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Chapter 9

Bqgo Theory and Fraissé’s Conjecture

by Stephen G. Simpson

Let L and M be linearly ordered sets. We write L < M to mean that
L is embeddable into M, i.e. there exists a subset of M isomorphic to L .
We write L = M to mean that L < M and M < L. We write L < M to
mean that L < M and M £ L. We write L | M to mean that L and M
are incomparable under embeddability, i.e. L £ M and M £ L.

Fraissé’s conjecture [2] is the statement that, among countable linearly
ordered sets, there are no infinite descending sequences

Lo>Li >... >Lp>...(n€w

and no infinite antichains
Lile (i’jewai#j)'

The purpose of this chapter is to explain Laver’s proof [7] of Fraisse's
conjecture. The proof depends heavily on Nash-Williams’ theory {12] of
better quasiorderings. The latter theory will be presented here as an
application of a theorem of Galvin and Prikry [3] on Borel partitions.

In order to motivate Nash-Williams’ concept of better quasiorder-
ing (bgo), we first discuss the closely related but simpler concept of well
quasiordering (wqo).

A quasiordered (i.e. qo) set is a set @ endowed with a binary relation
< which is transitive (z < y, y < z imply = < z) and reflexive (z < z for
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9 BQO THEORY AND FRAISSE'S CONJECTURE 125

all z € Q). For 2,y € Q we write z = y to mean that z < y and y < 1;
T <y tomean that z < y and y £ z; and z | y to mean that z £ y and
y £ z . A quasiordered set @ is said to be well quasiordered (wqo) if it
contains no infinite descending sequence zg > Ty > ... > 2, > ...(nE
w) and no infinite antichain z; | z,(1,7 € w,i 4 7).

Thus Fraissé’s conjecturc may be rephrased as follows: the set of all
countable lincarly ordered sets is wqo under embeddability. An obvious
strategy would be to construct an elaborate theory stating that certain large

classes of qo sets are wqo. One could then hope for Fralssé’s conjecture to
fall out as a corollary.

Such an elaborate wqo theory does in fact exist. One of the major
thcorems of of wqo theory reads as follows. Let @ be a wqo. Let Q<% be
the set of finite sequences of clements of @ quasiordered by (a1...an) <
(b1...b,) if and only if there exist k1 < ... < km < nsuchthat a; < by, .
Then @ <“ is wqo. (This theorem is due to Graham Higman. For the proof,
plus an excellent survey of wqo theory, see Laver (9, § 1].)

Unfortunately, it turns out that wqo theory alone is not sufficiently
far-reaching to provide a proof of Fraissé’s conjecture. The difficulty is
that the class of wqo sets fails to be closed under certain infinitary closure
operations. For instance, let Q“ be the set of w-sequences of elements of Q
quasiordered by (an)new < (bn)new if and only if there exist ng < ng <
.oo < ny < ... (2 €w) such that g < bn, . It is not hard to devise a wqo
Q1 such that (Q1)“ is not wqo. Namely, let Q1= {(4J) 1 i<j<w}
quasiordered by (7,7) < (k,!) if and only if cither ¢ = % and 7 <1 or
J < k. This counterexample is due to Richard Rado (see Laver (9, § 1]).

In order to prove Fraissé’s conjecture we need a concept stronger than
well quasiordering, namely better quasiordering (bqo). It will turn out that
every bqo is wqo and that every non-pathological wqo is bqo. Furthermore
the class of bqos enjoys strong infinitary closure properties; for instance,
if @ is bqgo then Q“ is bqo (indeed Q= is bqo for all ordinals a). Fraissé's
conjecture will be proved by showing that the class of countable linearly
ordered sets (indeed the wider class of scattered linearly ordered sets) is
bgo under embeddability.
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The following exercises arc provided for the convenience of the reader
and are not cssential for the rest of the chapter.

9.1. Exercise. Verily that Q; is wqo but (Q;)“ is not wqo.

9.2. Exercise. An w-scquence (a,) € Q% is called bad if a,, £ a, for all
n and m < n. Show thal the following assertions are pairwise cquivalent.

(1) @ is wqo.
(#4) There is no bad w-sequence {a,) € Q.

(17) For all (a,) € @“ there exist ng < n1... < n; < ...(1 € W)
such that ap,, < an, < ... < ap, L ...t €wW).

(Hint: use Ramsey’s Theorem.)

9.3. Exercise.

(¥) Show that any well-ordered set is wqo.
(%) Show that if @ is the union of two subsets each wqo in the
induced quasiordering, then @ is wqo.

(#¢) Show that if @ and Q2 are wqo then @1 X @2 with the product
quasiordering is wqo.

(#w) Show that a wgo sum of wqos is wqo.

9.4. Exercise. A bad w-sequence (a,) € Q“ is called minimal bad if there
is no bad w-sequence (b,) € Q¥ such that Vm Inb,, < e, and Im Inb,, <
an . Show that if @ is well founded but not wqo then there is a minimal

bad (an) € Q.

9.5. Exercise. Use the result of the previous exercise to show that if Q
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is wqo then Q<% is wqo.

Historical Note. The wqo concept occurs in the Ph.D. thesis of Irving
Kaplansky [6]. Onc of the carlicst applications of wqo theory is the following
result due independently to A.l. Malcev and B.II. Neumann. Let K be a
field and let G be a linecarly ordered group. Then the group algebra K(G)
is embeddable in a skew field. For proof and rcferences see Higman [5].

Theorem of Galvin and Prikry.

Given an infinite set A C w, we denote by [A]* the set of infinite subsets
of A and [A]<¥ the set of finite subsets of A. For s € [w]<* and U € [w]”
we write

Ul/s={n€U : n>1iforall i€ s}
and
[, Ul ={X €w]” : sC X CsUU}.
We endow [w]” with the usual topology whose basic open sets are of the
form [s,w/s] .
The following is a special case of the theorem of Galvin and Prikry.

9.6. Theorem. Let O be an open subset of (W] . Then there ezists X €
[w]® such that either [X]* C O or [X]*NO =0.

To prove this we need some special terminology. We call [s,U] good
if there is no V € [U]* such that [s,V] C O . We call s, U] strongly good
if [s, U] is good and, for all n € U, [sU {n}, U/{n}] is good.

9.7. Lemma. If [3,U] is good then there exists V € [U]* such that [3,V]
i3 strongly good.

Proof. Suppose the conclusion fails. Put Wp = U/s . Assume inductively
that we have chosen ng < .... < niy—1 < min(W;) where W; C U . Then

VR D R BT T GV AN S SR () AR R AN IR W AP OR AR
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128 BQO THEORY AND FRAjISSE'S CONJECTURE 9

(8, W;] is good but not strongly good so choose n; € W, such that [sy {n:},
W;/{n;}] is not good. Choose Wis1 © Wi/{n;} so that [s U {n:}, Wir1] C
O . Finally put V = {n; : i€ w}. Then clearly {s, V] C 0 so [s,U] is
not good. This proves the lemma.

We now prove the theorem. If [U]* C O for some U € [w]“ we are
done, so assume no such U exists. Ilence [0, w] is good. Put Up = w and
assume inductively that we have chosen no < ... < ni—; < min(U;) such
that [s, U] is good for all s C {no,...,ni—1} . Apply the lemma 2° times
to get Vi C U such that [s, V;] is strongly good for all s C {no,...,ni—1}.
Put n; = min(V;) and U;,; = Vi/{n:} . Finally put X = {ni : 1€ wW}.

We claim that [X]¥ N O = @ . Suppose not. Let Y be an element of
[X]“N O . Since O is open, we can find [3, W] such that Y € [s, W] C O .
Let ¢ be such that s C {no,...,ni—;} and Y/s CU;. Then U;N W is
infinite and [s,U; N W] C O contradicting the goodness of [s,U;] . This
completes the proof. []

9.8. Remark. The same proof shows that Theorem 9.6 and Theorem
9.9 remain true if we replace the usual topology on {w]* by the Ellentuck
topology with basic open sets of the form [s, U] (see Ellentuck [1]).

9.9. Theorem. (Galvin, Prikry [3]). Given A € [w]“ and a Borel set B in
[A]“ . There ezists X € [A]” such that either (X]“C BorX]*NB=9.

Proof. If B is open in [A]“ then the desired conclusion follows from Theorem
9.6 since [A]“ is homeomorphic to [w]“ by a homeomorphism & : [w] —
[A]“ such that X C Y if and only if R(X) C A(Y) . It is also clear that
the theorem holds for 5 if and only if it holds for [A]v - 8.

It remains Lo show that if the theorem holds for Borel sets of rank
< p then it holds for Borel sets of rank p. Sosuppose B=U{8; : i€ w}
where cach B; has smaller rank than 8 . Put Ao = A . Having defined
Ai let n; = min(A;) and apply the induction hypothesis 2:*! times to get

BB RN O T AR R e

T T
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Ait1 © A;/{n;} such that for all s C {ng,...,n;} cither [s, A;4+1] C B; or
[8,Aix1]N Bi = @ . Finally put Z = {n; : 1 €w} . Foreach Y € [Z]¥
we have by construction Y € B; if and only if [s,A;1+1] C B; where s =
Y N {ng,...,n;} . Hence, for each 7, B; N [Z]“ is open (in fact clopen) in
[Z]“ . Hence BN [Z]” is open in [Z]” . Hence by Theorem 9.6 we can find
X C Z such that either [X]* C Bor [X]*NB=0. []

The following consequence of the Galvin-Prikry theorem will be used
at a crucial point in the proof of Theorem 9.17.

9.10. Theorem. (cf. Mathias [11, § 6]). Given A € [w]* and a Borel
measurable function f: [A]Y — X where X is a metric space. There exists
B € [A]“ such that the restriction of f to [B]“ is continuous.

Proof. In order to prove the theorem we use the following lemma (but see
Remark 9.12 below).

9.11. Lemma. The image of f is separable.

Proof. Suppose not. Since im(f) is a nonseparable metric space, it contains
a closed diserete set § of power Ry . Let T C R be a set of reals of power
R; with no perfect subset. Let h: S — T be a1 — 1 mapping of S onto T'.
Define g: X — R by

o(z) = {h(z) ifzes
0 otherwise.
Since S is closed discrete, g is Borel measurable. Hence the composition
gf:[A]* — R is Borel measurable. Hence the range of gf is analytic. But
T C im(gf) C T U {0} so im(gf) is uncountable with no perfect subset.
This contradicts the well known theorem that every uncountable analytic

set in R has a perfect subset. []

9.12. Remark. Lemma 9.11 says essentially that a Borel measurable
function from a complete separable metric space into a metric space has
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separable image (cl. Stonc [15]). We do not really nced this lemma since
in the application of Theorem 9.10 to be made later, im(f) can be assumed
separable. We have included the lemma because it is interesting in its own
right and not widely known. See also Louveau-Simpson {16].

We shall now prove Theorem 9.10. By Lemma 9.11 im(f) is separable
so let {U; : © € w} be a countable open base for the topology of im(f) .
Define Ag = A . Supposing A; has been defined, let n; = min{A;) and
apply Theorem 9.9 2°*! times to get A;+1 C A;/{n:} such that for all s C
{ng,...,n;} either [, A;11] C f~YU;) or [s, Aix1]N S (Us) = @ . Finally
put B = {n; : i €Ew} . Then for all X € [B]* we have X € f~}(U))
if and only if s, A;11] C f~Y(U;) where s = X N {ng,...,n;} . Hence
f~YU:) N [B}* is open (in fact clopen) in [B]* . Hence f is continuous on
Bl*. O

Better quasiordering.

Let Q be a qo set. We endow @ with the discrete topology. A @-array is
a Borel measurable function f: [A]* — @ where A € [w]¥ . A Q-array
f:[A]* — Q is called bad if there is no X € [A]* such that f(X) <
f(X/{min(X)}) . A qo Q is said to be better quasiordered (bgo) if there is
no bad Q-array. This concept is due to Nash-Williams [12].

9.13. Theorem. If Q i3 bqo then @ is wqo.

Proof. Suppose that @ is qo but not wgo. Then there exists an w-sequence
(@n)new of elements of @ such that a,, £ a, for all n and m < n. Define
f:[w] — @ by f(X) = am where m = min(X) . It is easy to check that
f is a bad Q-array. [J

The reader probably finds the bqo concept somewhat mysterious. For
the reader’s edification we provide the following exercises.
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9.14. Exercise.

i) Show that any well ordered set is a bqo.

(
(#7) Show that if @ is the union of two bgo subscts then @ is bqo.
(%) Show that if @ and Q2 arc bgo then @1 X Q2 is bqo.

(

w) Show that a bqo sum of bqos is bqo.

9.15. Exercise. Show that the following assertions are pairwise equiv-
alent.

i) @ is bqo.

(
() There is no bad continuous Q-array.
(

#i) For every Q-array f: [A]¥ — Q there exists B € [A]¥ such that
J(X) < f(X/{min(X)}) for all X € [B]“.

We shall now develop a powerful technique due to Nash-Williams
[12] for proving that a given qo, @, suspected to be bqo, is in fact bqo.
Frequently such a @ comes equipped with some sort of ordinal ranking of
its elements. We formalize this idea as follows.

9.16. Definition. (Laver [10]). Let @ be a go whose quasiorder relation
is denoted < . A partial ranking of Q is a well founded partial ordering of
<! of the elements of @ such that z <’y implies z < y.

Now let @ be a go which is not bqo and suppose we have in mind a particular
partial ranking <’ of @ . We write z <’ y to mean that z <’ yandz # y .
Let f: [A]¥ — @ and g: [B]® — @ be bad Q-arrays. We write g <* f to
mean that B C A and ¢(X) <' f(X)for all X € [B]* . We write g <* f to
mean that B C A and ¢g(X) <’ f(X) for all X € [B]* . (Caution: g <* f
is not equivalent to the conjunction of g <* f and g 7 f.) We say that a
Q-array f is minimal bad (with respect to the given partial ranking <’) if
S is bad and there is no bad Q-array g<*f.
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The following theorem is essentially due to Nash-Williams [12] al-
though it was first enunciated explicitly by Laver [10].

9.17. Theorem. Let () be a qo equipped with a partial ranking. Let fg:
[Ag]Y — @ be a bad Q-array. Then there ezists a minimal bad Q-array
F<"fo.

Proof. Assume not. Using this assumption we shall define an uncountable
transfinite sequence of bad Q-arrays fe: [A¢]* — @ such that f, <* f¢
and A, # A for all countable ordinals £ < 7 < Ry . This is clearly
impossible.

We begin by letting fo: [Ag]¥ — @ be a bad @Q-array such that there
is no minimal bad f <* fg .

Let € be a countable ordinal. Assume inductively tht we have defined
a bad Q-array fe <* f, for all v < £ . In particular f¢ <* fo so f¢ is not
minimal bad. Let g¢: [B¢]¥ — @ be a bad Q-array such that g¢ <* fe . Use
Theorem 9.10 to shrink I, if necessary so that g¢ is continuous. By further
shrinking we may also assume that A; — B, is infinite. By continuity of g
there exists a nonempty initial segment s¢ of B¢ so that g¢(X) = ge(Be)
for all X € [s¢, Be] . Define

Aer1 =B U {n € A¢ : n < max(s¢)}

fert = {ge(X) if X € [Bg]”
ST felX)  if X € [Aga]” — [Bel“.

Clearly fet1:[Ae+1]Y — @ is a Q-array, i.e. Borel measurable. Using the
fact that g¢(X) < fe(X) for all X € [Be]¥, it is easy to check that fey, is
bad. It is also clear that fe4; <* fe and Agqy C Ag .

and

Now let 6 be a countable limit ordinal and assume that we have
defined fe : [A¢] — @ as above for all £ < 6§ . Define 45 =
N{Ae : € < 8}

We claim that A; is infinite. Suppose for a contradiction that A; is
finite, say As € m < w . For each £ < § let ng be the least n > m such
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that n € A¢ . Clearly there are infinitely many ¢ such that ng & Agqq
For any such £,m¢ > max(s¢) by the definition of Agyy . Ience, lor any
such &, m > max(s¢) by the definition of ng . Ilence therc arc infinitely
many ¢ for which the s¢ are all the same. But if £ < 7 and 8¢ = 34, then
B, € (3¢, Be], hence

fn(Bn) <! fE+1(Bn) = gE(Bn) = 96(36) <! fé(Bé) .

This contradicts the well foundedness of <’ and so proves the claim.

We now define f5: [A5]Y — @ by f5(X) = lim¢<s fe(X) . This limit
exists since <’ is well founded and f,(X) <’ fe(X) forall £ < n < 6.
Also fs is Borel measurable since it is the pointwise limit of a countable
sequence of Borel measurable functions. It is also easy to check that fs is
bad and fs <* fe for all £ < § . This completes the proof. []

Transfinite sequences.

Let Q be a qo set. A transfinite Q-sequence is a function s: & — @ where
o == Ih(s) is an ordinal called the length of 5. If 0 < Ih(s) we denote by sl@
the restriction of s to 0, i.e. the unique 8’ of length 8 such that s'(£) = s(€)
for all € < 6 . The set of all transfinite Q-sequences is denoted @ . We
quasiorder Q by s < tif and only if there exists a strictly order preserving
h: Ih(s) — Ih(t) such that s(¢) < t(h(€)) for all £ < lh(s) . We shall prove
that if @ is bgo then Q is bago.

9.18. Lemma. If s,t, € Q and s £ t then there ezists 0 < Ih(s) such that
slo <tandsld+1L¢.

Proof. Given 8 £ t define h by induction as follows. Let h(£) be the least
n < Ih(t) such that s(€) < ¢(n) and 7 > h(¢’) for all £’ < €. Let 0 be the
least ¢ such that h(£) is undefined. Clearly s/ < tbut sl0+1 L¢: (]

9.19. Theorem. (Nash-Williams [13]). Given a bad Q-array (sx : X €
[A]“). There ezists B € [A]“ and a bad Q-array (f(X) : X € [B]”) such
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that, for all X € [B]*, f(X) is a term of the transfinite Q)-sequence sy .

Proof. Tor s,t¢, € Q define s <’ ¢ to mean that s is in initial segment of
t, ie. 8 = tly for some vy < Ih(t). Clearly <’ is a partial ranking of @ .
Note that if £ € @ is a term of s <’t then zis a term of ¢ . Hence, by the

minimal bad array Theorem 9.17, we may safely assume that the QQ-array
(sx : X € [A]*) is minimal bad.

Given X € [A]¥ and ¥ = X /{min(X)} we have sx X sy . By
Lemma 9.18 let 6x be such that sy !0 < 8y and sx[0x +1 £ sy . Note
that

(sxlox : X € [A“)<*(sx : X € [4]“).

Hence, by minimality, there is no bad Q-array <* (sxl0x : X € [4]¥) .
Hence, by the Galvin-Prikry Theorem 9.9, there exists B € [A]“ such that
sxl0x < syl0y for all X € [B]“, Y = X/{min(X)} . Thus we have
sx0x < syl0y but sx0x +1 X syl0y + 1. 1t follows that sx(0x) £
sy(0y) . Thus (sx(0x) : X € [B]“) is a bad Q-array. []

9.20. Corollary. (Nash-Williams [13]). If Q is bgo then § is bqo.

Proof. Immediate from the theorem. 0

We mention without proof the following characterization of better quasior-
dering due to Pouzet [14]: @ is bqo if and only if @ is wqo.

Proof of Fraissé’s Conjecture.

A linearly ordered set L is called scattered if it has no subset isomorphic
to the rational numbers. We shall prove that the class of scattered linearly
ordered sets is bqo under embeddability. In order to apply the method of
minimal bad arrays (Theorem 9.17), we need an appropriate partial rank-

ing. This will be provided by the following characterization of scattered
sets due to ITausdorff. '
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Let Sy be the class of one-point lincarly ordered scts. For any ordinal
p > 0lct S, be the class of linearly ordered sets L such that L is isomorphic
to either a well ordered sum

Lo+Li++Le+  (£<a)
or a converse well ordered sum
ot Lg+-+ L+l (<)
where each L; belongs to U {S» : © < p}. Let S= U{S, : p an ordinal}.

9.21. Theorem. (Hausdor(f [4]). S is the class of scattered linearly ordered
sets.

Proof. It is easy to prove by induction on p thatif L € 5, then L is scattered.
Conversely, let L be scattered. For z,y € L define z =y if and only if the
nonempty interval [z,y] or [y,z] belongs to S . Clearly = is a congruence
relation on L . If the linearly ordered set L/ = contains more than one
point, then it is densely ordered, hence L is not scattered, a contradiction.
So L/ == consists of a single point, i.e. z ~ y for all z,y, € L . By
considering a well ordered cofinal set and a converse well ordered coinitial
set, it is now easy to see that LES . [l

9.22. Theorem. (Laver [7]). The class S of scattered linearly ordered sets
i3 bqo under embeddability.

Proof. We define the rank of a scattered linearly ordered set L to be the
least ordinal p such that L € S, . We write L <'Mifandonlyif LS M
and rank(L) < rank(M) . We employ the partial ranking <’ of S defined
by L<'Mifandonlyif L' MorL=M.

Suppose that S is not bgo. By Theorem 9.17 let (Lx : X € [A]”) be
a minimal bad S-array. Each Lx is either

(1) a well ordered sum of scattered sets of smaller rank, or
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(2) a converse well ordered sum of scattered sets of smaller rank,
or

(8) a one-point set.

By the Galvin-Prikry - Theorem 9.9 we may shrink A if necessary so
that all the Lx’s in the array are of the same kind: (1), (2), or (3).

Clearly Case (3) does not always hold, since the array is bad. Assume
that Case (1) always holds (Case (2) is similar). Thus for each X € [A]* we
have

Lx =LY% + Ly +... + L% +...(¢ < ax)
where rank(L) < rank Lx), hence L% <’ Lx, for each ¢ < ax .
X X

Consider the transfinite S-sequence sy = (Lﬁf : €< ax) € S . Clearly
(sx : X € [A]¥) is an S-array.

We claim that (sx : X € [A]“) is bad. If not, then for some X €
[A]“ and ¥ = X /{min(X)} we have sx < sy . Hence there exists a
strictly order preserving map h: ax — ay such that Lgf < Lf,(f) for all

§ < ax . Hence Ly < Ly . This contradicts the assumed badness of
(Lx : X €[A]").

Now by the transfinite sequence Theorem 9.19 there exists B € [A]“
and a bad S-array f: [B]* — S such that f(X)is a term of sx for all
X € [B]“ . In other words, f(X) = L% for some 0x < ax . Thus
(L% : X €[B]*) is a bad S-array. But we also have

(L¥ : X €[B)]’) <" (Lx : X €[4]).
contradicting the assumed minimality of (Lx : X € [A]*). This completes
the proof. [J

The following corollary is the solution to Fraissé’s conjecture.
9.23. Corollary. (Laver [7]). The class of countable linearly ordered sets

13 wqo under embeddability.

Proof. Every countable linearly ordered set is embeddable in the rationals.
Hence, every countable linearly ordered set is either scattered or equivalent
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to the rationals under mutual embeddability. It follows from Theorem
9.22 thal the countable linearly ordered sets are bgo under cembeddability,
Hence by Theorem 9.13 they are wqo under embeddability. []

We mention without proof one further theorem of Laver (7). Call
a linearly ordered ‘set o-scattered if it is the union of countably many
scattered subsets. Then the class of o-scattered linearly ordered sets is
bgo under embeddability. The proof of this theorem uses a Hausdorff-style
characterization of the o-scattered sets due to Fred Galvin (sce Laver [7)).

For other major applications of bqo theory, the reader may consult
Laver [8], [10] and Nash-Williams (12].
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