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§1. Introduction.

Let N be the set of nonnegative integers. Given X ¢ N let
FS(X) be the set of all sums of finite nonempty subsets of X.
Hindman's Theorem, HT, 1is the following statement.

1f N=CylU ... UCy, then
(HT) {there exists an infinite set X ¢ N ~

such that FS(X) ¢ C; for some 1 <¢.

" It is well known that all existing proofs of HT are
nonconstructive. One of the goals of this paper is to delimit the degree
of nonconstructivity which is inherent in Hindman's Theorem. We also
discuss some related theorems from combinatorics (Carlson-Simpson) and
topological dynamics (Auslander-Ellis).

Our results concerning Hindman's Theorem are of two kinds:
axiomatic and recursion-theoretic. The axiomatic results provide partial

answers to the following question: Which set existence axioms are
sufficient and/or necessary to prove HT? The recursion-theorétic
results respond to a somewhat different question. Namely, what can one
say about the recursion-theoretic complexity of the homogeneous set X
relative to that of the given coloring CO""'CL?

Our recursion-theoretic work has its precedent in Jockusch's
recursion-theoretic analysis of Ramsey's Theorem [17]. Regrettably, our
results on Hindman's Theorem are not so complete as those of Jockusch on
Ramsey's Theorem. By adapting a device of Jockusch, we prove in §2 the
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126 BLASS, HIRST, and SIMPSON

following negative result. For all W ¢ N there exists a coloring N = C0 U

c which is recursive in W, such that for all infinite sets X ¢ N and

¥
1€ {01}, [ES{K)c Cy implies that X 1is not recursive in wil), (Here

w‘l) denotes the Turing jump of W.) We also prove a similar result with the
conclusion "w‘l’ is recursive in X" in place of "X is not recursive in

w‘l’". In §4 we obtain the following positive result. For all W ¢ N, if a
given coloring N = C0 e el cl is recursive in W, then there exists an

infinite set X ¢ N such that FS(X) ¢ C1 for some i € ¢, and X is

w+l)

recursive in W! (Here w(®)  denotes the ath Turing jump of W.) Thus

we have lower and upper bounds H(l) and w‘“*l’ for the recursion-theoretic
complexity of X. It would be desirable to narrow or close the gap between
these two bounds.

There is a rather extensive literature on Hindman's Theorem. See
for instance the papers by Blass [2] and Hindman (16] in this volume.
There are four known proofs of Hindman's Theorem: (1) the original
combinatorial proof due to Hindman [15]; (2) the simplified combinatorial
proof due to Baumgartner [1]; (3) the dynamical proof due to Furstenberg
and Weiss [10], [9]; and (4) the ultrafilter proof due to Glazer [12]. A
convenient reference for proofs (2), (3) and (4) is the book by Graham,
Rothschild and Spencer [13].

Our results in §4 are based on a somewhat delicate analysis of
Hindman's original proof. This analysis yields the above-mentioned,
recursion-theoretic upper bound. In axiomatic terms, the same analysis
shows that Hindman's Theorem is provable in a certain formal system
ACAE. Namely ACAS is the subsystem of second order arithmetic whose
principal axiom asserts that arithmetical comprehension can be iterated
along the natural numbers. (For information on subsystems of second
order arithmetic, see [25], [5], [24], (8], [4].)

In §3 we present a somewhat similar analysis of Baumgartner's proof.
This analysis yields no recursion-theoretic information beyond what is
provided automatically by the Kleene Basis Theorem. However, the
analysis does lead to an interesting axiomatic conclusion. Namely,
Baumgartner's proof or something like it can be pushed through in the

formal system n;—rxo (described in §3). This conclusion is interesting

because it applies not only to Hindman's Theorem but also tb other
results which are proved by methods similar to that of Baumgartner. For

instance, Theorem 6.3 of Carlson-Simpson [6] is provable in ﬂé-TIo. We

do not know whether Theorem 6.3 of Carlson-Simpson [€] is provable in any
* 1

weaker system, e.g. RCA0 or ACAo or AZ-TIO.

Furstenberg and Weiss [10], [9] (see also [13]) have made the
following very interesting observation: Hindman's Theorem can be deduced
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rather easily from a theorem of topological dynamics due to Auslander and
Ellis. The Auslander-Ellis Theorem, AET, reads as follows.

(Let X be a compact metric space
and let T: X-» X be continuous.

(AET) {Regard (X.<T"> _.) as a dynamical
system. Given x € X, there exists

y € X such that y is uniformly
Lrecurtent and proximal to x.

For an explanation of the notions of uniform recurrence and proximality,
see e.g. [9] or [13] or §5 below.

The purpose of §5 is to present an axiomatic analysis of AET. The
classical proof of AET is extremely nonconstructive, relying as it does

on Zorn's Lemma applied to the partial ordering by inclusion of the

closed subsets of the nonmetrizable Tychonoff product space xx. (See
the discussion of tﬂe "enveloping semigroup" on page 159 of [9] or page
143 of [13].) It is not at all obvious that this classical proof or
anything like it can be carried out within full second order arithmetic.
In §5 we present an apparently new proof of AET in which Hindman's
Theorem is used as a lemma. We show that all parts of the new proof,
except possibly the applications of Hindman's Theorem, can be pushed

through in ACAO. Combining this with a result from §4, we conclude: AET

is provable in ACAE. Thus our proof of AET is much closer to being

constructive than is the classical proof.

§2. Strong recursive counterexample to Hindman's Theorem.

Given X, Wc N we say that X is recursive in W if the
characteristic function of X is computable by a Turing machine using an
oracle for the characteristic function of W. We use w‘l’ to denote

)

the Turing jump of W. In particular ﬂ(l is the Turing jump of the

empty sét. i.e. the complete recursively enumerable subset of N. Thus
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128 BLASS, HIRST, and SIMPSON

!‘1) has the same degree of unsolvability as the Halting Problem. The
recursion-theoretic notions which we use are explained in Rogers [21].
The purpose of this section is to prove the following theorems.

2.1. Theorem. There exists a recursive coloring N = Co U Cy

such that for all infinite X ¢ N, if PS(X) ¢ C; for some i € (0,1},

2.2. Theorem. There exists a recursive coloring N = Co U C, such

g

that, for all infinite X ¢ N, if PFS(X) ¢ C; for some 1 € (0,1},

then i(” 1s recursive in X.

Proof of Theorem 2.1. We initaté the proof of Theorem 3.1 of

Jockusch [17].
For A¢ N let cAl N » (0,1} be the characteristic function of

A. By Theorem 2 of Shoenfield [22] thgre exists a recursive function
e H3 + N with the following property. For all A ¢ N, A is
recursive in i(l) if and only if, for some j, cA(u) = limsf(j,u.s)
for all u € N. Let us write A = Aj in this case.

If AJ is defined and has at least 2j + 2 elements, let DJ

consist of the smallest 2j + 2 elements of AJ. Otherwise let DJ be

undefined. We shall now define a finite set D? to approximate Dj at
stage s. If there are at least 2j + 2 numbers u such that u < s

and f(j,u,s) =1, let Dj consist of the smallest 2j + 2 such

numbers. Otherwise let Dj be undefined.
Given n 2 1 let us write A(n) = ny and p(n) = Ny where
L] M

DSl S, SRR e T n,. Note that A(m+n) = X(m) and

p(m+n) = u(n) provided u(m) < A(n).
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The recursive coloring N = Co U C, will be constructed in stages.
At stage s of the construction we shall place each of the finitely many

numbers n with u(n) = s into exactly one of the color classes C0

and Cl.
Stage s. By induction on j < s, let us and v§ be two
effectively chosen numbers which are different from each other and from

all u: and vf. i < j, and which belong to Dj it Dj is defined.

This can be done since |D§| =2y 2 1F Dj is defined. Now for all

n such that u(n) = s, put ne€ Co 1f X{n) = u§ for some j < s,
otherwise n € Cl.

This completes the construction. Clearly C0 and C1 are
recursive.

Let X be an infinite set such that PFS(X) ¢ Co or FS(X) ¢ Cl.

We claim that X is not recursive in l(l). To see this we first let Y
be an infinite set such that Y is recursive in X, PS(Y) ¢ PS(X),

and u(m) < A(n) for all m€Y, n€Y, m<n. (See Lemma 4.1 below.)
Put Z = {A(n): n € Y}. Suppose that X is recursive in l(l). Then Z
is recursive in i(l) so let j be such that 2z = AJ. Since Z is
infinite, DJ is defined and DJ € Z. Choose n € Y so large that

max(Dy) < A(n) and Dj = D; where s =u(n). Then uj and v§ are

distinct elements of 03 = DJ ¢ 2. Let My, my € Y be.such that

X(no) = uJ and x(nl) = vj. Then max(p(mo),p(nl)) < A(n), hence

Mg + 0, My +n € FS(Y) ¢ FS(X) and my +n € CO' my +n € Cl. Th%s

contradiction completes the proof.

Proof of Theorem 2.2. We view each n € N as a code for the finite

L L
set (nl,...,nk). where n = 2 S AROL SRt e ny.

1
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Accordingly, we refer to the pairs (ni,n1+1), i=1,...,k-1, as the
gaps of n. Notice that if u(m) < A(n), where p and AN are as in

the proof of Theorem 2.1, then the gaps of m + n are those of m,

those of n, and the pair (B(m),A(n)).

Fix a recursive algorithm enumerating the r.e. set ¢(1); let
!(1)(k) be the finite subset of i(l) enumerated by this algorithm in
its first k computation steps. For any n € N and any gap (a,b) of
n, we say that (a,b) is a short gap of n if there exists «x < a such

that x € l(l) but x ¢ 1(1)(b). We say that (a,b) 1is a very short

gap of n iIf there is x < a such that x € I(l)(p(n)) but x ¢

l(l)(b). Let SG(n) (resp. VSG(n)) be the number of short (resp. very
short) gaps of n. Observe that, given n, one can effectively compute

VSG(n) (but not SG(n)). Thus, the following coloring N = Co U C, s

a recursive one.

Ci ={n €N | VSG(n) s 1 (mod 2)}.

Suppose X is an infinite set with FS(X) ¢ C1 for some 1 € (0,1}. We

shall show that ﬂ(l) is recursive in X.
As in the proof of Theorem 2.1, we first use Lemma 4.1 to find an

infinite Y such that Y 1is recursive in X, PFS(Y) ¢ FS(X) ¢ Ci. and
p(m) <A(n) for all m<n in Y. It suffices to show that l(l) is

recursive in Y.

Claim 1. .For every m € FS(Y), SG(m) is even.

Proof. Let m € PS(Y) be given, and choose an n € Y so large

that, for all x < u(m), if xe€ $(3) then xe s (A(n)). This can

be done because every such x is in ﬂ(l)(k) for some k and X is
strictly increasing on Y. We compute the number VSG(m+n) of very short

gaps of m+n by considering separately the gaps of m, the gaps of n,
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and the gap (u(m),A(n)). The last of these is not very short, by our
choice of n. A gap of n is very short in m+n if and only if it is
very short in n, because u(m+n) = pu(n). A gap (a,b) of m is very
short in m+n if and only if it is short (not necessarily very short) as

a gap of m, because, for x £ a < u(m), our choice of n ensures that

x €91 if and only 1f x € 8P (A(n)) 1f and only 1t x € #(1) (u(men)).

Therefore,
VSG(m+n) = SG(m) + VSG(n).

By our choice of Y, the two VSG terms have the same parity. So the

other term, SG(m), must be even, and the claim is proved.

élaln 2. Assume that m < n are in Y and that x < u(m). Then

xeg(l) ;Y'and only if x e ¢ a(n)).

Proof. The "if" part is trivial, and the "only if" asserts that.the

gap (u#(m),A(n)) of m+n 1is not short. Suppose, toward a
contradiction, that it were short. Then the short gaps of m+n would be

those of m, those of n, and (u(m),A(n)). Thus, we would have
SG(m+n) = SG(m) + SG(n) + 1,

which contradicts Claim 1. Thus, Claim 2 is proved.

We can now complete the proof of the theorem by giving an algorithm,

with an oracle for Y, . that computes membership in !(1). Given an

input x, wuse the oracle to find an m € Y with x < #(m) and to find
an n €Y with m < n. Then run the algorithm enumerating !(1) for
A(n) steps to decide whether x € i(l)(x(n)). By Claim 2, this alsc

decides whether x € ﬂ(l).

2.3. Remark. Brackin [3] has'proved a weaker version of Theorem

2.1 in which "X 1is not recursive in ¢(1)" is replaced by "X is not
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recursive”. As a consequence, he also obtained a weaker version of

Theorem 2.6 asserting that HT 1is not provable in RCAO.

It is straightforward to generalize Theorems 2.1 and 2.2 as follows.

2.4. Theorem. Given W ¢ N, there exists a coloring N = Co U C1

with the following properties. C, and C, are recursive in W and,

for all infinite X ¢ N, if FS(X) ¢ C; for some i€ (0,1}, then X

is not recursive in w‘l’.

2.5 TIheorem. For any W ¢ N, there exists a coloring

N =CyU C; with the following properties. Co and C; are recursive

in W and, for all infinite X ¢ N, if FS(X) ¢ C; for some

1€0,1), then W) is recursive in X.

The proof of Theorem 2.5 can be modified to yield a result concerning

the set existence axioms which are needed to prove Hindman's Theorem. By
RCAO (respectively ACAO) we mean the subsystem of second order arithmetic

with restricted induction and recursive (respectively arithmetical)

comprehension [25,24,5]. It is well known that ACA;, can be obtained from
RCAo by adding an axiom asserting the existence of Turing jumps. An

inspection of the proof of Theorem 2.5 shows that this proof goes through in

RCAO. Hence we have the following axiomatic result.

2.6. Theorem (RCAO). ﬂindman’s Theorem HT implies ACAO.

In other words, no set existence axioms weaker than those of ACA0 can

suffice to prove Hindman's Theorem.

§3. Analysis of Baumgartner's proof
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The purpose of this section is to present an axiomatic analysis
of Baumgartner's proof [1] of Hindman's Theorem. We show that a

version of Baumgartner's proof can be carried out within a certain

formal system n; - TIo (to be described below).

The reader of this section is assumed to have some familiarity
with subsystems of second order arithmetic [25,7,23]. We also assume
that the reader has access to Baumgartner's proof as presented on

pages 69 through 71 of [13].

The following notions are basic to Baumgartner's proof. Let E
and F be nonempty finite subsets of N. We write E < F if
max(E) < min(F). A disjoint collection is an infinite collection

D = (Dn: n € N} of nonempty finite subsets of N such that D, <
Dn+1 for all n € N. From now on D denotes a disjoint colleétion.

We use FU(D) to denote the set of all unions of nonempty finite
subcollections of D. We write D' <D to mean that D' is a

disjoint collection and D' ¢ FU(D). We say that C is large for D

if C[] FUD')# ¢ for all D' < D. We write
C/E = (F €C: B <F).

Consider the following statement HTU which is a version of
Hindman's Theorem (see Corollary 3.3 of [15]).

If FU(D) =CyU ... UCy then

(HTU) {there exists D' £ D such that
FU(D') ¢ C; for some i < 2.

Hindman's Theorem HT follows immediately from HTU by taking
D = {{n}): n€ N} and

C; = (D€ FU(D): 2(2": m € D} € cy)
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for all i € t. Baumgartner's method for proving Hindman's Theorem
is to prove HTU by means of a sequence of lemmas involving the notion
of largeness. We now present our axiomatic analysis of Baumgartner's

proof.

We use Z2 to denote the formal system of second order
arithmetic. Recall [25,24,5] that RCA0 (respectively ACAO) are
the subsystems of 22 with restricted induction and recursive

(respectively arithmetical) comprehension.

An vo-model is a set M ¢ P(N) = {X: X ¢ N} regarded as a model
for Lz, the language of 22' If ¢ 1is a sentence of L2 with
parameters from M, we say that M satisfies ¢ if ¢ is true

when the set variables range over M, the number variables range
over N, and the remaining symbols have their standard

interpretation.

A f-model is an w-model M such that, for all 2} sentences ¢

with parameters from M, ¢ is true if and only if M satisfies @¢.

A countable coded w-model is a set Z ¢ N viewed as (a code for) the

w-model M = ((z)n: n € N} where (Z)n = {m: (m,n) € Z}, (m,n) =

%(l*n)(n+n+1)+n. A countable coded f-model is a countable coded

w-model which is also a f-model. We assume that the notion of

countable coded f-model has been defined formally within RCAo as in
§VII.2 of [25]. (In particular a countable coded g-model comes
equipped with a satisfaction predicate for a "universal lightface 21

formula.")

We shall now state four lemmas which are modeled on Lemmas 17,
20 and 21 and Theorem 18 on pages 70 and 71 of [13]. The proofs of
our lemmas are obtained by straightforward adaptation of the original

proofs.
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3.1. Lemma. The following is provable in RCA,. Let M be a
countable coded g-model. Suppose that C,, ..., C,, D €M and that

Co i C, is large for D. Then some Cy, i £t is large for
M

some D' £ D, D €

3.2. Lemma. The following is provable in RCA,. Let M be a

countable coded f-model. Suppose that C, D € M and that C is

large for D. Then there exists E € FU(D) such that

C' ={FecC/E: EUPF €C)

is large for some D' < D/E, D' € M.

3.3. Lemma. The following is provable in RCA,. Let M be a

countable coded f-model. Suppose that C, D € M and that C is

large for D. Then there exists E € C[] FU(D) such that

C' = {FEC/E: E| F €C)

1s large for some D' < D/E, D' € M.

3.4.

!

The following is provable in RCA,. Let M be a

countable coded f-model. Suppose that C, D € M and that C is
large for D. Then there exists D' < D, D' € M such that FU(D') ¢

c.

As an immediate consequence df Lemmas 3.1 and 3.4, we have:

3.5.

i

The following is provable in RCAp. Let M be a

countable coded f-model. Then M satisfies HTU. Hence M satisfies

Hindman's Theorem HT.

135
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Recall that n%-CAo is the subsystem of 22 with restricted

induction and ﬂ% comprehension. The following proposition, essentially

due to Friedman [7], is also proved in §VII.2 of [25].

3.6. Proposition. The following is provable in ﬂi-CAo. For al

X ¢ N there exists a countable coded f-model M such that X € M.

Combining this with Lemma 3.5 we obtain:

3.7. Iheorem. Hindman's Theorem HT is provable in ni-CAo.

We now describe the formal systems ni-rxo. k € N. Let WO(X)

stand for the n% formula which asserts that X is a code for a
countable well ordering. If +¥(n) is any Lz—tormula. let TI(X.y)

stand for the formula

vn(vm(m <y n > ¥(m)) + ¥(n)) > Vmy(n).

This expresses transfinite induction along X with respect to +y(n). We
define ni-rxo to be the subsystem of Z2 whose axioms are those of

ACA0 plus all formulas of the form
WO(X) » TI(X,¥)
where ¥(n) is ﬂi. Also
1 = 1
Mo-Tly = UkaoMic~T1o-

The following proposition, due to Simpson [25] §VII.2, is related to
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some unpublished work of Harrington [14].

3.8. Proposition. Let ¢ be any Ué sentence. The following

assertions are equivalent: (i) ni-rxo proves ¢; (i1) ACA, proves

that any countable coded f-model satisfies 9.

Since Hindman's Theorem HT 1is a ﬂé sentence, we can combine

Proposition 3.8 with Lemma 3.5 to obtain:

3.9. Iheores. Hindman's Theorem HT is provable in Mi-TI,.

In order to sharpen the previous result, we apply the following
proposition due to Simpson [25]. For the proof see the exercises at the
end of §VII.2 of [25].

3.10. Proposition. Let ¢ be any sentence of the form VX3Ye

where 6 is ng. The following assertions are equivalent: (i) Hé—TIo

proves ¢; (ii) RCA, proves that any countable coded f-model satisfies

9.

Since Hindman's Theorem is of the required form, we obtain:

3.11. Theoren. Hindman's Theorem HT is provable in Mi-TI,.

We now consider a result of Carlson and Simpson [6]. Let A be a
fixed finite alphabet. Let A* be the set of finite words over A,

i.e. finite sequences of elements of A. An infinite variable word is an

infinite sequence W of elements of the disjoint union A |J (xi: i € N)
in which each Xy occurs at least once, each Xy occurs only finitely
many times, and for each i the last occurence of Xy comes before the

first occurrence of Xy41- The xi's are to be regarded as variables
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ranging over A. Given s = aoal...aj_1 € A*, let W(s) be the element

of A* which results from W by first substituting a for each

occurrence of Xi, i < j, then truncating just before the first

occurrence of xJ. Put

W(A*) = (W(s): s € A*}.
Theorem 6.3 of Carlson-Simpson [6] asserts the following:

If A* =CyU.. U Cp_, <then there

(CST) {exists an infinite variable word W

such that W(A*) ¢ C1 for some i < L.

The proof of CST in [6] is broadly similar to Baumgartner's proof of
Hindman's Theorem. Our analysis in terms of countable coded f-models can

be adapted so as to apply to the proof of CST. In this way we obtain:

3.12. Ihegrem. Theorem 6.3 of Carlson-Simpson [6], i.e. CST, is

provable in né-rro.

We do not know whether CST 1is provable in any weaker system such

as RCAy, ACAy, or A2-TI,.
§4. Analysis of Hindman's Proof.

The purpose of this section is to present an analysis of Hindman's
original proof of Hindman's Theorem. This yields both
recursion-theoretic and axiomatic information. Our main

recursion-theoretic result is as follows: Given a coloring

N=CyU...U Cp» there exists an infinite set X ¢ N such that

FS(X) ¢ Ci for some i €2, and X 1is recursive in the (w+1)st Turing
jump of the given coloring. Axiomatically, our result is that Hindman's

Theorem HT is provable in a cértain formal system ACAG (to be described
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below).

The reader of this section is assumed to have access to Hindman's
original paper [15]. To the extent possible, we use Hindman's notation
and terminology. The heart of our analysis is a sequence of

recursion-theoretic lemmas which correspond to Lemmas 2.2, 2.5, 2.6, 2.8,

2.9, 2.10, 2.11 and 2.12 of Hindman [15]. The proofs of our lemmas can be

obtained by straightforwardly modifying Hindman's proofs of his lemmas.

The recursion-theoretic notions which we use are taken from Rogers [21].
4.1. Lemma (corresponding to Hindman's 2.2). If <x1>°;=1 is a

sequence in N, then there is a sequence <y157_1 recursive in <x1§T=1

that FS(<y>h.;) € FS(<x;>7_;) and 2%y, whenever P

4.2. Lemma (corresponding to Hindman's 2.5). Let «<x > _, be a
sequence in N such that 2°|x  , whenever ¢ty x,. Let = be the

natural map for FS(<x >:=1) and let <yn>:=1 be any sequence in N

Then there is a sequence <z _>.

such that FS(<ynS:_1) G FS(<xn§” W i

n=1)"

recursive in <y >7_; and <x >7

oo o0
R a1 such that FS(<z>n_1) [« FS(<yn>n_1)

and T( I Za) = b 7(z,) whenever F ¢, N.
n€F neF
4.3. Lemma (corresponding to Hindman's 2.6). Let k € N and let

C =<A(i,n): 1 £ 1<k, n€ N> be a collection of sets such that if

n€N and 1 < i<k, then A(i,n+1) ¢ A(i,n). Then there exist a

subset S of ({1,2,...,k}, a sequence <x recursive in C, and

>ﬂ
m m=1

139

an integer M, such that if n2 M and <y > _, 1s a sequence recursive in

o0

C with FS(<yp>p_;) € FS(<xp>7_ ;) then FS(<yp>p=1) M A(i,n) # ¢ if and

m=1 -_—

only if 1 € S.

4.4. Lemma (corresponding to Hindman's 2.8). Let
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@ = <A;: 151 <a> beapartition of N. Suppose that for every n € N

and every <ym>‘:‘"1 recursive in «, one has

PS(<yp>n.;) \ URZ] F,(k.n) # 9. Then we can defime, arithmetically in
@, an 1€ (1,2,...,a)}, sequences <x > _; and <M >7 ., sequences
<X n>:-1 recursive in « for each n, and for each n a sequence of

sets <U(n,p): p € N>, recursive in a«, such that the following six

properties are satisfied:

s-1 s -
(1) Por all m€EN, 2 S Xy, p Amplies 2%xp ..

(2) I1f p2 M

[
0
=

n and <y >t . 1s a sequence recursive in « s

then

that FS(<y. >> 1) € PS(<x

m” m= n,n>n-1)

PS(<yp>p.y) N Uln.p) # #;

(3) If p2M, then U(n,p+1) ¢ U(n,p) ¢ Ay:
(4) If n21 then M 2 M _, and M > 2?-1 Xy
(5) If n21 and p2 M 2 then U(n,p) ¢ U(n-1,p);

n

(6) I£f n21 and p2 M, and x € U(n,p), then

n

X+ x € U(n-l.Mn_l).

The proof of Lemma 4.4 is similar to Hindman's proof of his Lemma
2.8. The only difference is that the sequences <zm$:_1 are restricted

to be recursive in «.

4.5. Lemma (corresponding to Hindman's 2.9). Let « = (AJ)'J‘_1 be
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a partition of N. If for every n in N and every sequence Va1

in N which is recursive in « one has FS(<yp>p.;) \ Uﬂ:i F,(k,n) # 9,

then there exist an i € {1,...,a) and a sequence <x in N which

n’n=1 1B

is arithmetical in « such that FS(<x>7_ ) Ml Ay = 9.

4.6. Lemma (corresponding to Hindman's 2.10). et a = (Ai)?'1

be a partition of N. Then there exist n € N and 2 sequence <X >._.

arithmetical in o« such that FS(<x>%.;) ¢ UBC)

F,(k.n).

4.7. Lemma (corresponding to Hindman's 2.11). For every

partition a of N with « = {Ai)?-l' there exists a function

f: N> N recursive in «(®) such that for each r in N there exist

S, 0) A <yJ>§_1 such that:

(1) 95(<y1>5_1) < A

(2) if Je{1,2,...,r-1) and 2°1¢ yy then 2%|y,,;.
(3) if Je{1.2,....r) then y, < £,(J).

Proof. Let @y = a and suppose «n is defined. By Lemma 4.6 we may

choose p.  and a sequence <Xn.m’m=1 Aarithmetical in «, such that

Pyl !
o ., -
FS(<xy >000) € kgl Fan(k,pn) and 2%)x whenever 257% g Xy,

n,m+1 m’

We may further assume that, for each m, 2s|xn a Whenever 2%-1 S P,

>;=1). Then = and r.' are

Let r be the naturél map for FS(<x = 5

n n,m

arithmetical in a_. Let K

n net = {Apeg xt 1S kS py -1} =
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(rn(Pan(k.pn)): 1S ks Pa. = 1}. Then el is a partition of N which

is arithmetical in a_ . Let T(n,m) = ral(m). Then T(n,m) |is

recursive in a(°). Define f by f(n,1) = T(n,1) and

f(n,m+1) = T(n,f(n+1,m)). Since f 1is recursive in T, f is recursive
in a“").
We now show, by induction on r, that for each n € N, f(n,m)

satisfies the lemma for an. The case for r =1 1is trivial for each

n. Let r > 1 and assume that properties (1), (2) and (3) hold for each
n at r - 1. Fix n. Let <wJ>§:} agd k € {1,2,...,p,,, - 1} be as

at ¢ -3 et 1 % Py - 1 be the

guaranteed by the lemma r?r @+l

integer such that k € An i° Let vy, = K and for j € (2,3,....r), let

vy - T;l(ﬂj_l).
To verify property (1), fix F ¢ (2,...,r}. By Hindman's Lemma 2.4
and property (2) for « v T T V)= 8 w, .. By definitions of
n+l’ "nigGp ") qep I

1

o ;
a and w51 jEF Wiy € ’n(Pan(k'pn))' so

n+1
> v, €F (k,p.). Thus 3% y, €A , and i + 3 y, € .
J€F 3 an n J€F ) Nod 1 J€F J Aﬂ.i
Since vy € An T property (1) is satisfied.

To see that property (2) holds, note that if 23’1 < vy then

2871 ¢ Pp: SO 2’]x for every m. Consequently, 23|y2. By

n,m
Hindman's Lemma 2.4, 2°|yJ+1 for 3 € {2,...,r - 1}.
Now consider property (3). Pirst, ¥y = kS Pp-1s8 f(n,1). Let

J€{2,...,r). Then wi_y S f(n+1,3-1), so

& T-;('J—l) s T;I(f("*l'J'l)) = T(n,f(n+1,j-1)) = f(n,j), as desired.

Since f(n,m) satisfies the lemma for L f(l1.,m) = fa satisfies

the lemma for @) = a. This completes the proof.
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4.8. Lemma (corresponding to Hindman's 2.12). For every partition

a of N, with « = {Ai)?,l, there exists a function fa: N-> N

recursive in a'@) and an 1 € {1,2,...,a} such that, for every r in
r r -

: N, there exists V4> w1 such that FS(<yJ>)J.=1 € A; and vy < £2(3)

whenever j € (1,2,...,r}.

We can now present the main recursion-theoretic result of this

section:

4.9. TIheorem (corresponding to Hindman's 3.1). Let « be a

finite partition of N with a = (Ai)?-l' There exists an i €

(1,2,...,2}, and a sequence <x >r . recursive in «(®*1)  guch that

FS(<xn>F_1) < Ay

Proof. Let i and f, be as in Lemma 4.8. Let T be the tree

given by

r=(<x1>’1'_1:neuA(151<J5n-»xi<xJ)A

ps(<xi>?,1) € Aj AVYI S n(xy s £.(9))).

Intuitively, T is the tree of finite sequences which are homogeneous in

the sense of Hindman's theorem and bounded by I+ T 18 tinitely

branching since it is bounded by ﬁa' Lemma 4.8 guarantees that T is

infinite. By Kanig's Lemma, T has an infinite path, say <xn>:_1.

Clearly this path is the desired sequence. Since T is recursive in
(@)

a » by the Kreisel Basis Theorem [20] (see also Kleene [19, p.398]),

we may assume that <xm>‘:_1 is recursive in a(u*l). This completes the

proof.

Note that by using the Low Basis Theofem (Theorem 2.1 of Jockusch
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and Soare [18]) relativized to- a(“), we can improve the conclusion.

Not only the sequence <xm5;_1 but also its Turing jump can be made

recursive in a(“*1)

The above theorem, Theorem 4.9, is the main recursion-theoretic
result of this section. For use in §5 we now present a generalization of
Theorem 4.9 involving a countable sequence of partitions. First we prove

the following generalization of Lemma 4.7.

4.10. Lemma. For every sequence of partitions <pi>1=1

a
<(Bi.n)nil>?-1' there is a function f: N » N recursive in

(<pi>?_1)(°) such that for each r in N there is a sequence <yi>§_1

and a sequence <j;>]_; such that

r
(1) forsll ks r, ES(eypi)c by g .
(2) If 1<sk<r and 25! <y, then 2%y,,,.
(3) 1f 1<ks<r then vy, < f(k).

Proof. Let a; = ﬁl and S(1,m) = m. Suppose an and S(n,m)

=3

are defined. By.Lem-a 4.6 we may choose Pn and a sequence <X ael

P, -1
: a0
arithmetical in @y such.that Fs(<xn,n>m-1) < kgl Fan‘k'pn) and

2s|xn.m+1 whenever 25'1 . Xn . m We may further assume that, for each
m, zslxn 5 whenever 25'1 < Pn- Let T be the natural map for
FS(<x, p>p.q). Then = and 7;1 are arithmetical in « . Let

S(n+1,m) = rn(s(n.n)). Let <j,k> denote the pairing function applied

to the pair (j,k). Define the partition L by:
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1 5K

1A

a1=(A

- Pp -1 and 158 Sa,.,,}

n+1,<k, 2>’

= {fn(Fan(k,pn)) n S(n*l.Bn+1'z): l1sksp, -1 and 1 s ¢ € an+l}‘

Then @i+l is a partition of N which is arithmetical in an and

_1(

o m). Then T(n.m) is recursive in

B Let ‘T(n,m) = 7
(<B>n.) @), Define f by f(n,1) = T(n.,1) and f(n.m+1) =
T(n,f(n+1,m)). Since f is recursive in T, f 1is recursive in

© (@)
(<ﬂn>n-1) p

The proof is completed by showing that for all r.,n € N, there

r o

exist an 1 € N, a sequence <¥y>je1’ and a sequence <j .. 1.9
such that

e P
(0') For all .k s P, FS(<y1>k=1) < S(n'B“’k"l'jn¢k—1)

' r )
(1') FS(<yp>paq) € Af 4o

1] s-1 S
(2") 1f 2 s kst -1 apd 2 £ Y then 2 kafl'
(8% ) AF 1 Sk € 'r then Yie S fin. k).

Letting f(m) = f(1,m), this suffices to complete the proof. The
verification of properties (0‘) through (3') is carried out b§ induction
on r, exactly as in the proof of Lemma 4.7.

Using the previous lemma we can imitate the proofs of Lemma 4.8 and

Theroem 4.9 to arrive at the following theorem.

4.11. Theorem. Let <f > _, be a sequence of partitions of N

a
with ﬂn = (Bn.i)izl' Then there exist sequences <xm§;‘1 and»<JmS;’1,

both recursive in (<ﬂn>:=1)(”*1) such that for al

—

n,
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FS(<x,>p_ 1) € By -
"In

We now present our axiomatic results. The reader is assumed to have

some familiarity with subsystems of Z,.
Recall [25,24] that ACAo is the subsystem of Z2 whose principal

axiom is arithmetical comprehension, i.e. all formulas of the form
3Xvn(n € X & ¢(n))

where ¢(n) 1is any arithmetical formula in which the set variable X
does not occur.
An inspection of the proofs of Lemmas 4.1 through 4.6 reveals that

these proofs can be carried out formally within ACAO.
We now define ACAS. (See also [5].) Given X c N and j € N, we

put (X); = {n: (n.§) € X} and (X)J = ((m.1): (m.1) € XA 1 < j). Aca;
is defined to be the subsystem of 22 whose axioms are those of ACAo

plus all formulas of the form
3% Voo € (X); & o(n, (X))

where ¢(n,Y) 1is any arithmetical formula in which the set variable X
does not occur. Thus ACAS contains axioms which assert that
arithmetical comprehension can be iterated along N. In the presence of

ACAO. these additional axioms are equivalent to the single axiom VW3X

(X = Ww5))  where w(®) denotes the oth Turing jump of W. Since ACA,

is finitely axiomatizable, it follows that ACAa is finitely

axiomatizable.
An inspection of the proofs of Lemmas 4.7, 4.8 and 4.10 and Theorems

4.9 and 4.11 reveals that these proofs can be carried out formally within



LOGICAL ANALYSIS 147

ACAB. This yields the following results.

4.12. TIheores. Hindman's Theorem HT is provable in ACA.

4.13. [heorem. The following generalization of Hindman's Theorem is

provable in ACAB. Given a countable sequence of colorings

N=Col ... U Chg + NEN, there exists an infinite set

oy 7 I

Theorem 4.13 will be applied in the next section.

§5. Analysis of the Auslander-Ei:is Theorem.

In this section we turn our attention to topological dynamics. We
present an apparently new proof of the Auslander-Ellis Theorem (AET of
§1). Our proof is much more constructive than all previously known

proofs. We show that our proof can be carried out within the formal
system ACAS (defined in §4). This is of interest because it is not at
all obvious that any of the previously knqwn proofs of AET can be
carried out within ACAS or even within full second order arithmetic.

We begin by defining some notions from topological dynamics. Let X
be a compact metric space. We use d to denote the distance function on
X. Let T: X+ X be a fixed continuous function. We use
i,j.k,2,m,n,... to denote nonnegative integers, i.e. elements of N. A

point x € X is called recurrent if for all & > 0 there exist

infinitely many n such that d(T"x.x) < £¢. We say that x is

uniformly recurrent if for all ¢ > 0 there exists m such that for all n

there exists k < m such that d(Tn*kx.x)‘< e. Two points x,y € X are said

to be proximal if for all ¢ > 0 there exist infinitely many n such that
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d(Tnx.Tny) < £¢. The Auslander-Ellis Theorem reads as follows: For all x € X
there exists y € X such that y is proximal to x and y is uniformly
recurrent.

We now give our proof of the Auslander-Ellis Theorem. The idea of
the proof is to use Hindman's Theorem to obtain proximal points. This

idea comes from Chapter 8 of Furstenberg [9].

5.1. Definition. Let x,y € X and let A¢ N be an infinite set.

We write y = linAx to mean that for all ¢ > 0 there exists a finite

set F ¢ A such that d(T"x,y) < ¢ for all n € FS(A\F).

§.2. lLesma. If y = limAx then y is proximal to x.

Proof. Suppose y = linAx. Given £ > 0 let F be a finite
subset of A such that d(Tkx.y) < ¢ for all k € FS(A\F). Fix
m € FS(A\F) and choose &6 > 0 so that d(z,y) <& implies
d(T™z,T™y) < ¢ for all z € X. Let G be a finite subset of A\F such
that m € FS(G). Fix n € FS(A\(RJG)) such that d(T"x.y) < 8. Then
d(T™ ", T) < c. Also m and m + n belong to FS(A\F) so d(T™.y) < ¢

and d(T""x,y) < ¢. Combining these inequalities we obtain d(T"x,T"y) < 3c.
(Compare Lemma 8.15 of [9].)

5.3. Lemma. Given x € X and an infinite set A ¢ N, there

exists an infinite set B such that FS(B) ¢ FS(A) and limpx exists.

Proof. Let <a : n € N> be the elements of A in increasing

m
order. Given m = 2 1., SR R mp < ... <m we put A(m) = L

p(m) = m and

m* = a paE T € FS(A).
k
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For each n let VYny' izg ln> be a finite sequence of points such that

for all y € X there exists 1 < ¢  such that d(y,y,;) < 2™, Define

Bgi ~ I W Ry 0 < N

Thus <<Cn1: falts ln>: n € N> 1is a countable sequence of colorings of N.

Apply Hindman's Theorem countably many times to obtain an infinite set 2
such that for each n there exists a finite set F ¢ Z such that

FS(2\F) ¢ Cn1 for some i < ln' Define sequences <z i n € N> and

<F,: n € N> by induction on n as follows. Choose 2y € PS(2),

Zg > 1. Let Po be a finite subset of 2Z such that 2, € FS(FO).

Choose z ., € FS(Z\(Fq U ... U F))) so that A(z, ,) > wlzp). Let
F.+1 be a finite subset of IN(FgU ... U F,) such that
Z,+1 € FS(F,,). Finally put B = {z3: n € N}. Then B 1is infinite,

FS(B) ¢ FS(A), and it is straightforward to check that lian exists.
(Compare Theorem 8.14 of [9].)

Given x € X we denote by X the orbit closure of x, i.e. the set

of points y such that for all ¢ > 0 there exists n such that

d(™x.y) < e.

5.4.

!

For all y € X there exists z € y such that

z = limgx for some infinite set B ¢ N.

Proof. For each k € N let Uy be the set of points which are at
distance < 27X from y. Note that for all n and k, ¥ ¢ T'"Uk and

T'"Uk is open. By induction on k define a sequence <nk: k € N> as

follows. Let ng be arbitrary. Given 0, let Op,q > Ny be such that

n
T K1y € ﬂ(T'"Uk: BE gy v ... v}
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Put A = {n : k € N}. Thus for each k. T'x € U for all sufficiently
large n € FS(A). By Lemma 5.3 let B be an infinite set such that

FS(B) ¢ FS(A) and 2z = lime exists. Then =z € n;so(closure of Uy )

=y.

§.5. Lemma. Given x € X there exists y € x such that every

z €y "is uniformly recurrent.

Proof. Consider the class of nonempty closed sets Y < X such that

Y ¢ T"1(Y). By Zorn's Lemma, let Y, be a minimal element of this
class. It is easy to see that every vy € Yo is uniformly recurrent.

(See §1.4 of [9] or §6.1 of [13] or the proof of Lemma 5.10 -below.)

We can now finish the proof of the Auslander-Ellis Theorem.

§.6. Theorem (AET). Given x € X there exists z € X such that

X and z are proximal and z is uniformly recurrent.

Proof. By Lemma 5.5 let y € X uve such that every z €y is
uniformly recurrent. By Lemma 5.4 let z € y be such that
z = lian for some infinite Bc N. By Lemma 5.2 2z is proximal to x.
This completes the proof.

We now present an axiomatic analysis of the above proof of AET.

We assume familiarity with the formal systems A(:Ao and ACA6

which were defined in §4. We also assume famfllarlty with the formal

development of the theory of complete separable metric spaces within

ACA,. (See Brown [4] or §4 of Brown- Simpson (5].) Within ACAj

(actually in the weaker system RCAO), we define a compact metric space

to be a complete separable metric space X such that there exists a
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countable sequence of finite sequences of points <<xni: s ¢ kn>: n €

N>, Xni € X, such that for all n and all x € X there exists i < kn
such that d(x.xni) S (For details about the formal development of

the theory of compact metric spaces within ACAO and weaker systems. see

Brown [4].)

5.7.

;

The following is provable in ACA, (actually in the

closed set i X and

weaker system WKL,). Let X be a compact metric space. Let Y be a
let

<Uy: k € N> be a sequence of open sets in X.

If Y Ug.oUy, then Yc Ug=oUx for some n.

Proof. See Simpson [24] and Brown (4].

5.8. Lemma. The following is provable in ACA, (actually in

3 et X be a compact metric space. Let Y and U denote (codes
0 Let D€ a compact sSpace Let coaes

Then the formula Y ¢ U

WKL
for) a closed and open subset of X respectively.

equivalent to a 2? formula.

Proof. We reason within WKLO. If r 1is a positive rational
number and y € X, let B(y.r) bé the open ball of radius r about .

Let <Yp: M € N> and <rp: m € N> be such that

UU (X\Y) = Upq Bly,.rp)

= lj;co Uq(r.B(ym'q)-

By Lemma 5.7, Y ¢ U if and only if there exist n and <m,: i S k>

such that

151

is



152 BLASS, HIRST. and SIMPSON

-n
d‘xni'yni) g rnl.

for all i< k.. This is }:‘1’.

The next lemma is related to Annex 7.E (pages 481 et seq.) of Girard
fi11]).

5.9. Lemma. The following is provable in ACA,. Let X be a
compact metric space and let T: X » X be a continuous function.

Consider the class of Donempty closed sets Y ¢ X such that Y ¢ T'I(Y).

Then this class contains 2 minimal element.

Proof. We reason within ACAO. Let <V.: m € N> be an enumeration

of the basic open sets of X. Let ¢(F) be a formula which says that F

is a (code for a) finite subset of N and :
-n .
2\ Moes T Wy » o

By Lemmas 5.7 and 5.8, ¢(F) 1is equivalent to a N? formula. Hence

S = (F: ¢(F)} exists by arithmetical comprehension. Define f: N>
(0,1} inductively by putting f(m) =1 if

{k < m: f(k) = 1) U (m} € s,
otherwise f(m) = 0. Put Y = X \ U where

U =U(Vy: f(m) = 1}.

Thus Y is a closed subset of X.
Put 2 = n:_o T™™(Y). We claim that 2 is nonempty. To see this,

put
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Up =U{Vye: k <mA f(k) = 1},

Y. =X \ Un' and

2y “Hlep T

By Lemma 5.8 and arithmetical induction on m, Zm # ¢ for all m.
Since Z  is closed, it follows by Lemma 5.7 that Z = n;_ozm 9.

We claim that Y =2 for any z € Z. Clearly z ¢ Y. For the

converse let m be such that Z ) Vp = #®. Then f(m) = 1. Hence
YNV, =#. Since z is closed it follows that Y ¢ Z.

From the above two claims, it follows easily that Y ¢ T_I(Y) and
that Y has the other desired properties. This completes the proof of

Lemma 5.9.

5.10. Lemma. The following is provable in ACA,. Let X b

compact metric space and let T: X » X be a continuous function. For

al X € X there exists y € X such that every z € y

|H
»

uniformly

recurrent.

Proof. We reason within ACAO. -Clearly x ¢ X 1is closed and

e THx). Applying Lemma 5.9 to the compact metric space X, we
obtain a nonempty closed set Y ¢ X with Y ¢ T'I(Y) and minimal with
these properties. Thus y =Y for all y € Y. It follows that for all
v.Z2€ Y and £ > 0 there exists k such that d(Tky,z) < £. In other

words, for any z € Y and ¢ >0, Y¢ Ug.o U, where

U = {y: d(TRy,2) < o).

153
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By Lemma 5.7 it follows that Y ¢ Uz,o Uk for some m." This implies

that z is uniformly recurrent.

5.11. TIhearem. The Auslander-Ellis Theorem AET is provable in

+

ACAOﬂ

Proof. We follow the proof of Theorem 5.6 via Lemmas 5.2 through
5.5. The proof of Lemma 5.2 goes through in ACA0 without difficulty.
The proof of Lemma 5.3 goes through without difficulty in ACA0 except

for the countably many applications of Hindman's Theorem. At this point

we invoke Theorem 4.13 which tells us that the desired construction can
be performed within ACAS. The proof of Lemma 5.4 goes through without

difficulty in ACAo except for the application of Lemma 5.3. Thus

Lemmas 5.3 and 5.4 are provable in ACAS. Finally Lemma 5. 10 tells us

that Lemma 5.5 is provable in ACAO. Combining these results as in the

proof of Theorem 5.6, we see that AET is provable in ACAS.
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