Baire categoricity and Σ_1^0 induction Stephen G. Simpson Department of Mathematics Pennsylvania State University http://www.math.psu.edu/simpson simpson@math.psu.edu First draft: February 24, 2012 This draft: October 23, 2013 ## Abstract We investigate the reverse-mathematical status of a version of the Baire Category Theorem known as BCT. In a 1993 paper Brown and Simpson showed that BCT is provable in RCA_0 . We now show that BCT is equivalent to RCA_0 over RCA_0^* . Keywords: Reverse mathematics, second-order arithmetic, Baire Category Theorem, RCA_0 , RCA_0^* , Σ_1^0 induction. 2010 Mathematics Subject Classification: Primary 03B30; Secondary 03F25, $54{\rm E}52.$ Notre Dame Journal of Formal Logic, 55, 2014, pp. 75–78. Consider the following version of the Baire Category Theorem. **Definition 1.** Let BCT be the statement that, in any complete separable metric space, the intersection of any countable sequence of dense open sets is dense. Thus BCT is essentially the usual statement of the Baire Category Theorem for complete separable metric spaces. The purpose of this paper is to prove a new result concerning the reverse-mathematical status of BCT. From Brown/Simpson [1, Theorem 2.1] we already know that BCT is provable in RCA₀. Here of course RCA₀ is the usual base theory for reverse mathematics [6], consisting of Δ_1^0 comprehension plus Σ_1^0 induction. We now prove that BCT is logically equivalent to RCA₀ over the weaker base theory RCA₀*. The system RCA₀* was first introduced in [7]. Two recent papers making use of RCA₀* are [9] and [11]. In addition to BCT itself, we consider the following special case of BCT. **Definition 2.** The *Cantor space* is the space $\{0,1\}^{\mathbb{N}}$ of infinite sequences of 0's and 1's. We endow $\{0,1\}$ with the discrete topology and $\{0,1\}^{\mathbb{N}}$ with the product topology. Let $BCT(\{0,1\}^{\mathbb{N}})$ be the statement that BCT holds for the Cantor space. More precisely, let $\{0,1\}^*$ be the set of finite sequences of 0's and 1's. For $\sigma \in \{0,1\}^*$ and $X \in \{0,1\}^\mathbb{N}$ we write $\sigma \subset X$ to mean that σ is an initial segment of X. We also write $\llbracket \sigma \rrbracket = \{X \in \{0,1\}^\mathbb{N} \mid \sigma \subset X\}$. Note that the sets $\llbracket \sigma \rrbracket$ where $\sigma \in \{0,1\}^*$ form a basis for the topology of $\{0,1\}^\mathbb{N}$. For $\sigma,\tau \in \{0,1\}^*$ we write $\sigma \subset \tau$ to mean that σ is a proper initial segment of τ . We say that $D \subseteq \{0,1\}^*$ is dense in $\{0,1\}^*$ if for all $\sigma \in \{0,1\}^*$ there exists $\tau \in D$ such that $\sigma \subset \tau$. Thus the dense open sets in $\{0,1\}^\mathbb{N}$ are just the sets of the form $\llbracket D \rrbracket = \bigcup_{\tau \in D} \llbracket \tau \rrbracket$ where D is dense in $\{0,1\}^*$. We say that $X \in \{0,1\}^\mathbb{N}$ meets D if there exists $\tau \in D$ such that $\tau \subset X$. Within RCA $_0^*$ let BCT($\{0,1\}^\mathbb{N}$) be the statement that for all sequences of dense sets $D_i \subseteq \{0,1\}^*$, $i \in \mathbb{N}$, and all $\sigma \in \{0,1\}^*$ there exists $X \in \{0,1\}^\mathbb{N}$ such that $\sigma \subset X$ and X meets D_i for each $i \in \mathbb{N}$. **Theorem 1.** The following are pairwise equivalent over RCA_0^* . - 1. RCA₀. - 2. BCT. - 3. BCT($\{0,1\}^{\mathbb{N}}$). - 4. For all finite sequences of dense sets $D_i \subseteq \{0,1\}^*$, $1 \le i \le n$, there exists $X \in \{0,1\}^{\mathbb{N}}$ such that X meets D_i for each $i = 1, \ldots, n$. *Proof.* We reason in RCA_0^* . The implication $1 \Rightarrow 2$ is already known [1, Theorem 2.1]. The implications $2 \Rightarrow 3$ and $3 \Rightarrow 4$ are obvious. It remains to prove $4 \Rightarrow 1$. For this purpose we use the following lemma from [9]. Within RCA_0^* a set $C \subseteq \mathbb{N}$ is defined to be *infinite* if it is not finite, or equivalently, it is *unbounded*, i.e., $\forall n \exists c \, (n < c \in C)$. **Lemma 1.** Over RCA_0^* the following are equivalent. - 1. RCA₀. - 2. Each infinite subset of \mathbb{N} includes arbitrarily large finite subsets. *Proof.* This is [9, Lemma 3.2]. We now prove $4 \Rightarrow 1$. Assume 4. By Lemma 1 it suffices to prove that each infinite subset of \mathbb{N} includes arbitrarily large finite subsets. Given an infinite set $C \subseteq \mathbb{N}$, for each $i \in \mathbb{N}$ let D_i be the set of strings in $\{0,1\}^*$ of the form $$\sigma^{\smallfrown}\langle 1 \rangle^{\smallfrown}\langle \underbrace{0, \dots, 0}\rangle^{\smallfrown}\langle 1 \rangle^{\smallfrown}\langle \underbrace{0, \dots, 0}\rangle^{\smallfrown}\langle 1 \rangle \tag{1}$$ where $c \in C$ and c > the length of σ . The sequence of sets $\langle D_i \mid i \in \mathbb{N} \rangle$ exists by Δ_1^0 comprehension. Since C is infinite, each D_i is dense in $\{0,1\}^*$. Given $n \in \mathbb{N}$, apply 4 to obtain $X \in \{0,1\}^{\mathbb{N}}$ such that X meets D_i for each $i=1,\ldots,n$. By Σ_1^0 bounding [7] plus Δ_1^0 comprehension, there exists a finite sequence of strings τ_i , $1 \leq i \leq n$, such that $\tau_i \in D_i$ and $\tau_i \subset X$ for each $i=1,\ldots,n$. Consider the finite sequence c_1,\ldots,c_n where τ_i is as in (1) with $c=c_i$. For $i \neq j$ we have $\tau_i \neq \tau_j$, hence $\tau_i \subset \tau_j$ or $\tau_j \subset \tau_i$, hence $c_i < c_j$ or $c_j > c_i$, hence $c_i \neq c_j$. Thus $\{c_1,\ldots,c_n\}$ is a finite subset of C of cardinality n, Q.E.D. **Theorem 2.** BCT is not Π_1^0 -conservative over RCA₀*. Proof. Recall from [6, §X.4] and [7] that RCA_0^* is RCA_0 with Σ_1^0 induction weakened to Σ_0^0 induction plus natural number exponentiation, i.e., the assertion that m^n exists for all $m, n \in \mathbb{N}$. It is known that RCA_0^* is Π_2^0 -equivalent to Elementary Function Arithmetic [7], hence much weaker than RCA_0 which is Π_2^0 -equivalent to Primitive Recursive Arithmetic [6, §IX.3]. Since Primitive Recursive Arithmetic proves the consistency of Elementary Function Arithmetic (see for instance [4] or [6, Theorems II.8.11 and IX.3.16]), it follows that RCA_0 is not Π_1^0 -conservative over RCA_0^* . This fact together with Theorem 1 gives Theorem 2. ## Remarks. - 1. Beyond RCA_0^* one may consider even weaker base theories for reverse mathematics. In this direction there is the following result of Fernandes [2]: BCT is Π_1^1 -conservative over Σ_1^b -NIA+ ∇_1^b -CA. Note that Σ_1^b -NIA+ ∇_1^b -CA is "feasible," i.e., it does not include natural number exponentiation. - 2. Actually Fernandes [2] showed that BCT is conservative over Σ_1^b -NIA+ ∇_1^b -CA not only for Π_1^1 sentences but also for sentences of the form $(\forall X)$ (\exists unique Y) Φ where Φ is arithmetical. And Yamazaki [10] showed that Π_{∞}^0 -BCT is conservative over RCA₀ for this same class of sentences, which arose previously in connection with Tanaka's Conjecture [8, Theorem 4.18]. - 3. Our Theorems 1 and 2 were inspired by Fernandes [2, Proposition 1] and Hirschfeldt/Shore/Slaman [3, Theorem 4.3]. ## References - [1] Douglas K. Brown and Stephen G. Simpson. The Baire category theorem in weak subsystems of second order arithmetic. *Journal of Symbolic Logic*, 58:557–578, 1993. 1, 2 - [2] António M. Fernandes. The Baire category theorem over a feasible base theory. In [5], pages 164–174, 2005. 3 - [3] Denis R. Hirschfeldt, Richard A. Shore, and Theodore A. Slaman. The atomic model theorem and type omitting. *Transactions of the American Mathematical Society*, 361:5805–5837, 2009. 3 - [4] Wilfried Sieg. Fragments of arithmetic. Annals of Pure and Applied Logic, 28:33–71, 1985. 3 - [5] S. G. Simpson, editor. Reverse Mathematics 2001. Number 21 in Lecture Notes in Logic. Association for Symbolic Logic, 2005. X + 401 pages. 3 - [6] Stephen G. Simpson. Subsystems of Second Order Arithmetic. Perspectives in Mathematical Logic. Springer-Verlag, 1999. XIV + 445 pages; Second Edition, Perspectives in Logic, Association for Symbolic Logic, Cambridge University Press, 2009, XVI+ 444 pages. 1, 3 - [7] Stephen G. Simpson and Rick L. Smith. Factorization of polynomials and Σ_1^0 induction. Annals of Pure and Applied Logic, 31:289–306, 1986. 1, 3 - [8] Stephen G. Simpson, Kazuyuki Tanaka, and Takeshi Yamazaki. Some conservation results on weak König's lemma. Annals of Pure and Applied Logic, 118:87–114, 2002. 3 - [9] Stephen G. Simpson and Keita Yokoyama. Reverse mathematics and Peano categoricity. *Annals of Pure and Applied Logic*, 164:284–293, 2013. 1, 2 - [10] Takeshi Yamazaki. Some more conservation results on the Baire Category Theorem. *Mathematical Logic Quarterly*, 46(1):105–110, 2000. 3 - [11] Keita Yokoyama. On the strength of Ramsey's Theorem without Σ_1 -induction. Mathematical Logic Quarterly, 59:108–111, 2013. 1