{N}^{*}. For any prefix-free set $S \subseteq \mathbb{N}^{*}$ let $M(S)=\sum_{\sigma \in S} M(\sigma)$.
7. A set $Q \subseteq \mathbb{N}^{\mathbb{N}}$ is said to be deep if there exists a recursive function r : $\mathbb{N} \rightarrow \mathbb{N}$ such that $\forall n\left(M(Q \upharpoonright r(n)) \leq 2^{-n}\right)$.

Theorem 3.2 ([3, Theorem 5.3]). Let $p: \mathbb{N} \rightarrow \mathbb{N}$ be a recursive function, and let $Q \subseteq \prod p$ be deep and Π_{1}^{0}. Then $(\forall X \in \operatorname{MLR})(\forall Y \in Q)\left(Y \leq_{\mathrm{T}} X \Rightarrow 0^{\prime} \leq_{\mathrm{T}} X\right)$.

Proof. A difference test is a pair of sequences $U_{n}, V_{n}, n \in \mathbb{N}$ of uniformly Σ_{1}^{0} subsets of $\{0,1\}^{\mathbb{N}}$ such that $\forall n\left(\lambda\left(U_{n} \backslash V_{n}\right) \leq 2^{-n}\right)$. A real $X \in\{0,1\}^{\mathbb{N}}$ is said to be difference random [6] if for all such difference tests we have $\exists n\left(X \notin U_{n} \backslash V_{n}\right)$. We shall use the following result of Franklin and $\mathrm{Ng}[6]: X$ is difference random if and only if X is Martin-Löf random and $\not ¥_{\mathrm{T}} 0^{\prime}$.

Let p and Q be as in the hypothesis of Theorem 3.2. Let r be a recursive function such that $\forall n\left(M(Q \upharpoonright r(n)) \leq 2^{-n}\right)$. Since p and r are recursive and Q is a Π_{1}^{0} subset of Πp, it follows by König's Lemma that $Q \upharpoonright r(n)$ is Π_{1}^{0} uniformly in n. Given a partial recursive functional Φ, consider the left r.e. continuous semimeasure M_{Φ} on \mathbb{N}^{*} given by $M_{\Phi}(\sigma)=\lambda\left(\left\{X \in\{0,1\}^{\mathbb{N}}\left|\Phi^{X} \upharpoonright\right| \sigma \mid=\sigma\right\}\right)$. Since M is a universal left r.e. continuous semimeasure on \mathbb{N}^{*}, let c_{Φ} be a constant such that $\forall \sigma\left(M_{\Phi}(\sigma) \leq c_{\Phi} \cdot M(\sigma)\right)$. Let

$$
U_{n}=\left\{X \in\{0,1\}^{\mathbb{N}} \mid(\forall i<r(n))\left(\Phi^{X}(i) \downarrow\right)\right\}
$$

and let $V_{n}=\left\{X \in U_{n} \mid \Phi^{X} \upharpoonright r(n) \notin Q \upharpoonright r(n)\right\}$. Then U_{n} and V_{n} are uniformly Σ_{1}^{0} and $\lambda\left(U_{n} \backslash V_{n}\right)=M_{\Phi}(Q \upharpoonright r(n)) \leq c_{\Phi} \cdot M(Q \upharpoonright r(n)) \leq c_{\Phi} \cdot 2^{-n}$. We now see that if $\Phi^{X} \in Q$ then X is not difference random, so by [6] $X \in$ MLR implies $0^{\prime} \leq_{\mathrm{T}} X$. Since Φ is an arbitrary partial recursive functional, Theorem 3.2 is proved.

Theorem 3.3 ([3, Theorem 7.6(ii)]). Let p be a recursive function such that $\sum_{i=0}^{\infty} p(i)^{-1}=\infty$. Then, we can effectively find a partial recursive function $\psi: \subseteq \mathbb{N} \rightarrow \mathbb{N}$ such that the Π_{1}^{0} set $Q=\left\{Y \in \prod p \mid Y \cap \psi=\emptyset\right\}$ is deep.

Proof. We may safely assume that $p(i)>0$ for all i, because otherwise $Q=\emptyset$. Since p is recursive and $\sum_{i} p(i)^{-1}=\infty$, let $r: \mathbb{N} \rightarrow \mathbb{N}$ be recursive such that $\sum_{r(n) \leq i<r(n+1)} p(i)^{-1}>2^{n}$ holds for all n. We shall have $\psi=\bigcup_{s} \psi_{s}$ where ψ_{s} is defined recursively by stages, as follows.

Stage 0. Let $\psi_{0}=\emptyset$.
Stage $s+1$. Let $Q_{s}=\left\{Y \in \prod p \mid Y \cap \psi_{s}=\emptyset\right\}$ and let $n=(s+1)_{0}=$ the largest n such that 2^{n} is a divisor of $s+1$. There are three cases.

Case 1. If $M_{s}\left(Q_{s} \upharpoonright r(n+1)\right) \leq 2^{-n}$ then do nothing, i.e., $\psi_{s+1}=\psi_{s}$.
Case 2. Otherwise, if $\{i \mid r(n) \leq i<r(n+1)\} \subseteq \operatorname{dom}\left(\psi_{s}\right)$ then again do nothing, i.e., $\psi_{s+1}=\psi_{s}$.

Case 3. Otherwise, pick an i such that $r(n) \leq i<r(n+1)$ and $i \notin \operatorname{dom}\left(\psi_{s}\right)$. For each $j<p(i)$ let $Q_{s}^{j}=\left\{X \in Q_{s} \mid X(i)=j\right\}$. Thus $Q_{s}=\bigcup_{j<p(i)} Q_{s}^{j}$ and $Q_{s}\left\lceil r(n+1)=\bigcup_{j<p(i)} Q_{s}^{j}\lceil r(n+1)\right.$ and these unions are disjoint unions. Since $M_{s}\left(Q_{s}\lceil r(n+1))>2^{-n}\right.$, there is at least one $j<p(i)$ such that $M_{s}\left(Q_{s}^{j}\lceil r(n+\right.$ 1)) $>2^{-n} p(i)^{-1}$. Pick such a j and let $\psi_{s+1}=\psi_{s} \cup\{\langle i, j\rangle\}$.

In Case 3 we have $Q_{s+1}=Q_{s} \backslash Q_{s}^{j}$, hence $Q_{s+1}\left\lceil r(n+1)=Q_{s} \upharpoonright r(n+1) \backslash\right.$ $Q_{s}^{j}\lceil r(n+1)$, hence

$$
\begin{align*}
& M\left(Q_{s+1} \upharpoonright r(n+1)\right)=M\left(Q_{s}\lceil r(n+1))-M\left(Q_{s}^{j}\lceil r(n+1))\right.\right. \\
& \quad \leq M\left(Q_{s} \upharpoonright r(n+1)\right)-M_{s}\left(Q_{s}^{j}\lceil r(n+1))\right. \tag{1}\\
& \quad<M\left(Q_{s} \upharpoonright r(n+1)\right)-2^{-n} p(i)^{-1} .
\end{align*}
$$

But $M\left(Q_{0} \upharpoonright r(n+1)\right) \leq 1<\sum_{r(n) \leq i<r(n+1)} 2^{-n} p(i)^{-1}$, so from (1) we see that for each n Case 3 holds at fewer than $r(n+1)-r(n)$ many stages $s+1$ with $(s+1)_{0}=n$, and Case 2 never holds. Hence Case 1 holds at stage $s+1$ for all sufficiently large s such that $(s+1)_{0}=n$, hence $M_{s}\left(Q_{s} \backslash r(n+1)\right) \leq 2^{-n}$ for all such s, so letting $Q=\bigcap_{s} Q_{s}$ we have $M(Q \upharpoonright r(n+1)) \leq 2^{-n}$, Q.E.D.
Theorem 3.4 (Miller). Let p be a recursive function such that $\sum_{i=0}^{\infty} p(i)^{-1}=$ ∞. Then, we can find a partial recursive function $\psi: \subseteq \mathbb{N} \rightarrow \mathbb{N}$ such that $(\forall X \in \operatorname{MLR})(\forall Y \in \Pi p)$ (if $Y \cap \psi=\emptyset$ and $Y \leq_{\mathrm{T}} X$ then $\left.0^{\prime} \leq_{\mathrm{T}} X\right)$.

Proof. This is immediate from Theorems 3.2 and 3.3.
Corollary 3.5 (Stephan [20]). If $X \in$ MLR is of PA-degree, then $0^{\prime} \leq_{\mathrm{T}} X$.
Proof. Applying Theorem 3.4 with $p(i)=2$ for all i, we obtain a disjoint pair of recursively enumerable sets $A_{0}=\{i \mid \psi(i)=0\}$ and $A_{1}=\{i \mid \psi(i)=1\}$ with the following property: $\left(\forall Y \in\{0,1\}^{\mathbb{N}}\right)\left(\right.$ if Y separates A_{0} from A_{1} then $(\forall X \in \operatorname{MLR})\left(Y \leq_{\mathrm{T}} X \Rightarrow 0^{\prime} \leq_{\mathrm{T}} X\right)$). The corollary follows, because any X which is of PA-degree computes a separating function for any disjoint pair of recursively enumerable sets.

4 Linear universality

Despite Theorems 3.2 and 3.4, it is not clear whether the following holds:
If $p: \mathbb{N} \rightarrow \mathbb{N}$ is nondecreasing and recursive and $\sum_{i=0}^{\infty} p(i)^{-1}=\infty$, then $(\forall X \in \operatorname{MLR})\left(\forall Y \in \operatorname{DNR}_{p}\right)\left(Y \leq_{\mathrm{T}} X \Rightarrow 0^{\prime} \leq_{\mathrm{T}} X\right)$.

The difficulty here is that, depending on our choice of a standard enumeration of the partial recursive functions, there may or may not exist a one-to-one recursive function $r: \mathbb{N} \rightarrow \mathbb{N}$ such that $\forall i\left(\psi(i) \simeq \varphi_{r(i)}(r(i))\right)$ and $\sum_{i=0}^{\infty} p(r(i))^{-1}=\infty$. See also the remarks of Bienvenu and Porter concerning their [3, Definition 7.5].

However, as we shall explain in this section and the next, the statement displayed above holds if we replace DNR functions by linearly $D N R$ functions.

Definition 4.1. Let $\psi: \subseteq \mathbb{N} \rightarrow \mathbb{N}$ be a partial recursive function. We say that ψ is universal if for all partial recursive functions $\varphi: \subseteq \mathbb{N} \rightarrow \mathbb{N}$ there exists a recursive function $r: \mathbb{N} \rightarrow \mathbb{N}$ such that $\forall i(\varphi(i) \simeq \psi(r(i)))$. We say that ψ is linearly universal if it is "universal via linear functions," i.e., for all partial recursive functions $\varphi: \subseteq \mathbb{N} \rightarrow \mathbb{N}$ there exist constants $a, b \in \mathbb{N}$ such that $\forall i(\varphi(i) \simeq \psi(a i+b))$.

Example 4.2. Let $\varphi_{e}, e \in \mathbb{N}$ be a standard enumeration of the 1-place partial recursive functions. The partial recursive function ψ defined by $\psi(i) \simeq \varphi_{i}(i)$ is universal. The partial recursive function ψ defined by $\psi\left(2^{e}(2 i+1)\right) \simeq \varphi_{e}(i)$ is linearly universal.

Lemma 4.3. If a partial recursive function $\psi: \subseteq \mathbb{N} \rightarrow \mathbb{N}$ is linearly universal, then it is "uniformly linearly universal." More precisely, there exist primitive recursive functions $a, b: \mathbb{N} \rightarrow \mathbb{N} \backslash\{0\}$ such that $\forall e \forall i\left(\varphi_{e}(i) \simeq \psi(a(e) i+b(e))\right)$.

Proof. Fix an index \widehat{e} such that $\forall e \forall i\left(\varphi_{\widehat{e}}\left(2^{e}(2 i+1)\right) \simeq \varphi_{e}(i)\right)$. Since ψ is linearly universal, fix constants $\widehat{a}, \widehat{b} \in \mathbb{N}$ such that $\forall i\left(\varphi_{\widehat{e}}(i) \simeq \psi(\widehat{a} i+\widehat{b})\right)$. For all e and all i we have $\varphi_{e}(i) \simeq \varphi_{\widehat{e}}\left(2^{e}(2 i+1)\right) \simeq \psi\left(\widehat{a} 2^{e}(2 i+1)+\widehat{b}\right)$, so we may take $a(e)=2^{e+1} \widehat{a}$ and $b(e)=2^{e} \widehat{a}+\widehat{b}$. Since $\varphi_{\widehat{e}}$ is not a constant function, we have $\widehat{a}>0$, hence $a(e)>0$ and $b(e)>0$ for all e.

The next two theorems improve the conclusions of Theorems 3.3 and 3.4 by saying that they hold for any ψ which is linearly universal.

Theorem 4.4 ([3, Theorem 7.6(ii)]). Let p be a nondecreasing recursive function such that $\sum_{i=0}^{\infty} p(i)^{-1}=\infty$. Let ψ be a partial recursive function which is linearly universal. Then the Π_{1}^{0} set $Q=\left\{Y \in \prod p \mid Y \cap \psi=\emptyset\right\}$ is deep.
Proof. Let $\bar{e} \in \mathbb{N}$ be given. Since ψ is linearly universal, let $\bar{a}=a(\bar{e})$ and $\bar{b}=b(\bar{e})$ where $a, b: \mathbb{N} \rightarrow \mathbb{N}$ are fixed primitive recursive functions as given by Lemma 4.3. Thus we have $\varphi_{\bar{e}}(i) \simeq \psi(\bar{a} i+\bar{b})$ for all i. Define $\bar{p}: \mathbb{N} \rightarrow \mathbb{N}$ by $\bar{p}(i)=p(\bar{a} i+\bar{b})$. Since p is recursive and nondecreasing with $\sum_{i} p(i)^{-1}=\infty$, we claim that \bar{p} is likewise recursive and nondecreasing with $\sum_{i} \bar{p}(i)^{-1}=\infty$. To see this, note that for all i and j we have $\bar{a} i+\bar{b} \leq \bar{a} i+\bar{b}+j$, hence $\bar{p}(i)=p(\bar{a} i+\bar{b}) \leq$ $p(\bar{a} i+\bar{b}+j)$, hence $\bar{p}(i)^{-1} \geq p(\bar{a} i+\bar{b}+j)^{-1}$, hence $\bar{a} \bar{p}(i)^{-1} \geq \sum_{j<\bar{a}} p(\bar{a} i+\bar{b}+j)^{-1}$, hence $\bar{a} \sum_{i} \bar{p}(i)^{-1} \geq \sum_{i} \sum_{j<\bar{a}} p(\bar{a} i+\bar{b}+j)^{-1}=\sum_{j \geq \bar{b}} p(j)^{-1}=\infty$, hence $\sum_{i} \bar{p}(i)^{-1}=\infty$ as claimed. But then, applying Theorem 3.3 to \bar{p}, we can effectively find a partial recursive function $\bar{\psi}: \mathbb{N} \rightarrow \mathbb{N}$ such that the Π_{1}^{0} set $\bar{Q}=\left\{\bar{Y} \in \prod \bar{p} \mid \bar{Y} \cap \bar{\psi}=\emptyset\right\}$ is deep.

Our construction of $\bar{\psi}$ given \bar{e} is uniform in the following sense: there is a primitive recursive function which maps an arbitrary \bar{e} to an index of the corresponding partial recursive function $\bar{\psi}$. Therefore, by the Recursion Theorem (a.k.a., the Recursion-Theoretic Fixed Point Theorem, see [14, §11.2]) we can find an \bar{e} which is an index of the corresponding $\bar{\psi}$. For this \bar{e} and for all i we have $\bar{\psi}(i) \simeq \varphi_{\bar{e}}(i) \simeq \psi(\bar{a} i+\bar{b})$. Thus the recursive functional $Y \mapsto \bar{Y}$ given by $\bar{Y}(i)=Y(\bar{a} i+\bar{b})$ maps Q into \bar{Q}. Since \bar{Q} is deep, it follows by [3, Theorem 6.4] that Q is deep, Q.E.D.

Theorem 4.5 (essentially due to Miller). Let $p: \mathbb{N} \rightarrow \mathbb{N}$ be a nondecreasing recursive function such that $\sum_{i=0}^{\infty} p(i)^{-1}=\infty$. Let $\psi: \subseteq \mathbb{N} \rightarrow \mathbb{N}$ be a partial recursive function which is linearly universal. Then

$$
(\forall X \in \operatorname{MLR})\left(\forall Y \in \prod p\right)\left(\text { if } Y \cap \psi=\emptyset \text { and } Y \leq_{\mathrm{T}} X \text { then } 0^{\prime} \leq_{\mathrm{T}} X\right)
$$

Proof. This is immediate from Theorems 3.2 and 4.4.

5 Some Muchnik degrees in $\mathcal{E}_{\text {w }}$

Recall from $[17,18,19]$ that \mathcal{E}_{w} is the lattice of Muchnik degrees of nonempty Π_{1}^{0} subsets of $\{0,1\}^{\mathbb{N}}$. Recall also from $[15,17,18,19]$ that $\mathbf{r}_{1}=\operatorname{deg}_{\mathrm{w}}(\mathrm{MLR}) \in \mathcal{E}_{\mathrm{w}}$ and $\mathbf{0}<\mathbf{r}_{1}<\mathbf{1}$, where $\mathbf{0}$ and $\mathbf{1}$ are the bottom and top Muchnik degrees in \mathcal{E}_{w}. The purpose of this section is to define and discuss some specific, natural Muchnik degrees in \mathcal{E}_{w} which are associated with Theorems 2.2 and 4.5.

Definition 5.1. A function $Y: \mathbb{N} \rightarrow \mathbb{N}$ is said to be linearly $D N R$ if $Y \cap \psi=\emptyset$ for some linearly universal partial recursive function $\psi: \subseteq \mathbb{N} \rightarrow \mathbb{N}$. We write $\operatorname{LDNR}=\left\{Y \in \mathbb{N}^{\mathbb{N}} \mid Y\right.$ is linearly DNR $\}$ and $\operatorname{LDNR}_{\text {REC }}=\{Y \in \operatorname{LDNR} \mid Y \in$ $\prod p$ for some recursive function $\left.p\right\}$. Given $p: \mathbb{N} \rightarrow \mathbb{N}$ let $\mathbf{d}_{p}=\operatorname{deg}_{\mathrm{w}}\left(\operatorname{LDNR}_{p}\right)$ be the Muchnik degree of $\mathrm{LDNR}_{p}=\mathrm{LDNR} \cap \prod p$.

Remark 5.2.

1. It is easy to see that $\operatorname{deg}_{\mathrm{w}}(\mathrm{LDNR})=\operatorname{deg}_{\mathrm{w}}(\mathrm{DNR})=\mathbf{d}$ and $\operatorname{deg}_{\mathrm{w}}\left(\operatorname{LDNR}_{\text {REC }}\right)=$ $\operatorname{deg}_{\mathrm{w}}\left(\mathrm{DNR}_{\text {REC }}\right)=\mathbf{d}_{\text {REC }}$, and by $[1,15,17]$ these Muchnik degrees belong to \mathcal{E}_{w} and we have $\mathbf{0}<\mathbf{d}<\mathbf{d}_{\mathrm{REC}}<\mathbf{r}_{1}$. Moreover $\mathbf{d}=\inf _{p} \mathbf{d}_{p}$ where p ranges over all functions, and $\mathbf{d}_{\text {REC }}=\inf _{p} \mathbf{d}_{p}$ where p ranges over all recursive functions.
2. Note that LDNR and $\operatorname{LDNR}_{\text {REC }}$ are independent of the choice of a standard enumeration of the partial recursive functions. Moreover, LDNR_{p} and \mathbf{d}_{p} are also independent of this choice, provided p is nondecreasing. In particular, the Muchnik degree \mathbf{d}_{p} is specific and natural ${ }^{1}$ provided p is specific, natural, and nondecreasing. This would not be the case if we had based our definition of \mathbf{d}_{p} on DNR instead of LDNR. By using LDNR instead of DNR, we can now sharpen the observations in $[15, \S 10]$.
3. Let p be nondecreasing and unbounded such that $p(0) \geq 2$. Let ψ be a linearly universal partial recursive function. Is the Muchnik degree of $Q=\left\{Y \in \prod p \mid Y \cap \psi=\emptyset\right\}$ independent of the choice of ψ ? If so, then we could define \mathbf{d}_{p} more simply as $\mathbf{d}_{p}=\operatorname{deg}_{\mathrm{w}}(Q)$. Our actual definition of \mathbf{d}_{p} circumvents this question, at the cost of extra complication.
4. Clearly $\forall i(p(i) \leq q(i))$ implies $\mathbf{d}_{q} \leq \mathbf{d}_{p}$. There are many open questions here concerning specific, natural Muchnik degrees in \mathcal{E}_{w}. For instance, letting $p(i)=\max \left(i^{2}, 1\right)$ and $q(i)=\max \left(i^{3}, 1\right)$, do we have $\mathbf{d}_{q}<\mathbf{d}_{p}$?
[^1]Lemma 5.3. The predicates " φ_{e} is linearly universal" and " Y is linearly DNR" are Σ_{3}^{0}.

Proof. Fix an index \widehat{e} such that $\varphi_{\widehat{e}}$ is linearly universal. Then for all e, φ_{e} is linearly universal if and only if $\exists a \exists b \forall i\left(\varphi_{\widehat{e}}(i) \simeq \varphi_{e}(a i+b)\right)$. A Tarski/Kuratowski computation $[14, \S 14.3]$ shows that this predicate is Σ_{3}^{0}. Moreover, $Y \in \operatorname{LDNR}$ if and only if $\exists e\left(\varphi_{e}\right.$ is linearly universal and $\left.Y \cap \varphi_{e}=\emptyset\right)$, which is again Σ_{3}^{0}.

Theorem 5.4. Let $p: \mathbb{N} \rightarrow \mathbb{N}$ be a nondecreasing recursive function such that $p(0) \geq 2$. Then $\mathbf{d}_{p} \in \mathcal{E}_{\mathrm{w}}$. Moreover, $\mathbf{d}_{p} \leq \mathbf{r}_{1}$ if and only if $\sum_{i=0}^{\infty} p(i)^{-1}<\infty$, and $\mathbf{d}_{p} \geq \mathbf{r}_{1}$ if and only if p is bounded, in which case $\mathbf{d}_{p}=\mathbf{1}$.

Proof. Lemma 5.3 implies that LDNR_{p} is Σ_{3}^{0}, and our assumption $\forall i(p(i) \geq 2)$ implies that LDNR_{p} includes a nonempty Π_{1}^{0} subset of $\{0,1\}^{\mathbb{N}}$. It follows by the Σ_{3}^{0} Embedding Lemma (see [17, Lemma 3.3] or [18, §3.3]) that $\operatorname{LDNR}_{p} \equiv_{\mathrm{w}} D_{p}$ for some nonempty Π_{1}^{0} set $D_{p} \subseteq\{0,1\}^{\mathbb{N}}$. Thus $\mathbf{d}_{p}=\operatorname{deg}_{\mathrm{w}}\left(D_{p}\right) \in \mathcal{E}_{\mathrm{w}}$. Theorem 2.2 tells us that $\sum_{i} p(i)^{-1}<\infty$ implies $\mathbf{d}_{p} \leq \mathbf{r}_{1}$. Theorem 4.5 tells us that $\sum_{i} p(i)^{-1}=\infty$ implies $\mathbf{d}_{p} \not \leq \mathbf{r}_{1}$. A theorem of Jockusch [10, Theorem 5] says that if p is bounded then $\mathbf{d}_{p}=\mathbf{1}$. A theorem of Greenberg and Miller [7] says that if p is unbounded then $\mathbf{d}_{p} \nsupseteq \mathbf{r}_{1}$.

Definition 5.5. An order function is an unbounded nondecreasing recursive function $p: \mathbb{N} \rightarrow \mathbb{N}$ such that $p(0) \geq 2$. Let us say that p is slow-growing if $\sum_{i} p(i)^{-1}=\infty$, otherwise fast-growing. Define $\operatorname{LDNR}_{\text {slow }}=\bigcup_{p} \operatorname{LDNR}_{p}$ and $\mathbf{d}_{\text {slow }}=\operatorname{deg}_{\mathrm{w}}\left(\mathrm{LDNR}_{\text {slow }}\right)=\inf _{p} \mathbf{d}_{p}$ where p ranges over all slow-growing order functions. We could define $\operatorname{LDNR}_{\text {fast }}$ and $\mathbf{d}_{\text {fast }}$ similarly, but this would give us nothing new, because we would have $L D N R$ fast $=L D N R R_{\text {REC }}$ and $d_{\text {fast }}=\mathbf{d}_{\text {REC }}$.

Theorem 5.6. For each slow-growing order function p, we have $\mathbf{d}_{p} \in \mathcal{E}_{\mathrm{w}}$ and $\mathbf{d}_{\text {REC }}<\mathbf{d}_{p}<\mathbf{1}$ and \mathbf{d}_{p} is incomparable with \mathbf{r}_{1}. And similarly, we have $\mathbf{d}_{\text {slow }} \in \mathcal{E}_{\mathrm{w}}$ and $\mathbf{d}_{\text {REC }}<\mathbf{d}_{\text {slow }}<\mathbf{1}$ and $\mathbf{d}_{\text {slow }}$ is incomparable with \mathbf{r}_{1}.

Proof. The statements concerning \mathbf{d}_{p} follow directly from Theorem 5.4. To obtain the same conclusions for $\mathbf{d}_{\text {slow }}$, first imitate the proof of Lemma 5.3 to show that $\operatorname{LDNR}_{\text {slow }}$ is Σ_{3}^{0}, then imitate the proof of Theorem 5.4.

Remark 5.7. Given an order function p, Khan [11, Theorems 3.13 and 3.15] has shown how to construct order functions p^{+}and p^{-}such that $\mathbf{d}_{p^{+}}<\mathbf{d}_{p}<$ $\mathbf{d}_{p^{-}}$. If p is a slow-growing order function, it should be possible to construct a slow-growing order function p^{+}such that $\mathbf{d}_{p^{+}}<\mathbf{d}_{p}$. This would imply that $\mathbf{d}_{\text {slow }}<\mathbf{d}_{p}$ for all slow-growing order functions p.

References

[1] Klaus Ambos-Spies, Bjørn Kjos-Hanssen, Steffen Lempp, and Theodore A. Slaman. Comparing DNR and WWKL. Journal of Symbolic Logic, 69(4):1089-1104, 2004. 2, 7
[2] A. Beckmann, V. Mitrana, and M. Soskova, editors. Evolving Computability, Proceedings of CiE 2015 (Bucharest). Number 9136 in Lecture Notes in Computer Science. Springer, 2015. XV +363 pages. 10
[3] Laurent Bienvenu and Christopher P. Porter. Deep Π_{1}^{0} classes. Bulletin of Symbolic Logic, 22(2):249-286, 2016. 2, 3, 4, 5, 6
[4] Z. Chatzidakis, P. Koepke, and W. Pohlers, editors. Logic Colloquium '02: Proceedings of the Annual European Summer Meeting of the Association for Symbolic Logic and the Colloquium Logicum, held in Münster, Germany, August 3-11, 2002. Number 27 in Lecture Notes in Logic. Association for Symbolic Logic, 2006. VIII +359 pages. 10
[5] J.-E. Fenstad, I. T. Frolov, and R. Hilpinen, editors. Logic, Methodology and Philosophy of Science VIII. Number 126 in Studies in Logic and the Foundations of Mathematics. North-Holland, 1989. XVII + 702 pages. 9
[6] Johanna N. Y. Franklin and Keng Meng Ng. Difference randomness. Proceedings of the American Mathematical Society, 139(1):345-360, 2011. 4
[7] Noam Greenberg and Joseph S. Miller. Diagonally non-recursive functions and effective Hausdorff dimension. Bulletin of the London Mathematical Society, 43(4):636-654, 2011. 8
[8] Kojiro Higuchi, W. M. Phillip Hudelson, Stephen G. Simpson, and Keita Yokoyama. Propagation of partial randomness. Annals of Pure and Applied Logic, 165(2):742-758, 2014. http://dx.doi.org/10.1016/j.apal.2013.10.006. 2
[9] W. M. Phillip Hudelson. Mass problems and initial segment complexity. Journal of Symbolic Logic, 79(1):20-44, 2014. 2
[10] Carl G. Jockusch, Jr. Degrees of functions with no fixed points. In [5], pages 191-201, 1989. 2, 8
[11] Mushfeq Khan. Some results on algorithmic randomness and computabilitytheoretic strength. PhD thesis, University of Wisconsin, 2014. VII +93 pages. 2, 8
[12] Bjørn Kjos-Hanssen, Wolfgang Merkle, and Frank Stephan. Kolmogorov complexity and the recursion theorem. Transactions of the American Mathematical Society, 363(10):5465-5480, 2011. 2
[13] Bjørn Kjos-Hanssen and Stephen G. Simpson. Mass problems and Kolmogorov complexity. 4 October 2006. Preprint, 1 page. 2
[14] Hartley Rogers, Jr. Theory of Recursive Functions and Effective Computability. McGraw-Hill, 1967. XIX +482 pages. 6, 8
[15] Stephen G. Simpson. Mass problems and randomness. Bulletin of Symbolic Logic, 11(1):1-27, 2005. 2, 7
[16] Stephen G. Simpson. Almost everywhere domination and superhighness. Mathematical Logic Quarterly, 53(4-5):462-482, 2007. 3
[17] Stephen G. Simpson. An extension of the recursively enumerable Turing degrees. Journal of the London Mathematical Society, 75(2):287-297, 2007. 7, 8
[18] Stephen G. Simpson. Mass problems associated with effectively closed sets. Tohoku Mathematical Journal, 63(4):489-517, 2011. 7, 8
[19] Stephen G. Simpson. Degrees of unsolvability: a tutorial. In [2], pages 83-94, 2015. 7
[20] Frank Stephan. Martin-Löf random and PA-complete sets. In [4], pages 341-347, 2006. 2, 5

[^0]: *This research was partially supported by Simons Foundation Collaboration Grant 276282.

[^1]: ${ }^{1}$ For an explanation of what we mean by specific and natural, see [19, footnote 2$]$.

