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THE JOURNAL OF SYMBOLIC LoGic 
Volume 58, Number 2, June 1993 

THE BAIRE CATEGORY THEOREM IN WEAK SUBSYSTEMS 
OF SECOND-ORDER ARITHMETIC 

DOUGLAS K. BROWN AND STEPHEN G. SIMPSON 

Abstract. Working within weak subsystems of second-order arithmetic Z2 we consider two versions of 
the Baire Category theorem which are not equivalent over the base system RCAo. We show that one version 
(B.C.T.I) is provable in RCAo while the second version (B.C.T.II) requires a stronger system. We introduce 
two new subsystems of Z2, which we call RCA' and WKL', and show that RCA' suffices to prove 
B.C.T.II. Some model theory of WKL' and its importance in view of Hilbert's program is discussed, as 
well as applications of our results to functional analysis. 

?0. Introduction. This paper consists of some of the material contained in [2], 
which is concerned with the development of the basic definitions and theorems of 
functional analysis within second-order arithmetic, Z2. Such studies take place 
within a broader program initiated by Friedman and carried forward by Friedman, 
Simpson, and others. The goal of this program is to examine the Main Question: 
Which set existence axioms are needed to prove the theorems of "ordinary mathe- 
matics?" An exposition of the meaning of "ordinary mathematics" can be found in 
[22, 21, 2] -for the purposes of this paper it suffices to note that the theory of 
complete separable metric spaces is an example of ordinary mathematics. 

The language of second-order arithmetic is a two sorted language with number 
variables i, j] k, m, n, ... and set variables X, Y, Z..... Numerical terms are built up as 
usual from number variables, constant symbols 0 and 1, and the binary operations 
of addition (+) and multiplication (.). Atomic formulas are t1 = t2, t1 < t2, and 
t1 e X where t1 and t2 are numerical terms. Formulas are built up as usual from 
atomic formulas by means of propositional connective A, V, -, , -+, number 
quantifiers Vn and 3n, and set quantifiers VX and ]X. The formal system Z2 includes 
the ordered semiring axioms for N, +, *, 0, 1, < as well as the induction axiom 

(OeX A Vn(neX-*n + 1 eX))-*Vn(neX) 

and the comprehension scheme 

3XVn(n E X *-(p(n)), 

where (p(n) is any formula in which X does not occur freely. 
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In the course of studying the Main Question it has been noted that a great deal 
of ordinary mathematics may actually be done in various weak subsystems of Z2 

[1,2,8,22]. In this paper we are primarily concerned with the following three 
subsystems: 

RCAo. Here the acronym RCA stands for recursive comprehension axiom. 
Roughly speaking, the axioms of RCAo are only strong enough to prove the exis- 
tence of recursive sets (though they do not rule out the existence of nonrecursive 
sets). As weak as this system is, it is strong enough to prove some of the elementary 
facts about countable algebraic structures [8] and continuous functions of a real 
variable [21, 22]. The axioms of RCAo consist of the ordered semiring axioms 
together with the schemes of Z1? induction and A ? comprehension. 

WKLo. This system consists of RCAo plus a further axiom known as Weak 
Konig's lemma which states that every infinite {0, 1}-tree has a path. This system is 
very weak from the viewpoint of mathematical logic in that the first-order part of 
WKLo is the same as that of RCAO, viz., Z1? induction (this result is due to 
Harrington; for a proof see [21]). Furthermore, WKLo is conservative over Prim- 
itive Recursive Arithmetic (PRA) with respect to Ho sentences [21]. On the other 
hand, from the mathematical point of view, WKLo is very powerful. It is strong 
enough to prove a great many theorems of ordinary mathematics which are not 
recursively true and hence not provable in RCAO. Included in this category are the 
Heine-Borel covering lemma [2, 6, 21], the prime ideal theorem for countable com- 
mutative rings [8], the maximum principle for continuous functions on a closed 
bounded interval [21], and the local existence theorem for solutions of ordinary 
differential equations [22]. 

The above remarks have important implications in the foundations of mathe- 
matics vis 'a vis Hilbert's program. Tait [24] has made a strong case for the identi- 
fication of Hilbert's notion of finitism with the formal system PRA and pointed out 
that the primary concern of this finitism is the provability of certain Ho sentences. 
Thus a full realization of Hilbert's desire to justify the use of infinitistic mathe- 
matics would consist of developing a formal infinitistic system whose consistency 
was provable in PRA, as it would then follow that any Io sentence provable in 
this infinitistic system was in fact provable in PRA, i.e., finitistically. The infinite 
objects of the larger system would then be justifiable as devices to be used to prove 
theorems about noninfinite objects and have these results be finitistically accept- 
able. Of course Gddel's work dashed any hopes for such a full realization of 
Hilbert's program, but partial realizations are made possible by considering, not 
systems whose consistency is provable in PRA, but ones which are conservative 
over PRA with respect to I7H sentences. The fact noted above that WKLo is 
conservative over PRA with respect to I7H sentences thus gives a slightly stronger 
result and indicates that the theorems of ordinary mathematics mentioned above 
provide partial realizations of Hilbert's Program in this sense. For a fuller exposi- 
tion of this theme see [19]. 

ACAo. The axioms of ACAo are the same as those of Z2 expect that the com- 
prehension scheme is restricted to arithmetical formulas N(n) in which X does not 
occur freely. ACAo permits a smooth theory of sequential convergence [5, 6, 22] 
and isolates the same portion of mathematical practice which was identified as 
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"predicative analysis" by Weyl in Das Kontinuum [25]. For more details on all of 
these systems see Simpson [21]. 

Investigations into the Main Question have also revealed the following Main 
Theme: very often, if a theorem of ordinary mathematics is proved from the "right" 
set existence axioms, the statement of that theorem will be provably equivalent to 
those axioms over some weak base system (for us this is RCAO). This theme is known 
as Reverse Mathematics and is exhibited in such works as [2, 3, 7, 8, 9, 21, 26]. This 
type of "reversal", proving that a set of axioms follows from the statement of the 
theorem, together with the more usual proof of the theorem from the same set of 
axioms provides the precise knowledge that these axioms are in some sense neces- 
sary to prove a theorem of ordinary mathematics. In such a case we have a very 
complete answer to the Main Question. 

In [2] our primary aim was to examine some of the fundamental theorems of 
functional analysis on separable spaces in the context of Reverse Mathematics. 
Among these theorems were the Banach-Steinhaus theorem and the Open Map- 
ping and Closed Graph theorems. In standard texts on real analysis these theorems 
are usually proved using the Baire Category theorem. In the setting of weak sub- 
systems of Z2, however, the version of the Baire Category theorem needed to prove 
the Banach-Steinhaus theorem and the version needed to prove the Open Mapping 
and Closed Graph theorems are not the same. This result is due to two notions of 
a closed subset of a complete separable metric space which are not equivalent in 
weak subsystems. These notions are discussed in detail in [2] and [3] and are 
summarized in ? 1 below, along with the necessary technical definitions and results 
about complete separable metric spaces and their topology in weak subsystems of 
Z2- In ?2 we present the two versions of the Baire Category theorem referred to 
above and show that the first version is easily proved in RCAo. In ?3 we consider 
the axiomatic strength needed to prove the second version of the theorem. In ?4 we 
introduce two new subsystems of Z2, which we call RCA0 and WKL0, and show 
that the system RCA' suffices to prove the second version of the Baire Category 
theorem. In ?5 we consider the Open Mapping and Closed Graph theorems. Finally, 
in ?6, we consider some model theory of WKL' and show that WKL' is conser- 
vative over PRA with respect to HO sentences. 

?1. Metric spaces. Within RCAo we define a (code for a) complete separable 
metric space to consist of a set A c N together with a function d: A x A -k R such 
that for all a, b, c E A: 

(i) d(a, a) = 0, 
(ii) d(a, b) = d(b, a), 
(iii) d(a, c) < d(a, b) + d(b, c). 

Now let (A, d) be a code for a complete separable metric space, as above. We define, 
again within RCAO, a point in the completion A to be a function f: N -+ A such that 

VnVi[d(f(n), f(n + i)) < 2]. 

The idea here is that (A, d) is a code for the complete separable metric space A 
consisting of all such points. For example, R = Q under the usual psuedometric. 
Of course A does not formally exist within RCAo. A point f: N -+ A will be 
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denoted by x = <an: n e N> where an = f(n). Two points x = <an: n e N> and 
y = <bn: n e N> are said to be equal if Vn[d(an,bJ) < 2 -"1]. A sequence of points 
of A is a function f: N -> A and is denoted by <xn: n e N> where x, = f(n). We ex- 
tend the psuedometric d on A to a psuedometric d on A by defining 

d(<an: neN>, <bn: neN>) = <cn,,: neN>, 

where 

KCnk: k e N> = d(an+3 bn+3) 

We will sometimes use d(x, y)n to denote cn, n. Where no confusion will result, d will 
be used to denote both d and d. We embed A into A by identifying the element a e A 
with the point xa e A defined by xa = <a: n E N>. Thus, under this embedding, A is 
a countable dense subset of A. 

Two examples of complete separable metric spaces we will need later are: 
EXAMPLE 1.1. Infinite product spaces. Given an infinite sequence of (codes for) 

complete separable metric spaces Ai, i e N, we can form the infinite product space 
A = Hl=0 Ai as follows. For each i e N, we let ci be the smallest element of Ai c N 
(in the usual ordering of N). We define 

00 

A = U (Ao x x Am) = {<ai: i < m>: m e N, ai e Ai} 
m=O 

and d:A x A -Rby 

d(<ai: i < m>, <bi: i < n>) = 01 di(ab9 1 
i=oI + di(a~, b9 2'' 

where 

= fa. if i < m, 
i 
= 

ci otherwise 

and 

J =bi if i < n, 

= {c, otherwise. 

We can then prove within RCAo the following facts: (i) A is a complete separable 
metric space; (ii) the points of A can be identified with the sequences <xi: i e N>, 
where xi e Ai for all i e N; and (iii) under this identification, the metric on A is 
given by 

d(<xi: i e N>, <yi: i e N>) = E d -(xy) 1 
i=0 1 + di(xi,yi) 2" 

These three conditions define the usual textbook construction of the product of a 
sequence of complete separable metric spaces. Thus we are justified in writing 

00 

A = H Ai. 
i=o 
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In particular, we have within RCAo the Cantor space 
00 

2 N= {0,1}N = H{O,1} 
i=o 

and the Baire space 

NN= HN. 
i=O 

The points of the Cantor space and the Baire space can be identified with functions 
f: N -+ {0, 1} and f: N -+ N respectively. 

Within RCAo we define a code for an open ball in A, a complete separable metric 
space with code (A, d), to be an ordered pair (x,8) where x E A and 8 E R' (the 
positive reals). We say that a point y E A is an element of the ball (x, 8) if d(x, y) < e. 
An open ball is a basic open set if it is of the form (a, r) where a E A and r E Q+ 
(the positive rationals). A code for an open set U is a sequence of basic open sets 
<(an, re): n E N>. We say that a point x E A belongs to U if there is a basic open set 
(a, r) E U such that x is an element of (a, r). We will denote an element x of an open 
ball (y, 8) by writing x E (y, 8) and a point x belonging to an open set U by writing 
xe U. 

One natural definition of a closed set is that it is the complement of an open set. 
Thus we define a (code for a) closed set C to be a sequence of basic open sets 
<(an, rn): n E N> and say that a point x in a complete separable metric space A 
belongs to C if d(an, x) > rn for all n E N. Note that a code for a closed set may also 
be regarded as a code for the open set which is its complement. It is then easy to 
prove, over RCAO, such standard results as the countable union of open sets is open 
and the countable intersection of closed sets is closed [3]. However, since every 
closed subset of a complete separable metric space is itself a complete separable 
metric space, a second natural definition of a closed set is that it is the closure of a 
countable set of points. We therefore define a (code for a) separably closed set S to 
consist of a sequence S = <Xn: n E N> of points from a complete separable metric 
space A. We say a point x E A belongs to S if Vr E Q+3n[d(x,xn) < r]. We will 
occasionally write {Xn: n e N} for S. Note that the definition of a separably closed 
set is equivalent to that of a closed subspace of A given in [4]. We define a separably 
open set in a complete separable metric space to be the complement of a separably 
closed set. Thus a code for a separably open set 0 is a sequence <Xn: n e N> of 
points in A. We say that a point x e A belongs to 0, written x e 0, if X ? {Xn: n e N}. 

In the context of weak subsystems of second-order arithmetic there is an impor- 
tant distinction between these two definitions of closed set: relatively strong axioms 
are required to prove their equivalence. Specifically we have the following: 

THEOREM 1.2 (RCAO). The following are equivalent: 
(i) ACAo; 
(ii) If S is a separably closed subset of a complete separable metric space then S 

is a closed set. 
PROOF. See [3]. 
THEOREM 1.3 (RCAO). The following are equivalent: 
(i) H1-CAO; 
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(ii) If C is a closed subset of a complete separable metric space then C is a separably 
closed set. 

PROOF. See [3]. The system ll-CAO is Ill comprehension (i.e., the compre- 
hension scheme is restricted to IH1 formulas) and is much stronger than the three 
systems mentioned above. 

Thus for an arbitrary complete separable metric space the equivalence of the 
two notions of closed set requires, and is equivalent to, HI1-CA0. In the setting of 
compact spaces this equivalence can be proved in the weaker system ACAo [3]. It 
also follows that, in terms of separably open and closed sets, the standard results 
on countable unions and intersections referred to above require, and again are 
equivalent to, Hll-CA0 over RCAo [3]. 

Let A and B be complete separable metric spaces with codes A and B, respec- 
tively. Within RCAo we define a (code for a) continuous partial function from A to 
B to be a function P: N - A x Q+ x B x Q+ such that for all m, n E N, a, a' E A, 
b, b' e B and r, rt, sst eQ: 

(i) ?(m) = (a, r, b, s) A ?(n) = (a', r', b', s') -+ d(b, b') < s + St; 
(ii) ?P(m) = (a, r, b, s) A (b, s) < (b', st) -k[i(k) = (a, r, b', s')]; 
(iii) ?(m) = (a, r, b, s) A (a', r') < (a, r) > ]k[0(k) = (a', r', b, s)]. 

Here (a, r) < (b, s) means r < s - d(a, b). We write (a, r, b, s) E dP if d>(n) = (a, r, b, s) 
for some n E N. The idea here is that ( encodes a continuous partial function 1 
from A to B. Intuitively, (a, r, b, s) E ( is a piece of information to the effect that 
d(o(x), b) < s whenever d(x, a) < r. A point x E A is said to belong to the domain of 
0 if, for all E > 0, there exists a (a, r, b, s) E qP such that d(x, a) < r and s < e. If x E A 
is in the domain of 4, we define +(x) to be the point y e B such that d(y, b) < s for 
all (a, r, b, s) E ( with d(x, a) < r. We can prove, within RCAO, that y exists by using 
the code ( and the u-operator. Note that y = +(x) is unique up to the equality of 
points in a complete separable metric space as defined above. 

We define a (code for a) separable Banach space to be a set A c N together with 
operations +: A x A - A, A x A -A, and *: Q x A - A and a distinguished 
element 0 E A such that <A, +, -, ,O> forms a vector space over the rational field 
Q. In addition we require a function 1111: A -+ R satisfying: 

(i) JIqall = Iql hall for all a E A and q E Q; 
(ii) Ia + bIl < hail + IjbIl for all a,b E A. 

Thus a code for a separable Banach space is a countable pseudonormed vector 
space over the rationals. As usual we define a pseudometric on A by setting 
d(a, b) = Ia - bII for a, b E A. We define a point of the separable Banach space A 
to be a point of the completion A of A under this metric. Thus points of A are se- 
quences <an: n E N> such that VnVi(IIan- an+iII < 2 n). 

If x = <an: n E N> is a point in A, we define 

lXII = <Cn,n: n E N>, 

where <cnc,k: n E N > = Ian+1II. We also define the sum of two elements of A by 

<an: neN> + <bn neN> =<an +1 +bn+: neN>, 

and the scalar multiple of an element of A by a real by 

<qn: n E N> <an: n E N> = <qn+man+m: n e N>, 
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where m E N is the least such that ((Ilaoll)o + 1q01 + 2)2-m < 1. Thus A enjoys the 
usual properties of a normed vector space over R. 

Let A and B be separable Banach spaces. We define a continuous linear opera- 
tor from A to B to be a totally defined continuous function 4: A -+ B such that 
0(/x + fly) = oc4(x) + fl,(y) for all x, y E A and a, ft E R. We define a (code for a) 
bounded linear operator from A to B to be a function F: A >+ B such that: 

(i) F(q1a1 + q2a2) = q1F(a1) + q2F(a2) for all q1, q2 E Q and a,, a2 E A; 
(ii) there exists a real number a such that IIF(a)II < aI IaII for all a E A. 

For F and a as above and x = <an: n E N> E A, we define F(x) to be the unique 
y E B such that for all n E N 

IIy - F(an)II < 2-n,,. 

Thus IIF(x)II < aI IxII for all x E A. We write F: A -+ B to denote this state of affairs. 
If a E R is such that IIF(x)II < aI IxII for all x E A, we write IIFiI < a. Specializing 
to the case B = R we obtain a bounded linear functional on A. We have the follow- 
ing standard result from Banach space theory relating the two types of operators 
defined above. 

THEOREM 1.4 (RCAO). Given a continuous linear operator 0: A -+ B, there exists 
a bounded linear operator F: A -> B such that F(x) = +(x) for all x E A. The con- 
verse also holds. 

PROOF. See [4]. 
Specializing the definitions above to the context of separable Banach spaces, we 

define a closed linear subspace C of a separable Banach space A to be a closed subset 
C of A which is also a linear subset of A. On the other hand we define a separably 
closed linear subspace S of A to be a separably closed subset of A which is also 
linear. 

THEOREM 1.5 (RCAO). Suppose A is a separable Banach space and S = <Xn: n EN> 
is a code for a separably closed linear subspace of A. Then there exists a separable 
Banach space B and a norm preserving map IP: B f S. 

PROOF. See [2]. 
Thus each separably closed linear subspace S of a separable Banach space A is 

isometrically isomorphic to a separable Banach space B. We will consider S to be 
a separable Banach space by identifying it with B. 

We conclude this section with some defintions needed in the statements of the 
Baire Category theorem to follow. We say that an open set U is dense if for every 
basic open set (a, r) there exists a point x e A belonging to U which is also an element 
of (a, r). A closed set C is then said to be nowhere dense if the open set which is the 
complement of C is dense and equivalently (over RCAO), if C contains no open ball. 
Similarly for separably open and closed sets. 

?2. The Baire category theorem. In standard metric space theory the Baire 
Category theorem can be stated as follows: Given a complete metric space X and a 
sequence <Kn: n E N> of open dense subsets of X, nN on is dense. Due to the non- 
trivial distinction between open and separably open sets noted above we obtain 
two versions of the Baire Category theorem which are not equivalent over RCAo: 

B.C.T.I. Let A be a complete separable metric space, and let <Un: n E N> be a 
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sequerice of (codes for) open dense subsets of A. If U is a (code for a) nonempty 
open set in A, then there is a point x E A such that x E U and x E Un for all n E N. 

B.C.T.II. Let A be a complete separable metric space, and let 

<<xnk:k eN>: ne N> 

be a sequence of (codes for the compliments of) dense separably open subsets On 
of A. If U is a (code for a) nonempty open set in A, then there is a point x E A such 
that x e U and x e On for all n eN (i.e., x 0 {xnk: k e N} for any n eN). 

THEOREM 2.1 (RCAO). B.C.T.I holds for any complete separable metric space. 
PROOF. Reasoning within RCAo we define a point x = <an: n E N> by recur- 

sion on n so that x E A and x E Un for all n E N. Since U0 is dense, we can find 
(ao, ro) E A x Q+ such that (ao, ro) c U0 (note that this is Zf) and ro < 1/2. Let 
q(n, a, r, b, s) be a Zf formula which expresses the following: (a, r) e A x Q+ 
(b,s) E A x Q+, (b,s) < (a,r), (b,s) c Un, and s < 2-n-1. From the density of Un, 
it follows that for each (n, a, r) e N x A x Q+ there exists (b, s) such that cp(n, a, r, b, s). 
Write 

cp(n, a, r, b, s) ]k0(n, a, r, b, s, k), 

where 0 is z0. By minimization [21], there exists a function 

f:N x A x Q'-+N x A x Q+ 

such that f (n, a, r) is the least (k, b, s) such that 0(n, a, r, b, s, k) holds. By primitive 
recursion [21], there exists a function g: N -* A x Q+ such that g(O) = (ao, ro) and, 
for all n e N, g(k + 1) = (ak+ 1, rk+ 1), where f(n, an, rn) = (kn, an+ 1, rn+ 1). Hence 
cp(n, anrn, an+i,rn+1) holds for all n. It is not hard to check that x = <an: n e N> is 
a point of A and that x e Un for all n. See also [2] and [21]. 

Thus B.C.T.I holds in RCAo. We immediately have the following: 
COROLLARY 2.2 (RCAO). If <En; n e N> is a sequence of closed nowhere dense 

subsets of a complete separable metric space A and U is any nonempty open subset 
of A, then there exists x e A such that x ? UN En. 

PROOF. By definition, the code for each En is also a code for a dense open set 
= ~En. Applying Theorem 2.1 we obtain a point x c U such that x 2-N U, = 

nN -E ; hence x 0 UN En. 
With this corollary in hand we can then prove the Banach-Steinhaus theorem: 
THEOREM 2.3 (RCAO). Let <Tn: n e N> be a sequence of bounded linear operators 

on a separable Banach space A such that for all x e A, SupNIlTn(x)II < cx. Then there 
exists M e N such that for all x e A and n e N, IITn(x)II < MIIxII. 

PROOF. For each m, n e N, let 

Cmn=zx I 1 Tm(x)ll < n}. 

Since II Tn(x)II is a continuous function from A to R [2], it follows that Cm n exists 
within RCAo and is a closed set [2]. Let 

Cn = nCmn = {x IVm(IITm(x)ll < n)}. 
mEN 

Then Cn is closed [2]. Claim A = UN Cn Indeed, fix x e A. By hypothesis we 
have SUPNII Tn(X)II < cx, say SUPNIII Tn(X)Il < m. Then for all n e N, x c Cn m and hence 
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x E 2neN Cn m = Cm. Since x was arbitrary, it follows that A = UN CQ. Now, from 
Corollary 2.2 it follows that not all of the Cn's are nowhere dense; i.e., for some 
no e N. Cno contains a basic open set (aO, ro). Fix x E A such that Ilxii # 0, and con- 
sider ao + rOx/21x 11. We have 

(ao x r= 

+ 2llXlI 2llxl1 
so (aO + rox/211 xI) E (aO, ro). Also, for any n E N, 

ro I1x11 I T ro ao 2- ox~ 
211IIT(x) = || 2lXll x) | *a< + +n ( ? lX ) 

Then, since ao and ao + rox/211xII both belong to (aO,ro) which in turn is a mem- 
ber of Cn0 = {x I VmI Tm(x)II < ro}, it follows that (rO/2I1x I)In In(x)II < 2no. Thus, for 
all n E N and x E A, IIlTn(x)lI < (4no/ro)IIxII (we assumed IIxH I= 0, but clearly this 
also holds if IlxII = 0). Taking any M E N with M ? 4no/ro completes the proof of 
the theorem. 

Thus we see that another important theorem of ordinary mathematics can be 
proved in the weak base system RCAo. However, other interesting consequences 
of the Baire Category theorem require the stronger version B.C.T.II, which we turn 
to now. 

?3. B.C.T.II. We now consider the axiomatic strength needed to prove B.C.T.II. 
As an initial approximation we have the following. 

THEOREM 3.1 (ACAO). B.C.T.II holds for any complete separable metric space A. 
PROOF. Let <<Xnk: n E N>: n E N> be a sequence of nowhere dense sets in A. 

By Theorem 1.3 we can find, within ACAO, a code for a closed set En such that 

En = {xnk: k E N}. Then, by Corollary 2.2, given any open set U there exists x E U 
such that x 0 UN En. 

Thus it takes a system no stronger than ACAo to prove B.C.T.II. From the fol- 
lowing we see that WKLo does not suffice to prove B.C.T.II. 

THEOREM 3.2. WKLo cannot prove B.C. T.II. 
PROOF. By Theorem 38 of Kleene [12] there is a complete extension T of Peano 

arithmetic which is zi O. By Scott [15] and Scott-Tennenbaum [16] the subsets X 
of C) which are binumerable in T (i.e., such that there is a formula p such that n E X 
iff -cp(n) E T) form a countable ow)-model M of WKLo and, furthermore, each 
set X in M is uniformly A 2; i.e., there is a zi ? function f: w-) x -) - {0, 1} such that 
X Ec M iff X = In I f(m, n) = O} for some m E co. Let xm E 2(' be the characteristic 
function of {n I f(n, m) = O}. Note that xm is contained in our model M. There 
is a sequence <Xm,k: k E co> of recursive {O.1}-functions such that, for all n E co, 
limper xmk(n) = xm(n) and there is a kn E w-) such that Xm,k(n) = xm(n) for all k ? kn 
(Theorem 2 [17], extended in [13]). Now consider 2', the Cantor space in M. 
Given any x E 2', x can be considered as the characteristic function of some set X 
in M and hence x = xm for some m E w-). Since Xm C {Xm,k: k E co} we have 

M = U lXmk 
M Eco 
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Fix m q w). We claim <Xmk: k e co> is nowhere dense in 2'. Indeed, fix a basic open 
set (, r) in 20. Let 1h(a) = n, and let kC E ) be such that Xmk(n) = xm(n) for all k ? kn. 
Then at most kn - 1 points in the sequence <Xm,k: k E co> extend (1- xm(n)). 
Therefore there is a X E 2"j? such that T zD (1 - xm(n)) and X is incompatible 
with Xmo . ... , Xm,kn 1 It follows that T is incompatible with Xm,k for all k E co and 
hence that (C, 2 1h(T)) q {Xmk: k ec } = 0. Since (z, 21h(T)) < (, r), it follows that 
<Xm,k: k E o> is nowhere dense, as desired. Thus B.C.T.II fails in M and so, by 
soundness, WKLo cannot prove B.C.T.II. 

COROLLARY 3.3. RCAo cannot prove B.C.T.H. 
PROOF. WKLO ' RCAO. 
COROLLARY 3.4. There is a recursive counterexample to B.C.T.II. 
PROOF. The sequences <Xmk: k e w> used in the proof of the theorem are re- 

cursive sequences of points in 2(' and hence exist in Rec, the w-)-model of RCAo 
consisting of the recursive subsets of w(). Also, since M is an wt-model of WKLo 
and hence contains Rec, for any recursive point x e 2(' there is an m e w) such that 
X e {Xmk: k e wo}. Thus 

Rec U {Xm,k: k e col, 
meco 

where each <xm,k: k e wo> is nowhere dense so that B.C.T.II fails in Rec. 

?4. The systems RCAo and WKLo. In this section we introduce a subsystem 
of Z2 which suffices to prove B.C.T.II; we call the system RCAo. The axioms of 
RCAo are those of RCAo plus the following scheme (*): let U, T range over 2 
X range over 2N, and let p be any arithmetic formula; then 

(*) VnVu3Tz(z D A p(n,z)) -* 3XVn3k(p(n,X[k])). 

The idea here is that given a sequence of arithmetically defined dense subsets of 
2<N there exists, within RCA&, a point in 2N which meets them all. The system 
WKLo is the system formed by adding the axiom scheme (*) to the axioms of 
WKLo. 

We begin by showing that a version of the scheme (*) holds in the Baire space 
NN. In order to do so we first define a map from a certain subset of 2'N to N'N as 
follows: let 

S la e 2 <N I(lh(af) 1) 1}, 

i.e., a e S iff a terminates in a one. Note that S exists within RCAo. For a e S, define 
to = ik[oa(k) = 1], 
ti+1 = (yk > (to + + ti + 0i)[(k) = 1])- (to + + t- + i + 1) for i such 

that to + . + tj + i < 1h(af). 
Let 7t(a) = <to .. ., tk> where to + + tk + k = lh(cr). Then: 

(1) 7t exists within RCAO; 
(2) 7t: S N<N N; 

(3) if a,, e2 e S and a, D a then 7(o ) D (a2); 
(4) if T*, T* e N<N and T* D T*, then i-'(zT*) D 7-1(T*). 
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The idea here is that 7t(a) lists the number of zeros occurring between successive 
ones and the length of 7t(a) is the number of ones occurring in a. For example, if 
a = <010011 > then 7t(a) = < 1, 2, 0>. 

THEOREM 4.1 (RCA+). Let C*, z* range over N<N, and suppose that / is an 
arithmetic formula such that 

VnVu*3]*(z* D U* A f(n,z*)). 

Then there exists an x E NN such that Vni(t(n, x[i])). 
PROOF. For n E N and - E 2<N, let 

cp(nz) _ T e S A (n, (T)). 

We claim that VnVo3z(z D ff A f(n, p(n, z)). Indeed, fix n E N and a E 2<N. We con- 
sider two cases: 

Case 1. a E S. Then 7t(a) is defined and, by hypothesis, there is a zc E N<N such 
that * r z(=f) and f(n,*). By note (4) above, c - zlr(z*) a f and, by definition, 
we have p(n, z). 

Case 2. a 0 S. In this case take a' = ^a<1 > and apply case 1 to obtain -c a' D (x 
with p(n, ). 

Now apply the principal axiom of RCA+ to obtain y E 2N such that 
Vn3ip(n,y[in]). Define 

x = K4(y[i]): i E N> 

and note that x exists within RCAo (given y). By note (3) above, x E NN and, by 
definition, 

(p (n, Y [in ] )=> 0! (n, 7 ( y [in] ) 

Therefore Vn3io/(n, x[i]), as desired. 
We now show that B.C.T.II holds for any complete separable metric space A. 

Given any such space, let A be the code for A and <an: n E N> an enumeration of 
A. For each (X* E N<N with lh(u*) = m, define, for 0 < k < m - 1, 

bo = a,*(O); 
bk+ 1 = the u*(k + 1)st element in some fixed enumeration of 

{a l d(a, bk) < 2-( )}. 
Now let 71(u*) = <bo,... bM 1 bm ... >. Then 7t: N'N --A and ir exists within 
RCAo. Note: 

(1) if oa*, o* E N'N and 1*' D o*, then 7t(o*)(i) = 21 (o*)(i) for all i < lh(u*); and 
conversely, 

(2) if z = <b0, ... .,bkbk,. ..> E A is such that for all i E N d(bi, bi+ 1) < 2-(j+ 1), 
then for all i > k there is a a* e N'N such that lh(Q*) = i and n(u*) = z. 

THEOREM 4.2 (RCA+). B.C.T.II holds for any complete separable metric space A. 
PROOF. Let A be a complete separable metric space, let 21 be as above, and let 

<<Xn,k. k E N>: n E N> code a sequence <On: n E N> of separably open dense sets 
in A. Fix a basic open set (ao, ro), and let -c* E N'N be such that lh(ir*) = io + 1, 
where io ? 2 is such that 2`0 < r0/2, and r(,r*) = <ao,a ,ao, ....>. For -* cE N<N 
define 

(p(n, r*) _= 3iVkVy*[y* D -* d((T*Y*),xnk) 2 2i] 
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We claim that VnVu*3r*[E* D* A p(n,*)]. Indeed, fix n and u*. Let 

lh(,r*^<u*) <bo,. bM-15 M-1 M-15.. >- 

Note bo = =bio = ao so 

d(aobm-i) < d(biobio+1) + + d(bm-2,bm -) < 2 

Since 0n is dense, there is a (b, r) < (bmi 1, 2-m) with (b, r) r- {Xnk: k e N} = 0 and 
hence d(ao, b) < d(ao, bm 1) + d(bm- 1, b) < ro (since 2-m" < 2-'O), and d(bxnk) 2 r 
for all k. Choose i 2 m so that 2-i < min(r/2, rO - d(b, aj)). Let 

z_= <bo 5... 5bm-15b b, b,.>. 

By note (2) above there is a z*' e N<N with p(z*') = z and lh(z*') = i + 1 and, by 
note (1), z*' D Z*^*. Let z* e N<N be such that zT*z* = z*'. Then z* :D o*. Sup- 
pose y* D Z*, and let 

7r(T0* z*) = <bo,.. 5bm- 15b5- *b5bi+ 1 . *>5 

where the terms bi+ 1,... depend upon y*. Then for Lny k, 

r < d(b, xnk) 

? d(b,bi+1) + d(bj+j,7t(Tz**)) + d(m(T* y*),xk) 
< 2("' ) + 2-(i 1) + d(7t(zo*A*),x, k). 

Therefore 

d(7r(zo*X*),xk) ? r -2- 2 r/2 ? 2-i 

and so p(n, z*) holds and the claim follows. 
Now apply Theorem 4.1 to obtain y e NN such that Vn3ky(n,y[k]) and let 

x = lim~ ir z(zoy[i]). Then: 
(1) x e A: For i < j we have 

d( 

d(7yr])(T *A Yri])) * 
? d(ir(zoy[i]), 1(0 y[j])io + i) + d(7t(To y[i])io + i,t(zo y[j])i0 + D) 

+ d(7(To*^Y[j])io + j, (z*y[j])) 

< 2-('o+') + 2-(io+i) + 2-(io+j) 

< 3 2-('O+') < 2- (since io ? 2). 

That x e A now follows from the completeness of A [2]. 
(2) x e On for all n e N. Fix n e N and let kn be such that p(n,y[kn]). Then 

3inVj ? knVkd(7r(T *Ay[]], Xnk) ? 2-in. Choose j > max(k n, in). Then for all k we have 

2-',, <- d(7r(T *Ayj 

< d(t(zr*Ay[E],x) + d(xXn,k) 

< 2 - j + d(x, Xn,k). 

Thus d(x, Xn,k)> 2 2 - 2-' > O, so xe O?n, as claimed. 
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(3) x e (ao, ro): We have 

d(x,ao) < d(x,7t(z*y[io])) + d(t(zr* y[iO]),aO) 
< 2`0 + 2`o 

(since t(z4o*y[i0]) begins with a sequence of ao's of length io) 
< ro. 

This completes the proof of the theorem. 
Thus we see that B.C.T.II holds in RCA+. In fact RCA+ proves the following 

stronger result: if <<(afl,k, rflk): k e N>: n e N> is an arithmetically defined sequence 
of sequences of basic open sets in a complete separable metric space A such that 
for each n the open set Un = <(afnk,rnfk): keN> is dense, then nN Un is dense (the 
results of this section only need a Z3 sequence <<(an ,k, rnfk): k E N>: n E N>). Ap- 
parently this is the strongest version of the Baire Category theorem provable 
in RCA+. 

?5. The Open Mapping and Closed Graph theorems. We now apply Theorem 4.2. 
In what follows let A and B be separable Banach spaces. For n e N, let <ank: k e N> 
be an enumeration of the Zy set 

Sn = {a I 11all < 2}. 

Note that if T: A -+ B then T(Sn) = <T(ank): k e N> is a sequence of points in B. 
LEMMA 5.1 (RCA+). Let T be a bounded linear operator from A onto B. Then 

there is an r e Q+ such that, for all y e B, if IIYII < r then y = T(x) for some x e A 
with IIxII < 1. 

PROOF. Since A = UN nS and T is onto, we have B = UNnT(Sl). By Theo- 
rem 4.2 there must exist an no such that <noT(al, k): k e N> = n0T(S1) is not no- 
where dense. Thus there is some basic open set (ba, r'0) contained in n0T(S1). Then 
T(S1) contains (b' /no, r'0/no). Let bo = b' /no and ro = r'0/no. Then bo + (0, ro) c 
T(S1) and so, noting that - bo e T(S), 

(O, ro) c T(S1) -bo bc 2T(S1) c T(So). 

More generally, by linearity, (0, r0/2n) c T(Sn) for any n e N. We claim that if 
IIYII < r0/2 then there is an x e A such that IlxII < 1 and T(x) = y. Indeed, suppose 
y e (0, r0/2). Then y e T(S1), so there is an a1 e S1 with 11 Y- T(a1)I < ro/4. Sup- 
pose that we continue in this fashion to choose a1,.. ., an such that ai e Si, 1 < i < n, 
and IIY - Z 1 T(ai)iI < ro/2n +. Then y - Z%1 T(aj) e T(Sn+1) and hence there 
is an an+1 e Sn+1 with 

n 

- Y T(ai) - T(an + 1) < ro/2n+ 2. 

Applying Z1 induction we then obtain a sequence <an: 1 < n e N> such that an e S, 
and Ily - ZE j T(ai)ii < ro/2n+'. Let x = <KZ=1 aj: 1 < n e N>. Then for any]j 1 
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and n e N, 
n j+n j+n 

Zi a - a1 = a1 < I1aj+111 + + IHaj+n11 

< 2 (j 1) + + 2-(j+n) < 2-j 

Thus x E A. We also have 
n 

jjxjj = lim ||Eai| < lim (2-1 + * + 2 -n) = 1. 
n-oo i=n1 o 

Thus lxii < 1. Since I I =- 1 T(aj)ii < r0/2'n + 1for all n E N, it follows that 
T(x) = y, as desired. 

Thus, within RCA+, the image of an open unit ball in A contains a ball about 
zero in B. Note that RCAo was needed only to show that T(S1) contains a basic 
open set; the remainder of the proof requires only RCAo. We are now able to 
prove the Open Mapping theorem for separable Banach spaces. 

THEOREM 5.2 (RCA ). If T is a bounded linear operator from A onto B and U is 
an open subset of A, then there exists an open set V in B such that y E V if y = T(x) 
for some x e U. 

PROOF. With Lemma 5.1 in hand we can carry out the usual proof using only 
the axioms of RCAo. See [2]. 

Thus the Open Mapping theorem for open sets is provable in RCA&. Two ques- 
tions remain unanswered (as of this writing): 

(1) Can the Open Mapping theorem for open sets be proved in a system weaker 
than RCAo? 

(2) What axioms are needed to prove the Open Mapping theorem for separably 
open sets? 

Since ACAo proves that every separably open set is open, it is immediate from 
Theorem 5.2 that ACAo proves the Open Mapping theorem for separably open 
sets. Thus we have a partial answer to (2). 

From Theorem 5.2 we may now obtain the Bounded Inverse theorem for sepa- 
rable Banach spaces. 

THEOREM 5.3 (RCA&). Suppose T is a bounded linear operator mapping A one- 
one onto B. Then T' 1 is bounded. 

PROOF. Here again the usual proof can be carried out once we have Theo- 
rem 5.2 [2]. 

We conclude this section by considering the Closed Graph theorem. Suppose A 
and B are codes for separable Banach spaces with norms 11I. 1and 11i lB respectively. 
Consider the set A x B with operations: 

(i) (a,,b1) + (a2,b2)= (a, + a2, b, + b2), 
(ii) q(a1, b1) = (qa1, qb1), 

where a1,a2ce A, bl,b2e B, and q e Q. For a e A and be B define 

11(a,b)ii = ||a1lA + ljblIB- 

It is then easy to see that the completion of A x B under this norm yields the sep- 
arable Banach space A x B, i.e., the set of pairs (x, y) where x E A and y E B. If 
T: A -* B is a linear operator (not necessarily bounded), we define the graph of T 



THE BAIRE CATEGORY THEOREM 571 

to be the "set" of pairs (x, y) in A x B such that T(x) = y. Note that the graph of T 
does not formally exist within RCAo. 

THEOREM 5.4 (RCA+). Suppose T: A -> B is a linear operator such that the graph 
of T is separably closed in A - B. Then T is continuous. 

PROOF. Let GT = <(xn,, y): n E N> code the graph of T. Then GT is a separable 
Banach space by Theorem 1.5. Define P: GT-ALATA by P((xn,y)) = xn. Then P is 
linear and 

IIP((xn,Yn))I|i = iiXnIIA 

< IIXn IA + IIYniiB = 1 1(XnYn)I A X 

so P is bounded. Thus by Theorem 5.3, P-': A GT is bounded. Therefore there 
is an M such that for all x E A 

iiP '(x)iIG < MJx IXA ll(x, T(x)llG- < MIIxIIi 
=> l|xiii + JJT(x)JJs < MIIxIIJ 
=> |IT(x)IIB < (M - 1)11xIIA. 

Thus T is bounded and therefore continuous. 
In Theorem 5.4 we have the Closed Graph theorem for linear operators with 

separably closed graphs. It is an open question as to what axioms are necessary to 
prove the Closed Graph theorem for linear operators with graphs which are closed 
sets. We obtain a partial answer by noting that, since HI-CAO proves that every 
closed set is separably closed, it is immediate from Theorem 5.4 that no system 
stronger than HI-CAo is needed to obtain this result. 

?6. Model theory of WKL'. In this section we demonstrate the existence of a 
model of WKLo and, in the course of this, establish that WKLo is logically a weak 
subsystem of axioms in that it is conservative over Primitive Recursive Arithmetic 
(PRA) with respect to HO sentences. 

Let L2 be the language of second-order arithmetic. A model for L2 is an ordered 
7-tuple 

M = <IMISM, +M, .M <M OM lM> 

where IMI is a set, SM a collection of subsets of IMI, +M and *M are functions from 
IMI x IMI into IMI, and OM and 1M are distinguished elements of IMI. For any 
theory T in the language L2 we say that M is a model of T or M satisfies T, written 
M 1 T, if the axioms of T are universally true in M when the first-order variables 
range over IMl, the second-order variables range over SM, and +, ,I0, 1 are inter- 
preted in the obvious manner. 

LEMMA 6.1. Let M be a model of the basic axioms of RCAo plus Z1 induction. 
Then there exists a model M' of RCAO such that M is a submodel of M' and I MI = I M'I. 

PROOF. Let 
M = <IMI, z1?-Def M, +M, .M <M OM IM> 

where J O-Def M is the set of all X c IMI such that X is zi? definable over M al- 
lowing parameters from IMI u SM. It follows immediately that IMI = IM(I and 
SM c SM". Thus M is a submodel of M' and M' satisfies the basic axioms of RCAo. 
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Since L'7 induction in M implies L'? collection in M' [11] it follows that we have 
Jo comprehension in M' (see [23]). Thus we need only show that M' satisfies Z? 
induction. Suppose cp(n) is a L'? formula in M', say 

cp(n)=- 3k(n, k ,X), 

where 0 is Z? and X is a complete list of the parameters from SM' occurring in 0. 
Since X c JO-Def M, there is a Z? formula O_ containing only parameters from IMI 
and SM such that a E X iff O(a) and, over M', O(n, k, X) - (n, k, 04(a)) (see [23]). 
Thus, over M', 

cp(n)=30(n, k, 0(a)), 

i.e., cp is equivalent over M' to a Z? formula containing only parameters from 
MI u SM. Z? induction in M' then follows easily from Z? induction in M, for: 

M' 1= [qp(O) A Vn(qp(n) -* p(n + 1))] 

= M 1= [3kH(O, k, O1(d)) A Vn(3kO(n, k, O(d)) ak(n + 1, k, O(d))] 
= M l= VnikO(n, k, H_(a)) 
= M' I= Vn3kO(n, k, X) 
= M' I= Vn~p(n). 

Thus M' satisfies Z1? induction and so M' is a model of RCAo. 
Let M be any countable model (i.e., I MI is countable) of RCAO. Let 2"N be the 

set of M-finite sequences of zeros and ones. A set D C 2MN is dense if for all a c 2e 
there is a z e D such that z D a. A set D C 2MN is definable if D is definable over M 
with parameters from IMI u SM. A set X c IMI is M-generic if for all definable 
dense sets D C 2MN there is a a e D such that a e X. As usual, if X is M-generic we 
can consider X to be an infinite sequence of zeros and ones, so X e 2' and we will 
write a( c X for a e X. 

LEMMA 6.2. Let M be a countable model of RCAo. There is a model M' of RCAo 
such that: 

(i) M is a submodel of M'; 
(ii) AIl = IM'I; 
(iii) there is an X e SM' such that X intersects all M-definable dense sets D. 

PROOF. Let X be M-generic, and let 

M[X] = <IMI,Sm U {X}, +MM, <M OM lM> 

Clearly M is a submodel of M[X] and IMI = IM[X]I. Since the integers of M[X] 
are those of M, it follows that M[X] satisfies the basic axioms of RCAO. Claim 
M[X] satisfies Z?? induction. Indeed suppose 

M[X] I= (p(O) A Vn(cp(n) -* (p(n + 1)), 

where cp(n) is Z?? in M[X]. Write cp(n) as 3kO(n, X[k]) where O(n, k), a e 2N, is z0 
with parameters from I MI u SM only (see [23]). For each n e I MI, define E c 2`N by 

a e E iff Vt D uVk < lh(z) - 0(0,[k]) v 3m < n[3k < lh(a)O(m,a[k]) A Vt 
D aVk < lh(z) - H(m + 1,[k])]. 
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Let D c 2<N be defined by 

aeD iff aE v -3zeE (z a ). 

Then D is M-definable. Fix a e 2"N. Either there is a z e E c D such that z Df a or 
no such - exists, in which case a e D. In either event it follows that D is dense. Let 
a0 e D n X, and suppose a0 e E. Then either 

(i) Vt -aoVk < lh(z) - 0(0,[k]) => Vk - 0(O,X[k]), contradicting our assump- 
tion that M[x] 1= cp(O), or 

(ii) 3m < n[3k < lh(a0)O(m,ao[k]) A Vt - aoVk < lh(z) O H(m + 1,[k])]. 
Fix m as in case (ii). Then 

3k < 1h(q0) 0(m, ao[k]) 3k(m, X[k]) 

3kO(m + 1, X[k]) (induction hypothesis) 
-> 3, : ao3k < lh ()O(m + 1,[k]), 

which contradicts a0 e E. Thus a0 s E so, by the definition of D, if z D a0 then 
z s E and hence 

(1) Vm[3k < lh(T) O(m, T[k]) -* D z 3k < lh(y) O(m + 1, y[k])]. 
Since a0 s E, we have 

3DO D ao3k < lh(zo)O(0,oz[k]). 

Now for m e MI suppose we have Tm D ao such that 

3k < lh(T,) H(M, ,,[k]). 

Then by (1) there is a Tm+ 1D Tm such that 3k < lh(cm+ 1) O(i, Tm+ 1[k]). Thus we have 

3D ao3k < lh(c)O(O,[k]) A Vn(3z- ao3k < lh(z)O(n,z[k]) 
- 3 ' ao3k < lh ()O(n + 1,[k]). 

It follows from Z1? induction in M that 
(2) Vn3z- a03k < lh(c)O(n,z[k]), 

and this in fact holds with a0 replaced by any a D a0. Now, for each n e I MI, define 
nc 2' by 

a e Dn iff (a is incompatible with a0) v 3k < lh(a) O(n, a[k]). 

Then Dn is M-definable for each n e IMI. Fix a e 2'.N 
If a is incompatible with a0 

then a e Dn. Otherwise either: 
(i) a( c a0, in which case by (2) 3, D a0 D a such that 3k < lh(T)O(n,-[k]) so 

that T e Dn, or 
(ii) a0 c a, so by the generalized version of (2) we get T z a with T e Dn. 

Thus we see that each Dn is dense. Let yn e X n Dn for n e I MI. Since a0 c X, it fol- 
lows that each Yn is compatible with a0, so we must have 

3 k < 1h (YJ H (n, yn [k] ). 
Therefore 

M l= Vn3k < lh(Yn) 0(n, Yn[k]) 
- M[X] I= Vn3kO(n, X[k]) 
= M[X] # Vnqp(n). 
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Therefore M[X] satisfies Z? induction, as desired. Finally, apply Lemma 6.1 to 
obtain a model M' of RCAo such that M[X] is a submodel of M' and 
IM[X]I = IM'I. Clearly M' has the desired properties. 

LEMMA 6.3. Any countable model M of RCAo can be expanded to a countable 
model M' of WKLo with IMI = IM'I. 

PROOF. Harrington (see [21]). 
THEOREM 6.4. Let M be a countable model of RCAo. There exists a model M' of 

WKL' such that M is a submodel of M' and IMI = IM'I. 
PROOF. Apply Lemmas 6.2 and 6.3 repeatedly to obtain a sequence <Mj: i E co> 

of models such that: 
(i) MO =M; 
(ii) each Mi is a submodel of Mi, 1 with IMI = Mi+ 1; 
(iii) M2i+ 1 #= RCAo + (3X[D n X # 0]), for all M2i-definable dense sets D; 
(iv) M2i 1= WKLo. 

Let M' = <IMI, USMi, +M, M <M OM lM>. Clearly M is a submodel of M' and 
IMI = IM'I, and hence M' satisfies the basic axioms of RCAo. Suppose cp(n) is aZol 
formula such that 

M'k= Fp(O) A Vn(cp(n) -*p(n + 1)). 

Let i be such that all parameters in (p appear by stage 2i + 1. Then 

M2 i+ I 1= p(0) A Vn(cp(n) -* p(n + 1)) 

and, since M2i+1 1 RCAO, M2i+1 1= Vnsp(n) so M' I= Vnsp(n). Therefore M' satis- 
fies Z 1 induction. Similarly, if T is a tree in 2', satisfied by M' to be infinite, then, for 
some i, M2i satisfies that T is an infinite tree in 2'2. and hence, since M2i # WKLO, 
that there is a path through T. Thus M' satisfies that there exists a path through T 
and so M' 1= WKLo. Finally, let up be an arithmetic formula such that M' satisfies 

VnVa E 2m7 ct e 2m( D a A p (n, z)). 

Let i be such that all parameters in up appear by stage 2i + 1. Then each set 
n= {a I p(n, o} is an M2i+ -definable dense set and so M2i+=1 MXe 2i+l 

Vn(Dn n X #0 0). Therefore M' 1= 3X E 2 X Vn(Dn n X #0 0), i.e., M' satisfies 

3X E 2 M , Vn3kp(n, X[k]). 

Thus M' = WKL+, as desired. 
COROLLARY 6.5. WKL+ is a conservative extension of RCAo with respect to H7 

sentences; i.e., any HI sentence provable in WKL+ is provable in RCAo. 
PROOF. Suppose VXcp, Cp arithmetic, is not provable in RCAo. Then 3X - CP is 

consistent with RCAo so, by Gddel's completeness theorem, there is a countable 
model M of RCAo + 3X - cp. By Theorem 6.4 there is a model M' of WKL+ with 
M a submodel of M' and |MI = IM'I. Then M' 1= 3X - up so, by soundness, WKLo+ 
cannot prove VXcp. 

LEMMA 6.6. RCAo is a conservative extension of PRA with respect to Ho2 

sentences. 
PROOF. Parsons (see [21]). 



THE BAIRE CATEGORY THEOREM 575 

COROLLARY 6.7. WKL' is a conservative extension of PRA with respect to I7? 
sentences. 

PROOF. The corollary is immediate from 6.5 and 6.6. 
From the remarks made in the introduction we see that any I7H sentence prov- 

able in WKL' is provable in PRA, i.e., is provable finitistically. Thus the results 
above give a partial realization of Hilbert's program in terms of the Open Mapping 
and Closed Graph theorems. 

COROLLARY 6.8. WKLO 5 WKL+ ; ACAO. 
PROOF. By Theorem 4.4 WKL+ proves B.C.T.II while, by Theorem 3.2, WKLo 

does not. Thus WKLo S WKL+. For the other half, we note that ACAo proves 
arithmetic induction and hence, in particular, 2: induction. 2: induction is not 
provable in RCAo [11] so, since 2: induction is trivially a HI sentence, WKL+ 
does not prove 2: induction by Corollary 6.5. Thus WKLo+ - ACAo. 

We can sharpen the statement of Corollary 6.8 by providing w-models which 
exhibit the strict inclusions. In fact, the proof of Theorem 3.2 yields an w-model of 
WKLo which is not a model of WKL+. Thus we need only show that there is an 
w-model of WKLo which is not a model of ACAo. We begin with the following 
lemma. 

LEMMA 6.9. Let M = Rec, an w-model of RCAo. Then the model M' of Lemma 6.2 
is not a model of WKLo 

PROOF. Let S1 = {e Ec w| {e}(e) = O} and S2 = {e Ec w| {e}(e) = 1} be disjoint, 
recursively enumerable, recursively inseparable sets (Kleene [12]), and let iJ'2, 
N N be 1-1 recursive functions which enumerate S1 and S2, respectively. Define 
TC 2<CO by: 

a E T iff Vn < lh(ff)[(f1(n) < lh(u) -(f1(n)) = 1 
A (f2(n) < lh(a) -(f2(n)) = 0]. 

Then T is an infinite tree with no recursive path (Simpson [21]) and hence has no 
path in M. Let X be M-generic and let M' be the model in Lemma 6.2. Then SM' = 
zl?-Def(M u {X}), so every set in SM is either recursive or recursive in X, and M' 
is an wo-model of RCAo. We claim that T has no path in M'. Indeed, suppose to 
the contrary that f e 2C is a path through T and that f e SM'. Then f is recursive 
in X and hence f = {e} for some e e a). For each n e a), let Dn c 2`C be defined by 

a e Dn iff 3k({n}J[k] s T). 

Clearly each Dn is M-definable. Claim each Dn is dense. Indeed, suppose not. Then, 
for some n ec w and - e 2'C, Va D - (a 0 Dn) so that Va D - Vk({n}lf[k] e T). In par- 
ticular, we would have Vk({n}'[k] e T), i.e., {n}t is a path through T. But {n}t e M, 
a contradiction. Therefore each Dn is dense. In particular De is dense and, since X 
is M-generic, there is a a e X n De. Let k e wo be such that {e}l 0 T. Then {e}X 0 T, 
contradicting the assumption that {e}X is a path through T. Therefore M' contains 
no path through T and it follows that M' is not a model of WKLO. 

LEMMA 6.10. There is an wo-model of RCA+ which is not a model of WKLO. 
PROOF. Apply Lemma 6.9 repeatedly to obtain a sequence <Mi: i e w0> of 

wo-models such that: 
(i) Mo = Rec; 
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(ii) Mi+1 I= RCAo + (3X [D n X # 0]), for all Mi -definable dense sets D. 
Then, as in the proof of Theorem 6.4, M = U.J M1 is an co-model of RCA+. 

Since access to the complete recursively enumerable degree O' would allow us 
to find a path through the tree T of Lemma 6.9 and, conversely, access to a path 
through T would allow us to compute 0', we may state the conclusion of Lemma 6.9 
as follows: adding a generic set to a model of RCAo which does not already compute 
O' results in a model which still does not compute 0'. 

A set X c ow is said to be almost recursive (or hyperimmune free) if, for all functions 
co -c w, whenever f is recursive in X (denoted by f <T X) there is a recursive 

function g: w -c w such that Vn(f(n) < g(n)). More generally, given sets X, Y c cs, 
we say that X is almost recursive in Y if, for all functions f <T X, there is a function 
g <T Y such that Vn(f(n) < g(n)). 

LEMMA 6.1 1. Let M be an co-model of RCAo. There is a model M' of WKL0 such 
that IMI = IM'I and every set in SM' is almost recursive in some element of SM. 

PROOF. This is just a relativization of Theorem 2.4 of Jockusch and Soare [10]. 
LEMMA 6.12. If X is almost recursive in Y and g: w -* w is any function such that 

g <T (degree of Y)', then g ?T Y. 

PROOF. This follows immediately from the Upward Domination lemma (pg. 53, 
Lerman [13]). 

COROLLARY 6.13. There is an w-model of WKLo which does not contain 0'. 
PROOF. Consider Rec and let M be a model of WKLo in which every set is almost 

recursive (Lemma 6.11). If O' E M then O' is almost recursive. Since O' is not recur- 
sive, it then follows from Lemma 6.12 that 0' <T 0', a contradiction. 

THEOREM 6.14. There is an co-model of WKL' which does not contain 0'. 
PROOF. We construct a sequence <Mi: i E w> of w-models as follows: 
i = 0. Let MO be the w-model of WKLo of Corollary 6.13. We note that this 

model is obtained by adding a generic set XO to Rec and closing the result under 
Jo comprehension (see Theorem 2.1 of [10]). Thus every set in MO is recursive 
in Xo; 

i = 1. Apply Lemma 6.9 to obtain an co-model M1 of RCAo + (3X[DrnX1 # 0]), 
for all MO-definable dense sets D, by adding a generic set X1 to MO and closing 
under zO comprehension. Then every set in SM, is recursive in XO v X1, the join 
of XO and X1. Note that 0'0 Ml, so XO v X1 <TO'; 

i = 2. Apply Lemma 6.11 to obtain an co-model of WKLo such that every set is 
almost recursive in some element of SM'. Since every element of SM, is recursive in 
XO v X1, it follows that every set in M2 is almost recursive in XO v X1. Again, M2 
is obtained by adding a generic set X2 to M1. Suppose that O' E M2, SO 0' is almost 
recursive in XO v X1. Then, since XO v X1 <T 0', it follows from Lemma 6.12 that 
either O' <T 0' or (XO v X1)' <T 0'; both are contradictions. Thus O' 0 M2. Con- 
tinuing inductively we have, in general: 

(i) M2i+ 1 is an co-model of RCAO + (X2i+ 1[X2i+ 1 - D # 0]) for all M2i- 
definable dense sets D, VX e SM2+1(X <T Vk Xk)= and 0' 2i+; 

(ii) M2i is an w-model of WKLo with every set in SM2i almost recursive in 

V2i+l Xk and, arguing as above, O' 0 M2i. 
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Finally, let M = U. M1. As in the proof of Theorem 6.4, it follows that M is an 
co-model of WKL' and that 0' 0 M. 

COROLLARY 6.15. There is an co-model of WKL' which is not a model of ACAo. 
PROOF. Any model of ACAo contains 0'. 
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