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Let D be the set of all (Tusing) degrees, < the usual partial ordering of D, and f the
(Turing) jump operator on D. The following relations are shown to be first-order definable
in the structure @ =D, <, /) : d; is hyperarithmetical in dy, d, is the hyperjump of d,
d, is tamified analytical in d, (Corollaries 4.6, 4.13, 4.16). A first-order, degree theoretic
definition of the ramified analytical hierarchy is obtained (Theorem 5.6). A first-order
sentence is found which is true in @ if the universe is (a generic extension of) L, and
falsein D if O exists (Corollary 4.7). The question of whether the notion of uniform
upper bound is degree i definable is i ig; (Section 6). Exact pairs of
upper bounds are used to replace analytical definability by arithmetical definability
{Theorem 3.1).

1. Introduction

This paper is a contribution to degree theory in the spirit of Kleene
and Post {17]. Thus we are concerned exclusively with the structure of
the upper semilattice of degrees (Turing degrees, degrees of recursive un-
solvability) augmented by the jump operator. However, the questions
which we study here are somewhat removed from those which have
mainly occupied degree theorists over the past few years. We therefore
begin with a general di ion which is intended to put the rest of the
paper in perspective.

* Research partiaily supported by NSF Contracts GP-29223 and GP-24352. During preparation
of this paper Jockusch was at Berkeley on sabbatical leave from Urbana, while Simpson was
a lecturer at Berkeley.
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Ever since Spector’s construction of a minimal degree [31] and the
Friedberg-Muchnik solution of Post’s problem {24], degrees have been
one of the most intensively developed parts of mathematical logic. A
number of ingenious proof techniques have been devised. Indeed, it
seems fair to say that degree theorists havs been preoccupied almost ex-
clusively with technique. “We regard an unsolved problem as interesting
only if it seems likely that its solution requires a new trick.” (Sacks {25,
p. 169]).

A related phenomenon of the last four or five years is that the degrees
occurring at low levels of the arithmetical hierarchy have taken over as
the n:ain objects of study. Especially the lowest level, the degrees of the
AY sets, is emphasized; see for example Cooper’s bibliography {3). The
most probable explanation for this phenomenon is that the Ag sets offer
the best arena for the development and refinement of new proof tech-
niques. In the constricted world of the Ag sets, number quantifiers are
irrelevant. Delicate priority arguments emerge and take their place as the
one indispensable technique. Thus the Ag sets are studied, not for their
intrinsic importance, but for <he interest and imporiance of the methods
employed in their study.

It seems to us that these methodological concerns coustitute an en-
tirely legitimate and reasonable justification for the study of the A3 sets.
Priority methods enrich all of mathematical logic, and they have first to
be developed somewhere. However, for the present paper we have no
need of such a justification.

Our viewpoint here is different. We want to step back and consider
what intrinsic significance the degrees of unsolvability may have. Thus
we hiave trying to practice degree theory as if it were a branch of science
cather than an art form; we want to ask degree theoretic questions whose
answers may be expected to be more important than the methods by
which the answers are to be discovered and proved.

It seems to us that such intrinsic importance is to be found in the
study of degree theoretic hierarchies, i.e. transfinite, degree theoretic
iterations of the jump operator. Let D be the set of all degrees, < the
usual partial ordering on D, and j : D -+ D the jump operatoron D. By a
degree theoretic hierarchy we mean, precisely, a sequence of degrees
(d, ta <) where 6 is a limit ordinal, such that

G)dy=0;
(i) dy,, =j(d,) foralla < 6;
(iiyd, <d; fore<f<o;
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(iv) for A a limit ordinal less then 8, d, is first order definable in the
structure D, =D, £, j, I,) where I, = {d€ D id < d, for some a < A}.
Earlier work by Kleene, Spector [32], Enderton, Putnam [5], and Sacks
[26] yields a natural, degree theoretic definition of the hyperarithmetical
hierarchy with § = w, where w, is the “constructive” w; of Church and
Klzene. In Section 5 below, this is extended to a natural, degree theo-
retic definition of the ramified analytical hierarchy with 8 = 8, wher. 3,
is the ordinal of ramified analysis. (How are these uses of the word “nat-
ural” to be made precise? We have given some thought to this question
but have not found an entirely satisfactory answer. One possibility is to
strengthen clause (iv) in the definition of degree theoretic hierarchy by
requiring a sequence of first-crder formulas (1), ., such that with
each limit ordinal A < 6 is associated a number n, defined as the least n
such that ¢, defines a degree d, in D, and n, is undefined. Another
possibility is to require that the Y, have an “algebraic™ flavor. By Lemma
5.1 the mentioned degree theoretic hierarchies are in fact natural in both
of these senses.) The special case A = w is treated separately in Section
4 where in addition it is shown that dw, , the degree of Kleene’s @, is
first-order definable in the structure @ =(D, <, /).

Also in Section 4 is obtained a first-order sentence which is true in@
if ¥ =L or a generic extension of L, and false in @ if 0# exists. This is
the first result we know of to the effect that the first-order theory of
< is not absolute in the sense of G&del (although by Lachlan [21] the
first-order theory of (D, <) is undecidable). Moreover, it shows clearly
that the “global” structure of the continuum is interestingly reflected
in the first-order theory of @. Something like this possibility had been
suggested by Boolos and Putnam [1] and by a lemma of Martin con-
cerning Gale-Stewart games. The connection between the structure of
the continuum and the firsi-order theory of <D will be explored further
in another paper by Simpson [29}.

Our methods of proof are hardly new. The proof of the main theorem
in Section 3 below goes back to Sacks [25, §8, 111 who goes back to
Kleene and Post [17] and Spector [31]. (If there is any methodological
novelty here at all, it is the observation that Jensen’s ““fine structure™
[12] theory! is directly applicable to the study of degrees.) We believe

! Klcene and Post {17) used the term “fine structure™ with a quite different meaning according
to which Jensen’s theory would have to be called “coarse structure™. This does not detract from
the fundamental imgportance of Jensen’s work in {12}
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however that the lack of noveity in the proofs is compensated for by
the interest of the theorems.

2. Notation and prerequisities

We write w = {0, 1, 2, ...} = the set of nonnegative integers; w*=
= {f1f: @ - w}=the set of all total one-place number theoretic func-
tions; 2¢ = {X | X € w} = the set of all subsets of w. Letterse, i, j, k, m,
n, ... denote elements of w. Letters f, g, 4, ... denote elements of w™.
Upper case Latin letters 4, B, C, ... denote subsets of w. The characteris-
tic function of A is denoted ¢, . In Section S, lower case Greek letters
@, B, v, ... are sometimes used to denote ordinal numbers.

One-place partial functions (i), {i /), etc. are defined in the usual
way. We write f <7 A to mean that [ is recursive in 4, i.e. 3mV¥n
fn) = {m}*(n). Similarly forf<y g A <r B, etc. We have a recursive
pairing function @ defined by

AeB={2%1i€4d}u {2i+1iieB}

and f ® g = k where h(2i) = f(i), h(2i + 1) = g(i). We assume basic familiar-
ity with the (relative) arithmetical hierarchy and the jump operator. In
particular we assume Post’s Hierarchy Theorem: for eachn < w, 4 is
Z%,, inB if and only if A is recursively enumerable in the #*% jump of B.
For this theorem see Rogers [ 24, Chapters 14 and 15] or Shoenfield [27,
§§7.5, 7.€). In general our notation is drawn from Rogers [24]. A degree
i an equivalence class under the relation 4 =¢ B, ie. A<, B& B <7 A
Lower case boldface letterse, b, ¢, ... denote degrees. if a, b are the de-
grees of A, B respectively then we write: @ < b for 4 <7 Biau b for the
degree of 4 @ B; 0 for the degree of recursive functions;a’ for the degree
of the jump of A;a™ for the degree of the n™® jump of A; and &'? for
the degree of the w-jump of A4, ie. the recursive union of the n™ jumps
of A4 [24, pp. 256—258). The jump operator is important in degree
theory because it expresses numerical quantification.

Our discussion of forcing in Section 3 is self contained. In Section 4
we assume knowledge of (relative) hyperarithmeticity. We write w; for
the least nonrecursive ordinal and w# for the least ordinal not recursive
in B. Previous knowledge of hyperarithmeticity is no needed in order
to understand the results in Section 5. However, one of the proofs there
makes essential use of Davis’s specific definition of the hyperarithmeti-
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cal hierarchy in terms of H-sets. For this definition see Spector [32] or
Rogers [24, §16.8). Another of the proofs in Section S uses results of

Jensen {12]; see also the exposition by Devlin {4]. Section 6 uses a re-

sult of Jockusch {14] but is otherwise self contained.

3. Exact pairs of upper bounds

Throughout this section, M is a countable, nonempty subset of ww
which is closed under relative recursiveness, pairing, and the jump opera-
tor. In symbols,

OfsrgeM~>fEM,
G()f,geM~fegeM,

(i) feM- Jump( NeM
We want to regard M as the range of the function variables in an w-model
of a fragment of second-order arithmetic; cf. Rogers [24, p. 385] and
Shoenfield {27, p. 227]. See also Friedman [7] where the usefulness and
naturalness of the closure conditions (i) — (jii) are emphasized.

Accordingly, we define what it means for a relation R € M X w/ to
be E over M. R is erithmetical over M if there exist an arithmetical rela-
tion A and a parameter 7 € M such that for all f& M%, n € o,

R(f,nm) < A(f,n, k).
Ris E over M if it is arithmetical overM RisTIL over Mif IR is 2’

over M Ris Zk 4 over M if there exists a relation S which is TT} over M
and such that for all fe Mi, n € «/,

R(fm)~ (3geM)S(fi g n).
Ris Ak over M if it is both E over M and l’Ik over M. R is analytical

over M or analytically def'nable over M if it is T} over M for some k< w.
The goal of this Section is to prove the followmg theorem.

Theorem 3.1. Let M be a countable, nonempty subset of w* closed
under <7, ®, and the jump operator. Let n be a positive integer, and let
H be a subset of w. Then the following two assertiuns are equivalent.
(@) His Z) over M.
(b) His 28, in A @ B whenever A, B < w are such that

m M={fif< A&f<,B}.
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A pair 4, B & w such that (1) holds is called an exacr pair for M. The
construction of an exact pair for M was first carried out ( in a represen-
tative special case) by Kleene and Post [17]; see also Spector [31. Theo-
rem 3] and Rogers [24, p. 274). For us, the relevance of exact pairs is
that analytical definability over M is equivalent to arithmetical definability
relative to arbitrary exact pairs for M. This idea is expressed in the above
Theorem and will be mercilessly exploited in the next two Sections.

Our first lemma, 3.2 below, resembles Kleene’s Normal Form Theorem
for the analytical hierarchy (over w*). See Rogers {24, p. 376} and
Shoenfield [27, p. 173]. It is perhaps worth noting that the last two
prefix transformations of [24, p. 375] and [27, p. 173] are not valid for
analytical definability over M. They are not valid because M is not as-
sumed to be a model of the countable choice schema of second order
arithmetic; i.e. it is not assumed that

Vk(3F€ MYR(K, £~ (3f € M) VKR(K, ()
even if R is analytical over M. This is why Lemma 3.2 is not trivial.
Lemma 3.2. Let R € M' X w/ be a relation which is ) over M, n odd.

Then {kere are a I'[? relation T and a parameter h € M such that, for all
feMandke W,

R{f k)~ (g, eM)(Vg,eM) .. (Fg, eMIT(g, §,. .. &, [ k. ).
Similat 'y if n is nonzero even.
Proof. The cases n > 1 follow immediately from the case n = 1. So let R
be E{ over M. For concreteness, suppose

R{f, k)~ (3g € M) ywaxvy3zS(g, w, x, y. 2. [, k. )

where A € M and § is recursive and w, x, y, # are number variables. The
idea of the proof is to replace the quantifiers 3x, 3z by Skolem furctions.
Letge M, f€ M, and k € w/ be such that vwixvy328(g w, x, ¥, 2,

£ k, k) holds. Define

g (w)= uxV¥y3zS(g, w, x. y. 2, f, k. )
and
8,(w, ¥y = pzS(g, w, g,(W), v, 2. f. k, )

where p is the least number operator. Then g, g; € M since they are
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arithmetical in g, f, # € M and M is closed under pairing and the iump
operator. Thus, for allfe M! and k € w, one has

R(f, k)~ (3g € M) (3¢}, g, € M) YwVyS(g, w, gW),y. 8, Cw, ), f. K, ) .
Then by pairing one gets
R kY~ (3ge M)VwS'(g, w £k, h)

where S is recursive, so R is in the desired form and Lemma 3.2 is
proved. D

The proof that (a) = (b) in the theorem is now straightforward, Name-
ly, suppose n > land H & wis E,‘, over M, and let 4, B € w be such that
M= {fif<y A &Sy B} Wewant to see that H is arithmetical in A ® B.
This is accomplished by taking the 2,‘, definition of H and replacing each
function quantifier (3g € M) by number quantifiers

3¢, 3e,({e,}* and {e,}® are total and equal and ...) .

Also, the parameter # € M is replaced by {i;¥! where i}, i, are such that
{iy} = {iy}® = h. It is left to the reader to verify that these transformations
convert a £} definition over M into a £, definition relative to 4 @ B,
provided Lemma 3.2 is applied first in order to get rid of excess number
quantifiers.

The proof that (b) = (a) is a perfect set forcing argument in the spirit
of Sacks {26]. Let S be the set of finite sequences of 0’s and 1's. Elements
of § will be called strings and o, 7, p, v will be variables for strings. If
PSS Piscalledatreeif forallo, 7€ S, 0 & 19 Plo) € P(1). (We
write ¢ & 7 to mean that 7 is an extension of 0.) If 4 € w, let A(n) be
the string of length n extended by the characteristic function of A. If P
isatree and A & w, let P(A) be the unique subset of w whose character-
istic function extends P(A(n)) for every n. Any set of the form P(4) is
called a branch of P, and [P] denotes the set of all branches of P. Clearly
[P] is a perfect closed subset of 2% in its usual topology. A tree whose
range is included in the range of P is called a subtree of P, If Q is a sub-
tree of P, then [Q] & [P]. If P is a tree, we identify it with the corre-
sponding number theoretic function under a Gédel numbering of S.
Sacks [26] calls a tree pointed if it is recursive in all of its branches.

We strengthen this notion by calling a tree P uniformly pointed, if there
is a number ¢ such that {e}® = P for every branch B of P.
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Technical Note. The notion of uniform pointedness seems to be closely
analogous to the notion of uniform introreducibility {15]. In fact a
construction similar in strategy to but much easier than A.H. Lachlan’s
construction of a set which is introreducible but not uniformly so [15]
yields a tree P which is pointed but not uniformly so. To make P pointed,
one constructs P recursively in ' and arranges that the cven part of each
branch of P differs only finitely from B, where B is a fixed set of degree
0'. To insure that P is not uniformly pointed, one arranges that if 4 is any
set with least element », then {n}*4) # B. This can easily be done since
B is not recursive. The requirements do not conflict significantly, and so
the priority method is not used. In contrast to this result, every pointed
tree P has a uniformly pointed subtree Q of the same degree as P. To see
this, one attempts to construct a descending chain (P,), ., of subtrees

of P, all recursive in P, such that {n}# # P for every branch A of Py
The process must “get stuck™ since P is pointed and from this it is easy

to construct a uniformly pointed subtree of P of the same degree as £,

The following Lemma is essentially the same as [ 26, Proposition 3.2].

Lemma 3.3. If P is a uniformly pointed tree recursive in the set A, then
P has a uniformly pointed subtree Q of the same degree as A.

Proof. We want @ to be a tree such that 8(B) = P(4 @ B) forall B € .
Hence we define

QKby, ..., b0 = Plagy, by, ay, by, ..., a,. b))
where a; is 0 or 1 according as i € 4. Since P is uniformly pointed, for
any B
@ QP)=PA©B)=  PoACE
where the Turing equivalence is uniform in B. From this it follows that
Pe 4, and hence Q, is uniformly recussive in all branches of Q. so Q is

uniformly pointed. Clearly @ = ¢(9), and (@) =y PO A© Q=1 4 by
(2) and the assumption P<; 4, Hence @ =1 4.0

We call a set of trees arithmetical if the corresponding set of number
theoretic functions is an arithmetical subset of w*. Clearly the set of
all trees is arithmetical, in fact 11{.

Lemma 3.4. The set of all uniformly pointed trees is arithmetical.
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Proof. A tree P is uniformly pointed if and only if
3) IVAA € [P) > P= {n}*).

The matrix of (3)is a Hg relation of 4, P, and n. But it is a well-known
fact that the class of 11 relations is closed under universal set quantifica-
tion, (A ciosely related fact appears in Shoenfield {27, p. 187].) Hence
(3)is arithmetical (in fact £§).00

Remark. We do not know whether the set of pointeu trees is arithmeti-
cal (although it is obviously n{ ). In fact the notion of uniform pointed-
ness was introduced so that our forcing conditions could be arithmetically
characterized.

Assume now that M is a countable, nonempty subset of ww closed
under < and ®. The proof that (b) = (a) will be obtained by applying
(b) to pairs (4, B) which will be generic with respect to a certain notion
of forcing which we now describe. A condition is a pair (Py, P)) € MX M
such that Py =4 P; and each P; is a uniformly pointed tree. A condition
(Qo. @) extends (Py, Py) if Q, is a subtree of Py and Q, is a subiree ot
Py, We write [Py, Pp] for [Py} X [P;). Our forcing language is roughly
first-order arithmetic with two free set variables 4, B. More precisely, for
each number m we have a numeral m and for each primitive recursive relation
R(4, B, v} {R € 2% X 2@ X ¥, k> 0) we have a (k + 2)-place relation
symbol R. A typical atomic formula is R(4, B, s), where 4, B are the two
set variables and s is a sequence of number variables and numerals. Arbi-
trary formulas are built up from atomic formulas using negation (1) and
the number quantifier (3x). We now inductively classify certain formulas
as Eo or l'l° This classification will not be literally identical to the usual
one, but it will be obvious that a formula which is 221101 in the usual
sense can be effectively translated into one which is E° [TI°] in our sense
and vice versa, for n > 1. A formula is ZJ if it is atomic. A formula is 119
if it has the form 71 where ¢ is 3. A formula is Enn if it has the form
(3x)y where ¥ is TS. A formula is a sentence if it is Z3 or 113 for some
n and has no free number variables. We now define the relatl(n
(P, @) - ¢ (read (P, Q) forces ¢) for conditions (P, Q) and sentences ¢.
The definition is orthodox except at the three lowest quantifier levels on
the T1 side where it is taken to coincide with truth in order to facilitate
the proof of Lemma 3.8 on the definability of forcing. Explictly, if
¢4, B)isa §‘° or ﬂo sentence forn < 2, (P, Q) = ¢(4, B) means that

oA, By is true for all {A,B)e [P, Q). Ifpisa 2 +1 sentence (and ¢o of
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the form (3x) Y(x)), (P. Q) i ¢ means that (P, Q) t~ Y(m) for some
numeral m. If g is a n?, sentence for # > 3 (and so of the form "),
(P, @) + ¢ iaeans that there is no condition (P', Q') extending (P, Q)
such that (', Q") + . As usual, a set of conditions is called dense if
every condition is extended by some condition in the set.

Lemma 3.5. If ¢ is a 3 sentence, the set of conditions which force ¢ or
force ¢ is dense.

Proof. For n > 3 this is obvious from the definition of forcing for 11§
sentences. We prove it for n = 2 since the proofs for n < 2 are similar but
easier. The proof for n = 2 is an adaptation of the main argument of {25,
§ 11]; see also the Zg case of {26, Lemma 3.1]. Let o be a Eg sentence.
Then ¢ has the form (3x) {3y) ¥ where ¢(4, B, x, ) is an atomic formula
corresponding to a primitive recursive relation R(4, B, x, ¥). Let
R(g, 7, x, y) mean that from the information ¢, 2 o, cp 2 7 it may be
computed that R(4, B, x, y) holds. We may assume that R(o, 7, x, ¥)isa
recursive relation of ¢, 7, x, y and thatif ¢’ 2 0,7 2 7,and R(o, 7, X, )
then R(¢’, 7', x, ). Let (Py, Py) be a condition. We waat to find a condi-
tion (@, Q) which extends (Fy, P;) and either forces ¢ or forces 7¢.

Case 1. (3n) (300) (3755 1(30 2 0¢)(I7 2 1)} (Ay) R(Py(0), PifT), n, »).
Choose n, 7, 7y as in the Case hypothesis and define Qy(0) = Pylo, * o),
@\ (7 = P(1y * 7) for all 0, 7. (We write ¢ * 7 for the concatenation ¢
followed by 7.) Then (@, Q) is a condition and (¢4, @,) b W3y)
V4, B, n, ¥)so(Qp @) I+ ¢.

Case 2. Not Case 1. In this case, one constructs a condition (Qy, Q;)
so that whenever th{o) = Ih{r)} =»n + 1, then

4) (3Y)R(Qy(0), 2, (1), 1, ¥)

holds. If this is done, it follows at once that (Qy, Q) = "1¢. We define
0y(e), @y (7) simultaneously by induction on Ih(e) = (7). Let G;(§) = B(B).
Assume inductively that Q;(o is defined whenever Ih(c)=n, i=Oor 1.

If 1h(0) = n, the initial candidates for Qo * 0), @;(o * 1) are any two
(effectively chosen) incompatible extensions of Q;(0) which are in the
range of P;. The value of ;{0 * j) is then the result of 2"*! successive
exiznsions of the initial candidate for G;(o * ), one for each string of
Iength n + 1. These extensions are carried out by successively considering
each pair (g, 7) of strings of length # + 1 and extending the present can-
didates for @y (), Q,(v) to strings u, v in the range of Py, Py, respectively
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so that (3y) R(u, v, n, ¥) holds. This can be done since we are not in
Case 1. Then (4) holds since @y(0), @,(7) extend all candidates for those
values. @ is a tree since the initial candidates are incompatible, and
clearly Q; is a subtree of P;. Finally Q; can be constructed recursively in
P @ Py. From this it follows that (Qy, @) is a condition. Lemma 3 5 is
proved. (]

Definition 3.6. A sequence of conditions ((P,, @, 1,«., is called M-generic
if (Pyay, @pey) extends (P, Q) for all n, and for every sentence ¢ of the
forcing language which is E,‘Z for some k, there exists » such that

Py, Q) @ or (P, Q,) I 9. A pair of sets A, B € w is called M-generic
if there is an M-generic sequence of conditions ((P,, 2,,)), such that

(4, BYEN [P, Q,1 Stardard arguments show that if (P,, Q,)), is an
M-generic sequence with limit (4, B) and ¢(4, B) is a sentence of the
forcing language, then ¢(4, B) is true if and only if (P, Q,,) I~ ¢(4, B)

for some n.

Lemma 3.7. Let (A, B) be an M-generic pair. Then
{fIf<; A& <, BYEM.

Proof. Assume (A, B) is M-generic and f = {e;}* = {€,}%. Then there is
a condition (P, Q) with A € [P}, B € {Q] such that (P, Q) I~ ¢ where ¢
isa ng sentence expressing that {e,}4 = {el}" . Thus if C is any branch
of P, {eg}€ = {¢;}® holds, so {eg}° = {e,}* =f. Thus f(x) = y + (30)
{eo}@(x) =y, so f <y P. Hence f € M as required. O

If @ is a set of sentences of the forcing language, forcing for @ is
(P, Q ¢)YoE D &P, Q) I ¢, thought of as a subset of W™ X w¥ X w.
The following lemma classifies forcing for % and I1¢ sentences in the
analytical hierarchy over M.

Lemma 3.8. If ® is cither the set of 11 sentences or the set of £ sen-
tences, forcing for P is a relation which is arithmetical {in fact Eg) over
M. If n > 1, forcing for H2+2 sentences is l'l,’1 over M. If n > 2, forcing
for £Y,, sentences is T} over M.

Proof. (The definitions of “arithmetical over M” and “2,1, [ﬂ,‘,] over ™
were given at the beginning of this Section. Although these definitions
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allowed parameters from M, we shall not use parameters (n the present
proof.) First let & be the set of 113 sentences. If ¢ is a 13 sentence and
P, g€ Mthen (P, Q) - ¢ if and only if

(i)} P=4 Q and P, Q are uniformly pointed trees,

(ii) (VAY(VB)(4 € [P] & B € [Q] - ¢(A, B)).
Clause (i} is arithmetical by Lemma 3.4. The matrix o " clause (i) is a 113
relation of P, @, 4, B (in the usual sense). But the class of ng relations
is closed under universal set quantification; see Shoentield {27, p. 187).
Hence cinuse (ii) is arithmetical (in fact l'lg), uniformly in ¢. So forcing
for Hg sentences is arithmetical over M. The proof for general & is now
a straightforward induction in the order ﬂg, Eg, Hg, ... Forn> 2 the
Z9,; case follows from the 119 case by raising the nun:ber quantifier in
the definition of forcing to a function quantifier (over ). (As remarked
in the proof of (a) = (b), the number quantifier may not simply be dis-
regarded because the countable axiom of choice may not hold in M.) For
nz 3, the IIS case follows from the 2‘.9, case, Lemma 3.4, and easy quanti
fier manipulations. O

The following lemma will essentially complete the proof that (b) = (a).

Lemma 3.9. Let ¢ be a countable family of subsets of w. There is an
M-generic pair (A, B) such that

OM={fIf<;r A& f<r B},

(i) foreachHe andn> 1,

His20,,inA®B=HisT) over .

Proof. Let o= {H,li€ w}, M= {f;1 1€ w}. Let {Y;1i € w} be the set
of sentences of the forcing language which are 22 for some n » 0, and
let {¢;!i € w} be the set of formulas of the forcing language which are
£8,, for some n = 1 and have exactly one free number variable. We de-
fine an M-generic sequence of conditions {(P,, Q;)} by induction ons.
Let (Py, Qo) be any condition, e.g. Py(0) = Qy(0) = o for all g. Now as-
sume inductively that (P, Q;) has been defined. To definz (P, Ogiy)s
consider three cases.

Case 1.5 = 0 mod 3. Let s = 3i. Let /Py, (;,;) be any condition
(P, @) extending (P, Q) such that (7, @) = ¢, or (P, @) I~ W, Such
a condition exists by Lemma 3.5.

Case 2.5 = 1 mod 3. Let s = 3i + 1. Let (P, Ogy) be any condition
(P, Q) extending (P, @) such that f; <, P. Such a condition exists by
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Lemma 3.3 and the closure of M under pairing.

Case 3.5 = 2 mod 3. Let s = 3¢}, j> + 2. In this case we attempt to
find a condition (P, Q) extending (P, Q,) which insures that
H;+ {k! ¢i(A, B, k)}. More precisely, if there exist (P, Q) extending
(P,, @) and a number k such tnat k ¢ H, and (P, Q) - ¢,(4, B, k), let
(Pgs1 Qgey) be any such (P, Q). Similarly if there exist (P, Q) extendir |
(P;, Q) and & € H; such that (P, @) - T1¢(4, B, k), let (P, Qi) be
such a (P, Q). Ii no (P, Q) of either sort exists, let (Py,, Q) = (P, Qy),
and say that stage s + 1 is vacuous.

By the usual arguments there are unique sets 4, B such that (4, B) €
P,, @, Case 1 insures that (4, B) is an M-generic pair. Case 2
insures that M € {fif <y A & f<y B}, and the reverse inclusion follows
from Lemma 3.7 and genericity. To verify (i), assume that H; = {k 1¢{4 B, R},

where ¢; is a z0 ne2 formula. Lets = 3¢, j) + 2. Since forcing equals truth
for gm«.nc sets, stage s + 1 must have been vacuous. But then

ke H, « (3P, Q) (P, Q) extends (P, Q) & (P, Q) I- o4 BRI

Easy quantifier manipulations and Lemmz 3.8 now imply that A is E,‘,
over M. O

To prove {(b) = (a) in Theorem 3.1, assume H is 22,2 in. 4 ® B when-
ever M = {fif<; A & f<; B}. Apply Lemma 3.9 with %= {H} and
let (A, B) be the resulting generic pair. Since H is 22+2 indeB His E,‘,
over M as required. O

Technical Notes. (1) The assumption that M is closed under jump was not
used in the proof of (b) = (a). (It is possible to eliminate this assumption
altogether by modifying the definitions of condition and E} over M.)

{2) A slight modification of the argument shows that A is )2‘2’ in4d®B
whenever (A, B) is exact over M only if H is zg inf, forsome feM
(provided M is closed under <y and ). From this it follows that no
ascending sequence of degrees has a 1-L.u.b. (as defined in {26]) uniess
the jumps of the degrees in the sequence are eventually constant.

4. The degree of Kleene’s O

Let D, <, and j be as defined in the Introduction. In this Section we
investigate first order definability in the structure

D=(D, <, .
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Definition 4.1. A set J € D is said to be a countable ideal in @ if
(i) I is countable and nonempty;
(iya<bel-acl
(iyg, bel>aubel;
(ivVacl+da el

Definition 4.2. Let / be a countable ideal in D and let 4, b be degrees.
The pair a, b is said to he exact over I if

I={deDid<a&d<b}.

By Section 3 or Spector [31], we know that for any countable ideal
there exists an exact pair. From our present point of view, this is impor-
tant because it implies that quantification over all countable ideals is ex-
pressible in the first-order theory of @.

Let I be a countable ideal and let

M, = {fe w® I degree (/) {}.
Let n be a positive integer and let H € w be a set of degree h.

Theorem 4.3. H is AL over My if and only if b < (a U B)™*D whenever
a, b is ar exact pair for I. Also H is analytical over M if and only if k is
arithmetical in a \U b whenever a, b is an exact pair for 1.

Proof. Immediate from Theorem 3.1 and Post’s Hierarchy Theorem once
the following uniformity is noted: if & is arithmetical in 4 ® B whenever
A, B is an exact pair for I, then there is an 7 such thac H is £ ez iRA @B
whenever A, B is an exact pair for /. The uniformity is proved by applying
Lemma 3.9 with %= {H?} and then using (2) = (b) in Theorem 3.1 on
the resulting pair 4, B. We are grateful to H. Putnam for pointing out to
us the need to establish this uniformity. [

Definition 4.4. Let M € «0“ be nonempty and closed under <, and o,
We say that M is an w-model of the A' con, prehensmn axiom if the char-
acteristic function ¢y isin M wheneve XS wis Ak over M. We say that
M is an w-model of the full comprehersion schema if M is an w-model
of A}C comprehension for all k < w.

If I is any countable ideal, then clearly M, is an w-model of A}, compre-
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hension. The smallest w-model of Ag, comprehension is

AR = {fe wYIifis arithmetical} .
By Kleene [16] and Kreisel [ 18], the smallest w-model of A} vomprehen-
sion is

HYP = { f € w* |f is hyperarithmetical} .

1t is well known that there is no smallest w-model of A}( comprehension,
k> 2, or of full comprehension.

Corollary 4.5. There are first order sentences 8; (k > 0) such that

(D, <, j, ) ¥ 8, if and only if My is an w-model of A}‘ comprehension.
There is a first order sentence &, such that (D, <, j, I} & §_ if and only
if M; is an w-model of full comprehension.

Corollary 4.6. The relations “‘d; is arithmetical in d,” and “dy is hyper-
arithmetical in d,” are first-order definable in D.

Corollary 4.7, There is a first-order sentence ¢ such that DE¢if V=1L
or if V is a generic extension of L, and D = ¢ if 0% exists.

Proof. Let ¢ say that there exist arbitrarily large hyperdegrees which are
not minimal covers. The conclusion follows from {28, Theorems 5.2 and
5410

Corollary 4.8. The first-order theory of D is probably not provably ab-
solute with respect to models of set theory contuining all the ordinals.

We need the word “probably™ in this corollary because the existence
of 0% is not known to be consistent with set theory. However, it will be
shown by Simpson [29] that there is a first-order sentence ¥ such that
@ = ¢ if and only if every element of w* is constructible in the sense
of Gidel. Hence the word “probably” is in fact unnecessary:

We now examine the (Tusing) degree of Kleene’s O. It is well known
that any two complete 1] subsets of c are recursively isomorphic. In
particular, the degree of O is characterized by the fact that it is a com~
plete ﬂ{ set. What we want to do here is give some degree theoretic char-
acterizations of the degree of 0. By degree theoretic we mean, of course,
first order in D.
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Lemnma 4.9. Let X be a subset of w. Then X <5 O if and only if X is
A% over HYP.

Proof. For later use we prove a little more: foralln > 1, X & w is 22 in
O if and only if X is E,‘M over HYP. First we formulate a general fact
which really belongs in Section 3.

Sublemma 4.10. Let M € w™ be nonempty and closed under <y and .
Suppose H, X C w, His A} over M, X is 20 in Hon > 1. Then X is £}, ,
over M.

The proof of 4.10 is straightforward. Now by the Hyperarithmetical
Quantifier Theorem of Gandy [9] and Spector {30}, O is E} over HYP,
hence A% over HYP. From this and 4.10 it follows for all n > 1 that if
XisZ0in O then Xis Efm over HYP. For the converse we need the
following well-known fact, due essentially to Kleene [16}: there is an
enumeration HYP = {f;1i€ O } such that {¢/y, .., iy, .., [, €0 &
P(fy,, ..., fi,)} is I} whenever Pis T1]. See also Rogers [24, Thearem XLI,
p- 418]. Suppose X € w is E,‘,,, over HYP, say for concretenessn = 2.
Thus

me X - (3g, € HYP)(Vg, € HYP)(3g, € HYP) A(g), 85,83, m)
where A is arithmetical over HYP. Define

Ry, iy, m)= i, i, € O & (3g; € HYP) A(fi),f}z. gy M)
Then R is H} hence recursive in ©. We have

me X« (3i, € 0)(Vi, € O)RU,, iy, m)

so X is Eg in O. This completes the proof of Lemma 4.9. 0

Theorem 4.11. The degree of O is the largest degree which is < (@ U Y™
whenever the pair a, b is exact over {d \d is hyperarithmetical}.

Proof. By 4.9 the degree of O is maximum among degrees of sets which
are Aé over HYP. From this and 4.3 the theorem is immediate. O

Corollary 4.12. The degree of O is first order definable in D.

Proof. Immediate from 4.11 and 4.6. By relativizing 4.12 uniformly we
obtain:
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Corollary 4.13. The relation *‘d\ is the hyperjump of 8, is first order
definable in <p.

Definition 4.14. M € w is said o be a B-model if M is nonempty and,
whenever § € ()} is E§ and f;, f2 € M and (3g € w¥) 8(f, 12, 8);
then (3g € MYS(fy, f1, 8).

If M is a f-model then clearly M is closed under <, ®, and the jump
operator. If M € w*“ is nonempty and closed under <y, ®, and hyper
jump, then M is a f-model by Kleene’s Basis Theorem (Rogers {24,
Corollary XLI(b), p. 420]). The converse is false since by Friedman [71
there exists a f-model consisting entirely of functions of lower hyper-
degree than O . On the other hand, it is easy to see that any 8-model of
Al (in fact 1T} ) comprehension is closed under hyperjump.

Corollary 4.15. There are first order sentences 8,, n > 2, such that

(D, <, j, Iy & 8, if and only if My is a f-model of AL comprehension.
There Is a first order sentence 8_ such that (D, <, j, ) =8, if and only
if My is a p-model of full comprehension.

Proof. Let 8, (B, ) say that M, satisfies A} (full) comprehension and is
closed under hyperjump. 0

Corollary 4.16. The relation “d; is ramified analytical in d,” is first order
definable in D,

Proof. By a result of Gandy and Putnam, 4, is ramified analytical ind,
if and only if d; belongs to the smallest -model of full comprshension
containing d5. (The ramified analytical hierarchy will be developed in
detail in Section 5.) 0

We end this Section with another degree theoretic characterization of
the degree of 0. It will not be used in the rest of the paper, but we men-
tion it for its independent interest. A degree a is said to be minimal over
a countable ideal /if I € {d 1d < a} and there isno b < a withI C {d id < b}.

Theorem 4.17. The degree of O is the largest degree which is < a'»
whenever a is minimal over {d \d is hyperarithmetical }.

Proof, Part of the proof is a forcing argument similar to that of Section 3.
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Define a condition to be a hyperarithmetical, uniformly pointed tree.
Define genericity as in Section 3. The proof of Lemma 3.9 gives the
following: if X € w is not Aé over HYP then there exists a generic set

A € wsuch that HYP S {fIf<, A} and X is not A} in A. An argument
of Sacks ({25, §8] and [26, sentence preceding Proposition 3.2]) shows
that the degree of 4 is minimal over {d |4 is hyperarithmetical}, By
Lemma 4.9 tl'is proves half of what we want. It remains to show that 0
is A in any set whose degree is minimal over {d |d is hyperarithmetical}.
Let B be any such set. By Gandy [9] or Spector {30] thereis a ﬂ‘l’ rela-
tion P such that

ne O« (3f€ HYP) P(n, f) .

By Spector [30] or Harrison [11] this £ can be taken to have the fol-
lowing additional property: if P(n, f) holds and f ¢ HYP, then there isa
pseudohierarchy recursive in £, In particular the degree of such an f will
be an upper bound for {d | d is hyperarithmetical} but cannot be minimal
over it. Hence

n€ O« (3f <, BYP(n, f).
so O isin fact Zg in B. This completes the proof. O

Remark. There are two slightly stronger degree theoretic characterizations
of the degree of 0, to wit:

(i) it 1s the smallest degree of the form (a U b)) where the pair a, b
is exact over {d td is hyperarithmetical};

(ii) it is the smallest degree of the form a®® where a is minimal over
{d ' d is hyperarithmeticai}.
For the proof, construct a pair (4, B) which is generic over HYP only
with respect to =9 and T1J sentences of the forcing language. The con-
struction is carried out recursively in O so that the complete Y set re-
lative to 4 @ B is recursive in O. By 3.1, 4.9, and 4.17 this g 'es the
desired results.

5. Master codes and the ramified analytical hierarchy
As in Section 3, let M be a countable, nonempty subset of w® which

is closed under <y, @, and the jump operator. Let # he a positive integer.
Aset HS wisa A}, master code for M if forall X € w, X < Hifand



C.G. Jockusch, Ir., 8.G. Simpson | A degree-theoretic definition 19

only if X is A,‘, over M. The notion of A} master code may seem strange,
but there are at least two familiar examples.

Example 1. Let 3.5° be a limit notation in Kleene’s O. Then H; 5 is a a}
master code for

{fe w”|f<, H, forsomen<,3.5%.

See Case HI in the proof of Lemma 5.5 below.

Example 2. Kleene’s O itself is a A} master code for
HYP = {f€ w* | fis hyperarithmetical} .

This is the content of Lemma 4.9. Note that HYP cannot have a A}
master code since it is 2 model of the A{ comprehension axiom.

We shall give more examples later in this Section.

IfHisa A‘ master code for M then the degree of H is maximum
among the degrees of the sets which are A‘ over M. Thus, the degree of
a A} master code for M is uniquely determmed if it exists. Moreover, an
M whmh satisfies A’ comprehension cannot have a Al master code. The
notion of Al master code is degree theoretically interesting in view of
the followmg lemma.

Lemma 5.1. Let [ be a countable ideal in. <D. There are first-order formu:-
las §,(x) ruch that d € D is the degree of a A,’i master code for My if and
only if (D, <, §, D = ¢, d].

Proof. Explicitly, y,[d} says that d is the largest degrce which is
< {a U 8)*1 Whenever the pair a, b 1s exact over /. That this works is
immediate from 4.3.0

The purpose of this Section is to point out that the ramified anaiytical
hierarchy is the best of all possible worlds as far zs the existence of master
codes is concerned. Precisely, let M be a nonzero level of the ramified
analytical hierarchy and let # be a positive integer such that M is not a
model of the A‘ comprehension axiom, then we shall show that M has
a Al master code (Lemma 5.5). This will lead via 5.1 to a degree theoretic
charactenzatnon of the ramified analytical hierarchy (Theorem 5.6).

The ramified analytical hierarchy has been studied extensively by
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H. Putnam and his colleagues [2]. It will be defined and its principal
properties reviewed after a few pages. But first we must discuss the
constructible hierarchy of Godel. We work in set theory withcut urele-
ments. For our purposes it is best to define the constructible hierarchy
as follows.

L, =HF = {x | x is a hereditarily finite set} .
L, =U{L,la<A}
for limit ordinals A.
L., = {XE L, 1 X is first-order definable over (L,, €} .

Here the first order definitions over L are allowed to mention parameters,
i.e. constants denoting arbitrary elements of L,. The constructible uni-
verse, L, is the union of the L, for all ordinals a. The constructible
hierarchy increases through all the ordinals since w + a is a subset of L.
Hence L is a proper class. Gddel proved tha: (L, €) is a model of set
theory plus the generalized continuum hypothesis. Gédel's proof was
analyzed by Lévy [23].

We need the Lévy hierarchy of formulas in the language of set theory.
A formula is 2, if it is built up from atomic formulas x =y, x € y using
propositional connectives &, 71 and bounded quantifiers Ju(u € x & ...).
Here x, v, ... are set variables. A formula is T, if it is of the form “1¢
wheze ¢ is Z;. A formula is Z,, if it is of the form 3x ¢ where ¢ is Tl;.
Aset X C L is Zi(L,) if there are a 2, formula ¢(x, ) and a parameter
b€ L, such that

X={aeL KL, &) =¢la b]}.
Similarly for T (L,). Aset X © L, is Ap(L,) if it is both £,{L,) and
Th(L,). Thus
Loer = Upay Bl = Up o, A1) -
Let o be an ordinal and » a positive integer. In this paper only, a A,(L,)
master code is a set H € w such that for all X & w, X < H if and only
if X is A,(L,). The next lemma is essentially due to R.B. Jensen. It is a

remarkable refinement of the Main Technical Lemma of Boolos and
Putnam [1].

Lemma 5.2. Let a be an ordinal and n a positive integer such that not
every A (L,) subset of w is an element of L. Then there exists a A,(L,)
master code.
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Proof. It is perhaps worthwhile here to remark that, for e = 0, Lemma 5.2
says simply that for each n > | there exists H € w such that forall X € o,
X<y Hif andonly if X is A° This is a well-known corollary of Post’s
Hierarchy Theorem. Lemma 5.2 is true for arbitrary a but we shall give
the proof only for the case when « is greater than w and p.r. closed; see
Jensen and Karp [13]. (This seems to be a reasonable compromise since
5.2 is applied below only in a situation where o is a limit of admissible
ordinals, hence a is greater than w and p.r. closed.) In this case L, =J,,
so we can apply the results of Jensen [12]; see also Devlin [4].

In Jensen’s terms, the hypothesis of 5.2 is that 4} = 1. Hence, by
Jensen’s results, there is a A (L,) mapping f: w onto, L,. Define

H= {4/ ki ke w &L, € Fg[f(), f(O)}
where {(¢;(x, ¥) | € w) is a primitive recursive enumeration of the IT,_;
formulas with two free variables. Then H € w and H is A,,(L,). Further-
more, if X & w is £,(L,} then X is recursively enumerable in /. So H is
a A, (L, ) master code. For later use, note that for all i € w, 2 subset of
wis E,H,(L ) if and only if it is 2:+1 in H. Hence the i jump of Hisa
4,.(L,) master code. O

Technical Note. " he subject of A, master codes has not previously been
discussed in the published literature. We therefore record some further
information here. We use the nomenclature of Jensen. Let</,, €, A) be
amgnable, 4 € J,, and put p = p& 4 andg= na 4- Then the followmg
two assertions are equivalent:
(i) there is a ,(J,, A) mapping from a subset of.lﬂ ontoJ,;
(ii) there is a A;(J,, A) mapping from J,7 ontoJ,.
Suppose that these assertions hold. Then p < 7 and there is no k with
wrp<k<w-enand{J,, € F “kis a cardinal”’. Let \ be the least
ordinal such that there is a A;(/,, 4) mapping from X onto an unbounded
subset of w + a. Then n = max { p, A}. Furthermore there exists H < Iy
which is A;{/,, A) and such that the following holds. If A < 7, then
2, ) =PU N T U, 4)
forall k> 1. If A =17, then
2, =PI YO 2T, A)
for all & 2 I; moreover, the structure (./,,, €, H) is admissible. Some of

these statements are essentially due to Jensen. The proofs will appear in
a book on admissibility which Simpson is preparing.
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We now pass from the language of set theory to the language of second-
order arithmetic. The ramified analytical hierarchy is a hierarchy of sub-
sets of w*. Define

My =0,
M, =U {Ma foe < N} for limit ordinals A,
M,y = {f€ w¥ | graph(f) is analytically definable over M} .

(These analytical definitions are allowed to mention parameters, i.e. con-
stants denoting arbitrary elements of M,. An unpublished theorem of
Putnam says that every element of M, is analytically definable in M,
without parameters. Hence it would be possible to dispense with the
parameters, although we shall not do so here.) There is a smallest or-
dinal § such that Mg,y = Mg, This countable ordinal is called §,. Evidently
M, is a model of full comprehension. Gandy and Putnam have shown

by an inner model construction that M‘,o is the smallest 8-modet of full
comprehension.

Lemma 5.3. Foralla <y + 1,
M =L, nwv.

The proof is in Boolos-Putnam [1]. An ordinal a is said to be locally
countable if (¥ . € &= ¥x3f (f is a mapping of natural numbers onto x).
It is shown in [1] that every « < f; is locally countable. For « a locally
countable ordinal we define M, = L, N w*. This is harmless since by
5.3 it disagrees with our previous definition of M, only when a > 8, + 1.
The foliowing lemma is well-known, but we sketch a proof anyway.

Lemma 5.4. Let « be a locally countabie ordinal which is a limir of
smaIIe( admissible ordinals. Let n be a positive integer. A relation
REM, X o isZ,(L,)ifand only if it is 1,y over M,.

Proof (sketch). Hereditarily countable sets x con be coded by elements
of w*; for instance, a code for x can be taken to be a function f & w*
such that, for some mappingi: w 243 TC({x},

0 ifim)ei(n),

I otherwise .

flim, ) =
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where TC({x}) is the transitive closure of {x3. The set of all codes is T}
(over w™), By local countability, every x € L, has a code in M,,. Since «
is a limit of smaller admissible ordinals, M, is closed under the hyperjump
operation. Hence the set of all codes in M, is T} over M,. Let § be the
mapping which takes a code f to the set encoded by f. Thus L, = {S(NIf
isacode & f € M,}. We claim that for each R € L/, which is EO(L )
there is P& M, 4 w}uch is A‘ over M, and such that for ail codes

o hE M,. P(fyy e I |f and only if R(S(Ay), ..., SU7)). This is proved
by induction on the number oi symbols in the £, formula defining R.
Now for each R € L, let

R* = {fe M, |fisacode & S(f)€ R}.

We claim that R is E,(L,) if and only if R* is £}, over M,. This is
easily proved by induction on n and establishes Lemma 5.4.0

Technical Note. Lemma 5.4 becomes false if one weakens the hypothesis
that a is a limit of smaller admissible ordinals. However, 5.4 can be gener-
alized in a slightly different direction. Let M © w* be a f-model and let
A= {S(NHifisacr2e & f€ M}. Then A is a transitive set, and a relation
onMis £,(4), x> 1, if and only if it s £}, over M. (If M is nonempty
and closed under <7, @, and hyperjump, then M is a -model. But the
converse is false by Friedman [71.)

We come now to the lemma which is the main point of this Section.

Lemma 5.5, Let a be a nonzero, locally countable ordinal. Let n be a
positive integer. Suppose that M, does not satisfy the Al comprehension
axiom. Then M, has a AL master code.

Proof. There are three cases.

Case 1. « is a Himit of smaller admissible ordinals. The conclusion is
immediate by Lemmas 5.2 and 5.4. Note that in this Case we must have
n > 2 since M, satisfies A} (in fact 11}) comprehension.

Case 11, a is admissible but not a limit of smaller admissibles. Let
8 < « be such that there is no admissible ordinal between « and B. Let
B € M, be a code for f. Then clearly wf = a. Furthermore

M, = {f € w" i fis hyperarithmetic in B} .
This is the relativization to B of the fact that M, =HYP(cf. [1,16]).
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By similarly relativizing Lemma 4.9 we see that 0% isa Al master code
for M, and more generally, for all / < w, the lthjump c:fO‘J isa A}”
master code for M,. Here again M,, satisfies A comprehension so there
isno A} master code

Case I1L o is not admissible and not a Limit of smaller agmissibles. As
in Case 11, let B € M, be such that a < w¥. Hence w - a is a limit ordinal
less than wf. Let w-a = |3+ 5¢# where 3 5¢ is a limit notation in 08
(cf. [32)). TA as M, = (f|j<Tll‘9 forsomen < «8 3-5°)([1,16)). We
claim that H3 .seisa AI master code for M, and more generally, for all
i< w, asubset of wis ):,” mH3 se .fand only if it is 2,,. over M, .
That HE. 5c is A} over M,, is clear from [5). The rest is proved by the
same technique as in the procf of Lemma 4.9, using Sublemr:ia 4.10 and
the following fact: there is an enumeration M, = {f;1i € w} such that
{5 s B2 | R(S3ys - fi, )} is recursive in H‘g.se whenever R is arith-
metical. This completes the proof of Lemma $.5.

Corollary. Surpose that « is a nonzero, locally countable ordinal, 1 <n< w,
and HE wisa Al master code for M,. Then for all i < w, the iF jump
of Hisa AL,; master code for M,.

We are now ready to give our level by level, degree theoretic characteri-

zation of the ramified analytical hierarchy. A sequence of degrees
(dQ e < 0 i« defined degree theoretically as follows. Put dy = 3 and

d,, =d,=jump of d. Let \ be a limit ordinal such that d, have been
defined for alla < A, Put I, ={d(3a<N)d<d,}. Let m, be the least
integer m such that there is a largest degree d w}uch is < (a U bY™ for
all pairs @, b which are exact over I,. Let d, be this largest degree. Let
be the least ordinal such that d, is undefined.

Theorem 5.6. We have 6 = 3y and

1, = {degree (f) | fis ramified analytical} .
The level by level correspondence is given by
5) 1,0 = {degree (NIfEM }

for 1 < a < By. Furthermore m woa = Ko T 2 where k, Is the largest in-
teger k suck that M, satisfies Al comprehensmn Also d is the de-
gree of Akml master codes for My k=k,.

woatl
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Proof. The equation (5) will be proved by induction ona, 1 € a < ;.
For o = 1 {5) says merely that [, is the set of all degrees of arithmetical
functions. For limit ordinals « the induction is trivial since then 7,
=Ugeol,y and M = qu, M,. For the successor step, suppose
that (5) holds and & < 8. Then Lemmas 5.1 and 5.5 imply that m,.
=k, +2and foreachi< w,d, ;= d(‘?,u is the degree ofA}H“
codes for M, k = k,. Hence

14 = {d td is arithmetical in d

wela+l) wea

3
| master

}
= {degree (X)! X is analytically definable over M a}

= {degree (f) i1f& Maﬂ} .
This completes the proof.

Technical Note. For limit ordinals A < 8, the definition of d, can be
sharpened somewhat. Namely one can construct an exact pair g, b for I,
such thatd, = (g v b)('""). Compare this with the Remark at the end of
Section 4. We do not know whether in the definition of d, for arbitrary
limit ordinals A < §; the use of exact pairs of upper bounds can be re-
placed by the use of minimal upper bounds.

Examples (continued). Let us attempt to clarify Theorem 5.6 by focusing
on some cases.

(1) We have d,, = 0%, the degree of the truth set of first order arith-
metic. Theorem 5.6 characterizes this degree theoretically as the largest
degree which is < (¢ U b)'?) whenever a, b are an exact pair of upper
bounds for the arithmetical degrees.

(2) Let X be a recursive limit ordinal. Then d, is the degree of H3~5e
where 3 « 5¢ is a notation for A. Spector [32] showed that d, is well-
defined but he did not characterize d, degree theoretically, although
there was probably little doubt that this couid be done. Theorem 5.6
characterizes dy, as the largest degree which is < (a U 5)® whenever the
pair @, b is exact over /,. Sacks [26] has already characterized d,, in a
stronger way as the smallest degree of the form a® where 4 is an upper
bound for /,. The use of exact pairs of upper bounds was unnecessary
in this case because of the “predicative” nature of the hyperarithmetical
hierarchy; see Kreisel [18,191. The point here, due to Kleene {16], is that
for & < w, the master code for M, can be given an analytical (in fact A%)
definition which is invariant in the sense that it defines the same set when
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interpreted in an arbitrary M, M, & M € w*. This is in sharp contrast
to the behavior owa‘ = HYP where by [10} no sets are invariantly
analytically definable except those which already belong to HYP. See
also [5]. This is why for dw‘ we need exact pairs of upper bounds rather
than just upper bounds.

(3) Let M = w). Then d,, is the degree of Kleene's ¢1 see also Section 4.
There is no 4,(L,) master code. Kieene’s O is a complete Z(L,) subset
of « and a A,(L,) master code. Also M, =L, " w* =HYPand Oisa
A} master code for M,.

(4) For each 1 < w let w,, be the n'" admissible ordinal. Put A =U, ., w,
It is well-known that A is not admissible and that M, is the smallest -
model of H} comprehension. Put O, = {¢m, m im € (0, } where Oy =@
an¢ O, is the hyperjump of 0,. Then O, is a A (L,) master code and
a A} master code for M,. Theorem 5.6 characterizes d,, the degree of
0,,, as the largest degree which is < (¢ U 5)®) whenever a, b are an exact
pair of upper bounds for the degrees d,, = degrev of 0,, | € n < .

(5)LetA= w‘fl = the smallest admissi%le ordinal which is a limit of
admissible ordinals. It is well known that X is projectible into w and that
M, is the smallest 8-model of A% comprehension (see Kripke [20]). Let
0, be the complete Z(L,) subset of w. Equivalently,

0, = {tm, w1 {m}*1 (1) = 0}
where E| is Tugue’s functional; cf. [8,33). Then 4, is the degree of
6., Tirorem 5.6 characterizes d, as the largest degree which is < (v )%
whenever the pair g, b is exact over the degrees of functions in
M, = {f€ w" | fisrecursive in £ }.

(6) Let A be the smallest nonprojectible admissible ordinal greater than
w. Then L, satisfies £, comprehension so there is no complete ¥(L,)
subset of w. Nevertheless there exists a 4,(L,) master code which is also
a A} master code for M,. This master code is denoted O,. Then d, is the
degree of O, and Theorem 5.6 characterizes d, as the largest degree
which is < (@ U b)® whenever a, b are exact over the degrees of functions
in M,.

(7) Let A be the smallest %, admissible ordinal. Then L, satisfies 4,
comprehension so there is no 8,(L, ) master code. Let O, be the com-
plete Z,(L,) subset of w. Then O, is a A3(L,) master code and a A}
master code for M,, and d,,_is the degree of 0,. Theorem 5.5 characterizes
d, degree theoretically as the largest degree whichis< (@ U b )5} when-
ever 4, b are an exact pair over the degrees of the functions in M,.
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Remark, The degree theoretic hierarchy (d, |« < fip) can be extended
nzturally to a hierarchy of degrees (d, la < ﬂ‘ ) which are cofinal in the
constructible degrees. For example, dﬁ is the degree of the truth set for
(L; ,€}and can be defined degree theorencally as the largest degree
whxoch is < (@ U b)) whenever the pair 4, b is exact over I,3 In general
the ' jumps, n < w, which were used in Theorem 5.6 must be veplaced
by ¥ juraps where » can be any ordinal less than 8. These ™" jumps
are defined by combining the ideas of Leeds and Putnam [22] with the
ideas of the present paper. The details will appear elsewhere.

Discussion. The work reported in this Section was inspired by the earlier
work of H. Putnam and his colleagues [1,2,5,22]. Obviously we are very
much in Putnam’s debt. However, our work differs from that of Putnam
in two respects. First, we have taken account of the Jensen Theory, which
was not available to Putnam. Second, Putnam et al. employ the notion
of uniform upper bound, which seems to be somewhat pathological. We
do not know whether the notion of uniform upper bound is degree theo-
retically definable. This problem is investigated but not solved in Section 6.
We have gotten around the problem here by eliminating uniform upper
bounds in favor of exact pairs of upper bounds. This yields two significant
improvements over {221

(1) Our degreesd,, a < 8'1‘, are (Turing) degrees rather than arithmeti-
cal degrees.

(2) Our degrees are seen to be degree theoretic, while this is in doubt
for the degrees used by Putnam.

Precisely, each of our degrees d,,, o« < N’f , is seen to be definable in
the structure @ by a formula of £, ,, , the infinitary logic with countable
conjunctions and finite strings of quantifiers. (In particular, d,, is seen to
be necessarily fixed by all automorphisms of D. But it is an open problem
due to Rogers [24, p. 2611 whether @ has any nontrivial antomorphisms.)

Remark. It would be interesting to look at master codes and degree theo-
retic hierarchies for notions of degree other than that of Kleene—Post [17].
Some of the notions we have in mind are: many-one degrees {24}, hyper-
degrees, a-degrees and a-calculability degrees, Aé degrees, L-degrees [ 28],
Q-degrees, and Wadge degrees for subsets of ww. (If 4, B € w® wesay 4
is Wadge reducible to B if there exists a continuous function F: w* » w*
such that A = F~1(B).) There are also a number of notions of degree that
arise from Kleene's theory of recursion in higher types. For each notion
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of degree, it is to be expected that some sort of master codes and degree
theoretic hierarchies exist, but they would probably take different forms.
These differences in the form of the hierarchies would yield significant
insight into the nature of the various notions of degree.

6. Uniform upper bounds

If M is a countable set of functions and & is a degree, « is calied a uni-
form upper bound (w.u.b.) of M if there is 2 binary function f of degree
at most @ such that M = {(f); 1§ € w}, where {/);(j)} = f(, j). (This is
easily seen to be equivalent to the definition of u.u.b. in [2].) In [2], the
ramified analytical hierarchy is analyzed in terms of u.u.b.’s. The purpose
of the present section is to attempt to relate the notion of u.u.b. to the
degree theoretic notions used in our analysis of that hierarchy. In particu-
lar we give a necessary condition for a degree a to be a u.u.b. to the class
of all arithmetical functions, and also a sufficient condition. These two
conditions are first-order conditions on a, but unfortunately they do not
appear to be equivalent. Throughout this Section the set of arithmetical
functions will be denoted AR. Any results we state for AR are also valid
(with essentially the same proof) for the class of functions which occur in
any fixed proper initial segment of the hyperarithmetical hierarchy closed
under the i"mp operation, i.e. for {f1(In<, 35 <, H,}for3-5€ €0,
replacing 0() by the degree of H, ;..

The riext proposition is analogous in statement and proof to the result
of Enderton and Putnam [5] that 0'“) is recursive in a” whenever all
arithmetical functions are recursive in a. A degree a is called a sub-uniform
upper bound (s.u.u.b.) of a class M of fuactions if there is a binary func-
tion f of degree <a such that M € {(f); 1/ € w}.

Proposition 6.1. Ifa is a s.u.u.b. of AR, thena' > 0w,

Proof. There is a H? relation P(n, f) on w X w* such that for each n
there is a unique f (denoted £,,) such that P(n, f) holds. Furthermore

£, =r 0, uniformly in n (cf. {24, Exercise 16-98]). Let ¢ be a function
recursive in g such that every arithmetical function is (g); for some i
Let h(n) = (ui) P(n, (g);). Then 4 is a total function recursive in a,
and (8l = f, for all . Since 0@ = . uniformly in n, it follows
that ¢ > 0. O
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Corollary 6.2. 0 is the least element of {a'1ais a w.u.b. of AR}.

Proof. In view of Proposition 6.1, it suffices to show that there is degree
a such that g is a u.u.b. of AR and @' < 0. Such a degree a is easily
obtained by combining the method of Kleene-Post [17] to construct
uu.b.’s of AR with that of Friedberg (6] to contro! the jump of a set
being constructed. Alternatively, one may leta = b’ where b is any
degree such that 0% < b for all n < w and b” < 0«) [26]. Thenaisa
u.u.b. of AR by Corollary 6.5, which follows shortly. O

If a, b are degrees, a is called a high cover of bifa> b and a’ = b".
{14, Theorem 1] (relativized) shows that if a is a high cover of b, then
a is 2 u.u.b. of the functions recursive in b. We have b is an upper bound
of AR if every arithmetical function is recursive in b.

Theorem 6.3. If a is a high cover of some upper bound b of AR, then a
sauub. of AR.

Proof. By the remark just before the theorem, the hypotheses of the
theorem imply that a is 2 s.u.u.b. of AR. Thus the theorem is a conse-
quence of the following lemma.

lemma 6.4, [faisasuub. of AR, thenaisa uu.b. of AR,

Proof. If f, g € w™ we say f weakly majorizes g if f(n) > g(n) for all but
{initely many 4. Since a is a s.uu.b. of AR, it is easy to see that there is

a function fyy recursive in @ which weakly majorizes all arithmetical func-
tions. By the proof of Proposition 6.1 there are functions g, £,(n < w),
and k such that g is binary and recursive in 4, & is recursive in ', f, =, 0,
and (g)yny = fy- By the Limit Lemma there is a binary function r recursive
ina such that limg_,, 7(n, 5) = k(n) for all n. Now define

glen k), 2) =D 8) 0 43 2)

if tbe((g),,(n‘kﬂ);x) is defined in at most k + f,(x) steps for each x < z,
otherwise let g(le, n, k), 2) = 0. (Here &,(f; x) is alternate notation for
{e¥(x)) If Do((8)n, k43 x). is defined in at most k + fi(x) steps for all
X, then (&) n x differs only finitely from ®,((g),(,); and otherwise
&e.m 1 18 0 for all but finitely many arguments. Hence (&), 1, is arith-
metical for any fixed (e, #, k. Also if @,((g)y) is total, then the major-
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izing property of fy, insures that (2} , & = (&) for all sufficiently
large k. Since ¢ is clearly recursive in @, it witnesses that 4 is a u.u.b. of
AR.O

It may be shown by extending the proof of Lemma 6.4 thataisa
u.uwb. of AR iff there is a function recursive in @ which weakly majorizes
all arithmetical functions.

Let U be the set of u.u.b.’s of AR. We do not know whether U is first-
order definable in @ =(D, <, /) nor even whether it is invariant under
all automorphisms of this structure. Let U/; be the set of upper bounds
a of AR such thata' > 04, Let U, be the set of degrees which are high
covers of upper bounds of AR. U; and U, are each first-order definable
in Dand Uy € US U by 6.1 and 6.3. We do not know whether either
or both inclusions can be reversed. Also we do not know whether U, U,
or U, contains a minimal upper bound to {0 i n € w}. Finally we do
not know whether U coincides with the set of u.u.b.’s of AR N 2% (the
class of arithmet:cal sets) nor whether 6.1, 6.2, or 6.4 remain valid with
AR replaced by AR n 2,

The following is an immediate corollary to Theorem 6.3.

Corollary 6.5. If b is an upper bound of AR, b’ is a w.u.b. of AR.

Guserve that Corollary 6.5 (and thus alse Theorem 6.3 and Lemma 6.4)
fail if AR is replaced by HYP, the set of hyperarithmetic functions. In-
deed by [5, §3] and [1] there is"a degree b such that b is an upper bound
of HYP, but no degree containing a set A{ in b is a v.u.b. of HYP. How-
ever using the notion of exact pair one may easily get an analogue to
Theorem 6.3 which holds for more general classes of functions. Let M
be a countable nonempty subset of w®, closed under <y and .

Theorem 6.6. If {a, b} is exact over M and ¢ is a high cover of a and of b,
then cisauub. of M.

Proof. Let M,, My, be the set of functions recursive in 4. b, respectively,
soM =M, " My. By the remark before Theorem 6.3, ¢ is a u.ub. of M,
and of M. Let f, g be functions recursive in ¢ such that M, = {{f)}; 1/ € w}
and My, = {(g)]- 1j € w}. Define A, ), 2) to be (f);(2) if () (0) = (g),-(x\
for all x < z, and let 4((i, 5, 2) = 0 otherwise. Then )= oy if
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(f); = (g); and otherwise (h); ;, is almost everywhere 0. Hence
M=M, 0 M= {0, k€ w}.0

Remark. It can also be shown that if {a, b} is exact over M, ¢ > q, and
¢'»(@ub)”, theneisauub. of M.
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