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Abstract. We investigate the strength of set existence axioms needed for separable Banach
space theory. We show that a very strong axiom, Π1

1 comprehension, is needed to prove such
basic facts as the existence of the weak-∗ closure of any norm-closed subspace of `1 = c∗0.
This is in contrast to earlier work [5, 7, 6, 25, 22] in which theorems of separable Banach
space theory were proved in very weak subsystems of second order arithmetic, subsystems
which are conservative over Primitive Recursive Arithmetic for Π0

2 sentences. En route
to our main results, we prove the Krein-Šmulian theorem in ACA0, and we give a new,
elementary proof of a result of McGehee on weak-∗ sequential closure ordinals.

1. Introduction

This paper is part of an ongoing study of the role of set existence axioms in the foundations
of mathematics. The ongoing study has been carried out in the context of subsystems of
second order arithmetic, under the slogan Reverse Mathematics [12, 3, 25]. We continue
this program here by examining the role of strong set existence axioms in separable Banach
space theory. We show that a very strong set existence axiom is needed in order to prove
basic results concerning the weak-∗ topology on the dual of a separable Banach space.

The results in this paper are related to earlier work of Brown and Simpson [5, 7, 6, 25] and
Shioji and Tanaka [22]. The earlier work shows that the basic notions of separable Banach
space theory can be developed in very weak subsystems of second order arithmetic, and that
many basic results can be proved in such systems. Specifically, the Hahn-Banach theorem
and a version of the Schauder fixed point theorem are provable in WKL0; the Banach-
Steinhaus theorem is provable in RCA0; and versions of the Open Mapping and Closed
Graph theorems are provable in RCA+

0 . The set existence axioms of these three subsystems
of second order arithmetic are very weak, in the sense that the systems themselves are
conservative over Primitive Recursive Arithmetic for Π0

2 sentences (see Chapter IX of [25]).
In particular, the mentioned systems are considerably weaker than first order arithmetic.
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Thus the results of Brown and Simpson [5, 7, 6] may have tended to support the opinion
that only very weak set existence axioms are needed for separable Banach space theory. Our
main results here, Theorems 5.6 and 5.7 below, provide a counterexample to that opinion
and a departure from Brown-Simpson-Shioji-Tanaka. Namely, Theorems 5.6 and 5.7 show
that a very strong set existence axiom, Π1

1 comprehension, is needed in order to prove basic
facts such as the existence of the weak-∗ closure of any norm-closed subspace of `1 = c∗0.
Thus Π1

1 comprehension is in a sense indispensable for separable Banach space theory. This is
significant because Π1

1 comprehension is, of course, much stronger than first order arithmetic.
As a byproduct, we show that the Krein-Šmulian theorem for the dual of a separable

Banach space (Theorem 2.7 below) is provable in ACA0 (Theorem 4.14 below). We conjecture
that the Krein-Šmulian theorem for the dual of a separable Banach space is actually provable
in the weaker system WKL0.

Some of our results here may be of interest to readers who are familiar with Banach
spaces but do not share our concern with Reverse Mathematics and other foundational
issues. Namely, the following Banach space phenomenon may be of independent interest.
Let Z be a subspace of the dual of a separable Banach space. Banach and Mazurkiewicz
observed that, although the weak-∗ closure of Z is the same as the weak-∗ sequential closure
of Z, it is not necessarily the case that every point of the weak-∗ closure of Z is the weak-∗
limit of a sequence of points of Z. Indeed, the process of taking weak-∗ limits of sequences
may need to be iterated transfinitely many times in order to obtain the weak-∗ closure. In a
self-contained part of this paper, we obtain a sharp result along these lines. Namely, for each
countable ordinal α, we obtain an explicit example of a norm-closed, weak-∗ dense subspace
of `1 = c∗0 whose weak-∗ sequential closure ordinal is exactly α + 1. This result is originally
due to McGehee [18], but our examples are different and more elementary.

On the other hand, it is perhaps worth noting that our original motivation for the work here
had nothing to do with Banach space theory. Rather, our starting point was another aspect
of Reverse Mathematics, specifically the search for necessary uses of strong set existence
axioms in classical (“hard”) analysis. We began with the thought that, in searching for
necessary uses of strong set existence axioms, it would be natural to consider how Cantor
was led to the invention or discovery of set theory in the first place. We were struck by the
well known historical fact [9, 10] that Cantor introduced ordinal numbers in tandem with
his study of trigonometric series and the structure of sets of uniqueness; see also Jourdain’s
essay [8]. Indeed, Cantor’s proof that every countable closed set is a set of uniqueness uses
transfinite induction on the Cantor-Bendixson rank of such sets. Therefore, from our Reverse
Mathematics viewpoint, it is very natural to reexamine these results of Cantor. Although we
postpone such reexamination to a future paper, we want to point out that our work here was
inspired by a discussion of Kechris and Louveau [14, 13] culminating in a result attributed
to Solovay: the Piatetski-Shapiro rank is a Π1

1-rank on the set of closed sets of uniqueness.
Since the Piatetski-Shapiro rank is the weak-∗ sequential closure ordinal of a certain weak-∗
dense subspace of `1, our foundational motivation for studying such ordinals is apparent.

We end this introductory section with a brief outline of the rest of the paper. Section 2
reviews the concepts and results of Banach space theory that are important for us here. In
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particular we review the weak-∗ topology and define the notion of the weak-∗ sequential
closure ordinal of an arbitrary set in the dual of a separable Banach space. In Section 3 we
exhibit the previously mentioned examples concerning weak-∗ sequential closure ordinals,
using the concept of a smooth tree. These two sections, Sections 2 and 3, are intended to
form a self-contained unit which should be accessible to anyone who is familiar with the
notion of a Banach space. Our discussion of subsystems of second order arithmetic does not
get under way until Section 4. We begin that section by reviewing the definitions and results
from Brown-Simpson [5, 7, 6, 25] that we shall need. We then discuss the weak-∗ topology
and related notions in the Brown-Simpson context. We end Section 4 by proving our version
of the Krein-Šmulian theorem within ACA0. Finally, in Section 5, we state and prove our
main theorem, concerning the need for Π1

1 comprehension. The ideas of Section 3 are used
in the proof of the main theorem in Section 5.

2. Banach space preliminaries

The purpose of this section is to review some well-known concepts and results from separa-
ble Banach space theory. Our focus is the weak-∗ topology on the dual of a separable Banach
space. A reference for most of this material is Chapter V of Dunford and Schwartz [11].

Let X be a Banach space. The weak topology on X is the weakest topology such that
every bounded linear functional on X is continuous. The dual space of X is the space X∗ of
all bounded linear functionals on X. The norm of x∗ ∈ X∗ is defined by

‖x∗‖ = sup
{
|x∗(x)|

∣∣ ‖x‖ ≤ 1
}
.

The weak-∗ topology on X∗ is the weakest topology such that for all x ∈ X the functional
x∗ 7→ x∗(x) is continuous. The weak-∗ closure of a set Z ⊆ X∗ is denoted cl*(Z). Note that
about any point x∗0 ∈ X∗ there is a weak-∗ neighborhood basis consisting of all sets of the
form {

x∗ ∈ X∗
∣∣ |x∗(x1)− x∗0(x1)| < 1, . . . , |x∗(xn)− x∗0(xn)| < 1

}
for some finite set x1, . . . , xn ∈ X.

A key theorem concerning the weak-∗ topology is:

Theorem 2.1 (Banach-Alaoglu). For any r > 0, the closed ball

Br(X
∗) =

{
x∗ ∈ X∗

∣∣ ‖x∗‖ ≤ r
}

is weak-∗ closed and weak-∗ compact. Furthermore, if X is separable then Br(X
∗) is weak-∗

metrizable.

Proof. See [11], page 424.

In considering weak-∗ sequential convergence, an important fact to keep in mind is the
following consequence of the Banach-Steinhaus theorem:

Theorem 2.2. Let {x∗n | n ∈ N} be a countable set of points in X∗. If supn |x∗n(x)| <∞ for
all x ∈ X, then supn ‖x∗n‖ <∞.

Proof. See [11], page 66.
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Corollary 2.3. If x∗n → x∗ in the weak-∗ topology in X∗, then {x∗n | n ∈ N} is bounded,
i.e., {x∗n | n ∈ N} ⊆ Br(X

∗) for some 0 < r <∞.

A set Z ⊆ X∗ is said to be weak-∗ sequentially closed if it is closed under weak-∗ limits of
sequences, i.e., x∗n → x∗ weak-∗ and x∗n ∈ Z for all n ∈ N imply x∗ ∈ Z.

Corollary 2.4. A set Z ⊆ X∗ is weak-∗ sequentially closed if and only if Z ∩ Br(X
∗) is

weak-∗ sequentially closed for all r > 0.

For an arbitrary set Z ⊆ X∗, being weak-∗ sequentially closed is not in general equivalent
to being weak-∗ closed. In particular, the weak-∗ topology is not in general metrizable, even
when X is separable. This is shown by the following theorem.

Theorem 2.5. Let X be an infinite-dimensional separable Banach space. Then we can find
a countable set Z ⊂ X∗ such that Z is weak-∗ sequentially closed yet weak-∗ dense in X∗.

Proof. We first prove the following lemma.

Lemma 2.6. Let X be an infinite-dimensional Banach space. Then we can find a sequence
of points 〈xk | k ∈ N〉 in X such that limk ‖xk‖ = ∞ and ‖xk‖ > 1 for all k ∈ N, yet 0
belongs to the weak closure of {xk | k ∈ N}.

Proof. For any finite set F ⊂ X∗, {x ∈ X | y∗(x) = 0 for all y∗ ∈ F} is a subspace
of X of codimension at most the cardinality of F , and hence in particular it intersects
{x ∈ X | ‖x‖ > n} for each n ∈ N. By the Banach-Alaoglu theorem, Bn(X∗) is weak-∗
compact, and so Bn(X∗)n is weak-∗ compact as well. Thus for each n we can find a finite
set Gn ⊂ {x ∈ X | ‖x‖ > n} such that, for each finite set F ⊂ Bn(X∗) of cardinality n,
{x ∈ X | |y∗(x)| < 1 for all y∗ ∈ F} intersects Gn. Letting {xk | k ∈ N} be an enumeration
without repetition of

⋃∞
n=1Gn, we obtain the desired sequence.

Proof of Theorem 2.5. Since X is separable, it follows by Theorem 2.1 that X∗ is weak-∗
separable, so let {x∗n | n ∈ N} be a countable weak-∗ dense subset of X∗. By the preceding
lemma, for each n we can find a sequence 〈z∗nk | k ∈ N〉 such that ‖z∗nk‖ > n for all k and
limk ‖z∗nk‖ = ∞ and x∗n belongs to the weak, and hence weak-∗, closure of {z∗nk | k ∈ N}.
Thus Z = {z∗nk | n, k ∈ N} is a countable set which is weak-∗ dense in X∗. On the other
hand, for each n, Z∩Bn(X∗) is finite, so by Corollary 2.4 Z is weak-∗ sequentially closed.

The previous theorem shows that a set in X∗ can be weak-∗ sequentially closed yet far
from weak-∗ closed, even when X is separable. Nevertheless, it turns out that for convex
sets in X∗, being weak-∗ sequentially closed is equivalent to being weak-∗ closed, provided
X is separable. We shall obtain this result as a consequence of the following well-known
theorem:

Theorem 2.7 (Krein-Šmulian). Let X be a Banach space. A convex set in X∗ is weak-∗
closed if and only if its intersection with Br(X

∗) is weak-∗ closed for every r > 0.

Proof. See [11], page 429.
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The special case of the Krein-Šmulian theorem for subspaces of X∗ is originally due to
Banach ([2] page 124):

Corollary 2.8 (Banach). A subspace of X∗ is weak-∗ closed if and only if its intersection
with B1(X∗) is weak-∗ closed.

Proof. For a subspace Z of X∗, we have Z ∩Br(X
∗) = r(Z ∩B1(X∗)). Hence Z ∩Br(X

∗) is
weak-∗ closed for all r if and only if Z ∩B1(X∗) is weak-∗ closed. The desired result follows
immediately from the Krein-Šmulian theorem.

A set Z in X∗ is said to be bounded-weak-∗ closed if Z ∩ Br(X
∗) is weak-∗-closed for

all r > 0. This defines yet another topology on X∗, the bounded-weak-∗ topology. By the
Banach-Alaoglu theorem, weak-∗ closed sets are bounded-weak-∗ closed, but the converse
does not hold in general. We can paraphrase the Krein-Šmulian theorem by saying that a
convex set in X∗ is weak-∗ closed if and only if it is bounded-weak-∗ closed.

Lemma 2.9. Let X be a separable Banach space. A set Z ⊆ X∗ is bounded-weak-∗ closed
if and only if it is weak-∗ sequentially closed.

Proof. By definition, Z is bounded-weak-∗ closed if and only if Z ∩Br(X
∗) is weak-∗ closed

for all r. Since X is separable, we have by Theorem 2.1 that Br(X
∗) is weak-∗ compact and

weak-∗ metrizable. Hence, for all r, Z ∩ Br(X
∗) is weak-∗ closed if and only if Z ∩ Br(X

∗)
is weak-∗ sequentially closed. By Corollary 2.4 it now follows that Z ∩ Br(X

∗) is weak-∗
closed for all r if and only if Z is weak-∗ sequentially closed. This completes the proof.

We now obtain the desired result:

Theorem 2.10. Let X be a separable Banach space. A convex set Z ⊆ X∗ is weak-∗ closed
if and only if it is weak-∗ sequentially closed.

Proof. Immediate from Theorem 2.7 plus Lemma 2.9.

Again, the special case when Z is a subspace of X∗ is due to Banach ([2] page 124):

Corollary 2.11 (Banach). Let X be a separable Banach space. A subspace Z of X∗ is
weak-∗ closed if and only if it is weak-∗ sequentially closed.

We now turn to a discussion of weak-∗ sequential closure ordinals. For an arbitrary set
Z ⊆ X∗, let Z ′ denote the set of weak-∗ limits of sequences from Z. Define a transfinite
sequence of sets Z(α), α an ordinal, by

Z(0) = Z ,

Z(α+1) = (Z(α))′ ,

Z(δ) =
⋃
α<δ

Z(α) for δ a limit ordinal .

Clearly α < β implies Z(α) ⊆ Z(β). Define ord(Z) to be the least ordinal α such that
Z(α+1) = Z(α). Thus Z(ord(Z)) is the weak-∗ sequential closure of Z. We call ord(Z) the
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closure ordinal of Z. Note that if Z is convex, then Z(α) is convex for all α; also, by the
previous theorem Z(ord(Z)) = cl*(Z), the weak-∗ closure of Z.

In the remainder of this section and the next section, we shall prove some results which
completely answer the question of which ordinals can arise as closure ordinals of subspaces
of X∗ where X is a separable Banach space. This question was first answered completely by
McGehee [18] and Sarason [19, 20, 21].

Lemma 2.12. If X is a separable Banach space, then for any set Z ⊆ X∗ the closure ordinal
ord(Z) is countable.

Proof. For r > 0 and α an ordinal, let Cα
r be the weak-∗ closure of Z(α) ∩Br(X

∗). For fixed
r > 0, the sets Cα

r form an increasing, transfinite sequence of compact subsets of a compact
metric space, namely Br(X

∗) with the weak-∗ topology (Theorem 2.1). This transfinite
sequence must therefore stabilize at some countable ordinal. Since Cα

r ⊆ Z(α+1) ∩Br(X
∗) ⊆

Cα+1
r for all α, it follows that the transfinite sequence Z(α) ∩ Br(X

∗) also stabilizes at a
countable ordinal, call it αr. Put α = sup{αn | n ∈ N}. Then α is a countable ordinal.
We claim that Z(α) is weak-∗ sequentially closed. To see this, suppose that x∗ is the weak-∗
limit of a sequence 〈x∗k | k ∈ N〉 from Z(α). By Corollary 2.3, there exists n ∈ N such that
x∗k ∈ Bn(X∗) for all k ∈ N. Hence x∗ ∈ Z(α+1) ∩ Bn(X∗) = Z(α) ∩ Bn(X∗), so in particular
x∗ ∈ Z(α) and our claim is proved. Thus ord(Z) ≤ α < ω1, i.e., ord(Z) is countable.

Specializing to subspaces of X∗, we can say more:

Theorem 2.13. Let X be a separable Banach space and let Z be a subspace of X∗. Then
the closure ordinal ord(Z) is a countable successor ordinal, unless Z is already weak-∗ closed,
in which case ord(Z) = 0.

Proof. By the previous lemma, ord(Z) is countable. Suppose that cl*(Z) = Z(δ) =
⋃
α<δ Z

(α),
for some countable limit ordinal δ. As cl*(Z) is norm closed, this implies that cl*(Z) =⋃
α<δ cl(Z(α)), where cl(Y ) denotes the norm closure of Y ⊆ X∗. Thus cl*(Z) is a closed

subset of a complete metric space, written as a countable union of closed sets. By the Baire
category theorem, there must be an ordinal α < δ such that cl(Z(α)) has non-void interior as a
subset of cl*(Z), i.e., cl(Z(α)) contains the intersection of an open (in norm) ball with cl*(Z).
But cl(Z(α)) is a subspace of cl*(Z), so it must be all of cl*(Z). Since cl(Z(α)) ⊆ Z(α+1), it
follows that Z(α+1) = cl*(Z), whence ord(Z) 6= δ. We have now shown that ord(Z) is not
a limit ordinal. Thus ord(Z) must be either 0 or a successor ordinal. If ord(Z) = 0 then Z
is weak-∗ sequentially closed, and hence is weak-∗ closed by Corollary 2.11. This completes
the proof. See also Kechris and Louveau [14], page 157.

It is known that the converse of the previous theorem also holds: For every countable
successor ordinal α + 1, we can find a subspace Z of the dual X∗ of a separable Banach
space X such that ord(Z) = α+ 1. In the next section we present a proof of this result, with
Z ⊆ `1 = c∗0 and Z weak-∗ dense in `1.

The study of closure ordinals of subspaces of X∗ has an interesting history. Von Neumann
([26] page 380) exhibits a set S ⊂ `2 such that 0 is in the weak closure of S yet no sequence
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from S converges weakly to 0. The first example of a subspace Z of X∗ such that ord(Z) ≥ 2
is due to Mazurkiewicz [17]. Banach ([2] pages 209–213) proves that for every n ∈ N there is
a subspace Z of `1 = c∗0 such that ord(Z) ≥ n and states the analogous result for all countable
ordinals. For the proof Banach refers to a “forthcoming” paper which seems never to have
appeared, and this reference is omitted from the English translation [1]. Later, McGehee
[18] proves the stronger result that for each countable ordinal α there exists a weak-∗ dense
subspace of `1 = c∗0 whose closure ordinal is exactly α+1 (but note that McGehee’s notation
differs from ours). In the next section we reprove this result of McGehee. Sarason [19, 20, 21]
proves a similar result for the spaces H∞ and `∞. In view of the theorem above, these results
of McGehee and Sarason are in a sense best possible. While McGehee’s proof uses sets of
synthesis and uniqueness, our proof in the next section is much more elementary.

3. Trees and subspaces of `1

In this section we prove the following result: For each countable ordinal α, there exists a
weak-∗ dense subspace Z of `1 = c∗0 such that ord(Z) = α + 1. Our proof uses some simple
concepts and results concerning trees. We give a self-contained treatment of these auxiliary
results.

Definition 3.1. Let Seq denote the set of finite sequences of natural numbers, i.e.,

Seq =

∞⋃
k=0

Nk =
{
〈n0, . . . , nk−1〉

∣∣ k ∈ N, ni ∈ N for all i < k
}
.

For s = 〈n0, . . . , nk−1〉 ∈ Seq, we write

s = 〈s(0), s(1), . . . , s(lh(s)− 1)〉 ,
where lh(s) = k denotes the length of s, and s(i) = ni for all i < lh(s). In particular 〈〉 is
the empty sequence, the unique sequence of length 0. For s, t ∈ Seq we denote by sat the
concatenation of s and t, i.e., the sequence of length lh(s) + lh(t) given by

sat = 〈s(0), . . . , s(lh(s)− 1), t(0), . . . , t(lh(t)− 1)〉 .
For s, t ∈ Seq, we write s ⊆ t to mean that s is an initial segment of t, i.e., lh(s) ≤ lh(t)
and, for all i < lh(s), s(i) = t(i). Given s ∈ Seq, if s 6= 〈〉 let

s′ = 〈s(0), s(1), . . . , s(lh(s)− 2)〉 ,
i.e., s′ is the initial segment of s of length lh(s)− 1. For s = 〈〉 we put s′ = 〈〉′ = 〈〉.

Definition 3.2. We define a tree to be a nonempty set T ⊆ Seq which is closed under taking
initial segments, i.e., for all s, t ∈ Seq, if t ∈ T and s ⊆ t then s ∈ T . If T is a tree and
s ∈ T , we say that s is a node of T . If s is a node of T such that sa〈n〉 /∈ T for all n ∈ N,
then s is called an end node; otherwise s is called an interior node of T . Given a tree T ,
a function f : N → N is called a path through T if for all n ∈ N we have f [n] ∈ T , where
f [n] = 〈f(0), f(1), . . . , f(n− 1)〉. A tree T is said to be well-founded if it has no path.
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Definition 3.3. If T is a tree, let

T ′ = {t′ | t ∈ T} = {interior nodes of T} ∪ {〈〉} .
Note that T ′ is a subtree of T . We define a transfinite sequence of subtrees T (α) of T by

T (0) = T ,

T (α+1) = (T (α))′ ,

T (δ) =
⋂
α<δ

T (α) for δ a limit ordinal .

Note that T is well-founded if and only if T (α) = {〈〉} for some countable ordinal α. The
least such α is called the height of T , denoted h(T ). Given a well-founded tree T , we define
a function hT : Seq → Ord ∪ {−1} (where Ord denotes the set of countable ordinals) by
hT (s) = −1 for s /∈ T and, for s ∈ T , hT (s) = the least α such that s is an end node of T (α).
In particular hT (〈〉) = h(T ). Note that, for all s ∈ T , hT (s) = sup{hT (sa〈n〉) + 1 | n ∈ N}.

From the definition above, the height of a well-founded tree is a countable ordinal. The
following standard theorem shows that the converse holds as well.

Theorem 3.4. For any countable ordinal α, we can construct a well-founded tree T such
that h(T ) = α.

Proof. We prove this by transfinite induction on α. For α = 0 we have h({〈〉}) = 0. For
successor ordinals, note that if h(T ) = α, then h(T+) = α + 1 where T+ = {〈〉} ∪ {〈0〉as |
s ∈ T}. Suppose now that δ is a limit ordinal, say δ = sup{αn | n ∈ N}, where αn < δ for all
n ∈ N. For each n let Tn be a tree of height αn, and put T = {〈〉}∪{〈n〉as | n ∈ N, s ∈ Tn}.
Then T is well-founded and, for each n ∈ N, hT (〈n〉) = αn. Thus h(T ) = sup{αn + 1 | n ∈
N} = δ.

Definition 3.5. Fix an injection # : Seq→ N with the following properties:

1. #(〈〉) = 1;
2. s ⊆ t implies #(s) ≤ #(t);
3. m < n implies #(sa〈m〉) < #(sa〈n〉).

Given s ∈ Seq we refer to #(s) as the Gödel number of s. To simplify notation in what
follows, we shall often identify sequences with their Gödel numbers, i.e., we write s instead
of #(s).

Let X = c0(Seq), the space of sequences of real numbers converging to 0 indexed by Seq.
Then we may identify X∗ with `1(Seq), the space of absolutely summable sequences of real
numbers indexed by Seq. In the rest of this section we shall mainly be interested in the
weak-∗ topology on `1(Seq) = c∗0(Seq).

Definition 3.6. For each s ∈ Seq we define a distinguished point ys ∈ `1(Seq) by

ys(t) =

{
#(t′) if t ⊆ s,

0 otherwise.
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Using the convention that sequences are to be identified with their Gödel numbers, we can
write ys(t) = t′ if t ⊆ s, 0 otherwise. Note that, for all s ∈ Seq, the sequence 〈ysa〈n〉 : n ∈ N〉,
converges weak-∗ to ys in `1(Seq).

Definition 3.7. Given s ∈ Seq we set

Zs =
{
z ∈ `1(Seq)

∣∣∣ 1

s′
z(s) =

1

s

∑
m∈N

z(sa〈m〉)
}
.

If S ⊆ Seq, let ZS =
⋂
s∈S Zs. Note that ZS is a norm closed subspace of `1(Seq). Note also

that ys ∈ ZS if and only if s /∈ S.

The next two lemmas imply that, for any well-founded tree T , ZT is weak-∗ dense in
`1(Seq).

Lemma 3.8. If T is a well-founded tree, then ys ∈ Z(hT (s)+1)
T for all s ∈ Seq.

Proof. We proceed by induction on hT (s). If hT (s) = −1 then s /∈ T and ys ∈ ZT = Z
(0)
T .

Suppose now that hT (s) = α ≥ 0, and that the theorem holds for all t such that hT (t) < α.

Then for each n ∈ N, hT (sa〈n〉) < α, so ysa〈n〉 ∈ Z(α)
T for all n ∈ N. Since ys is the weak-∗

limit of the sequence 〈ysa〈n〉 : n ∈ N〉, it follows that ys ∈ Z(α+1)
T , as desired.

Lemma 3.9. If T is a well-founded tree, then ZT is weak-∗ dense in `1(Seq); in fact,

Z
(h(T )+1)
T = `1(Seq).

Proof. Let z ∈ `1(Seq) be given. We can write z =
∑

s∈Seq z(s)χs, where χs ∈ `1(Seq) is the

characteristic function of {s}, i.e., χs(t) = 1 if t = s, 0 otherwise. Note that if s 6= 〈〉 then

ys − ys′ = s′χs, whereas y〈〉 = χ〈〉. Also, by the previous lemma, if s 6= 〈〉 then ys ∈ Z(h(T ))
T ,

so, if lh(s) > 1 then χs ∈ Z(h(T ))
T . Since z is an absolutely summable series, we have∑

s∈Seq

z(s)χs = z(〈〉)y〈〉 +
∑
m∈N

z(〈m〉)χ〈m〉 +
∑
s∈Seq

lh(s)>1

z(s)χs

= z(〈〉)y〈〉 +
∑
m∈N

z(〈m〉)(y〈m〉 − y〈〉) +
∑

lh(s)>1

z(s)χs

=

(
z(〈〉)−

∑
m∈N

z(〈m〉)
)
y〈〉 +

∑
m∈N

z(〈m〉)y〈m〉 +
∑

lh(s)>1

z(s)χs .

Now, z(〈〉)−
∑

m∈N z(〈m〉) is just a real number since z is absolutely summable, and y〈〉 is the

weak-∗ limit of the sequence 〈y〈m〉 : m ∈ N〉, so the first term in this last sum is in Z
(h(T )+1)
T .

Likewise
∑

m∈N z(〈m〉)y〈m〉+
∑

lh(s)>1 z(s)χs, viewed as a series in `1(Seq), converges in norm,

and hence converges weak-∗; since the functionals y〈m〉 and χs are in Z
(h(T ))
T for all m ∈ N

and all s ∈ Seq with lh(s) > 1, it, too, is the weak-∗ limit of a sequence from Z
(h(T ))
T . Hence
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z is the sum of two weak-∗ limits of sequences from Z
(h(T ))
T , whence z is in Z

(h(T )+1)
T as

desired.

Corollary 3.10. If T is a well-founded tree, then ord(ZT ) ≤ h(T ) + 1.

Thus we have an upper bound on the closure ordinal of ZT in terms of the height of T .
To get a lower bound, we use the following technical lemma, which gives us a handle on the

growth of the spaces Z
(α)
T .

Lemma 3.11. Suppose that zk → z weak-∗ in `1(Seq) = c∗0(Seq). Let s ∈ Seq be given and
suppose that zk ∈ Zs for all k ∈ N. A sufficient condition for z ∈ Zs is the existence of
M ∈ N such that zk ∈ Zsa〈m〉 for all k ∈ N and all m ≥ M .

Proof. Assume that the stated condition holds. Suppose for a contradiction that z /∈ Zs, say∣∣∣∣∣ 1

s′
z(s)− 1

s

∞∑
m=0

z(sa〈m〉)
∣∣∣∣∣ > ε > 0 .

Then for all sufficiently large M we have∣∣∣∣∣ 1s′ z(s)− 1

s

∑
m<M

z(sa〈m〉)
∣∣∣∣∣ > ε .

Fix such an M , with zk ∈ Zsa〈m〉 for all k ∈ N and all m ≥ M as well. Then for all sufficiently
large k we have ∣∣∣∣∣ 1

s′
zk(s)−

1

s

∑
m<M

zk(s
a〈m〉)

∣∣∣∣∣ > ε ,

and hence

ε <

∣∣∣∣∣1s ∑
m≥M

zk(s
a〈m〉)

∣∣∣∣∣ (since zk ∈ Zs)

≤ 1

s

∑
m≥M

∣∣zk(sa〈m〉)∣∣
=

1

s

∑
m≥M

∣∣∣∣∣ s

sa〈m〉

∞∑
n=0

zk(s
a〈m,n〉)

∣∣∣∣∣ (since zk ∈ Zsa〈m〉 for all m ≥M)

≤ 1

sa〈M〉
∑
m≥M

∞∑
n=0

∣∣zk(sa〈m,n〉)∣∣
≤ ‖zk‖

sa〈M〉 ,

and hence ‖zk‖ > (sa〈M〉)ε. Thus {‖zk‖ | k ∈ N} is unbounded, contradicting Corollary 2.3.



STRONG SET EXISTENCE AXIOMS 11

In particular, we have the following result.

Corollary 3.12. Let S ⊆ Seq be such that, for each s ∈ S, sa〈m〉 ∈ S for all but finitely
many m ∈ N. Then ZS is weak-∗ closed.

Proof. By Lemma 3.11 ZS is weak-∗ sequentially closed. Hence by Corollary 2.11 ZS is
weak-∗ closed.

In order to make use of this lemma, we consider a special class of trees known as smooth
trees:

Definition 3.13. For s, t ∈ Seq we say s is majorized by t, written s� t, if lh(s) = lh(t)
and s(i) ≤ t(i) for all i < lh(s). For any tree T , we define T ∗ to be the upward closure of T
under majorization, i.e.,

T ∗ = {t ∈ Seq | ∃s ∈ T (s� t)} .
A tree T is said to be smooth if it is upward closed under majorization, i.e., T ∗ = T .

Lemma 3.14 (Marcone [15, 16]). Let T be a tree. Then T is well-founded if and only if T ∗

is well-founded, in which case h(T ) = h(T ∗).

Proof. Note first that T ⊆ T ∗, so if T ∗ is well-founded then so is T . Conversely, suppose T ∗

has a path f ; let Tf = {s ∈ T | s� f [lh(s)]}. Then Tf is a finitely-branching subtree of T ,
and, since f is a path through T ∗, Tf must be infinite. Hence by König’s Lemma Tf has a
path, whence T has a path.

Assuming T and T ∗ are well-founded, we obviously have h(T ) ≤ h(T ∗). For the opposite
inequality, we claim that for all s, hT ∗(s) = max{hT (t) | t� s}. (Note that {t | t� s} is a
finite set, so we may take max rather than sup.) We prove the claim by induction on hT ∗(s).
If hT ∗(s) = −1 then s /∈ T ∗, so for any t with t� s we have t /∈ T , whence hT (t) = −1 for
all such t. Otherwise s ∈ T ∗ and we have

hT ∗(s) = sup{hT ∗(sa〈n〉) + 1 | n ∈ N}
= sup{max{hT (ta〈m〉) + 1 | t� s, m ≤ n} | n ∈ N}
= sup{hT (ta〈n〉) + 1 | t� s, n ∈ N}
= max{sup{hT (ta〈n〉) + 1 | n ∈ N} | t� s}
= max{hT (t) | t� s} .

This proves our claim. In particular h(T ∗) = hT ∗(〈〉) = hT (〈〉) = h(T ) and the proof of the
lemma is complete.

Corollary 3.15. For any countable ordinal α, there exists a smooth well-founded tree T
such that h(T ) = α.

Proof. This follows immediately from Theorem 3.4 and the previous lemma.

Lemma 3.16. If T is a smooth tree, then T (α) is smooth for all α.
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Proof. We proceed by induction on α. For α = 0 there’s nothing to prove. Assume T (α)

is smooth, and let s ∈ T (α+1) be given. Suppose s� t; since s ∈ T (α+1) ⊆ T (α) which is
smooth, t must be in T (α); furthermore, since s is an interior node of T (α), there is an m ∈ N
such that sa〈m〉 ∈ T (α). But sa〈m〉� ta〈m〉, so ta〈m〉 ∈ T (α), whence t ∈ T (α+1). Finally,
smoothness is clearly preserved under intersections, so the induction goes through at limit
stages.

Lemma 3.17. Let T be a smooth well-founded tree. Then for all α ≤ h(T ), Z
(α)
T ⊆ ZT (α).

Proof. We proceed by induction on α. If α = 0 there’s nothing to prove. Assume Z
(α)
T ⊆ ZT (α)

and α < h(T ) and let z ∈ Z
(α+1)
T be given. Then z is the weak-∗ limit of some sequence

〈zk | k ∈ N〉 from Z
(α)
T ⊆ ZT (α). Since α < h(T ), we have that any s ∈ T (α+1) is an interior

node of T (α), i.e., s ∈ T (α) and sa〈M〉 ∈ T (α) for some M . Since T is smooth, so is T (α), and
hence sa〈m〉 ∈ T (α) for all m ≥M . Hence, for each k ∈ N we have zk ∈ Zs and zk ∈ Zsa〈m〉
for all m ≥M . By Lemma 3.11 it follows that z ∈ Zs. Since s is an arbitrary node in T (α+1),

we have z ∈ ZT (α+1). This shows that Z
(α+1)
T ⊆ ZT (α+1). Finally, if δ is a limit ordinal ≤ h(T )

and Z
(α)
T ⊆ ZT (α) for all α < δ, it follows easily that ZT (α) ⊆ ZT (δ) for all α < δ, whence

Z
(δ)
T ⊆ ZT (δ). This completes the proof.

Corollary 3.18. If T is a smooth well-founded tree, then ord(ZT ) = h(T ) + 1.

Proof. By Lemma 3.9 we have Z
(ord(ZT ))
T = `1(Seq) and ord(ZT ) ≤ h(T ) + 1. On the other

hand, T (h(T )) = {〈〉} so y〈〉 /∈ ZT (h(T )); hence, by the previous lemma, y〈〉 /∈ Z
(h(T ))
T so in

particular Z
(h(T ))
T 6= `1(Seq), and hence h(T ) < ord(ZT ). This completes the proof.

We now obtain the main result of this section, originally due to McGehee [18]:

Theorem 3.19. For any countable ordinal α, there exists a weak-∗ dense subspace Z of
`1 = c∗0 such that ord(Z) = α + 1.

Proof. Since Seq is a countably infinite set, we may identify `1 = c∗0 with `1(Seq) = c∗0(Seq).
By Corollary 3.15 let T be a smooth well-founded tree of height α. By Lemma 3.9 ZT is
weak-∗ dense in `1 and by Corollary 3.18 we have ord(ZT ) = h(T ) + 1 = α + 1.

Corollary 3.20. The ordinals which can occur as closure ordinals of subspaces of the dual
of a separable Banach space are precisely the countable non-limit ordinals.

Proof. This is immediate from Theorems 2.13 and 3.19. The result is originally due to
Sarason [19, 20, 21] and McGehee [18].

This settles the question of closure ordinals of subspaces of `1 = c∗0, but what about `2?
It turns out that the answer is much simpler (see Corollary 3.23 below).

Theorem 3.21. Let X be a Banach space, and let C ⊆ X be convex. Then for any x ∈ X,
the following conditions are equivalent:

1. x is in the weak closure of C.
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2. x is in the norm closure of C.
3. x is the norm limit of a sequence of points in C.
4. x is the weak limit of a sequence of points in C.

Proof. The equivalence of (1) and (2) follows from the well-known fact (Theorem V.3.13
in [11]) that a convex set is weakly closed if and only if it is norm closed. The implications
(2)⇒(3)⇒(4)⇒(1) are all trivial.

Corollary 3.22. If X is a reflexive Banach space and C ⊆ X∗ is convex, then the weak-∗
sequential closure ordinal of C is 0 if C is weak-∗ closed, and is 1 otherwise.

Proof. If X is reflexive then so is X∗ (see Corollary II.3.24 in [11]), and hence the weak and
weak-∗ topologies on X∗ coincide. The result now follows immediately from Theorem 3.21.

We would like to thank Howard Becker for pointing this out to us.

Corollary 3.23. If C ⊆ `2 is convex, then the weak-∗ (i.e., weak) sequential closure ordinal
of C is 0 if C is weak-∗ (i.e., weakly) closed, 1 otherwise.

We do not know whether the closure ordinal of a convex set in the dual of a separable
Banach space can be a limit ordinal.

4. The weak-∗ topology in subsystems of Z2

The language of second order arithmetic consists of number variables m, n, . . . , set vari-
ables X, Y , . . . , primitives +, ·, 0, 1, =, ∈, and logical operations including number quan-
tifiers and set quantifiers. By second order arithmetic (sometimes called Z2) we mean the
theory consisting of classical logic plus certain basic arithmetical axioms plus the induction
scheme

(ϕ(0) ∧ ∀n(ϕ(n)→ ϕ(n+ 1)))→ ∀nϕ(n)

plus the comprehension scheme

∃W ∀n (n ∈ W ↔ ϕ(n))

where ϕ(n) is an arbitrary formula of the language of second order arithmetic. In the
comprehension scheme it is assumed that the set variable W does not occur freely in ϕ(n).
All of the subsystems of second order arithmetic that we shall consider employ classical logic
and include the basic arithmetical axioms and the restricted induction axiom

(0 ∈W ∧ ∀n (n ∈W → n + 1 ∈W ))→ ∀n (n ∈W ) .

Two of the most important subsystems of second order arithmetic are ACA0 and Π1
1-

CA0. A formula of the language of second order arithmetic is said to be arithmetical if it
contains no set quantifiers. The axioms of ACA0 consist of the basic arithmetical axioms, the
restricted induction axiom, and arithmetical comprehension, i.e., the comprehension scheme
for formulas ϕ(n) which are arithmetical. A Π1

1 formula is one of the form ∀W θ where θ is
arithmetical. The axioms of Π1

1-CA0 consist of the axioms of ACA0 plus Π1
1 comprehension.
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Obviously Π1
1-CA0 is much stronger than ACA0. Three other very important subsystems of

second order arithmetic are RCA0 and WKL0, both of which are weaker than ACA0, and ATR0,
which is intermediate between ACA0 and Π1

1-CA0. For background material on subsystems
of second order arithmetic, we refer the reader to [12, 5, 6, 25].

The purpose of this section is to show how some fundamental results concerning separable
Banach spaces and the weak-∗ topology can be developed formally within ACA0 and weaker
systems. In particular, we show that a version of the Krein-Šmulian theorem is provable in
ACA0. Our approach for the development of separable Banach space theory within subsys-
tems of second order arithmetic follows that of Brown and Simpson [5, 7, 4, 6, 25]; see also
the paper of Shioji and Tanaka [22].

Definition 4.1 (RCA0). A (code for a) complete separable metric space Â is defined to be
a set A ⊆ N together with a function d : A×A→ R such that, for all a, b, c ∈ A,

1. d(a, a) = 0,
2. d(a, b) = d(b, a), and
3. d(a, c) ≤ d(a, b) + d(b, c).

A (code for a) point of Â is defined to be a sequence 〈an | n ∈ N〉 of elements of A such

that ∀m ∀n (m < n −→ d(am, an) ≤ 1/2m). Although Â does not formally exist as a set

within RCA0, we use notations such as x ∈ Â to mean that x is a point of Â, etc. We

then straightforwardly extend our definitions of = and d to Â in such a way that 〈Â, d〉 is a

complete metric space, with A dense in Â.

Definition 4.2 (RCA0). Let Â be a complete separable metric space as defined above. A

(code for an) open set in Â is defined to be a sequence of ordered pairs U = 〈(ai, qi) | i ∈ N〉,
ai ∈ A, qi ∈ Q. We write x ∈ U to mean that x ∈ Â and d(x, ai) < qi for some i ∈ N. A

closed set in Â is defined to be the complement of an open set.

Building on the definitions above within RCA0, one can define corresponding notions of
continuous function from one complete separable metric space into another, etc. On this
basis, one can prove within ACA0 or WKL0 or RCA0 many fundamental results about the
topology of complete separable metric spaces. For details, see [25]. In particular, one can
prove within WKL0 (see Chapter IV of [25]) the Heine-Borel covering lemma (“if C is compact
then any covering of C by a sequence of open sets has a finite subcovering”), using the
following RCA0 notion of compactness:

Definition 4.3 (RCA0). Let C be a closed set in a complete separable metric space Â.
We say that C is compact if there exists a countable sequence of finite sequences of points

〈〈xni | i ≤ kn〉 | n ∈ N〉 in Â such that for all x ∈ C and all n ∈ N there exists i ≤ kn such
that d(x, xni) < 1/2n.

In the same setting, there is a useful version of the Tychonoff product theorem, and one can
prove within RCA0 the compactness of the product space

∏
n∈N[an, bn], where 〈[an, bn] | n ∈

N〉 is any sequence of closed bounded intervals. For details, see Chapter IV of [25].
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We now turn to our development of separable Banach space theory within RCA0 and ACA0.

Definition 4.4 (RCA0). A (code for a) separable Banach space consists of a countable set
A ⊆ N together with operations + : A × A → A, − : A × A → A, and · : Q × A → A and
a distinguished element 0 ∈ A such that 〈A,+,−, ·, 0〉 forms a countable vector space over
the rational field Q, together with a function ‖ ‖ : A→ R satisfying

1. ‖qa‖ = |q|‖a‖ for all a ∈ A and q ∈ Q, and
2. ‖a+ b‖ ≤ ‖a‖+ ‖b‖ for all a, b ∈ A.

In other words, a code for a separable Banach space Â is a countable pseudo-normed vector
space A over Q. Note that Â is a complete separable metric space under d(a, b) = ‖a− b‖.
Thus a point of the separable Banach space Â is by definition a sequence 〈an | n ∈ N〉 such
that ∀m ∀n (m < n −→ ‖am − an‖ < 1/2m).

Definition 4.5 (RCA0). Let X = Â and Y = B̂ be separable Banach spaces. A (code for

a) bounded linear operator F : X → Y is a linear mapping F : A → B̂ such that, for some
0 ≤ r < ∞, ‖F‖ ≤ r, i.e., ‖F (a)‖ ≤ r‖a‖ for all a ∈ A. If x = 〈an | n ∈ N〉 is a point of

X = Â, we write F (x) = limn F (an).

It can be proved in RCA0 [5, 7, 25] that bounded linear operators F : X → Y are
identifiable with continuous linear mappings from X into Y . Also within RCA0 one can
prove a useful version of the Banach-Steinhaus theorem:

Theorem 4.6. The following is provable in RCA0. Given separable Banach spaces X and
Y and a sequence of bounded linear operators Fn : X → Y , n ∈ N, if {‖Fn(x)‖ | n ∈ N} is
bounded for all x ∈ X, then there exists r <∞ such that ‖Fn‖ ≤ r for all n ∈ N.

Proof. See [7, 6, 25].

Definition 4.7 (RCA0). Let X be a separable Banach space. A bounded linear functional
on X is a bounded linear operator f : X → R. We write f ∈ X∗ to mean that f is a
bounded linear functional on X. For 0 ≤ r <∞, we write f ∈ Br(X

∗) to mean that f ∈ X∗
and ‖f‖ ≤ r.

Note that X∗ and Br(X
∗) do not formally exist as sets within RCA0. We identify the

functionals in Br(X
∗) in the obvious way with the points of a certain closed set in the

compact metric space
∏

a∈A[−r‖a‖, r‖a‖], where X = Â. Thus the compactness of Br(X
∗)

is provable in RCA0. This version of the Banach-Alaoglu theorem turns out to be very useful
for the development of separable Banach space theory within WKL0. See [5, 22] and Chapter
IV of [25] and Brown’s discussion of the “Alaoglu ball” [7]. In particular we have:

Theorem 4.8. The following version of the Hahn-Banach theorem is provable in WKL0. Let
X be a separable Banach space and let Y be a subspace of X. If g : Y → R is a bounded
linear functional with ‖g‖ ≤ r, then there exists a bounded linear functional f : X → R such
that ‖f‖ ≤ r and f extends g, i.e., f(x) = g(x) for all x ∈ Y .
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Proof. The literature contains two proofs of this result. A direct proof is in [5]. An indi-
rect proof via a WKL0 version of the Markov-Kakutani fixed point theorem is in [22] and
Chapter IV of [25].

Theorem 4.9. The following extension of the Hahn-Banach Theorem is provable in WKL0.
Let X be a separable Banach space. Let p : X → R be a continuous function such that
p(rx) = rp(x) and p(x+ y) ≤ p(x) + p(y) for all r ≥ 0 and x, y ∈ X. Let Y be a subspace of
X and let g : Y → R be a bounded linear functional such that g(x) ≤ p(x) for all x ∈ Y . Then
there exists a bounded linear functional f : X → R such that f extends g and f(x) ≤ p(x)
for all x ∈ X.

Proof. Either of the cited proofs of Theorem 4.8 can be straightforwardly adapted to prove
this more general result. See also Theorem 4.2 of [7].

For use later in this section, we note that the following separation principle holds in ACA0:

Lemma 4.10. The following is provable in ACA0. Let X be a separable Banach space. Let
Z be a countable set in X such that ||x|| ≥ 1 for all x in the convex hull of Z. Then there
exists f ∈ B1(X∗) such that f(x) ≥ 1 for all x in the convex hull of Z.

Proof. Put

W =

{∑
i<n

qizi

∣∣∣ n ∈ N , qi ∈ Q ∩ [0, 1] ,
∑
i<n

qi = 1 , zi ∈ Z
}
.

Note that ‖w‖ ≥ 1 for all w ∈ W . Fix x0 ∈ W . By arithmetical comprehension, there is a
continuous function p : X → R defined by

p(x) = inf{c ∈ Q | c > 0 ∧ ∃w ∈W (‖(x/c) + w − x0‖ ≤ 1)} .
Then p satisfies the following:

1. p(x0) ≥ 1.
2. 0 ≤ p(x) ≤ ‖x‖ for all x ∈ X.
3. p(rx) = rp(x) for all r ≥ 0 and x ∈ X.
4. p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X.

Some remarks: if property 1 failed, then there would be w ∈ W and a rational c < 1 such
that ‖(x0/c) + w − x0‖ ≤ 1, whence ‖(1 − c)x0 + cw‖ ≤ c < 1, contrary to (1 − c)x0 + cw
being in W . Properties 2 and 3 are easily verified. As for property 4, given c > p(x) + p(y),
write c = a + b where a > p(x) and b > p(y). Then there exist w1 and w2 in W such that
‖(x/a) + w1 − x0‖ ≤ 1 and ‖(y/b) + w2 − x0‖ ≤ 1. Then

x+ y

a+ b
+

a

a + b
w1 +

b

a+ b
w2 − x0 =

(
a

a+ b

)
(
x

a
+ w1 − x0) +

(
b

a+ b

)
(
y

b
+ w2 − x0) ,

so ∥∥∥∥x+ y

a+ b
+

a

a+ b
w1 +

b

a+ b
w2 − x0

∥∥∥∥ ≤ a

a+ b
+

b

a+ b
= 1

whence p(x+ y) ≤ a+ b = c.
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Let Y be the subspace of X generated by x0, i.e., Y = Rx0. Define g : Y → R by
g(rx0) = rp(x0). Then g is a bounded linear functional on Y . Moreover, if r ≥ 0 then
g(rx0) = rp(x0) = p(rx0), and if r < 0 then g(rx0) = rp(x0) ≤ 0 ≤ p(rx0), so g ≤ p on Y .
Thus, by our extended Hahn-Banach theorem 4.9 in WKL0, we can extend g to a bounded
linear functional f : X → R such that f ≤ p on X.

Let w ∈ W be given, and suppose y is such that ‖y‖ ≤ 1. Then ‖(y − w + x0) + w −
x0‖ = ‖y‖ ≤ 1, whence f(y − w + x0) ≤ p(y − w + x0) ≤ 1 by definition of p. But
f(y−w+x0) = f(y)− f(w) + f(x0) and f(x0) ≥ 1, so f(y) ≤ f(w). Replacing f by f/‖f‖,
we see that f ∈ B1(X∗) and f(x) ≥ 1 for all x in the convex hull of Z. This completes the
proof.

We conjecture that this separation principle is actually provable in WKL0 and not only in
ACA0.

We now begin our treatment of the weak-∗ topology within RCA0. We start by introducing
an RCA0 version of the bounded-weak-∗ topology:

Definition 4.11 (RCA0). A (code for a) bounded-weak-∗-closed set C in X∗ is defined to be
a sequence of (codes for) closed sets Cn ⊆ Bn(X∗), n ∈ N, such that

∀m ∀n (m < n −→ Cm = Bm(X∗) ∩ Cn) .

We write x∗ ∈ C to mean ∃n (x∗ ∈ Cn), or equivalently ∀n(n > ‖x∗‖ → x∗ ∈ Cn). A
bounded-weak-∗-open set in X∗ is defined to be the complement of a bounded-weak-∗-closed
set in X∗.

The next lemma formalizes within ACA0 a well-known fact (see Lemma V.5.4 in [11]):
there is a bounded-weak-∗ neighborhood basis of 0 in X∗ consisting of the polars of sequences
converging to 0 in X.

Lemma 4.12. The following is provable in ACA0. Let X be a separable Banach space. If
〈xn | n ∈ N〉 is a sequence of points in X such that xn → 0, then

{x∗ ∈ X∗ | ∀n |x∗(xn)| < 1}
contains 0 and is bounded-weak-∗-open in X∗. Conversely, if U is a bounded-weak-∗-open
set in X∗ containing 0, then we can find a sequence of points 〈xn | n ∈ N〉 in X such that
xn → 0 and {x∗ ∈ X∗ | ∀n |x∗(xn)| ≤ 1} ⊆ U .

Proof. Reasoning in ACA0, let 〈xn | n ∈ N〉 be a sequence of points in X such that limn xn =
0. By arithmetical comprehension, there exists a sequence of integers Nm, m ∈ N, such that
‖xn‖ < 1/m for all m ∈ N and n ≥ Nm. Using the sequence 〈Nm | m ∈ N〉 as a parameter,
we can define a sequence of closed sets Cm ⊆ Bm(X∗), m ∈ N, by

Cm = {x∗ ∈ Bm(X∗) | ∃n < Nm(|x∗(xn)| ≥ 1)} .
It is easy to verify that

Cm = {x∗ ∈ Bm(X∗) | ∃n |x∗(xn)| ≥ 1}
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and hence Ck = Cm ∩ Bk(X
∗) for all k < m. Thus by Definition 4.11 we have a bounded-

weak-∗-closed set C =
⋃
m∈N Cm and clearly

X∗ \ C = {x∗ ∈ X∗ | ∀n |x∗(xn)| < 1} .
This shows that {x∗ ∈ X∗ | ∀n |x∗(xn)| < 1} is bounded-weak-∗-open in X∗.

The proof of the converse will be carried out in WKL0. Let U be a bounded-weak-∗-open
set in X∗ containing 0. Then C = X∗ \ U is a bounded-weak-∗-closed set with 0 /∈ C. For
any countable set S ⊆ X let So be the polar of S, i.e.,

So =
{
x∗ ∈ X∗

∣∣ ∀x ∈ S |x∗(x)| ≤ 1
}
.

To complete the proof, we need to construct a sequence of points 〈xk | k ∈ N〉 in X such
that limk xk = 0 and {xk | k ∈ N}o ∩ C = ∅.

Let X = Â where A is a countable dense set in X. Put A0 = A and, for each n ≥ 1,
An = {a ∈ A | ‖a‖ < 1/n}. Claim: for any n ∈ N and any countable set S ⊆ X, if
So ∩Bn(X∗)∩C = ∅ then there exists a finite set F ⊂ An such that (S ∪F )o ∩Bn+1(X∗)∩
C = ∅. If such an F does not exist, then for all finite sets F ⊂ An we would have
(S ∪ F )o ∩ Bn+1(X∗) ∩ C 6= ∅, so by the Heine-Borel covering property of the compact set
Bn+1(X∗) it would follow that

(S ∪ An)o ∩ Bn+1(X∗) ∩ C 6= ∅ .
But (S ∪An)o = So ∩Aon = So ∩Bn(X∗), and hence So ∩Bn(X∗) ∩C 6= ∅, a contradiction.
This proves the claim.

Within WKL0, we can apply the claim above repeatedly starting with F0 = ∅ to obtain a
sequence of finite sets Fn+1 ⊆ An, n ∈ N, such that

(F0 ∪ . . . ∪ Fn)o ∩ Bn(X∗) ∩ C = ∅

for all n ∈ N. The construction can be carried out effectively within WKL0 because, by
Lemma 5.8 of [3], the predicates F ⊂ An and F o ∩ Bn(X∗) ∩ C = ∅ are provably in WKL0

equivalent to Σ0
1 formulas. Thus the existence of a sequence of finite sets 〈Fn | n ∈ N〉 with

the mentioned properties is provable in WKL0.
Letting 〈xk | k ∈ N〉 be an enumeration without repetition of

⋃
n∈N Fn, it is clear that

xk → 0 in X and that {xk | k ∈ N}o ∩ C = ∅. This completes the proof.

We now introduce our RCA0 version of the weak-∗ topology.

Definition 4.13 (RCA0). A weak-∗-open set in X∗ is defined to be a bounded-weak-∗-open
set U in X∗ such that for all x∗0 ∈ U there exists a finite sequence of points x0, . . . , xn−1 ∈ X
such that

{x∗ ∈ X∗ | ∀k < n (|x∗(xk)− x∗0(xk)| ≤ 1)} ⊆ U .

A weak-∗-closed set in X∗ is defined to be the complement of a weak-∗-open set in X∗.

According to the previous definition, we have trivially in RCA0 that any weak-∗-closed set
is bounded-weak-∗-closed. In ACA0 we have following version of the Krein-Šmulian theorem:



STRONG SET EXISTENCE AXIOMS 19

Theorem 4.14. The following is provable in ACA0. Let X be a separable Banach space.
Suppose that C ⊆ X∗ is convex and bounded-weak-∗-closed. Then C is weak-∗-closed.

Proof. Let x∗0 /∈ C be given. Then C − x∗0 is also bounded-weak-∗-closed and convex, and
0 /∈ C − x∗0. Thus (C − x∗0) ∩ Bn(X∗) is a closed subset of Bn(X∗) for each n ∈ N. Since
Bn(X∗) is compact, in ACA0 there exists a countable dense subset Dn ⊂ (C − x∗0)∩Bn(X∗)
for each n (see Theorem 3.2 in [4]). We want to find a weak-∗-open set N containing 0 in
X∗ which is disjoint from C − x∗0, as this will show that x∗0 + N is disjoint from C. Let U
be a bounded-weak-∗-open set containing 0 which is disjoint from C − x∗0. By Lemma 4.12,
there is a sequence {xn | n ∈ N} such that xn → 0 and {x∗ ∈ X∗ | ∀n|x∗(xn)| ≤ 1} ⊆ U .

Now, for each m ∈ N, define a function Tm : Bm(X∗)→ c0 by Tm(x∗) = 〈x∗(xn) | n ∈ N〉.
These form a sequence of compatible functions, i.e., if m < n then Tn|Bm(X∗) = Tm. Thus
we can define a function T : X∗ → c0 by T (x∗) = Tm(x∗) where x∗ ∈ Bm(X∗). Notice that
T is linear, and ‖T (x∗)‖ ≤ 1 implies x∗ ∈ U for all x∗ ∈ X∗. Let D be an enumeration of
the dense sets Dn ⊂ (C − x∗0) ∩ Bn(X∗), and let E = T (D) (which exists by arithmetical
comprehension); then E is a countable subset of c0, and ‖x‖ > 1 for all x in the convex hull
of E. By Lemma 4.10 there exists f ∈ B1(c∗0) = B1(`1) such that f(x) ≥ 1 for all x in the
convex hull of E. Write f = 〈αn : n ∈ N〉 ∈ `1.

Let x =
∑

n∈N αnxn; note that {x∗ ∈ X∗ | |x∗(x)| < 1} is weak-∗-open and contains 0.
Also, if y∗ ∈ C − x∗0 then y∗ ∈ Bm(X∗) for some m. Thus |y∗(x)| = |

∑
n∈N αny

∗(xn)| =
|f(T (y∗))| = |f(Tm(y∗))| ≥ 1 since Dm is dense in Bm(X∗) and f and Tm are continuous.
So let N = {x∗ ∈ X∗ | |x∗(2x)| < 1} = {x∗ ∈ X∗ | |x∗(x)| < 1/2}; then N is weak-∗-open,
contains 0, and is disjoint from C − x∗0. This completes the proof.

Specializing to subspaces of X∗ (see also Corollary 2.8 above), we obtain:

Corollary 4.15. The following is provable in ACA0. Let X be a separable Banach space.
Let C be a closed set in B1(X∗) such that C = B1(X∗) ∩ span(C) where

span(C) =

{
n∑
i=0

ai x
∗
i

∣∣∣ ai ∈ R , x∗i ∈ C , n ∈ N
}
.

Then span(C) is a weak-∗-closed subspace of X∗.

Proof. This follows easily from the previous theorem. See also the proof of Corollary 2.8.

5. Proof of the main result

In this section we show that a rather strong set existence axiom, Π1
1 comprehension, is

needed to prove a very elementary (indeed trivial-sounding) fact of separable Banach space
theory. Namely, Π1

1-CA0 is equivalent over ACA0 to the following statement:

Given a separable Banach space X and a countable set Y ⊂ X∗,

there is a smallest weak-∗-closed subspace C of X∗ such that
Y ⊆ C.

(S)

This equivalence is the content of our main result, Theorem 5.6 below.
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The forward direction is the assertion that (S) is provable in Π1
1-CA0. This will be obtained

as a special case of:

Lemma 5.1. The following is provable in Π1
1-CA0. Let X be a separable Banach space.

Given a countable set Y ⊂ X∗, there is a smallest weak-∗-closed set C ⊆ X∗ such that
Y ⊆ C.

Proof. We reason in Π1
1-CA0. For each x∗0 ∈ X∗ and each finite set F ⊂ X, there is a

weak-∗-open set

U(x∗0, F ) = {x∗ ∈ X∗ | ∀x ∈ F (|x∗(x)− x∗0(x)| < 1)} .
By Σ1

1 comprehension, let U be the weak-∗-open set which is the union of the U(x∗0, F ) for
all x∗0 ∈ X∗ and all finite F ⊂ X satisfying the arithmetical condition Y ∩ U(x∗0, F ) = ∅.
In terms of Definitions 4.2 and 4.13, the code of Un = U ∩ Bn(X∗) for each n ∈ N is the
union of the codes of U(x∗0, F ) ∩ Bn(X∗) for all x∗0 ∈ X∗ and all finite F ⊂ X such that
Y ∩ U(x∗0, F ) = ∅. Clearly C = X∗ \ U is the smallest weak-∗-closed set that includes Y .
This completes the proof.

For the reversal, we must show that (S) implies Π1
1-CA0. The standard method of proving

that a mathematical statement implies Π1
1-CA0 is to apply the following lemma [12, 25]:

Lemma 5.2. It is provable in RCA0 that the following are equivalent:

1. Π1
1-CA0;

2. For any sequence of trees 〈Tn | n ∈ N〉, there exists a set W ⊆ N consisting of all n ∈ N
such that Tn is well-founded.

Proof. The assertion that Tn is well-founded is Π1
1 (using the sequence 〈Tn | n ∈ N〉 as a

parameter). The implication from (1) to (2) is therefore obvious. For the converse, reasoning
in RCA0, first we show that (2) implies ACA0. It is well-known (see [25]) that ACA0 is
equivalent over RCA0 to the statement that, for any one-to-one function f : N → N, the
range of f exists. Accordingly, let f : N → N be one-to-one. By recursive comprehension
(using f as a parameter), we define a sequence 〈Tn | n ∈ N〉 by s ∈ Tn if and only if
∀k < lh(s) (n 6= f(k)). Note that Tn is well-founded if and only if n is in the range of f .
By (2), there is a set W such that n ∈W if and only if Tn is well-founded, and so n ∈W if
and only if n is in the range of f , i.e., the range of f exists, as desired. This proves ACA0.

Now, reasoning in ACA0, let ϕ(n) be a Π1
1 formula. By the Normal Form Theorem for-

malized within ACA0 (see [25]), we can write ϕ(n) ≡ ∀f ∃mθ(f [m], n), where θ is Σ0
0. Use

recursive comprehension to form a sequence of trees

Tn = {s | ∀m ≤ lh(s) ¬θ(s[m], n)} ,
n ∈ N. Note that, for all n, ϕ(n) holds if and only if Tn is well-founded. By (2) there exists
a set W consisting of all n such that Tn is well-founded. Thus for all n ∈ N we have ϕ(n) if
and only if n ∈ W . This proves Π1

1 comprehension. Thus we have the implication from (2)
to (1). This completes the proof.
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In showing that the implication from (S) to Π1
1-CA0 is provable in ACA0, we shall want to

know that some of our results from Section 3 are provable in ACA0. Our ACA0 version of
part of Lemma 3.14 is:

Lemma 5.3. The following is provable in ACA0 (actually WKL0). Let T ⊆ Seq be a tree
and let

T ∗ = {s ∈ Seq | ∃t ∈ T (t� s)}
be the upward closure of T under majorization. Then T is well-founded if and only if T ∗ is
well-founded.

Proof. We reason in WKL0. If T ∗ is well-founded then obviously T is well-founded, since
T ⊆ T ∗. Suppose now that T ∗ is not well-founded. Let f be a path through T ∗. By
recursive comprehension form the tree Tf = {t ∈ T | t� f [lh(t)]}. Since f is a path through
T ∗, we have that for each n there exists t ∈ Tf such that t� f [n], and hence lh(t) = n, so
Tf is infinite. Thus Tf is a bounded infinite tree. By Bounded König’s Lemma, Tf has a
path. Here we are using the fact that Bounded König’s Lemma is provable in WKL0 (see
[12] and Lemma IV.1.4 of [25]). Since Tf ⊆ T , it follows that T has a path. This completes
the proof.

Recall that a tree T is said to be smooth if T ∗ = T . The previous lemma implies the
following refinement of Lemma 5.2.

Lemma 5.4. It is provable in ACA0 (actually in WKL0) that the following are pairwise
equivalent:

1. Π1
1-CA0;

2. For any sequence of trees 〈Tn | n ∈ N〉, there exists a set W ⊆ N consisting of all n ∈ N
such that Tn is well-founded.

3. For any sequence of smooth trees 〈Tn | n ∈ N〉, there exists a set W ⊆ N consisting of
all n ∈ N such that Tn is well-founded.

Proof. The equivalence of (1) and (2) is Lemma 5.2. Given a sequence of trees 〈Tn | n ∈ N〉,
we can use recursive comprehension to form a sequence of smooth trees 〈T ∗n | n ∈ N〉. By
the previous lemma we have in WKL0 that for all n, Tn is well-founded if and only if T ∗n is
well-founded. The equivalence of (2) and (3) follows.

Our ACA0 version of Corollary 3.12 is:

Lemma 5.5. The following is provable in ACA0. Let S ⊆ Seq be such that, for each s ∈ S,
sa〈m〉 ∈ S for all but finitely many m. Then ZS is a weak-∗-closed subspace of `1(Seq) =
c∗0(Seq).

Proof. To simplify notation, let us write X = c0(Seq), so that X∗ = `1(Seq). Clearly ZS
is a subspace of X∗. In order to show that ZS is weak-∗-closed, we shall first show that
ZS ∩B1(X∗) is weak-∗-closed.
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By arithmetical comprehension, there exists a sequence 〈Ms | s ∈ S〉 where Ms is the least
M such that sa〈m〉 ∈ S for all m ≥ M . Using 〈Ms | s ∈ S〉 as a parameter, let ϕ(z) be a
Σ0

1 formula asserting for z ∈ X∗ the existence of s ∈ S and M ≥Ms such that∣∣∣∣∣ 1s′ z(s)− 1

s

∑
m<M

z(sa〈m〉)
∣∣∣∣∣ > 1

sa〈M〉 .(1)

Since ϕ(z) is Σ0
1, it follows by standard RCA0 techniques (see Lemma II.5.7 of [25]) that

there exists a relatively weak-∗-open set U ⊆ B1(X∗) consisting of all z ∈ B1(X∗) such that
ϕ(z) holds.

We claim that U = B1(X∗) \ZS. To see this, let z ∈ B1(X∗) be given. If z /∈ ZS, then for
some s ∈ S we have ∣∣∣∣∣ 1s′ z(s)− 1

s

∞∑
m=0

z(sa〈m〉)
∣∣∣∣∣ > 0 ,

whence (1) holds for all sufficiently large M ≥Ms, whence z ∈ U . Conversely, if z ∈ U ∩ZS,
then by (1) we have

1

sa〈M〉 <

∣∣∣∣∣1s ∑
m≥M

z(sa〈m〉)
∣∣∣∣∣ (since z ∈ Zs)

≤ 1

s

∑
m≥M

∣∣z(sa〈m〉)∣∣
=

1

s

∑
m≥M

∣∣∣∣∣ s

sa〈m〉

∞∑
n=0

z(sa〈m,n〉)
∣∣∣∣∣ (since z ∈ Zsa〈m〉 for all m ≥ M)

≤ 1

sa〈M〉
∑
m≥M

∞∑
n=0

∣∣z(sa〈m,n〉)∣∣
≤ ‖z‖

sa〈M〉 ,

whence ‖z‖ > 1, i.e., z /∈ B1(X∗), a contradiction. This proves the claim.
The claim implies that ZS ∩ B1(X∗) is weak-∗-closed. By Corollary 4.15, it follows in

ACA0 that ZS is weak-∗-closed. This completes the proof.

We are now ready to prove our main result:

Theorem 5.6 (RCA0). The following are pairwise equivalent:

1. Π1
1-CA0.

2. For every separable Banach space X and countable set Y ⊆ X∗, there exists a smallest
weak-∗-closed set in X∗ containing Y .

3. For every separable Banach space X and countable set Y ⊆ X∗, there exists a smallest
weak-∗-closed convex set in X∗ containing Y .
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4. For every separable Banach space X and countable set Y ⊆ X∗, there exists a smallest
weak-∗-closed subspace of X∗ containing Y ;

5. For every countable set Y ⊆ `1 = c∗0, there exists a smallest weak-∗-closed set in `1

containing Y .
6. For every countable set Y ⊆ `1 = c∗0, there exists a smallest weak-∗-closed convex set in
`1 containing Y .

7. For every countable set Y ⊆ `1 = c∗0, there exists a smallest weak-∗-closed subspace of
`1 containing Y .

Proof. The implication from (1) to (2) is just Lemma 5.1. The implications from (2) to (3)
and (5) to (6) are straightforward by considering the countable set{

n∑
i=0

qi y
∗
i

∣∣∣ n∑
i=0

qi = 1, qi ∈ Q, qi > 0, y∗i ∈ Y, n ∈ N
}
.

The implications from (3) to (4) and (6) to (7) are straightforward by considering the count-
able set {

n∑
i=0

qi y
∗
i

∣∣∣ qi ∈ Q, y∗i ∈ Y, n ∈ N
}
.

The implications from (2) to (5) and (3) to (6) and (4) to (7) are trivial.
It remains to prove in RCA0 that (7) implies Π1

1-CA0. First we show in RCA0 that (7)
implies ACA0. Toward that end, let f : N → N be one-to-one; we want to show that the
range of f exists. Using f as a parameter, let Y = {y〈n,m〉 | ∃k ≤ m (f(k) = n)} ⊂ `1.
By (7), let C be the smallest weak-∗-closed subspace of `1 containing Y . Claim: for all
n ∈ N, y〈n〉 ∈ C if and only if n is in the range of f . To see this, first suppose n = f(k)
for some k. Then y〈n,m〉 ∈ Y for all m ≥ k, and, since y〈n,m〉 → y〈n〉 weak-∗ as m → ∞,
we have y〈n〉 ∈ C. Conversely, suppose n is not in the range of f . Then y〈n,m〉 /∈ Y for all
m ∈ N, and hence, for all y〈k,m〉 ∈ Y , y〈k,m〉(〈n〉) = 0. Let C ′ be the set of all y ∈ `1(Seq)
such that y(〈n〉) = 0. Then C ′ is a weak-∗-closed subspace of `1 which contains Y (and
hence contains C), but y〈n〉 /∈ C ′ ⊇ C. This proves the claim. Now, ‘y〈n〉 ∈ C’ is Π0

1 (as C
is a code for a weak-∗-closed set), whereas ‘n is in the range of f ’ is Σ0

1, so by recursive
comprehension, the range of f exists, as desired. Thus (7) implies ACA0.

So, reasoning within ACA0, assume (7). Instead of proving Π1
1-CA0 directly, we shall prove

the equivalent statement given by Lemma 5.4.
Let 〈Tn | n ∈ N〉 be a sequence of smooth trees. By recursive comprehension, form the set

T = {〈n〉as | n ∈ N, s ∈ Tn} .
Using the notation of Definition 3.6, consider the countable set Y = {yt | t /∈ T}. Note that
Y ⊆ ZT . By (7) there is a smallest weak-∗-closed subspace C of `1(Seq) such that C ⊇ Y .
Since the predicate y ∈ C is arithmetical (in fact Π0

1, using a code for C as a parameter),
we can use arithmetical comprehension to form the set

W = {n | y〈n〉 ∈ C} .
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We claim that, for all n ∈ N, Tn is well-founded if and only if n ∈W .
To prove the claim, let n be such that Tn is well-founded. We shall argue by arithmetical

transfinite induction on the well-founded tree Tn that y〈n〉as ∈ C for all s ∈ Seq. (Note that
arithmetical transfinite induction is available in ACA0; see Lemma V.2.1 of [25].) The base
step consists of observing that s /∈ Tn implies 〈n〉as /∈ T which implies y〈n〉as ∈ Y ⊆ C.
For the inductive step, let s ∈ Tn be given such that y〈n〉asa〈m〉 ∈ C for all m ∈ N. Clearly
y〈n〉asa〈m〉 converges weak-∗ to y〈n〉as as m → ∞. Since C is weak-∗-closed, it follows that
y〈n〉as ∈ C. This gives the inductive step. Thus y〈n〉as ∈ C for all s ∈ Seq. In particular
y〈n〉 ∈ C, i.e., n ∈W . This proves half of the claim.

For the other half, let n be such that Tn is not well-founded. We shall show that n /∈ W .
Let f be a path through Tn. By recursive comprehension form the set

S = {〈n〉as | f [lh(s)]� s} .
Note that 〈n〉 ∈ S. Since Tn is smooth, we have S ⊆ T , and hence y〈n〉 /∈ ZS ⊇ ZT ⊇ Y .
Moreover, for any 〈n〉as ∈ S, we have 〈n〉asa〈m〉 ∈ S for all m ≥ f(lh(s)), whence by
Lemma 5.5 ZS is a weak-∗-closed subspace of X∗. It follows that ZS ⊇ C, and hence
y〈n〉 /∈ C, i.e., n /∈W . This completes the proof of the claim.

From our assumption (7) we have shown that for all sequences of smooth trees 〈Tn | n ∈ N〉,
there exists a set W consisting of all n such that Tn is well-founded. Hence by Lemma 5.4 we
see that (7) implies Π1

1 comprehension, i.e., (1). This completes the proof of Theorem 5.6.

Theorem 5.7 (RCA0). The following are pairwise equivalent:

1. Π1
1-CA0.

2. For every separable Banach space X such that X∗ is also separable, and for every
norm closed subspace Z ⊆ X∗, there exists a smallest weak-∗-closed subspace of X∗

containing Z.
3. For every separable Banach space X such that X∗ is also separable, and for every

weakly closed subspace Z ⊆ X∗, there exists a smallest weak-∗-closed subspace of X∗

containing Z.
4. For every norm closed subspace Z ⊆ `1 = c∗0, there exists a smallest weak-∗-closed

subspace of `1 containing Z.
5. For every weakly closed subspace Z ⊆ `1 = c∗0, there exists a smallest weak-∗-closed

subspace of `1 containing Z.

Of course, in light of Theorem 3.21, with enough comprehension the equivalences (2) ⇔
(3) and (4) ⇔ (5) are trivial; however, we do not know the status of Theorem 3.21 in RCA0.

Proof. Let X be a separable Banach space, with Z ⊆ X∗ a norm closed subspace. In Π1
1-

CA0, since Z is norm closed there is a countable set S ⊂ X∗ such that Z is the norm
closure of S (see [4], [7]). By Theorem 5.6, there is a smallest weak-∗ closed subspace of X∗

containing S, which must also be the smallest weak-∗ closed subspace of X∗ containing Z.
Thus (1) implies (2). The implications (2)⇒(4) and (3)⇒(5) are trivial, and the implications
(2)⇒(3) and (4)⇒(5) follow from the norm topology being stronger than the weak topology.
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It remains only to prove in RCA0 that (5)⇒(1). As in the proof of Theorem 5.6, we first
show that (5) implies ACA0. So assume (5) and let f : N→ N be one-to-one; we want to show
in RCA0 that the range of f exists. By recursive comprehension (using f as a parameter),
define a tree T by

T = {〈〉} ∪ {〈n〉as | ∀k ≤ lh(s) (f(k) 6= n)}.
Then ZT is a weakly closed subspace of `1 = c∗0. By (5), let C be the smallest weak-∗ closed
subspace of `1 containing ZT . We claim that for all n ∈ N, n is in the range of f if and
only if y〈n〉 ∈ C. To see this, first suppose n is in the range of f , say f(m) = n. We’ll show
by Π0

1-induction (which is available in RCA0; see Corollary 3.10 in [25]) that for all s ∈ Seq,
y〈n〉as ∈ C. Let ϕ(i) be the Π0

1 formula ∀s ∈ Seq (lh(s) = m − i → y〈n〉as ∈ C). By the
definition of T , if lh(s) ≥ m then 〈n〉 /∈ T , whence y〈n〉as ∈ ZT ⊆ C, and so ϕ(0) holds.
Now suppose lh(s) = m − i, and y〈n〉at ∈ C for all t ∈ Seq with lh(t) = m − i + 1. Then
y〈n〉asa〈k〉 ∈ C for all k ∈ N, and y〈n〉asa〈k〉 → y〈n〉as weak-∗ as k → ∞, so y〈n〉as ∈ C since
C is weak-∗ closed. Thus ϕ(i− 1) implies ϕ(i), so it follows by Π0

1-induction that ϕ(i) holds
for all i ∈ N. In particular, ϕ(m) holds, i.e., y〈n〉 ∈ C. This proves one half of the claim.

Conversely, suppose n is not in the range of f ; we want to show that y〈n〉 /∈ C. Let
S = {〈n〉as | s ∈ Seq}. Then S ⊆ T , whence ZS ⊇ ZT . It suffices therefore to show
that ZS is weak-∗ closed, because then ZS ⊇ C, and y〈n〉 /∈ ZS since 〈n〉 ∈ S. In fact,
we’ll show that ZS = {z ∈ `1(Seq) | ∀t ∈ S (z(t) = 0)}, which is clearly weak-∗ closed.
Obviously, if z(t) = 0 for all t ∈ S, it follows from the definition of ZS that z ∈ ZS.
On the other hand, suppose z ∈ ZS and let t ∈ S be given. Since z ∈ ZS ⊂ Ztas
for all s ∈ Seq, it follows that (1/t′)z(t) = (1/t)

∑
m1∈N z(t

a〈m1〉), which in turn equals∑
m1∈N(1/(ta〈m1〉))

∑
m2∈N z(t

a〈m1, m2〉), which equals∑
m1,m2∈N

1

ta〈m1, m2〉
∑
m3∈N

z(ta〈m1, m2, m3〉),

and so on. Thus for all k ∈ N we have
1

t′
z(t) =

∑
s∈Nk

1

tas

∑
m∈N

z(tasa〈m〉).

From this it follows easily that

1

t′
|z(t)| ≤ 1

ta〈0〉k‖z‖1 for all k ∈ N,

where 〈0〉k is the sequence of length k, all of whose terms are 0. The right hand side of this
inequality approaches 0 as k →∞. Thus z(t) = 0. We have shown that z ∈ ZS if and only
if z(t) = 0 for all t ∈ S. This completes the proof of the claim. Since ‘n is in the range of f ’
is Σ0

1 and ‘y〈n〉 ∈ C’ is Π0
1, it follows by recursive comprehension that the range of f exists.

Thus (5) implies ACA0.
To prove that (5) implies Π1

1-CA0, we observe that the subspace ZT ⊆ `1 in the proof of
Theorem 5.6 is weakly closed, so we need only repeat the ACA0 part of that argument. This
completes the proof of Theorem 5.7.
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