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Abstract

Recall that Ew is the lattice of Muchnik degrees of nonempty effectively
compact sets in Euclidean space. We solve a long-standing open problem
by proving that Ew is dense, i.e., satisfies ∀x∀y (x < y ⇒ ∃z (x < z < y)).
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1 Introduction

The study of degrees of unsolvability began in the mid-20th century. Given a
set A of natural numbers, there is an associated decision problem, the problem
of “deciding” for each natural number n whether n ∈ A or not. As a method of
measuring the algorithmic unsolvability of decision problems, Kleene and Post
[10] introduced the semilattice DT consisting of the Turing degrees of arbitrary
sets A, while Post [16] emphasized the countable subsemilattice ET consisting of
the recursively enumerable Turing degrees, i.e., Turing degrees of sets A which
are recursively enumerable. The semilattices DT and ET are defined in terms
of Turing oracles, a notion which had been introduced earlier by Turing [31,
§4]. Two important landmarks in the study of ET were Sacks’s discovery of the
splitting theorem [18]:

Every nonzero recursively enumerable Turing degree is the supre-
mum of two smaller recursively enumerable Turing degrees.

and the density theorem [19]:

For any two comparable recursively enumerable Turing degrees, there
is another recursively enumerable Turing degree between them.

Inspired by these results of Sacks, the study of structural properties of ET has
played a leading role in recursion theory from the 1960s to the present. See for
instance the recent paper [1] and the survey papers [12, 23].

Also in the mid-20th century but largely ignored in the West, Medvedev [13]
and Muchnik [14] introduced more general notions of degrees of unsolvability.
Given a set P in Euclidean space or some similar space such as the Cantor space
{0, 1}N or the Baire space NN, there is an associatedmass problem1, the problem
of “finding” or “computing” some element of P . Thus P plays the role of the
“solution set” of the mass problem. As a method of measuring the algorithmic
unsolvability of mass problems, Medvedev [13] and Muchnik [14] introduced the
lattices Ds and Dw of strong degrees and weak degrees, also known as Medvedev

degrees and Muchnik degrees respectively. The idea here is that a mass problem
P is reducible to a mass problem Q if, given any solution of Q, we can use it as
a Turing oracle to compute some solution of P . By requiring the computation
to be uniform, we get strong reducibility, a.k.a., Medvedev reducibility. By
allowing the computation to be nonuniform, we get weak reducibility, a.k.a.,
Muchnik reducibility. See also the formal definition of P ≤w Q in §2 below.

At the end of the 20th century, and in ignorance of Dw but motivated by
a desire to highlight certain aspects of ET, Simpson [24, 25] introduced the
countable sublattice Ew of Dw consisting of the Muchnik degrees of nonempty
sets which are effectively compact, i.e., Π0

1 and recursively bounded. The study
of Ew continued in a number of 21st century publications including the survey
papers [28, 29].

1The term “mass problem” is a literal translation of the Russian term in [13] and was used
by Rogers in his seminal textbook [17].
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As noted in [24, 25] and further emphasized in [26, 27, 29], there is a com-
pelling analogy between ET and Ew:

1. With respect to the arithmetical hierarchy [17, Chapters 14 and 15], Ew
is the smallest nontrivial sublattice of Dw, just as ET is the smallest non-
trivial subsemilattice of DT.

2. By [27] we have a natural embedding of ET into Ew, given by a 7→ inf(a,1)
where 1 is the top degree in Ew. This embedding is one-to-one and pre-
serves the algebraic structure of ET including the top and bottom degrees,
the reducibility ordering, and the semilattice operation.

3. The splitting and density theorems hold for Ew, just as they do for ET.
The splitting theorem for Ew is due to Binns [4]. The density theorem for
Ew is the main theorem of this paper.

On the other hand, Ew seems to have a significant advantage over ET:

4. A great many specific natural degrees have been discovered in Ew. See for
instance [29, Figure 1]. By contrast, no specific natural degrees in ET are
known except the top degree 0

′ and the bottom degree 0. The problem
of finding other specific natural degrees in ET remains open, despite more
than 50 years of intensive research on structural aspects of ET.

We feel that these considerations help to motivate and justify the study of Ew.
As already mentioned, the main result of this paper is the density theorem

for Ew. This answers a question which was implicit in [3, 4, 5] and explicit in
[22, last paragraph] and [27, Remark 2.11] and [28, Remark 3.1.3].

The paper is organized as follows. In §2 we set up some notation. In §3 we
present our density proof. We end with some open questions.

2 Essential notation and definitions

In this section we develop notation and definitions which are needed for precise
understanding of the statements of our results in §3.

The set of nonnegative integers is denoted N. Variables such as i, j,m, n, s, t
range over N. The set of all functions X : N → N is denoted NN. Variables
such as X,Y, Z, . . . range over NN. We write {n}Y (i) = j to mean that the
Turing machine with Gödel number n using Y as a Turing oracle started with
input i eventually halts with output j. We write {n}Y (i) ↓ if ∃j ({n}Y (i) = j),
otherwise {n}Y (i) ↑. We say that X is Turing reducible to Y , abbreviated
X ≤T Y , if ∃n ∀i (X(i) = {n}Y (i)). It is known that ≤T is reflexive and
transitive. We say that X is Turing equivalent to Y , abbreviated X ≡T Y , if
X ≤T Y and Y ≤T X . The Turing jump of X ∈ NN is X ′ ∈ NN defined by
letting X ′(n) = 1 if {n}X(n) ↓, otherwise X ′(n) = 0.

For P,Q ⊆ NN we say that P is Muchnik reducible to Q, abbreviated P ≤w

Q, if ∀Y (Y ∈ Q ⇒ ∃X (X ∈ P and X ≤T Y )). Clearly ≤w is reflexive and
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transitive. We say that P is Muchnik equivalent to Q, abbreviated P ≡w Q,
if P ≤w Q and Q ≤w P . The Muchnik degree of P , denoted degw(P ), is the
equivalence class of P under ≡w. We define degw(P ) ≤ degw(Q) to mean that
P ≤w Q. Let Dw be the set of all Muchnik degrees, partially ordered by ≤.
It is known that Dw is a complete and completely distributive lattice. A set
Q ⊆ NN is said to be Π0

1 or effectively closed if Q = {Y | {n}Y (n) ↑} for some
n. For X,Y ∈ NN we define X ⊕ Y ∈ NN by the equations (X ⊕ Y )(2i) = X(i),
(X ⊕ Y )(2i+ 1) = Y (i) for all i. A binary predicate U ⊆ NN ×NN is said to be
Π0

1 if the set {X ⊕ Y | U(X,Y )} is Π0
1.

As in the survey paper [28], let Ew (respectively Sw) be the lattice of Muchnik
degrees of nonempty Π0

1 subsets of {0, 1}N (respectively NN).2 It is easy to see
that Ew and Sw are countable sublattices of Dw. It is also known that Ew is an
initial segment of Sw. For a proof of this important fact, see [27, Lemma 3.3]
or [28, Theorem 3.3.1, Corollary 3.3.4].

3 Density proof

In this section we prove that Sw and consequently Ew are dense, i.e., they
satisfy the sentence ∀x∀y (x < y ⇒ ∃z (x < z < y)). Our proof combines
a Turing jump oracle construction with some well known facts about relative
hyperarithmeticity. Our oracle construction may be compared to the previously
known constructions for [7, Lemma 5.1] and [30, Lemma 3.2].

Remark 1. The relevance of hyperarithmetical theory for the general study
of Ew was already clear in [7]. However, our work in this paper represents the
first time that hyperathmetical theory has been used to prove a lattice-theoretic
property of Ew. We do not know how to prove the density of Ew without using
hyperarithmetical theory.

As a warm-up for our oracle construction in Lemma 2, we first prove the
following lemma, which is a generalization of the Friedberg Jump Theorem [17,
§13.3, Corollary IX(a)].

Lemma 1. Let Q ⊆ NN be Π0
1 such that Q �w {0}. Given Z ∈ NN, we can

find Z̃ ∈ NN such that 0′ ⊕ Z ≡T 0′ ⊕ Z̃ ≡T Z̃ ′ and Q �w {Z̃}.

Proof. Before presenting our construction, we fix some additional notation.
A string is a finite sequence of nonnegative integers. Variables such as

ρ, σ, τ, . . . range over strings. We write σ = 〈σ(0), . . . , σ(|σ| − 1)〉 where |σ| =
the length of σ. We write

2Let d be a positive integer, and let Rd denote d-dimensional Euclidean space. A set in Rd

is said to be effectively closed if it is the complement of a set which is effectively open, i.e., of
the form

⋃
∞

i=0
B(ai, ri) where 〈ai〉i∈N is a recursive sequence of d-tuples of rational numbers,

〈ri〉i∈N is a recursive sequence of rational numbers, and B(ai, ri) = {x ∈ Rd | |x−ai| < ri}. A
set in Rd is effectively compact if and only if is bounded and effectively closed. It is well known
and easy to see that a Muchnik degree belongs to Ew if and only if it contains a nonempty
effectively compact set in Rd.
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σaτ = 〈σ(0), . . . , σ(|σ| − 1), τ(0), . . . , τ(|τ | − 1)〉

for the concatenation, σ followed by τ . Thus |σaτ | = |σ|+ |τ |. We write σ ⊂ τ
or σ ⊂ Z to mean that σ is a proper initial segment of τ or of Z respectively.
We write σ ⊆ τ to mean that σ ⊂ τ or σ = τ . We write Z↾n = the unique
string σ of length n such that σ ⊂ Z. A tree is a set U of strings such that
∀σ ∀τ (σ ⊂ τ ∈ U ⇒ σ ∈ U). A path through U is any Y ∈ NN such that
∀n (Y ↾n ∈ U). It is well known that Q ⊆ NN is Π0

1 if and only if Q = {Y | Y is
a path through U} for some recursive tree U .

We write {n}Zs (i) = j to mean that the Turing machine with Gödel number
n using Z as a Turing oracle started with input i halts after ≤ s steps with
output j. We write {n}σs (i) = j to mean that {n}Zs (i) = j using only oracle
information from σ ⊂ Z. We write {n}σs (i) ↓ if ∃j ({n}σs (i) = j), otherwise
{n}σs (i) ↑. We write Φn(σ) = τ to mean that ∀i (i < |τ | ⇒ {n}σ|σ|(i) = τ(i))

and {n}σ|σ|(|τ |) ↑. Note that the predicates {n}σs (i) = j and {n}σs (i) ↓ and

Φn(σ) = τ are recursive.
We now present our construction. As above, let U be a recursive tree such

that ∀Y (Y ∈ Q ⇔ Y is a path through U). We follow the standard proof of the
Friedberg Jump Theorem, taking additional steps to avoid computing a path
through U . Given Z ∈ NN we define a sequence of strings τ0 ⊆ τ1 ⊆ · · · ⊆ τs ⊆
τs+1 ⊆ · · · as follows.

Stage 0. Let τ0 = 〈〉 and n0 = 0 and i0 = 1.
Stage s+ 1. Let n = ns and proceed as follows depending on whether is is

equal to 1, 2, or 3.
Case 1: is = 1. Let τs+1 = τs

a〈Z(n)〉 and let ns+1 = ns and is+1 = 2.
Case 2: is = 2. If there exists τ ⊇ τs such that {n}τ|τ |(n) ↓, let τs+1 = the

least such τ , otherwise τs+1 = τs. Either way, let ns+1 = ns and is+1 = 3.
Case 3: is = 3. If there exists τ ⊃ τs such that Φn(τs) ⊂ Φn(τ) ∈ U ,

let τs+1 = the least such τ , and let ns+1 = ns and is+1 = 3. Otherwise, let
τs+1 = τs and let ns+1 = ns + 1 and is+1 = 1.

This completes the construction. Clearly we have ∀s (τs ⊂ τs+3), so letting

Z̃ =
⋃

s τs we have Z̃ ∈ NN. Moreover, the entire construction is uniformly

≤T 0′ ⊕ Z and ≤T 0′ ⊕ Z̃, so in particular we have Z̃ ≤T 0′ ⊕ Z.
We claim that there are infinitely many stages s such that is = 1. Otherwise,

there would be a stage s such that nt = ns and it = 3 for all t ≥ s. And then,
letting n = ns, the construction for Case 3 would produce a recursive path⋃

t Φn(τt) through U , contradicting our assumption that Q �w {0}.
From our claim it follows that for each n there is exactly one stage s such

that ns = n and is = 1. For this s we have Z(n) = τs+1(|τs|) = Z̃(|τs|) by

Case 1, and this shows that Z ≤T 0′ ⊕ Z̃. Moreover, for this same s we have
ns+1 = n and is+1 = 2, so by Case 2 we have Z̃ ′(n) = 1 if and only if there exists

τ ⊇ τs+2 such that {n}τ|τ |(n) ↓, and this shows that Z̃ ′ ≤T 0′⊕Z. Furthermore,
for this same s we have ns+2 = n and is+2 = 3, so by our claim there is exactly
one stage t ≥ s + 2 such that nt = n and it = 3 and it+1 = 1. But then by
Case 3 there is no τ ⊃ τt such that Φn(τt) ⊂ Φn(τ) ∈ U , and this shows that
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Q �w {Z̃}. The proof is now complete.

Remark 2. In the proof of Lemma 1, the 0′-recursive functional Z 7→ Z̃ maps
any Π0

1 set S ⊆ NN homeomorphically onto its image S̃ = {Z̃ | Z ∈ S}. This is
clear from the construction, because for all stages s such that is = 1, τs depends
only on Z↾ns and conversely Z↾ns can be recovered from τs.

Our oracle construction is embodied in the following lemma. We formulate
this lemma in greater generality than is needed for the density proof.

Lemma 2. Given Π0
1 predicates U, V ⊆ NN × NN, we can find a Π0

1 predicate

V̂ ⊆ NN × NN such that for each X with {Y | U(X,Y )} �w {X} there is

a homeomorphism Z 7→ Ẑ of {Z | V (X,Z)} onto {Ẑ | V̂ (X, Ẑ)} with the

properties X ′ ⊕ Z ≡T X ′ ⊕ Ẑ ≡T (X ⊕ Ẑ)′ and {Y | U(X,Y )} �w {X ⊕ Ẑ}.

Proof. In order to present our construction, we need some additional notation.
We write {n}X,σ

s (i) = j to mean that {n}X⊕Z
s (i) = j using only oracle informa-

tion from X and from σ ⊂ Z. We write {n}X,σ
s (i) ↓ if ∃j ({n}X,σ

s (i) = j), other-

wise {n}X,σ
s (i) ↑. We write ΦX

n (σ) = τ to mean that ∀i (i < |τ | ⇒ {n}X,σ

|σ| (i) =

τ(i)) and {n}X,σ

|σ| (|τ |) ↑. Note that the predicates {n}
X,σ
s (i) = j and {n}X,σ

s (i) ↓

and ΦX
n (σ) = τ are uniformly ≤T X .

We now present our construction, which is similar in many respects to the
construction for Lemma 1. For each X ∈ NN let UX be a uniformly X-recursive
tree such that ∀X ∀Y (U(X,Y ) ⇔ Y is a path through UX). To each X ∈ NN

and each string σ we associate an infinite sequence of strings τ0 ⊆ τ1 ⊆ · · · ⊆
τs ⊆ τs+1 ⊆ · · · as follows.

Stage 0. Let τ0 = 〈〉 and i0 = 1 and n0 = 0.
Stage s+1. Let n = ns. If n ≥ |σ| the construction halts and we let τt = τs

and it = 0 and nt = ns for all t ≥ s + 1. Otherwise we proceed as follows
depending on whether is is equal to 1, 2, or 3.

Case 1: is = 1. Let τs+1 = τs
a〈σ(n)〉 and let is+1 = 2 and ns+1 = ns.

Case 2: is = 2. If there exists τ ⊇ τs such that {n}X,τ

|τ | (n) ↓, let τs+1 = the

least such τ , otherwise τs+1 = τs. Either way, let is+1 = 3 and ns+1 = ns.
Case 3: is = 3. If there exists τ ⊃ τs such that ΦX

n (τs) ⊂ ΦX
n (τ) ∈ UX ,

let τs+1 = the least such τ , and let is+1 = 3 and ns+1 = ns. Otherwise, let
τs+1 = τs and let is+1 = 1 and ns+1 = ns + 1.

This completes the construction. Note that the construction does not depend
on V . Let us write FX

s (σ) = τs and note that the function FX
s is uniformly

≤T X ′ and monotone, i.e., s ≤ t and ρ ⊆ σ imply FX
s (ρ) ⊆ FX

t (σ).
For each X ∈ NN let V X be a uniformly X-recursive tree such that

∀X ∀Z (V (X,Z) ⇔ Z is a path through V X). Consider the tree

Ṽ X = {τ | ∃s ∃σ (σ ∈ V X and τ ⊆ FX
s (σ))}.

For each τ ∈ Ṽ X , our construction shows that τ ⊆ FX
s (σ) for some s ≤ 3|τ |

and some σ ∈ V X such that σ is a substring of τ , i.e., σ = 〈τ(j1), . . . , τ(j|σ|)〉
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for some j1 < · · · < j|σ| < |τ |. Thus, in the definition of Ṽ X , the unbounded
quantifiers ∃s and ∃σ may be replaced by bounded quantifiers. It follows that
the tree Ṽ X is uniformly ≤T X ′. Hence, by Post’s Theorem, the predicate
Ṽ ⊆ NN × NN defined by

Ṽ (X, Z̃) ≡ Z̃ is a path through Ṽ X

is Π0
2, say Ṽ (X, Z̃) ≡ ∀i ∃j B(X, Z̃, i, j) where B is a recursive predicate. We

now define our Π0
1 predicate V̂ ⊆ NN × NN by

V̂ (X, Z̃ ⊕ Z̃∗) ≡ ∀i (Z̃∗(i) = the least j such that B(X, Z̃, i, j) holds).

To prove that V̂ has the desired properties, letX be such that {Y | U(X,Y )} �w

{X}, i.e., X does not compute a path through UX . In such a situation, our con-
struction of

⋃
n F

X
s (Z↾n) for s = 0, 1, 2, . . . is the straightforward relativization

to X of the construction of τs for s = 0, 1, 2, . . . in the proof of Lemma 1. Thus,
letting Z̃ = FX(Z) =

⋃
s

⋃
n F

X
s (Z↾n), we have X ′⊕Z ≡T X ′⊕ Z̃ ≡T (X⊕ Z̃)′

and {Y | U(X,Y )} �w {X ⊕ Z̃}. Moreover, as in Remark 2, Z 7→ Z̃ is an X ′-

recursive homeomorphism of {Z | V (X,Z)} onto {Z̃ | Ṽ (X, Z̃)}. Now, following

the definition of V̂ , for each such Z let Z̃∗(i) = the least j such that B(X, Z̃, i, j)

holds. Then Z̃∗ ≤T X ⊕ Z̃, hence Ẑ = Z̃ ⊕ Z̃∗ enjoys the same properties as Z̃,
i.e., X ′⊕Z ≡T X ′⊕ Ẑ ≡T (X⊕Ẑ)′ and {Y | U(X,Y )} �w {X⊕Ẑ} and Z 7→ Ẑ

is an X ′-recursive homeomorphism of {Z | V (X,Z)} onto {Ẑ | V̂ (X, Ẑ)}. This
completes the proof.

Lemma 3. Suppose Kleene’s O is not hyperarithmetical in X . Then, there is
a nonempty Π0

1 set S ⊆ NN such that S �w {X ′}.

Proof. The predicate n /∈ O is Σ1
1, so by the Kleene Normal Form Theorem (see

[17, §16.1, Corollary III] or [20, Theorem I.1.3]), let S(n, Z) be a Π0
1 predicate

such that ∀n (n /∈ O ⇔ ∃Z S(n, Z)). For some n /∈ O we must have {Z |
S(n, Z)} �w {X ′}, because otherwise O would be arithmetical in X , hence
hyperarithmetical in X . Fix such an n and let S = {Z | S(n, Z)}.

Remark 3. In Lemma 3 the property S �w {X ′} can be strengthened to say
that no Z ∈ S is hyperarithmetical in X .

The next theorem implies that Sw is dense. The special case Q = ∅ says
that Sw has no top degree.

Theorem 1. Let P and Q be Π0
1 subsets of NN such that P <w Q. Then, we

can find a Π0
1 set R ⊆ NN such that P <w R <w Q.

Proof. The set {X | X ∈ P and Q �w {X}} is arithmetical, hence Σ1
1, so by

the Gandy Basis Theorem (see [17, §16.7, Corollary XLII(a)] or [20, Theorem
III.7.2]), let X0 ∈ P be such that Q �w {X0} and Kleene’s O is not hyperarith-
metical in X0. By Lemma 3 let S ⊆ NN be nonempty Π0

1 such that S �w {X ′
0}.
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Apply Lemma 2 with U(X,Y ) ≡ Y ∈ Q and V (X,Z) ≡ Z ∈ S to get a Π0
1

predicate V̂ (X, Ẑ). Let

R = {X ⊕ Ẑ | X ∈ P and V̂ (X, Ẑ)} ∪Q.

Trivially R is Π0
1 and P ≤w R ≤w Q. Since X0 ∈ P and Q �w {X0}, we have

Q �w {X0 ⊕ Ẑ} and X0 ⊕ Ẑ ∈ R for all Z ∈ S, so Q �w R. It remains to
prove that R �w P . Since X0 ∈ P , it suffices to prove that R �w {X0}. If

R ≤w {X0}, then since Q �w {X0} there must exist X ⊕ Ẑ ≤T X0 such that

X ∈ P and V̂ (X, Ẑ) holds. But then Q �w {X}, hence X ′ ⊕ Z ≡T X ′ ⊕ Ẑ for
some Z ∈ S, hence Z ≤T X ′

0, a contradiction. This completes the proof.

The next theorem says that Ew is dense.

Theorem 2. Let P andQ be nonempty Π0
1 subsets of {0, 1}

N such that P <w Q.
Then, we can find a nonempty Π0

1 set R ⊆ {0, 1}N such that P <w R <w Q.

Proof. This follows from Theorem 1 plus the fact, noted in §2, that Ew is an
initial segment of Sw.

We close with some additional remarks.

Remark 4. By relativization, Theorems 1 and 2 also hold with Π0
1 replaced by

boldface Π0
1, i.e., closed. The lattices of Muchnik degrees of closed subsets of

{0, 1}N and NN have been studied by Shafer [21].

Remark 5. Shafer [22] suggested that if the density of Ew could be proved, then
this might perhaps lead to further progress on the problem of calculating the
Turing degree3 of the first-order theory of Ew. Unfortunately, no such further
progress has materialized. For further progress, more sophisticated extension-
of-embedding results for Ew seem to be needed.

Remark 6. We do not know whether Ew and/or Sw have the dense splitting

property, i.e., ∀x∀y (x < y ⇒ ∃u ∃v (x < u < y, x < v < y, sup(u, v) = y)).
Lachlan [11] proved that ET does not have the dense splitting property. Binns
[4] proved that Ew has the splitting property, i.e., the special case x = 0. We do
not know whether Sw has the splitting property.
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