
Baire categoricity and Σ0
1 induction

Stephen G. Simpson
Department of Mathematics
Pennsylvania State University

http://www.math.psu.edu/simpson
simpson@math.psu.edu

First draft: February 24, 2012
This draft: October 23, 2013

Abstract

We investigate the reverse-mathematical status of a version of the

Baire Category Theorem known as BCT. In a 1993 paper Brown and

Simpson showed that BCT is provable in RCA0. We now show that BCT

is equivalent to RCA0 over RCA∗0 .
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Consider the following version of the Baire Category Theorem.

Definition 1. Let BCT be the statement that, in any complete separable metric
space, the intersection of any countable sequence of dense open sets is dense.
Thus BCT is essentially the usual statement of the Baire Category Theorem for
complete separable metric spaces.

The purpose of this paper is to prove a new result concerning the reverse-
mathematical status of BCT. From Brown/Simpson [1, Theorem 2.1] we already
know that BCT is provable in RCA0. Here of course RCA0 is the usual base
theory for reverse mathematics [6], consisting of ∆0

1
comprehension plus Σ0

1

induction. We now prove that BCT is logically equivalent to RCA0 over the
weaker base theory RCA

∗
0
. The system RCA

∗
0
was first introduced in [7]. Two

recent papers making use of RCA∗
0
are [9] and [11].

In addition to BCT itself, we consider the following special case of BCT.
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Definition 2. The Cantor space is the space {0, 1}N of infinite sequences of
0’s and 1’s. We endow {0, 1} with the discrete topology and {0, 1}N with the
product topology. Let BCT({0, 1}N) be the statement that BCT holds for the
Cantor space.

More precisely, let {0, 1}∗ be the set of finite sequences of 0’s and 1’s. For
σ ∈ {0, 1}∗ and X ∈ {0, 1}N we write σ ⊂ X to mean that σ is an initial segment
of X . We also write JσK = {X ∈ {0, 1}N | σ ⊂ X}. Note that the sets JσK where
σ ∈ {0, 1}∗ form a basis for the topology of {0, 1}N. For σ, τ ∈ {0, 1}∗ we write
σ ⊂ τ to mean that σ is a proper initial segment of τ . We say that D ⊆ {0, 1}∗

is dense in {0, 1}∗ if for all σ ∈ {0, 1}∗ there exists τ ∈ D such that σ ⊂ τ .
Thus the dense open sets in {0, 1}N are just the sets of the form JDK =

⋃

τ∈DJτK
where D is dense in {0, 1}∗. We say that X ∈ {0, 1}N meets D if there exists
τ ∈ D such that τ ⊂ X . Within RCA

∗
0
let BCT({0, 1}N) be the statement that

for all sequences of dense sets Di ⊆ {0, 1}∗, i ∈ N, and all σ ∈ {0, 1}∗ there
exists X ∈ {0, 1}N such that σ ⊂ X and X meets Di for each i ∈ N.

Theorem 1. The following are pairwise equivalent over RCA∗
0
.

1. RCA0.

2. BCT.

3. BCT({0, 1}N).

4. For all finite sequences of dense sets Di ⊆ {0, 1}∗, 1 ≤ i ≤ n, there exists
X ∈ {0, 1}N such that X meets Di for each i = 1, . . . , n.

Proof. We reason in RCA
∗
0
. The implication 1 ⇒ 2 is already known [1, Theorem

2.1]. The implications 2 ⇒ 3 and 3 ⇒ 4 are obvious.
It remains to prove 4 ⇒ 1. For this purpose we use the following lemma

from [9]. Within RCA
∗
0
a set C ⊆ N is defined to be infinite if it is not finite, or

equivalently, it is unbounded, i.e., ∀n ∃c (n < c ∈ C).

Lemma 1. Over RCA∗
0
the following are equivalent.

1. RCA0.

2. Each infinite subset of N includes arbitrarily large finite subsets.

Proof. This is [9, Lemma 3.2].

We now prove 4 ⇒ 1. Assume 4. By Lemma 1 it suffices to prove that each
infinite subset of N includes arbitrarily large finite subsets. Given an infinite set
C ⊆ N, for each i ∈ N let Di be the set of strings in {0, 1}∗ of the form

σa〈1〉a〈0, . . . , 0
︸ ︷︷ ︸

c

〉a〈1〉a〈0, . . . , 0
︸ ︷︷ ︸

i

〉a〈1〉 (1)

where c ∈ C and c > the length of σ. The sequence of sets 〈Di | i ∈ N〉 exists by
∆0

1
comprehension. Since C is infinite, each Di is dense in {0, 1}∗. Given n ∈ N,
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apply 4 to obtain X ∈ {0, 1}N such that X meets Di for each i = 1, . . . , n. By
Σ0

1
bounding [7] plus ∆0

1
comprehension, there exists a finite sequence of strings

τi, 1 ≤ i ≤ n, such that τi ∈ Di and τi ⊂ X for each i = 1, . . . , n. Consider the
finite sequence c1, . . . , cn where τi is as in (1) with c = ci. For i 6= j we have
τi 6= τj , hence τi ⊂ τj or τj ⊂ τi, hence ci < cj or cj > ci, hence ci 6= cj . Thus
{c1, . . . , cn} is a finite subset of C of cardinality n, Q.E.D.

Theorem 2. BCT is not Π0

1
-conservative over RCA∗

0
.

Proof. Recall from [6, §X.4] and [7] that RCA∗
0
is RCA0 with Σ0

1
induction weak-

ened to Σ0

0
induction plus natural number exponentiation, i.e., the assertion

that mn exists for all m,n ∈ N. It is known that RCA
∗
0
is Π0

2
-equivalent to

Elementary Function Arithmetic [7], hence much weaker than RCA0 which is
Π0

2
-equivalent to Primitive Recursive Arithmetic [6, §IX.3]. Since Primitive Re-

cursive Arithmetic proves the consistency of Elementary Function Arithmetic
(see for instance [4] or [6, Theorems II.8.11 and IX.3.16]), it follows that RCA0

is not Π0

1
-conservative over RCA

∗
0
. This fact together with Theorem 1 gives

Theorem 2.

Remarks.

1. Beyond RCA
∗
0

one may consider even weaker base theories for reverse
mathematics. In this direction there is the following result of Fernandes
[2]: BCT is Π1

1
-conservative over Σb

1
-NIA+∇b

1
-CA. Note that Σb

1
-NIA+∇b

1
-

CA is “feasible,” i.e., it does not include natural number exponentiation.

2. Actually Fernandes [2] showed that BCT is conservative over Σb
1
-NIA+∇b

1
-

CA not only for Π1

1
sentences but also for sentences of the form (∀X) (∃

unique Y )Φ where Φ is arithmetical. And Yamazaki [10] showed that Π0

∞
-

BCT is conservative over RCA0 for this same class of sentences, which arose
previously in connection with Tanaka’s Conjecture [8, Theorem 4.18].

3. Our Theorems 1 and 2 were inspired by Fernandes [2, Proposition 1] and
Hirschfeldt/Shore/Slaman [3, Theorem 4.3].
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