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Abstract

Let X be an infinite sequence of 0’s and 1’s. Let f be a computable
function. Recall that X is strongly f -random if and only if the a priori
Kolmogorov complexity of each finite initial segment τ of X is bounded
below by f(τ ) minus a constant. We study the problem of finding a PA-
complete Turing oracle which preserves the strong f -randomness of X

while avoiding a Turing cone. In the context of this problem, we prove
that the cones which cannot always be avoided are precisely the K-trivial
ones. We also prove: (1) If f is convex and X is strongly f -random and Y

is Martin-Löf random relative to X, then X is strongly f -random relative
to Y . (2) X is complex relative to some oracle if and only if X is random
with respect to some continuous probability measure.
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1 Introduction

In this paper we prove several new results concerning Martin-Löf randomness
and partial randomness. A theme of our results is randomness preservation, i.e.,
the phenomenon that if X is (partially) random then X is (partially) random
relative to certain Turing oracles.

The purpose of this introductory section is to provide some additional con-
text and motivation for our results. In §1.1 we review basis theorems in general
and the Randomness Preservation Basis Theorem in particular. In §1.2 we
discuss the problem of combining two or more basis theorems into one basis
theorem. We present a new result to the effect that K-triviality is the only
obstacle to combining the Randomness Preservation Basis Theorem with the
Cone Avoidance Basis Theorem. In §1.3 we present some other new results
concerning partial randomness relative to a Turing oracle. Among the partial
randomness notions which we consider are µ-randomness, strong f -randomness,
autocomplexity, and complexity.

1.1 Basis theorems

Remark 1.1. A basis theorem is a theorem of the following form:

Let P be a nonempty, effectively closed set in Euclidean space.
Then, at least one point of P is “close to being computable.”

Or, instead of assuming that P is an effectively closed set in Euclidean space,
it suffices to assume that P is an effectively closed set in an effectively compact
metric space. See Definition 4.2 below.
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Remark 1.2. It is well known that basis theorems play an important role
in the foundations of mathematics. The foundational idea underlying these
applications is that, even though it is not always possible to find a computable
point with a desired property, it is nevertheless often possible to find a point
which is “close to being computable,” in various senses.

Remark 1.3. Several well known basis theorems may be summarized as follows.
Let P be a nonempty, effectively closed set in Euclidean space. Then, for each
of the following properties, there exists Z ∈ P such that the property holds.

1. Z is low, i.e., Z ′ ≤T 0′. This is the Low Basis Theorem, 1972 [16].

2. Z is of recursively enumerable Turing degree. This is the R.E. Basis
Theorem, 1972 [15].

3. Z is hyperimmune-free, i.e., (∀f ≤T Z) (∃g ≤T 0)∀n (f(n) < g(n)). This
is the Hyperimmune-Free Basis Theorem, 1972 [16].

4. X �T Z, where X �T 0 is given. This is the Cone Avoidance Basis
Theorem, 1960 [12].

5. Y ∈ MLRZ , where Y ∈ MLR is given. This is the Randomness Preserva-
tion Basis Theorem, 2005 [9, 26].

Here≤T denotes Turing reducibility, ′ denotes the Turing jump operator, MLR =
{Y | Y is Martin-Löf random}, and MLRZ = {Y | Y is Martin-Löf random rel-
ative to Z}.

Remark 1.4. The Cone Avoidance Basis Theorem is so named because Z
avoids the Turing cone above X . This theorem has been applied in foundational
studies touching on set existence [12], Turing degrees of complete theories [16,
27, 28], nonstandard models of arithmetic [17], Scott sets [1, Chapter XIX], and
models of WKL0 (see [30, §§VIII.2,IX.2] and [32, §§9,10]).

Remark 1.5. The Randomness Preservation Basis Theorem is so named be-
cause Z preserves the randomness of Y . This theorem has been applied to prove
several interesting results in the foundations of probability theory [3, 26, 36].
There is also a recent, less well known, basis theorem concerning preservation
of strong f -randomness [13, Theorem 4.6].

1.2 Combining basis theorems

Remark 1.6. The question arises:

Which basis theorems can be combined with each other?

Regarding this question, a large amount of information is known.
For instance, it is known that the Low Basis Theorem and the R.E. Basis

Theorem are incompatible in the sense that they cannot be combined into one
basis theorem. In other words, we can find P as above such that no point of P

3



is both low and of recursively enumerable Turing degree. (In fact, we can find
P as above such that every point of P which is of recursively enumerable Turing
degree is Turing complete, i.e., ≥T 0′ where 0′ = the halting problem. This is a
consequence of the Arslanov Completeness Criterion [37, Theorem V.5.1].)

Similarly, it is known that the Hyperimmune-Free Basis Theorem is incom-
patible with the Low Basis Theorem and with the R.E. Basis Theorem. (In
fact, any hyperimmune-free Z which is ≤T 0′ is ≤T 0, hence /∈ P for a suitably
chosen P as above.) Also, the Cone Avoidance Basis Theorem is compatible
with the Low Basis Theorem, and with the Hyperimmune-Free Basis Theorem,
but not with the R.E. Basis Theorem. (See for instance [10, §2.19.3].)

In addition, the Randomness Preservation Basis Theorem is incompatible
with the Hyperimmune-Free Basis Theorem, and with the Low Basis Theorem,
and with the R.E. Basis Theorem. To see this, let Y ∈ MLR be such that
Y ≥T 0′. (The existence of such Y ’s is a consequence of a famous theorem
known as the Kučera/Gács Theorem; see [10, Theorems 8.3.2 and 8.5.1] or
[22, 3.3.2] or [33, Theorem 3.8].) Then, any hyperimmune-free Z such that
Y ∈ MLRZ is ≤T 0 (see [22, Theorem 8.1.18]). And, any Z ≤T 0′ such that
Y ∈ MLRZ is K-trivial (see [10, Chapter 11] or [22, Chapter 5]), hence again
/∈ P for a suitably chosen P as above.

Summarizing these known results, we have Table 1. In this table, 0 denotes
incompatibility and 1 denotes compatibility.

Basis Theorems Low R.E. H.I.F. C.A. R.P.

Low 1 0 0 1 0

Recursively Enumerable 0 1 0 0 0

Hyperimmune-Free 0 0 1 1 0

Cone Avoidance 1 0 1 1 ???

Randomness Preservation 0 0 0 ??? 1

Table 1: Combining basis theorems

Remark 1.7. Note that Table 1 has two missing entries. One of our accomplish-
ments in this paper is to fill in the missing entries. We prove that, although the
Randomness Preservation Basis Theorem is incompatible with the Cone Avoid-
ance Basis Theorem, the only Turing cones which cannot be avoided in this
context are the K-trivial ones. In other words, X is K-trivial if and only if there
exist P as above and Y ∈ MLR such that (∀Z ∈ P ) (Y ∈ MLRZ ⇒ X ≤T Z).
Indeed, we find a fixed P which works for all K-trivial X and all Y ∈ MLR such
that Y ≥T 0′. See Theorems 2.3 and 3.13 below.

1.3 Partial randomness relative to a Turing oracle

In addition to our new results mentioned in Remark 1.7, we also prove some
other new results concerning partial randomness relative to a Turing oracle.

4



The following definition from [13, §2] plays a key role.

Definition 1.8. We write {0, 1}∗ =
⋃∞

n=0{0, 1}
n = the set of finite sequences

of 0’s and 1’s. Let f : {0, 1}∗ → (−∞,∞) be a computable function. For
S ⊆ {0, 1}∗ we write pwtf (S) = sup

{∑
τ∈F 2−f(τ) | F ⊆ S prefix-free

}
and

JSK = {X ∈ {0, 1}N | ∃n (X↾n ∈ S)}. We say that X is strongly f -random
if X /∈

⋂
iJSiK for all uniformly recursively enumerable sequences Si ⊆ {0, 1}∗,

i = 1, 2, . . . such that ∀i (pwtf (Si) ≤ 2−i).

Remark 1.9. Let KA denote a priori Kolmogorov complexity (see [10, §3.16]
or [38]). The following characterization from [13, §2] is a straightforward gen-
eralization of [4, Corollary 4.10]:

X is strongly f -random if and only if ∃c ∀n (KA(X↾n) ≥ f(X↾n)− c).

Remark 1.10. Martin-Löf randomness is just strong f -randomness with f(τ) =
|τ | = the length of τ . In this case we have pwtf (A) = λ(JAK) where λ is the

fair coin probability measure on {0, 1}N, also known as the uniform measure or

Lebesgue measure, given by λ(JτK) = 2−|τ | for all τ ∈ {0, 1}∗. The correspond-
ing special case of Remark 1.9 is a famous theorem known as Schnorr’s Theorem
or the Schnorr/Levin Theorem. See [10, Theorem 6.2.3] or [22, page 105] or [33,
Theorem 10.7].

Remark 1.11. A famous theorem known as Van Lambalgen’s Theorem (see
[10, §6.9] or [22, Theorem 3.4.6] or [33, Theorem 3.6]) implies the following.

If X is Martin-Löf random, and if Y is Martin-Löf random relative
to X , then X is Martin-Löf random relative to Y .

One of our new results in this paper is a generalization of this, replacing Martin-
Löf randomness by strong f -randomness. Namely, under a convexity assumption
on f , we prove the following.

If X is strongly f -random, and if Y is Martin-Löf random relative
to X , then X is strongly f -random relative to Y .

See Theorem 5.8 below. This result appears to be new, even in well studied
special cases such as f(τ) = |τ |/2.

Remark 1.12. Recall from [6, 7, 25, 26] the notion of µ-randomness where µ
is a Borel probability measure. Namely, X is said to be µ-random if X /∈

⋂
i Ui

whenever Ui is uniformly Σ0
1 relative to µ and µ(Ui) ≤ 2−i for all i. (For a

fuller explanation, see §4 below.) Recall also that µ is said to be continuous if
µ({X}) = 0 for all X . Note that λ is continuous, and λ-randomness is the same
as Martin-Löf randomness. One of our new results in this paper is a coding-
free version of Schnorr’s Theorem for µ-randomness. See Theorem 4.10 below.
We also obtain a version of Van Lambalgen’s Theorem for µ-randomness. See
Theorem 4.14 below.
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Remark 1.13. Recall from [18] the notions of autocomplexity and complexity

for X ∈ {0, 1}N. By [13, §7] we have the following characterizations in terms of
strong f -randomness.

1. X is autocomplex if and only if X is strongly f -random for some com-
putable f such that {f(X↾n) | n ∈ N} is unbounded.

2. X is complex if and only if X is strongly f -random for some computable,
length-invariant f such that {f(X↾n) | n ∈ N} is unbounded.

Here f is said to be length-invariant if ∀σ ∀τ (|σ| = |τ | ⇒ f(σ) = f(τ)).

Remark 1.14. One may also consider autocomplexity and complexity relative
to Turing oracles. By [18, 24, 26] (see also Theorem 6.4 below) we have:

X is autocomplex relative to some Turing oracle if and only if X is
µ-random for some µ with µ({X}) = 0, if and only if X �T 0.

One of our new results in this paper is as follows.

X is complex relative to some Turing oracle if and only if X is µ-
random for some continuous µ.

See Theorem 6.6 below. The class {X | X is µ-random for some continuous µ}
has been studied extensively [26].

2 Combining two basis theorems

In this section we prove that, except for K-triviality, the Cone Avoidance Basis
Theorem and the Randomness Preservation Basis Theorem are compatible. See
Theorem 2.3 below.

Remark 2.1. The concept of K-triviality will be defined and used later, in
§3. Our results in this section are more conveniently formulated in terms of a
related concept, LR-reducibility. Recall from [10, 22, 33, 34] that, by definition,

X ≤LR Z if and only if MLRZ ⊆ MLRX . Obviously X ≤LR Z if X ≤T Z, but
the converse is known to fail. (In fact, there are recursively enumerable sets
A ≤LR 0 such that A �T 0.) Two major theorems concerning K-triviality (see
[10, Chapter 11] or [22, Chapter 5]) are as follows.

1. X is K-trivial if and only if X ≤LR 0.

2. X is K-trivial if and only if X ≤T Z for some Z ∈ MLRX .

It is also known that X ≤LR 0 implies X ′ ≤T 0′.

The following theorem implies that, given countably many non-K-trivial
instances of our two basis theorems, we can simultaneously satisfy all of them.
Note that part 2 of the theorem was already implicit in [13].
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Theorem 2.2. Let P be a nonempty effectively closed set in Euclidean space.

1. Assume that (∀i ∈ N) (Xi �LR 0 or Xi �T Y ) where Y ∈ MLR. Then,

there exists Z ∈ P such that ∀i (Xi �T Z) and Y ∈ MLRZ .

2. Assume that (∀i ∈ N) (Xi has one of the following properties):

(a) Xi is Martin-Löf random.

(b) Xi is strongly fi-random, where fi : {0, 1}
∗ → (−∞,∞) is a specific

computable function.

(c) Xi is autocomplex.

(d) Xi is complex.

(e) Xi �LR 0.

Then ∃Z (Z ∈ P and ∀i (Xi has the same property relative to Z)).

Proof. To prove 1, let Q = {Z ∈ P | Y ∈ MLRZ}. By the Randomness

Preservation Basis Theorem, Q is nonempty. Since Q is Σ0,Y
2 , we may apply

the relativization to Y of a variant of the Cone Avoidance Basis Theorem (see for
instance [16, Theorem 2.5]) to find Z ∈ Q such that ∀i (Xi �T Y ⇒ Xi �T Z).
On the other hand, for all i such that Xi ≤T Y , we have Xi �LR 0, hence

Y /∈ MLRXi by Remark 2.1, hence Xi �LR Z, hence again Xi �T Z.
To prove 2, apply the Kučera/Gács Theorem to find Y ∈ MLR such that

∀i (Xi ≤T Y ). By the Randomness Preservation Basis Theorem, let Z ∈ P be
such that Y ∈ MLRZ . Our conclusion is now immediate by [13, Theorems 1.1,
4.4, 5.1, 7.5.1, 7.5.2].

Theorem 2.3. Let P be a nonempty effectively closed set in Euclidean space.
If X is non-K-trivial and Y is Martin-Löf random, there exists Z ∈ P such that
X �T Z and Y ∈ MLRZ .

Proof. This is immediate from Theorem 2.2 and Remark 2.1.

3 Low-for-Ω PA-completeness

In this section we prove that the results of the previous section are sharp. In
particular, by Theorem 3.13 below, K-triviality is indeed an obstacle to com-
bining the Cone Avoidance Basis Theorem with the Randomness Preservation
Basis Theorem.

Definition 3.1. Recall from [10, Chapter 11] or [22, Chapter 5] that X ∈
{0, 1}N is said to be K-trivial if KP(X↾n) ≤+ KP(n) for all n. Here KP de-
notes prefix-free Kolmogorov complexity, and ≤+ denotes ≤ modulo an additive
constant.
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Definition 3.2. Recall from [10, 22] that Chaitin’s Ω is ≡T 0′ and Martin-Löf
random. A Turing oracle Z is said to be low-for-Ω (see [10, Chapter 15] or [22,
§8.1]) if Ω is Martin-Löf random relative to Z. An equivalent condition is that
some Y ≡T 0′ is Martin-Löf random relative to Z. Another equivalent condition
is that every Martin-Löf random Y ≤T 0′ is Martin-Löf random relative to Z.
(These equivalences follow from [21, Theorem 4.3], a.k.a., the XYZ Theorem
[13, Theorem 1.1].) It is also known [2] that Z is low-for-Ω if and only if
{X | X ≤LR Z} is countable.

Definition 3.3. A Turing oracle Z is said to be PA-complete if it is Turing
equivalent to some complete, consistent extension of Peano Arithmetic. Equiv-
alently, every nonempty effectively closed set P in Euclidean space contains at
least one point which is Turing reducible to Z. (See [16] or [31, §6].)

Remark 3.4. The Randomness Preservation Basis Theorem may be restated
as follows: (∀Y ∈ MLR)∃Z (Y ∈ MLRZ and Z is PA-complete). The special
case Y = Ω is known as the Low-for-Ω Basis Theorem (see [10, Chapter 15] or
[22, §8.1]). In other words, ∃Z (Z is low-for-Ω and PA-complete). We are going
to prove ∀X (X K-trivial ⇒ X ≤T Z) for all such Z. See Theorem 3.11 below.

Lemma 3.5. If Z is low-for-Ω, then KP(n) ≤+ KPZ(n) for infinitely many n.

Proof. This result is due to Miller [20, Theorem 3.3]. See also [10, Theorem
15.6.2] or [22, Theorem 8.1.9].

Lemma 3.6. If Z is PA-complete, there is a Z-recursive function K̃P:N → N
such that KPZ(n) ≤+ K̃P(n) ≤ KP(n) for all n.

Proof. Let U : ⊆{0, 1}∗ → N be a prefix-free partial recursive function such
that KP(n) = KPU (n) = min{|σ| | U(σ) = n} for all n. Let GU be the set
of characteristic functions of graphs of prefix-free partial functions from {0, 1}∗

to N which extend U . Clearly GU is a nonempty effectively closed subset of
{f | f : {0, 1}∗×N → {0, 1}} so let g ∈ GU be such that g ≤T Z. Let K̃P = KP

Ũ

where g is the characteristic function of the graph of Ũ . For all n we have
K̃P(n) ≤ KP(n) because Ũ extends U , and KPZ(n) ≤+ K̃P(n) because Ũ is

prefix-free and partial Z-recursive. It remains to show that K̃P ≤T Z, but this
is clear because K̃P(n) = |σ| for the least σ such that g(σ, n) = 1.

Lemma 3.7. If Z is low-for-Ω and PA-complete, there is an infinite Z-recursive
set A such that K̃P(n) ≤ KP(n) ≤+ K̃P(n) for all n ∈ A.

Proof. By Lemma 3.6 we have K̃P(n) ≤ KP(n) for all n. By Lemmas 3.5 and

3.6 let a be a constant such that KP(n) ≤ K̃P(n) + a for infinitely many n.

Since K̃P is Z-recursive, the set S = {n | KP(n) ≤ K̃P(n) + a} is Z-recursively
enumerable. Let A be an infinite Z-recursive subset of S.

The next two lemmas are essentially due to Chaitin [5].

Lemma 3.8. ∀c ∃d ∀n (|{τ ∈ {0, 1}n | KP(τ) ≤ KP(n) + c}| ≤ d).
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Proof. See [10, Theorem 11.1.3] or [22, Theorem 2.2.26(ii)].

Definition 3.9. A tree is a set T ⊆ {0, 1}∗ which is closed under initial seg-
ments, i.e., (∀τ ∈ T ) (∀n < |τ |) (τ↾n ∈ T ). We write [T ] = {X ∈ {0, 1}N |
∀n (X↾n ∈ T )} = {paths through T }.

Lemma 3.10. Let T be a recursively enumerable tree such that ∃d ∀n (n ∈
A ⇒ |T ∩{0, 1}n| ≤ d) for some infinite recursively enumerable set A. Then [T ]
is finite and ∀X (X ∈ [T ] ⇒ X is recursive).

Proof. Clearly |[T ]| ≤ d. Let e ≤ d be as large as possible such that |T ∩
{0, 1}n| = e for infinitely many n ∈ A. Let m be such that |T ∩ {0, 1}n| ≤ e for
all n > m such that n ∈ A. Let B = {n > m | n ∈ A and |T ∩ {0, 1}n| = e}.
ClearlyB is infinite and recursively enumerable and the function n 7→ T∩{0, 1}n

for n ∈ B is partial recursive. Let P = {X ∈ {0, 1}N | ∀n (n ∈ B ⇒ X↾n ∈
T ∩ {0, 1}n)}. Clearly P = [T ] and P is a Π0

1 subset of {0, 1}N. Thus [T ] is a
finite Π0

1 subset of {0, 1}N. It follows that every path through T is recursive.

Theorem 3.11. If Z is low-for-Ω and PA-complete, then ∀X (X K-trivial ⇒
X ≤T Z).

Proof. Let K̃P and A be as in Lemmas 3.6 and 3.7. Let a be a constant such
that KP(n) ≤ K̃P(n) + a for all n ∈ A. Suppose X is K-trivial. Let b be a
constant such that KP(X↾n) ≤ KP(n) + b for all n. Let

T = {τ ∈ {0, 1}∗ | (∀n ≤ |τ |) (n ∈ A ⇒ KP(τ↾n) ≤ K̃P(n) + a+ b)}.

Clearly T is a tree. Since KP(n) ≤ K̃P(n) + a for all n ∈ A, we have X ∈

[T ]. Since K̃P and A are Z-recursive, T is Z-recursively enumerable. Since

K̃P(n) ≤ KP(n) for all n, we may apply Lemma 3.8 with a + b = c to obtain
a constant d such that |T ∩ {0, 1}n| ≤ d for all n ∈ A. Since A is infinite and
Z-recursive, we may apply the Z-relativization of Lemma 3.10 to conclude that
∀X (X ∈ [T ] ⇒ X ≤T Z). This completes the proof.

Theorem 3.12.

1. If Z is low-for-Ω and PA-complete, then ∀X (X is K-trivial ⇔ (X ≤T Z
and X ≤T 0′)).

2. ∀X (X is K-trivial⇔ ∀Z ((Z is low-for-Ω and PA-complete) ⇒ X ≤T Z)).

Proof. Combine Theorems 2.3 and 3.11.

The next result is a strong converse to Theorem 2.3.

Theorem 3.13. We can find Y ∈ MLR and P a nonempty effectively closed
set in Euclidean space such that the following holds. For all Z ∈ P and all
K-trivial X , Y ∈ MLRZ implies X ≤T Z.

Proof. Let Y = Ω and let P = the set of complete, consistent extensions of
Peano Arithmetic. Our conclusion is then a restatement of Theorem 3.11.
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We end this section with a counterpoint to Theorems 3.11 and 3.12.

Theorem 3.14. If Z is low-for-Ω and PA-complete, then ∀A (A recursively
enumerable ⇒ (A ≤T Z or Z ′ ≤T A⊕ Z)).

Proof. Let A be recursively enumerable such that A �T Z. Since Z is PA-
complete, we have 0′ ≤T A⊕ Z by Day/Reimann [7, Corollary 2.1]. Since Z is
low-for-Ω, we have Z ′ ≤T Z ⊕ 0′ by Nies [22, Fact 3.6.19(ii)]. Combining these
two observations, we have Z ′ ≤T A⊕ Z.

4 An approach to µ-randomness

Let µ be a Borel probability measure on {0, 1}N. We present a coding-free
approach to µ-randomness. In this context we prove generalizations of Schnorr’s
Theorem and Van Lambalgen’s Theorem. See Theorems 4.10 and 4.14 below.

Remark 4.1. Our approach is derived from the one in [7, 26] augmented by
ideas from [23, §3.3]. A more elaborate and general coding-free approach may
be found in [11].

Definition 4.2. An effectively presented complete separable metric space con-
sists of a complete separable metric space D with metric ρ together with a
sequence a of points an ∈ D, n ∈ N such that {an | n ∈ N} is dense in
D and the function (m,n) 7→ ρ(am, an) : N × N → [0,∞) is computable.
An effectively compact metric space is an effectively presented complete sep-

arable metric space D, ρ, a such that (∀z ∈ D)∀i (∃n < ci) (ρ(z, an) < 2−i)
for some computable function c : N → N. In this situation, a code for z is
defined to be a function f ∈

∏
i{n | n < ci} such that ∀i (ρ(z, af(i)) ≤ 2−i).

Note that
∏

i{n | n < ci} is effectively homeomorphic to {0, 1}N, so we may
identify codes as points in {0, 1}N. It is then straightforward to show that
Cz = {Z ∈ {0, 1}N | Z is a code for z} is uniformly Π0

1 relative to any Z ∈ Cz.

Remark 4.3. The concepts in the previous definition are well known. See for
instance [30, Definitions II.5.1 and III.2.3].

Remark 4.4. Let z be a point in an effectively compact metric space. From
[6, 19] we know that z is not always equivalent to a Turing oracle. Nevertheless,
using the ideas of [23, §3.3], it is possible to relativize many familiar recursion-
theoretic concepts to z, just as if z were a Turing oracle. This theme is illustrated
in the following definition and lemma.

Definition 4.5. Let z be a point in an effectively compact metric space. We
define m : {0, 1}∗ → [0,∞) to be left-r.e. relative to z if m(τ) is left-r.e. relative
to Z uniformly for all Z ∈ Cz and all τ ∈ {0, 1}∗. A semimeasure m which
is left-r.e. relative to z is said to be universal if for all such semimeasures m
we have ∃c ∀τ (m(τ) ≤ 2cm(τ)). A sequence of sets Ui ⊆ {0, 1}N, i = 1, 2, . . .
is said to be uniformly Σ0

1 relative to z if {(X, i) | X ∈ Ui} ⊆ {0, 1}N × N is

uniformly Σ0
1 relative to any Z ∈ Cz . Equivalently, Ui =

⋂
Z∈Cz

UZ
i where UZ

i
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is Σ0
1 relative to Z uniformly for all Z ∈ Cz and all i. We define KAz(τ) =

sup{KAZ(τ) | Z ∈ Cz}.

Lemma 4.6. Let z be a point in an effectively compact metric space. Then
KAz = − log2 m

z where mz is a universal left-r.e. semimeasure relative to z.

Proof. For all Z ∈ {0, 1}N let mZ =
∑

i 2
−imZ

i where mZ
i , i = 1, 2, . . . is a

uniform enumeration of all left r.e. semimeasures relative to Z. Clearly mZ is
a universal left-r.e. semimeasure relative to Z, so we may safely assume that
KAZ = − log2 m

Z . Define mz = inf{mZ | Z ∈ Cz} and mz
i = inf{mZ

i | Z ∈
Cz}. Clearly KAz = − log2 m

z . Using compactness of Cz, it is straightforward
to show that mz and mz

i are left-r.e. semimeasures relative to z. Note that
mz

i , i = 1, 2, . . . is a uniform enumeration of all left-r.e. semimeasures relative
to z, hence mz =

∑
i 2

−imz
i is a universal left-r.e. semimeasure relative to z.

Moreover, we clearly have mz ≥ mz , hence mz is likewise universal.

Definition 4.7. As is well known, the set of Borel probability measures on
{0, 1}N with the Prokhorov metric is an effectively compact metric space. (See
for instance [23, Lemma 3.3.8] or [26, §2.4].) Let µ be such a measure, and let
z be a point in an effectively compact metric space. Then, the ordered pair
µ, z is again a point in such a space. A test for µ-randomness relative to z is

sequence of sets Ui ⊆ {0, 1}N, i = 1, 2, . . . which is uniformly Σ0
1 relative to the

pair µ, z and such that µ(Ui) ≤ 2−i for all i. We define X ∈ {0, 1}N to be
µ-random relative to z if X /∈

⋂
i Ui for all such tests.

Theorem 4.8. Let z be a point in an effectively compact metric space. Let
µ be a Borel probability measure on {0, 1}N. Then X ∈ {0, 1}N is µ-random
relative to z if and only if X is µ-random relative to some Z ∈ Cz .

Proof. We follow the idea of [23, Lemma 3.3.31, Theorem 3.3.33]. Let UM,Z
i ,

i = 1, 2, . . . be a universal test for µ-randomness relative to M ⊕ Z uniformly
for all M ∈ Cµ and Z ∈ {0, 1}N. Then Uµ,Z

i =
⋂

M∈Cµ
UM,Z
i , i = 1, 2, . . . is a

universal test for µ-randomness relative to Z uniformly for all Z ∈ {0, 1}N. And

in turn, Uµ,z
i =

⋂
Z∈Cz

Uµ,Z
i , i = 1, 2, . . . is a universal test for µ-randomness

relative to z. The latter statement easily implies our theorem.

Corollary 4.9. Let µ be a Borel probability measure on {0, 1}N. Then X is
µ-random if and only if X is µ-random relative to M for some code M of µ.

Proof. As a special case of Theorem 4.8 we have: X is µ-random relative to µ
if and only if X is µ-random relative to M for some M ∈ Cµ. This statement
is equivalent to our corollary.

Theorem 4.10. Let z be a point in an effectively compact metric space. Let
µ be a Borel probability measure on {0, 1}N. Then X ∈ {0, 1}N is µ-random
relative to z if and only if ∃c ∀n (KAµ,z(X↾n) ≥ − log2 µ(JX↾nK)− c).
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Proof. For the “if” direction, suppose X is not µ-random relative to z, say
X ∈

⋂
i Ui where Ui is a test for µ-randomness relative to z. Define mµ,z(τ) =∑

i 2
iµ(U2i ∩ JτK) and note that mµ,z is a left-r.e. semimeasure relative to the

pair µ, z. By Lemma 4.6 with the pair µ, z in place of z, let mµ,z be a universal
left-r.e. semimeasure relative to µ, z. Let c be a constant such that ∀τ (mµ,z(τ) ≤
2cmµ,z(τ)). It follows that ∀i ∀τ (2iµ(U2i ∩ JτK) ≤ 2cmµ,z(τ)). But X ∈

⋂
i U2i,

hence ∀i ∃n (JX↾nK ⊆ U2i), hence ∀i ∃n (2iµ(JX↾nK) ≤ 2cmµ,z(X↾n)), hence
∀i ∃n (KAµ,z(X↾n) ≤ − log2 µ(JX↾nK) + c− i).

For the “only if” direction, suppose X is µ-random relative to z. For each
i let Si = {τ | KAµ,z(τ) < − log2 µ(JτK) − i}. Clearly Si is uniformly µ-

recursively enumerable relative to µ, z. As in [13, Definition 2.3] let Ŝi be the

set of minimal elements of Si. Since JSiK = JŜiK and Ŝi is prefix-free, we have

µ(JSiK) = µ(JŜiK) =
∑

τ∈Ŝi
µ(JτK) =

∑
τ∈Ŝi

2log2
µ(JτK) ≤

∑
τ∈Ŝi

2−KAµ,z(τ)−i ≤

2−i. Since X is µ-random relative to z, it follows that X /∈
⋂

iJSiK, hence
∃i ∀n (KAµ,z(X↾n) ≥ − log2 µ(JX↾nK)− i).

Remark 4.11. Theorem 4.10 may be viewed as a coding-free variant of [14,
Theorem 6.2.1]. Note that Theorem 4.10 involves a priori complexity, KA,
rather than prefix-free complexity, KP. We do not know whether Theorem 4.10
holds for KP instead of KA. The original, non-coding-free theorem in [14, §6.2]
was stated for KP and it also holds for KA.

In order to prove a version of Van Lambalgen’s Theorem for µ-randomness,
we first generalize a well known lemma concerning Σ0

1 subsets of {0, 1}N.

Lemma 4.12. Let z be a point in an effectively compact metric space. Let
U ⊆ {0, 1}N be Σ0

1 relative to z. Given a Borel probability measure µ on {0, 1}N

and a real number r, we can effectively find a set U [µ, r] ⊆ {0, 1}N with the
following properties.

1. U [µ, r] ⊆ U and µ(U [µ, r]) ≤ r.

2. U [µ, r] = U provided µ(U) < r.

3. U [µ, r] is uniformly Σ0
1 relative to z, µ, r.

Proof. By Definition 4.5 we have U =
⋂

Z∈Cz
UZ where UZ is Σ0

1 relative to Z

uniformly for all Z ∈ {0, 1}N. For each s ∈ N let UZ
s be the part of UZ which is

enumerated prior to stage s. Let UZ [µ, r] be the union of UZ
s for all s such that

µ(UZ
s ) < r. Clearly UZ [µ, r] ⊆ UZ , and µ(UZ [µ, r]) ≤ r, and UZ [µ, r] = UZ

provided µ(UZ) < r, and UZ [µ, r] is uniformly Σ0
1 relative to Z, µ, r. It follows

that U [µ, r] =
⋂

Z∈Cz
UZ [µ, r] has the desired properties.

Definition 4.13. If µ and ν are Borel probability measures on {0, 1}N, let µ×ν
be the product measure on {0, 1}N×{0, 1}N. We identify {0, 1}N×{0, 1}N with
{0, 1}N via the standard pairing function (X,Y ) 7→ X⊕Y where (X⊕Y )(2n) =
X(n) and (X ⊕ Y )(2n + 1) = Y (n) for all n ∈ N. Thus µ × ν is again a Borel
probability measure on {0, 1}N.
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Theorem 4.14. Let µ and ν be Borel probability measures on {0, 1}N. For
X,Y ∈ {0, 1}N the following are equivalent.

1. X ⊕ Y is µ× ν-random.

2. X is µ-random relative to ν and Y is ν-random relative to the pair µ,X .

Proof. We imitate the standard proof of Van Lambalgen’s Theorem. See for
instance [33, Theorem 3.6]. To prove 1 ⇒ 2, suppose Y is not ν-random relative
to the pair µ,X , say Y ∈

⋂
i Vi where ν(Vi) < 2−i and Vi is uniformly Σ0

1 relative
to µ,X . Using the notation of Lemma 4.12, let Wi = {X ⊕ Y | Y ∈ Vi[ν, 2

−i]}.
Then X ⊕ Y ∈

⋂
i Wi and (µ × ν)(Wi) ≤ 2−i and Wi is uniformly Σ0

1 relative
to µ× ν, contradicting 1. To prove 2 ⇒ 1, suppose X ⊕ Y is not µ× ν-random,
say X⊕Y ∈

⋂
iWi where (µ× ν)(Wi) ≤ 2−i and Wi is uniformly Σ0

1 relative to

µ×ν. Let Ui = {X | ν(V X
i ) > 2−i} where V X

i = {Y | X⊕Y ∈ W2i}. Note that
Ui is uniformly Σ0

1 relative to µ, ν. Moreover µ(Ui) ≤ 2−i, because otherwise
we would have (µ × ν)(W2i) ≥ µ(Ui) · 2

−i > 2−i · 2−i = 2−2i, a contradiction.

Let Ũj =
⋃∞

i=j Ui and note that µ(Ũj) ≤ 2−j−1 and Ũj is again uniformly Σ0
1

relative to µ, ν. Hence X /∈
⋂

j Ũj, so for all but finitely many i we have X /∈ Ui,

i.e., ν(V X
i ) ≤ 2−i. Moreover Y ∈

⋂
i V

X
i and V X

i is uniformly Σ0
1 relative to

the triple X,µ, ν, contradicting 2. This completes the proof.

Corollary 4.15. Let µ and ν be Borel probability measures on {0, 1}N. Suppose
X is µ-random relative to ν and Y is ν-random relative to the pair µ,X . Then
X is µ-random relative to the pair ν, Y .

Proof. Apply Theorem 4.14 twice.

Remark 4.16. Theorem 4.14 seems to be “folklore,” i.e., well known but not
in the literature. The special case µ = ν has appeared as [7, Theorem 1.7].

5 A product theorem for strong f-randomness

The purpose of this section is to prove a product theorem for strong f -randomness.
See Theorem 5.8 below. We first prove a generalization of the Effective Capac-
itability Theorem from [25].

Definition 5.1 (compare [25, §3.3]). For f : {0, 1}∗ → (−∞,∞) we say that
X ∈ {0, 1}N is effectively f -capacitable if X is µ-random for some Borel proba-

bility measure µ on {0, 1}N such that ∃c ∀τ (µ(JτK) ≤ 2c−f(τ)).

Definition 5.2 ([13, §8], compare [25, §2.3]). For f : {0, 1}∗ → (−∞,∞) we
say that f is convex if wtf (τ) ≤ wtf (τ

a〈0〉) + wtf (τ
a〈1〉) for all τ ∈ {0, 1}∗.

Here we are writing wtf (τ) = 2−f(τ).

Theorem 5.3 (Effective Capacitability Theorem, compare [25, Theorem 14,
Corollary 23]). Let f : {0, 1}∗ → (−∞,∞) be computable and convex. For
X ∈ {0, 1}N the following are equivalent.
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1. X is strongly f -random.

2. X is effectively f -capacitable.

In order to prove Theorem 5.3, we use the following definitions and lemma.

Definition 5.4. Recall from [25, §3.3] that a semimeasure is a function m :
{0, 1}∗ → [0, 1] such that m(τ) ≥ m(τa〈0〉) + m(τa〈1〉) for all τ ∈ {0, 1}∗.
Dually, we define a submeasure to be a function m : {0, 1}∗ → [0,∞] such that
m(τ) ≤ m(τa〈0〉) +m(τa〈1〉) for all τ ∈ {0, 1}∗. Note that f is convex if and
only if wtf is a submeasure.

Definition 5.5. A function m : {0, 1}∗ → [0,∞) is said to be left-r.e. (re-
spectively right-r.e.) if the real numbers m(τ) are uniformly left recursively
enumerable (respectively right recursively enumerable) for all τ ∈ {0, 1}∗.

Lemma 5.6. Let m1 be a semimeasure and let m2 be a submeasure.

1. If m1(〈〉) ≤ 1 ≤ m2(〈〉) and ∀τ (m1(τ) ≤ m2(τ)), then we can find a Borel
probability measure µ on {0, 1}N such that ∀τ (m1(τ) ≤ µ(JτK) ≤ m2(τ)).

2. If m1 is left-r.e. and m2 is right-r.e., then the set of all such Borel proba-
bility measures is effectively closed.

Proof. The proof of part 1 is based on the following observation:

Given a0 + a1 ≤ b ≤ c0 + c1 where a0 ≤ c0 and a1 ≤ c1, we can find
b0 and b1 such that b = b0 + b1 and a0 ≤ b0 ≤ c0 and a1 ≤ b1 ≤ c1.

(1)

To prove (1), define h(t) = a0 + t(c0 − a0) + a1 + t(c1 − a1) and note that
h(0) = a0 + a1 and h(1) = c0 + c1. By the Intermediate Value Theorem, there
exists t such that 0 ≤ t ≤ 1 and h(t) = b. Then b0 = a0 + t(c0 − a0) and
b1 = a1 + t(c1 − a1) are as desired.

To prove part 1, define µ(JτK) by induction on the length of τ beginning
with µ(J〈〉K) = 1. Assume inductively that µ(JτK) has been defined such that
m1(τ) ≤ µ(JτK) ≤ m2(τ). Then

m1(τ
a〈0〉) +m1(τ

a〈1〉) ≤ µ(JτK) ≤ m2(τ
a〈0〉) +m2(τ

a〈1〉)

so by (1) we can find µ(Jτa〈0〉K) and µ(Jτa〈1〉K) such that

µ(JτK) = µ(Jτa〈0〉K) + µ(Jτa〈1〉K)

and m1(τ
a〈0〉) ≤ µ(Jτa〈0〉K) ≤ m2(τ

a〈0〉)

and m1(τ
a〈1〉) ≤ µ(Jτa〈1〉K) ≤ m2(τ

a〈1〉).

This proves part 1 of our lemma, and part 2 is obvious.

We are now ready to prove Theorem 5.3.
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Proof of Theorem 5.3. To prove 1 ⇒ 2, assume that X is strongly f -random.
By the Kučera/Gács Theorem, let Y be Martin-Löf random such that X ≤T Y .
Let Φ be a partial recursive functional such that X = ΦY . For each τ ∈ {0, 1}∗

let Vτ = {Y | τ ⊂ ΦY }. Note that the indexed family Vτ , τ ∈ {0, 1}∗ is a
Levin system in the sense of [13, Definition 4.1]. By [13, Lemma 4.2] let c be
a rational number such that ∀n (λ(VX↾n) < 2c−f(X↾n)). By [13, Lemma 4.3]

let Ṽτ ⊆ Vτ , τ ∈ {0, 1}∗ be a Levin system such that ∀τ (λ(Ṽτ ) ≤ 2c−f(τ))

and ∀n (ṼX↾n = VX↾n). Note that λ(Ṽ〈〉) = 1 and τ 7→ λ(Ṽτ ) is a left-r.e.

semimeasure, and by convexity τ 7→ 2c−f(τ) is a right-r.e. submeasure. Let P be
the set of Borel probability measures µ such that λ(Ṽτ ) ≤ µ(JτK) ≤ 2c−f(τ) for all
τ . By Lemma 5.6 P is nonempty and effectively closed, so by the Randomness
Preservation Basis Theorem plus Corollary 4.9, let µ ∈ P be such that Y is
Martin-Löf random relative to µ, i.e., λ-random relative to µ. We claim that X
is µ-random. Otherwise, suppose X ∈

⋂
i Ui where Ui is uniformly Σ0

1 relative

to µ and µ(Ui) ≤ 2−i for all i. Let Wi =
⋃

τ∈Si
Ṽτ where Si = {τ | JτK ⊆ Ui}.

As in [13, Definition 2.3] let Ŝi be the set of minimal elements of Si and note

that Ŝi is prefix-free and JŜiK = JSiK = Ui. Note also that Si and consequently
Wi are uniformly Σ0

1 relative to µ. For each i we have ∃n (X↾n ∈ Si) and for this

n we have Y ∈ VX↾n = ṼX↾n, hence Y ∈ Wi, so Y ∈
⋂

iWi. But for each i we

also have λ(Wi) =
∑

τ∈Ŝi
λ(Ṽτ ) ≤

∑
τ∈Ŝi

µ(JτK) = µ(Ui) ≤ 2−i contradicting
the fact that Y is λ-random relative to µ. This proves our claim. Our claim
implies that X is effectively f -capacitable, and this proves 1 ⇒ 2.

To prove 2 ⇒ 1, assume that X is not strongly f -random. By [13, Theorem
8.16] it follows that X is not vehemently f -random, say X ∈

⋂
i Ui where Ui is

uniformly Σ0
1 and vwtf (Ui) ≤ 2−i for all i. By [13, Lemma 8.15] let Si ⊆ {0, 1}∗

be uniformly r.e. such that Ui ⊆ JSiK and pwtf (Si) ≤ 2−i+1 for all i. To show
that X is not effectively f -capacitable, let µ be a Borel probability measure
on {0, 1}N such that ∃c ∀τ (µ(JτK) ≤ 2c−f(τ)). Then for all i we have µ(Ui) ≤

µ(JSiK) = µ(JŜiK) =
∑

τ∈Ŝi
µ(JτK) ≤

∑
τ∈Ŝi

2c−f(τ) ≤ 2cpwtf (Si) ≤ 2c−i+1 so
X is not µ-random. This proves 2 ⇒ 1 and thus Theorem 5.3.

Remark 5.7. The length-invariant case of Theorem 5.3 is due to Reimann and
Kjos-Hanssen (see [25, Theorem 14, Corollary 23]). Our proof of Theorem 5.3
is similar to Reimann’s proof [25] of the length-invariant case.

Our new result is as follows.

Theorem 5.8. Let f : {0, 1}∗ → (−∞,∞) be computable and convex. If X
is strongly f -random, and if Y is Martin-Löf random relative to X , then X is
strongly f -random relative to Y .

Proof. Let Q be the set of Borel probability measures µ on {0, 1}N such that
X is µ-random and ∃c ∀τ (µ(JτK) ≤ 2c−f(τ)). By Theorem 5.3 Q is nonempty.
ClearlyQ is Σ0

2 relative toX , so by the Randomness Preservation Basis Theorem
relative to X , let µ ∈ Q be such that Y is Martin-Löf random relative to µ,X .
Since λ is computable, it follows that Y is λ-random relative to µ,X . But
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then, by Corollary 4.15, X is µ-random relative to Y . Hence, by Theorem 5.3
relativized to Y , X is strongly f -random relative to Y .

Remark 5.9 (compare [13, Remark 4.5]). In Theorem 5.8 the assumption “Y is
Martin-Löf random” cannot be weakened to “Y is strongly f -random.” For ex-
ample, defineX(n) = Y (2n) where Y is Martin-Löf random. Then X is strongly
1/2-random (indeed Martin-Löf random), and Y is strongly 1/2-random relative
to X , but of course X is not strongly 1/2-random relative to Y .

Corollary 5.10 (compare [33, Corollary 3.9]). Let f : {0, 1}∗ → (−∞,∞) be
computable and convex. Assume that X is strongly f -random and X ≤T Y
and Y is Martin-Löf random relative to Z and Z ≥T 0′. Then X is strongly
f -random relative to Z.

Proof. Since Z ≥T 0′, we may assume by the Kučera/Gács Theorem that Z is
Martin-Löf random. Since Y is Martin-Löf random relative to Z, it follows by
Van Lambalgen’s Theorem that Z is Martin-Löf random relative to Y . Since
X ≤T Y , it follows that Z is Martin-Löf random relative to X . It then follows
by Theorem 5.8 that X is strongly f -random relative to Z.

Remark 5.11. It is known [13, Theorem 4.4] that Corollary 5.10 holds even if
we drop two of the assumptions, namely, Turing completeness of Z and convexity
of f . We conjecture that Theorem 5.8 holds without the convexity assumption.

6 Complexity relative to a Turing oracle

In this section we obtain a new characterization of complexity relative to a
Turing oracle. We also obtain a new proof of some known characterizations of
autocomplexity relative to a Turing oracle. See Theorems 6.4 and 6.6 below.

Before proving Theorems 6.4 and 6.6, we note the following alternative char-
acterizations.

Theorem 6.1. Let Z be a Turing oracle, and suppose X ∈ {0, 1}N.

1. The following are equivalent.

(a) X is autocomplex relative to Z.

(b) There exists g ∈ DNRZ such that g ≤Z
T X , i.e., g ≤T X ⊕ Z.

2. The following are pairwise equivalent.

(a) X is complex relative to Z.

(b) There exists g ∈ DNRZ such that g ≤Z
tt X , i.e., g = ΦZ(X) for some

total Z-recursive functional ΦZ : {0, 1}N → NN.

(c) There exists g ∈ DNRZ such that g ≤Z
wtt X , i.e., g ≤T X ⊕ Z with

Z-recursively bounded use of X .

Here DNRZ = {g ∈ NN | g is diagonally nonrecursive relative to Z}.
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Proof. This is just [18, Theorem 2.3] relativized to Z.

We now begin the proofs of Theorems 6.4 and 6.6.

Definition 6.2. A function f : {0, 1}∗ → (−∞,∞) is said to be monotone if
∀σ ∀τ (σ ⊂ τ ⇒ f(σ) ≤ f(τ)). Note that KA is monotone.

Lemma 6.3. Given a computable function f : {0, 1}∗ → (−∞,∞), we can

find a computable, convex, monotone function f̃ : {0, 1}∗ → (−∞,∞) such
that the following holds. For all X ∈ {0, 1}N, if X is strongly f -random and

{f(X↾n) | n ∈ N} is unbounded, then the same holds with f̃ instead of f .

Moreover, if f is length-invariant, then so is f̃ .

Proof. Let F be the smallest monotone function which majorizes f , i.e., F (τ) =

max{f(σ) | σ ⊆ τ}. Define f̃(τ) by recursion on |τ | as follows: f̃(〈〉) = F (〈〉),

f̃(τa〈i〉) = min(F (τa〈i〉), f̃(τ)+ 1) for i = 0, 1. Obviously f̃ is computable and

monotone and f̃(τ) ≤ F (τ) for all τ . Also, f̃ is convex, because f̃(τa〈i〉) ≤

f̃(τ) + 1 for i = 0, 1. If f is length-invariant then so is F , hence so is f̃ .
Suppose now that X is strongly f -random. Recall from [13, §2] that strong f -
randomness is equivalent to strong f -complexity. Thus X is strongly f -complex,
i.e., KA(X↾n) ≥+ f(X↾n) for all n. Since KA is monotone, it follows by the

definition of F that X is strongly F -complex, hence strongly f̃ -complex, hence
strongly f̃ -random. If {f(X↾n) | n ∈ N} is unbounded, so is {F (X↾n) | n ∈ N},
and this together with the monotonicity of F implies that {f̃(X↾n) | n ∈ N} is
unbounded. This completes the proof.

Theorem 6.4. For X ∈ {0, 1}N the following are pairwise equivalent.

1. X is autocomplex relative to some oracle Z.

2. X is autocomplex relative to some PA-complete oracle Z.

3. X is µ-random for some Borel probability measure µ on {0, 1}N such that
µ({X}) = 0.

4. X is noncomputable.

Proof. The equivalence 1 ⇔ 2 is obtained by relativizing [13, Theorem 7.5.3]
to Z. To prove 1 ⇒ 3, assume that X is autocomplex relative to Z. By
Remark 1.13 and Lemma 6.3 relativized to Z, X is strongly f -random relative
to Z for some convex f ≤T Z such that {f(X↾n) | n ∈ N} is unbounded.
But then, by Theorem 5.3 relative to Z, X is µ-random relative to Z for some
Borel probability measure µ such that ∃c ∀τ (µ(JτK) ≤ 2c−f(τ)). For this c we
have ∀n (µ(JX↾nK) ≤ 2c−f(X↾n)), hence µ({X}) = 0, thus proving 1 ⇒ 3. The
implication 3 ⇒ 4 is trivial because X ∈

⋂
nJX↾nK. To prove 4 ⇒ 1, assume

that X is noncomputable. By a famous theorem known as the Posner/Robinson
Theorem (see [24] or [35, Lemma 3.4.1]), let Z be an oracle such that X⊕Z ≡T

Z ′. In particular X is autocomplex relative to Z.
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Lemma 6.5. Let µ be a Borel probability measure µ on {0, 1}N. Suppose X is
µ-random and µ({X}) = 0. Then, we can find a µ-computable, convex, mono-
tone function f : {0, 1}∗ → [0,∞] such that {f(X↾n) | n ∈ N} is unbounded
and X is strongly f -random relative to (some code for) µ. If µ is continuous,
we can choose f to be length-invariant.

Proof. By Corollary 4.9 let M ∈ {0, 1}N be a code for µ such thatX is µ-random
relative to M . Let f(τ) = − log2 µ(JτK). Clearly f is µ-computable, convex, and
monotone. Since µ({X}) = 0 we have limn µ(JX↾nK) = 0, hence {f(X↾n) | n ∈
N} is unbounded. By Theorem 4.10 we have KAM (X↾n) ≥+ − log2 µ(JX↾nK) for
all n, i.e., X is strongly f -complex relative to M , hence by [13, §2] X is strongly
f -random relative to M . If µ is continuous, we can repeat the above argument
with a length-invariant f , namely f(τ) = min{− log2 µ(JσK) | |σ| = |τ |}.

Theorem 6.6. For X ∈ {0, 1}N the following are pairwise equivalent.

1. X is complex relative to some oracle Z.

2. X is complex relative to some PA-complete oracle Z.

3. X is µ-random for some continuous Borel probability measure µ on {0, 1}N.

Proof. The equivalence 1 ⇔ 2 is obtained by relativizating [13, Theorem 7.5.4]
to Z. To prove 1 ⇒ 3, assume that X is complex relative to Z. By Remark
1.13 and Lemma 6.3 relative to Z, X is strongly f -random relative to Z for
some length-invariant, convex, unbounded f ≤T Z. But then, by Theorem 5.3
relative to Z, X is µ-random relative to Z for some Borel probability measure µ
such that ∃c ∀τ (µ(JτK) ≤ 2c−f(τ)). Since f is length-invariant and unbounded, µ
is continuous, thus proving 1 ⇒ 3. To prove 3 ⇒ 1, assume that X is µ-random
for some continuous µ. By Lemma 6.5 there is an oracle Z such that X is
strongly f -random relative to Z for some length-invariant, unbounded f ≤T Z.
Hence, by Remark 1.13 relative to Z, X is complex relative to Z.

Remark 6.7. Theorem 6.4 was essentially already known, being a combination
of known results from [13, 18, 26]. However, Theorem 6.6 appears to be new. In
connection with Theorem 6.6, note that the class {X ∈ {0, 1}N | X is µ-random
for some continuous Borel probability measure µ on {0, 1}N} has been studied
extensively in [26].

We finish by presenting another product theorem.

Theorem 6.8. Suppose X,Y ∈ {0, 1}N.

1. If X is autocomplex, and if Y is Martin-Löf random relative to X , then
X is autocomplex relative to Y .

2. If X is complex, and if Y is Martin-Löf random relative to X , then X is
complex relative to Y .
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Proof. If X is autocomplex, it follows by Remark 1.13 that X is strongly f -
random for some computable f such that {f(X↾n) | n ∈ N} is unbounded. By
Lemma 6.3 we may safely assume that f is convex. But then, if Y is Martin-Löf
random relative to X , Theorem 5.8 implies that X is strongly f -random relative
to Y , hence by Remark 1.13 X is autocomplex relative to Y . This proves part
1 of our theorem. The proof of part 2 is similar.

Remark 6.9. Theorem 6.8 and similar results such as [13, Theorems 7.5.1,
7.5.2] are of a different flavor than other randomness preservation results. This is
because complexity relative to an oracle does not necessarily imply complexity or
even autocomplexity. For example, let X be nonrecursive such that no g ∈ DNR
is ≤T X . By Theorem 6.1 X is neither complex nor autocomplex, but by
Theorem 6.4 X is autocomplex relative to some oracle. If X is in addition
nonhyperarithmetical, it follows by Theorem 6.6 and [26, Theorem 5.9] that X
is complex relative to some oracle.
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