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Abstract

Let ω denote the set of natural numbers. For functions f, g : ω → ω,
we say that f is dominated by g if f(n) < g(n) for all but finitely many
n ∈ ω. We consider the standard “fair coin” probability measure on the
space 2ω of infinite sequences of 0’s and 1’s. A Turing oracle B is said
to be almost everywhere dominating if, for measure one many X ∈ 2ω,
each function which is Turing computable from X is dominated by some
function which is Turing computable from B. Dobrinen and Simpson have
shown that the almost everywhere domination property and some of its
variant properties are closely related to the reverse mathematics of mea-
sure theory. In this paper we exposit some recent results of Kjos-Hanssen,
Kjos-Hanssen/Miller/Solomon, and others concerning LR-reducibility and
almost everywhere domination. We also prove the following new result:
If B is almost everywhere dominating, then B is superhigh, i.e., 0′′ is
truth-table computable from B′, the Turing jump of B.
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1 Introduction

The concept of almost everywhere domination was originally introduced by Do-
brinen and Simpson [7] with applications to the reverse mathematics of mea-
sure theory [26, Section X.1]. Subsequent work by Binns, Cholak, Greenberg,
Kjos-Hanssen, Lerman, Miller, and Solomon [2, 5, 13, 14] has greatly illumi-
nated this concept and established its close relationship to the decisive results
on K-triviality and low-for-randomness which are due to Downey, Hirschfeldt,
Kučera, Nies, Stephan, and Terwijn [16, 9, 21, 11]. The purpose of this paper
is to update the Dobrinen/Simpson account of almost everywhere domination
by expositing this subsequent research. We provide introductory accounts of
Martin-Löf randomness, LR-reducibility, and prefix-free Kolmogorov complex-
ity as they relate to almost everywhere domination. We also prove a new result:
If B is almost everywhere dominating, then B is superhigh.

The reader who is familiar with the basic concepts and results of recursion
theory will find that our exposition in this paper is self-contained, except for
some peripheral remarks. Throughout this paper we give full proofs and strive
for simplicity and clarity.
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2 Notation

We use standard recursion-theoretic notation and terminology from Rogers [25].
We write r.e. as an abbreviation for “recursively enumerable”. If C is a Turing
oracle, we write C-recursive for “recursive relative to C”, C-r.e. for “recursively
enumerable relative to C”, etc. We write ω = {0, 1, . . . , n, . . .} to denote the set
of natural numbers. We often identify Turing oracles with subsets of ω. If E is
an expression denoting a natural number which may or may not be defined, we
write E ↓ to mean that E is defined, and E ↑ to mean that E is undefined. If
E1 and E2 are two such expressions, we write E1 ≃ E2 to mean that E1 and
E2 are both undefined or both defined with the same value. If C is a Turing
oracle, we write

C′ = {e ∈ ω | ϕ
(1),C
e (0) ↓} = the Turing jump of C.

In particular 0′ = {e ∈ ω | ϕ
(1)
e (0) ↓} = a Turing oracle for the Halting Problem.

For A,B ⊆ ω we write

A⊕B = {2n | n ∈ A} ∪ {2n+ 1 | n ∈ B},

the Turing join of A and B. We write ≤T to denote Turing reducibility. Thus
A ≤T B means that A is Turing computable from B. For A ⊆ ω we write
A = ω \ A, the complement of A. We sometimes identify A ⊆ ω with its
characteristic function χA : ω → {0, 1} given by χA(n) = 1 if n ∈ A, 0 if n /∈ A.

We write 2ω to denote the Cantor space, i.e., the set of total functions
X : ω → {0, 1}. We write 2<ω to denote the set of strings, i.e., finite sequences
of 0’s and 1’s. For σ ∈ 2<ω we write σ = 〈i0, . . . , in−1〉 where n = |σ| = the
length of σ. The empty string, denoted 〈〉, is the unique string of length 0.
Given X ∈ 2ω and n ∈ ω, we have a string X ↾ n = 〈X(0), . . . , X(n − 1)〉 of
length n. For σ ∈ 2<ω and X ∈ 2ω, we write σ ⊂ X to mean that σ is a prefix

of X , i.e., σ = X ↾ |σ|. For σ, τ ∈ 2<ω, we write σ ⊂ τ to mean that σ is a prefix

of τ , i.e., a proper initial segment of τ . We write σaτ = the concatenation, σ
followed by τ . Thus |σaτ | = |σ| + |τ |. Moreover, σ ⊂ τ if and only if σaρ = τ
for some ρ 6= 〈〉. For σ ∈ 2<ω and X ∈ 2ω we write σaX = the concatenation,
σ followed by X . Thus σ ⊂ X if and only if σaY = X for some Y .

Given σ ∈ 2<ω, we write Nσ = {X ∈ 2ω | σ ⊂ X}. Thus Nσ is a basic open
neighborhood in the Cantor space. The fair-coin probability measure µ on 2ω is
defined by µ(Nσ) = 1/2|σ|. In particular µ(2ω) = 1. A set S ⊆ 2<ω is said to be
prefix-free if there are no σ, τ ∈ S such that σ ⊂ τ . Note that if S is prefix-free
then µ(

⋃
σ∈S Nσ) =

∑
σ∈S 1/2

|σ|.
We make extensive use of the relativized arithmetical hierarchy of subsets

of 2ω. See Rogers [25, Section 15.1]. If C is a Turing oracle, then by definition

U ⊆ 2ω is Σ0,C
1 if and only if U =

⋃
σ∈S Nσ for some C-r.e. set S ⊆ 2<ω. A well

known fact is that for any such U we can find such an S which is prefix-free.
By definition, P ⊆ 2ω is Π0,C

1 if and only if its complement P = 2ω \ P is Σ0,C
1 .

Note that µ(P ) = 1 − µ(P ). Because 2ω is compact, a Σ0,C
1 set U ⊆ 2ω is

Π0,C
1 if and only if U =

⋃
σ∈F Nσ for some finite F ⊆ 2<ω. This is the same as
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saying that U is clopen, i.e., closed and open, in 2ω. Again, we may take F to
be prefix-free.

3 Randomness

Our work in this paper is based on a robust concept of randomness relative to
a Turing oracle. The original, unrelativized concept is due to Martin-Löf [17]
and has been studied by Kučera [15] and many others.

Definition 3.1 (Martin-Löf 1966). Let C be a Turing oracle. We say that

X ∈ 2ω is C-random if X /∈
⋂
n U

C
n for all uniformly Σ0,C

1 sequences of sets
UCn ⊆ 2ω, n = 0, 1, 2, . . . such that µ(UCn ) ≤ 1/2n for all n. Such a sequence is
called a Martin-Löf test for C-randomness.

Theorem 3.2 (Martin-Löf 1966, Kučera 1985). We can construct a universal

Martin-Löf test. In other words, we can find uniformly Σ0,C
1 sets UCn , n =

0, 1, 2, . . . such that µ(UCn ) ≤ 1/2n and, for all X ∈ 2ω and all Turing oracles

C, X is C-random if and only if X /∈
⋂
n U

C
n .

Proof. Let V Ci , i = 0, 1, 2, . . . be a standard, uniform enumeration of all Σ0,C
1

subsets of 2ω. For s = 0, 1, . . . let V Ci,s be the set of X ∈ 2ω which get into V Ci by
means of a computation in ≤ s steps using only oracle information from C ↾ s.
Thus V Ci,0 ⊆ V Ci,1 ⊆ · · · ⊆ V Ci,s ⊆ · · ·, s = 0, 1, . . . is a uniformly C-recursive

sequence of clopen sets, and V Ci =
⋃
s V

C
i,s. For rational numbers r let

V Ci [r] =
⋃

µ(V C
i,s

)≤r

V Ci,s .

Intuitively, V Ci [r] is just V Ci enumerated so long as its measure is ≤ r. Note

that V Ci [r] is uniformly Σ0,C
1 , and µ(V Ci [r]) ≤ r, and V Ci [r] = V Ci if and only

if µ(V Ci ) ≤ r. Now for all e, n ∈ ω let ŨCe,n = V Ci [1/2n] if ϕ
(1)
e (n) ≃ i, and

∅ if ϕ
(1)
e (n) ↑. Again ŨCe,n is uniformly Σ0,C

1 . Moreover, for each e, the se-

quence ŨCe,n, n = 0, 1, . . . is a Martin-Löf test, and all Martin-Löf tests occur

in this way. Finally let UCn =
⋃
e Ũ

C
e,e+n+1. Then UCn is uniformly Σ0,C

1 , and

µ(UCn ) ≤
∑

e 1/2
e+n+1 = 1/2n for all n, so UCn , n = 0, 1, . . . is a Martin-Löf

test. Moreover, for an arbitrary Martin-Löf test ŨCe,n, n = 0, 1, . . ., we have⋂
n Ũ

C
e,n ⊆

⋂
n U

C
n . Thus UCn , n = 0, 1, . . . is a universal Martin-Löf test. �

Corollary 3.3 (Kučera 1985). For any Turing oracle C, the set

RC = {X ∈ 2ω | X is C-random}

is uniformly Σ0,C
2 and of measure 1.

Proof. By Theorem 3.2 let UCn , n = 0, 1, . . . be a universal Martin-Löf test for

C-randomness. Then RC = 2ω \
⋂
n U

C
n . Moreover UCn is uniformly Σ0,C

1 , hence
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⋂
n U

C
n is uniformly Π0,C

2 , hence RC is uniformly Σ0,C
2 . Also µ(UCn ) ≤ 1/2n for

all n, hence µ(
⋂
n U

C
n ) = 0, hence µ(RC) = 1. �

We now present van Lambalgen’s Theorem, from [30].

Lemma 3.4. Assume that A ⊕ B is random. Then A is B-random, and B is

A-random. In particular, A and B are random.

Proof. Suppose for instance that B is not A-random. Then B ∈
⋂
n V

A
n where

V An is uniformly Σ0,A
1 of measure ≤ 1/2n. Let Wn = {X ⊕ Y | X ∈ 2ω, Y ∈

V Xn [1/2n]} and note that Wn is uniformly Σ0
1 of measure ≤ 1/2n. We have

A⊕B ∈
⋂
nWn, contradicting the assumption that A⊕B is random. �

Lemma 3.5 (Solovay’s Lemma). Assume A is random. Let Un ⊆ 2ω, n =
0, 1, . . . be uniformly Σ0

1 such that
∑∞

n=0 µ(Un) < ∞. Then ∃<∞n (A ∈ Un),
i.e., {n | A ∈ Un} is finite.

Proof. For each k let Wk = {X | ∃≥kn (X ∈ Un)}. Let c be such that∑∞
n=0 µ(Un) ≤ c. We claim that µ(Wk) ≤ c/k. To see this, let WN

k = {X |
(∃≥kn ≤ N) (X ∈ Un)} and note that Wk =

⋃
NW

N
k . For all N we have

c ≥
∑∞

n=0 µ(Un) ≥
∑N

n=0 µ(Un) =
∑N

n=0

∫
2ω
Un(X) dX

=
∫
2ω

∑N
n=0 Un(X) dX ≥

∫
2ω kW

N
k (X) dX = k µ(WN

k )

so µ(WN
k ) ≤ c/k for all N . It follows that µ(Wk) ≤ c/k, and our claim is

proved. Since A is random and Wk is uniformly Σ0
1, we have A /∈

⋂
kWk, hence

A /∈Wk for some k, hence ∃<kn (A ∈ Un). This proves the lemma. �

Theorem 3.6 (van Lambalgen’s Theorem). A⊕B is random if and only if A
is random and B is A-random.

Proof. The “only if” direction follows from Lemma 3.4. For the “if” direction,
assume that A ⊕ B is not random. We have A ⊕ B ∈

⋂
nWn where Wn is

uniformly Σ0
1 with µ(Wn) ≤ 1/2n. By passing to a subsequence, we may assume

that µ(Wn) ≤ 1/22n. Let Un = {X | µ({Y | X ⊕ Y ∈ Wn}) > 1/2n} and note
that Un is uniformly Σ0

1. Moreover µ(Un) ≤ 1/2n for all n, because otherwise
we would have

µ(Wn) > µ(Un) ·
1

2n
>

1

2n
·
1

2n
=

1

22n
,

a contradiction. Since A is random, it follows by Lemma 3.5 that {n | A ∈ Un}
is finite. Thus for all but finitely many n we have A /∈ Un, i.e., µ({Y | A⊕ Y ∈
Wn}) ≤ 1/2n. Let V An = {Y | A ⊕ Y ∈ Wn}. Then µ(V An ) ≤ 1/2n for all but

finitely many n, and V An is uniformly Σ0,A
1 . Moreover B ∈

⋂
n V

A
n , contradicting

the assumption that B is A-random. �

Next we present the Kučera/Gács Theorem, from Kučera [15].
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Lemma 3.7. Let P ⊆ 2ω be Π0
1 of positive measure. Then for all X ∈ 2ω there

exists Y ∈ P such that Y ≤T X ⊕ 0′ and X ≤T Y .

Proof. Claim: If µ(P ∩ Nσ) ≥ 1/2k where k ≥ 1, then there are at least two
strings τ ⊃ σ such that |τ | = 2k and µ(P ∩Nτ ) ≥ 1/24k.

To prove the claim, note first that µ(Nσ) = 1/2|σ| ≥ 1/2k, hence |σ| ≤ k <
2k since k ≥ 1. If the conclusion of the claim were false, we would have

µ(P ∩Nσ) =
∑

τ⊃σ, |τ |=2k

µ(P ∩Nτ )

≤
1

22k
+
(
22k−|σ| − 1

) 1

24k
<

1

22k
+ 22k

1

24k
≤

1

2k

contradicting the hypothesis of the claim.
To prove Lemma 3.7, assume that P ⊆ 2ω is Π0

1 with µ(P ) > 0, say µ(P ) ≥
1/2k where k ≥ 1. Note that N〈〉 = 2ω, hence µ(P ∩ N〈〉) = µ(P ) ≥ 1/2k.
Applying our claim repeatedly, define f : 2<ω → 2<ω as follows. Let f(〈〉) = 〈〉.
Suppose inductively that f(ρ) has already been defined. Let ki = 4ik where
i = |ρ|. Let f(ρa〈0〉) (respectively f(ρa〈1〉)) be the lexicographically leftmost
(respectively rightmost) τ ⊃ f(ρ) such that |τ | = 2ki and µ(P ∩Nτ ) ≥ 1/24ki.
Our claim implies that f(ρa〈0〉) and f(ρa〈1〉) exist and are incompatible. It is
straightforward to check that f ≤T 0′.

GivenX ∈ 2ω, let Y = f(X) =
⋃
i f(X ↾ i). Clearly Y ∈ P and Y ≤T X⊕0′.

We claim that X ≤T Y . To prove this, we describe how to compute X using
an oracle for Y . Let P =

⋂
s Ps where P0 ⊇ P1 ⊇ · · · ⊇ Ps ⊇ · · · is a recursive

sequence of clopen sets. Suppose we have already computed ρ = X ↾ i. We also
have f(ρ) = Y ↾ 2ki−1 if i > 0, or 〈〉 if i = 0. Our construction implies that
Y ↾ 2ki is either the leftmost or the rightmost τ ⊃ f(ρ) of length 2ki such that
µ(P ∩ Nτ ) ≥ 1/24ki . Therefore, for all sufficiently large stages s, we will have
µ(Ps ∩Nτ ) < 1/24ki for all τ ⊃ f(ρ) of length 2ki lying to the left (respectively
right) of Y ↾ 2ki. When such a stage s is reached, then at that point we see
that X(i) = 0 (respectively X(i) = 1). This completes the proof. �

Theorem 3.8 (Kučera/Gács Theorem). For any X ≥T 0′ we can find a random

Y such that Y ≡T X.

Proof. By Corollary 3.3 let P ⊆ 2ω be Π0
1 of positive measure such that ∀Y (Y ∈

P ⇒ Y is random). Applying Lemma 3.7 to any X ≥T 0′, we obtain Y ∈ P
such that X ≡T Y . �

Corollary 3.9. Assume that A is random and A ≤T B and B is C-random
and C ≥T 0′. Then A is C-random.

Proof. Since C ≥T 0′, we may assume by the Kučera/Gács Theorem that C is
random. Since B is C-random and C is random, it follows by van Lambalgen’s
Theorem that B⊕C is random, hence C is B-random. Since A ≤T B, it follows
that C is A-random. Now, since A is random, it follows that A⊕C is random,
hence A is C-random. �
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Remarkably, the previous corollary holds even without the assumption C ≥T
0′. We mention without proof the following theorem of Miller/Yu [18].

Theorem 3.10 (Miller/Yu 2004). If A is random and A ≤T B where B is

C-random, then A is C-random.

4 LR-reducibility

In this section we study the following reducibility notion, which was originally
introduced by Nies [21, Section 8].

Definition 4.1 (Nies 2002). Let A and B be Turing oracles. We say that A is
LR-reducible to B, abbreviated A ≤LR B, if

∀X (X is B-random ⇒ X is A-random).

Remark 4.2. Obviously the binary relation ≤LR is transitive and reflexive.
Note also that, as a reducibility relation, ≤LR is at least as coarse as Turing
reducibility. In other words, A ≤T B implies A ≤LR B. In Section 6 we shall
construct an A ≤LR 0 such that A 6≤T 0, i.e., A is not recursive. Thus ≤LR

does not coincide with ≤T .

Remark 4.3. Evidently the reducibility relation ≤LR is closely related to the
notion of low-for-randomness, which was first introduced by Zambella [31] and
has been studied extensively by Kučera/Terwijn [16], Terwijn/Zambella [29],
Downey/Hirschfeldt/Nies/Stephan [9], Hirschfeldt/Nies/Stephan [11], and Nies
[21]. By definition, A is low-for-random if and only if A ≤LR 0. Relativizing to
B, we see that A is low-for-random relative to B if and only if A⊕B ≤LR B.

However, caution is required, because in general A ≤LR B is not equivalent
to A being low-for-random relative to B. In Section 6 we shall construct a
Turing oracle C such that 0′ ≤LR C yet 0′ is not low-for-random relative to
C. We shall also see that the binary relation “A is low-for-random relative to
B” is not transitive. Indeed, we shall construct Turing oracles B and C such
that B ≤T 0′ ≤LR B ≤T C, hence 0′ is low-for-random relative to B and B is
low-for-random relative to C, yet 0′ is not low-for-random relative to C. See
Theorem 6.10.

Remark 4.4. Another way to distinguish≤LR from relative low-for-randomness
is as follows. It can be shown (see Lemma 7.4 and Remark 10.12) that if A is
low-for-random relative to B then A ≤T B′, hence for each B there are only
countably many such A. But Miller and Yu [18, 19] have constructed a B such
that {A | A ≤LR B} is uncountable. Recently Barmpalias/Lewis/Soskova [1]
have shown that this holds for any B which is generalized superhigh.

Remark 4.5. On the other hand, consider the equivalence relation ≡LR defined
by letting A ≡LR B if and only if A ≤LR B and B ≤LR A. It can be shown (see
Remark 10.12) that if A ≡LR B then A is low-for-random relative to B and B
is low-for-random relative to A. It follows that each ≡LR-equivalence class is
countable.
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We now prove the following theorem due to Kjos-Hanssen [13].

Theorem 4.6 (Kjos-Hanssen 2005). The following statements are pairwise

equivalent.

1. A ≤LR B.

2. Each Π0,A
1 set of positive measure includes a Π0,B

1 set of positive measure.

3. There exists a Π0,A
1 set P such that ∀X (X ∈ P ⇒ X is A-random) and

P includes a Π0,B
1 set of positive measure.

4. There exists a Π0,B
1 set Q of positive measure such that ∀Y (Y ∈ Q ⇒ Y

is A-random).

Proof. In order to prove Theorem 4.6, we first prove several lemmas.

Lemma 4.7. Fix a Turing oracle B, and let P ⊆ 2ω be Π0,B
1 . The following

statements are pairwise equivalent.

(a) P is of positive measure.

(b) ∃Q (Q ⊆ P and Q is nonempty Π0,B
1 and ∀X (X ∈ Q⇒ X is B-random)).

(c) ∃X (X ∈ P and X is B-random).

Proof. By Corollary 3.3, {X ∈ 2ω | X is B-random} is Σ0,B
2 and of measure 1.

From this it follows easily that (a) ⇒ (b). Trivially (b) ⇒ (c). In order to prove
(c) ⇒ (a), assume µ(P ) = 0. We have P =

⋂
s Ps where P0 ⊇ P1 ⊇ · · · ⊇ Ps ⊇

· · · is a B-recursive sequence of clopen sets. Hence lims µ(Ps) = µ(P ) = 0. Let
Uk = Pf(k) where f(k) = least s such that µ(Ps) ≤ 1/2k. Then Uk, k = 1, 2, . . .
is a Martin-Löf test for B-randomness, and P =

⋂
k Uk. Hence no X ∈ P is

B-random, Q.E.D. �

Lemma 4.8. Assume that Q is Π0,B
1 such that ∀X (X ∈ Q⇒ X is B-random).

Then ∀σ (Q ∩Nσ 6= ∅ ⇒ Q ∩Nσ is of positive measure).

Proof. This follows easily from Lemma 4.7. �

The proof of Theorem 4.6 is based on the following idea, which goes back to
Kučera [15].

Definition 4.9 (Kučera 1985). Let U, V ⊆ 2ω be Σ0,A
1 . We define a product

operation. Let U =
⋃
σ∈S Nσ and V =

⋃
τ∈T Nτ where S, T ⊆ 2<ω are A-r.e.

and prefix-free. We define the product

UV =
⋃

σ∈S,τ∈T

Nσaτ .

Note that {σaτ | σ ∈ S, τ ∈ T } is again A-r.e. and prefix-free. Note also that:

8



(a) UV is Σ0,A
1 .

(b) Given indices of U and V qua Σ0,A
1 sets, we can compute an index of UV

qua Σ0,A
1 set.

(c) UV ⊆ U .

(d) µ(UV ) = µ(U)µ(V ).

(e) The product is associative, i.e., (UV )W = U(VW ).

Definition 4.10 (Kučera 1985). Dually, let P,Q ⊆ 2ω be Π0,A
1 . We define the

product PQ = P Q, where P = 2ω \ P . Note that:

(a) PQ is Π0,A
1 .

(b) Given indices of P and Q qua Π0,A
1 sets, we can compute an index of PQ

qua Π0,A
1 set.

(c) PQ ⊇ P .

(d) µ(PQ) = 1− (1− µ(P ))(1 − µ(Q)).

(e) The product is associative, i.e., (PQ)R = P (QR).

We now begin the proof of Theorem 4.6. Let us say that P ⊆ 2ω is fat if it
includes a Π0,B

1 set of positive measure. The implication 1 ⇒ 2 of Theorem 4.6
may be rephrased as follows:

If A ≤LR B, then every Π0,A
1 set of positive measure is fat.

Our proof of this statement will use the following lemma.

Lemma 4.11 (Kjos-Hanssen 2005). Let P,Q ⊆ 2ω be Π0,A
1 . If PQ is fat, then

at least one of P and Q is fat.

Proof. Let U = P . Then U is Σ0,A
1 , say U =

⋃
σ∈S Nσ where S ⊆ 2<ω is A-r.e.

and prefix-free. We have PQ = P ∪
⋃
σ∈S(σ

aQ) where σaQ = {σaX | X ∈ Q}.

Suppose now that PQ is fat, say R ⊆ PQ where R is Π0,B
1 and µ(R) > 0. By

Lemmas 4.7 and 4.8 we may safely assume that ∀X (X ∈ R⇒ X is B-random),
hence ∀σ (R ∩ Nσ 6= ∅ ⇒ µ(R ∩Nσ) > 0). If R ⊆ P then P is fat and we are
done. Otherwise there exists σ ∈ S such that R∩Nσ 6= ∅, hence µ(R∩Nσ) > 0.
But R ∩Nσ = R ∩ (σaQ) ⊆ σaQ, hence σaQ is fat, hence Q is fat, Q.E.D. �

We now prove the implication 1 ⇒ 2 of Theorem 4.6. Assume A ≤LR B and
suppose that P is Π0,A

1 of positive measure. We must show that P is fat.
Let U = P , so µ(U) = 1− µ(P ) < 1. Let n be such that µ(U)n < 1/2. Let

Uk = U · · ·U (k times) and P k = P · · ·P (k times). Note that Uk = P k. We
have µ(Unk) = µ(U)nk < 1/2k, hence Unk, k = 1, 2, . . . is a Martin-Löf test for
A-randomness. It follows that ∀X (X ∈

⋂
k U

k ⇒ X is not A-random).
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By Lemma 4.7 let Q be nonempty Π0,B
1 such that ∀X (X ∈ Q ⇒ X is

B-random). By Lemma 4.8 we have ∀σ (Q ∩Nσ 6= ∅ ⇒ µ(Q ∩Nσ) > 0).
We claim that ∃σ ∃k (Q∩Nσ 6= ∅ and Q∩Nσ∩Uk = ∅). Otherwise we would

have ∀σ ∀k (Q ∩Nσ 6= ∅ ⇒ Q ∩Nσ ∩ Uk 6= ∅). Therefore, since Uk is Σ0,A
1 , we

would be able to find σ0 ⊂ σ1 ⊂ · · · ⊂ σk ⊂ · · · such that Nσk
∩ Q 6= ∅ and

Nσk
⊆ Uk for all k. Setting X =

⋃
k σk we would have X ∈ Q and X ∈

⋂
k U

k.
Thus X would be B-random but not A-random, contradicting our assumption
A ≤LR B. This proves our claim.

Let σ and k be as in our claim. We then have Q ∩ Nσ ⊆ P k, hence P k is
fat. It follows by Lemma 4.11 that P is fat. This completes the proof of 1 ⇒ 2.

It remains to prove 2 ⇒ 3 and 3 ⇒ 4 and 4 ⇒ 1. The implication 2 ⇒ 3
follows easily from Lemma 4.7. The implication 3 ⇒ 4 is trivial. In order to
prove 4 ⇒ 1, we first prove the following lemma due to Kučera [15].

Lemma 4.12 (Kučera 1985). Let P be Π0,A
1 of positive measure. Then for all

A-random X there exist σ and Y such that X = σaY and Y ∈ P .

Proof. Suppose P is Π0,A
1 of positive measure. As before let U = P =

⋃
σ∈S Nσ

where S is A-r.e. and prefix-free. Define Uk and P k as before. Suppose X is
A-random. Since Uk, k = 1, 2, . . . is a Martin-Löf test for A-randomness, we
have X /∈ Uk for some k. Choosing the least such k, we have X ∈ Uk−1 ∩ P k,
i.e., X = σ1

a · · ·aσk−1
aY for some σ1, . . . , σk−1 ∈ S and Y ∈ P . Letting

σ = σ1
a · · ·aσk−1 we have X = σaY , Q.E.D. �

We now prove 4 ⇒ 1. Assuming 4, let Q be Π0,B
1 of positive measure such

that ∀Y (Y ∈ Q ⇒ Y is A-random). To prove 1, suppose X is B-random.
Applying Lemma 4.12 with Q and B in place of P and A, we have X = σaY
for some Y ∈ Q. It follows that Y is A-random. Hence X is A-random. Thus
A ≤LR B, Q.E.D.

This completes the proof of Theorem 4.6. �

Corollary 4.13 (Kjos-Hanssen 2005). The binary relation A ≤LR B is Σ0
3.

Proof. Let PCi , i ∈ ω be a standard, uniform enumeration of all Π0,C
1 subsets of

2ω, where C is a Turing oracle. Fix e ∈ ω such that for all C, PCe is of positive
measure1 and ∀X (X ∈ PCe ⇒ X is C-random). By Theorem 4.6, A ≤LR B is
equivalent to ∃i (µ(PBi ) > 0 and PBi ⊆ PAe ). A Tarski/Kuratowski computation
(see Rogers [25, Section 14.3]) shows that this is Σ0

3. �

Similarly one can prove:

Corollary 4.14 (Kjos-Hanssen 2005). The ternary relation A′ ⊕ B ≤LR C is

Σ0
3. More generally, for each k the k+2-ary relation A′

1 ⊕ · · · ⊕A′
k ⊕B ≤LR C

is Σ0
3.

1For example, we may take PC
e = 2ω \UC

1
where UC

n , n = 0, 1, . . . is a universal Martin-Löf

test for C-randomness as in Theorem 3.2.
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Remark 4.15. Earlier Nies had proved that {A | A ≤LR 0} is Σ0
3. Another

interesting result due to Nies and Hirschfeldt (see Remark 10.12 below) is that
if A ≤LR 0 and B ≤LR 0 then A ⊕ B ≤LR 0. Thus {A | A ≤LR 0} is a Σ0

3

Turing ideal. See Nies [21, Theorems 6.2 and 7.9].

5 Almost everywhere domination

In this section we exposit some recent results of Kjos-Hanssen/Miller/Solomon
[14] concerning almost everywhere domination. We begin by reviewing some
earlier definitions and results of Dobrinen/Simpson [7] and Kjos-Hanssen [13].

Definition 5.1 (Dobrinen/Simpson 2003).

1. Let f, g : ω → ω be total functions. We say that f is dominated by g if
f(n) < g(n) for all but finitely many n.

2. We say that B is almost everywhere dominating if, for measure 1 many
X ∈ 2ω, each X-recursive function is dominated by some B-recursive
function.

3. We say that B is uniformly almost everywhere dominating if there is a
fixed B-recursive function which dominates all X-recursive functions for
measure 1 many X ∈ 2ω.

Theorem 5.2 (Dobrinen/Simpson 2003). The following statements are pair-

wise equivalent.

1. B is uniformly almost everywhere dominating.

2. Every Π0
2 subset of 2ω includes a Σ0,B

2 set of the same measure.

3. Every Π0,0′

1 subset of 2ω includes a Σ0,B
2 set of the same measure.

Proof. See Dobrinen/Simpson [7, Theorem 3.2]. �

Theorem 5.3 (Dobrinen/Simpson 2003). The following statements are pair-

wise equivalent.

1. B is almost everywhere dominating.

2. Given a Π0
2 set Q ⊆ 2ω, and given ǫ > 0, we can find a Π0,B

1 set P ⊆ Q
such that µ(P ) ≥ µ(Q)− ǫ.

3. Given a Π0,0′

1 set Q ⊆ 2ω, and given ǫ > 0, we can find a Π0,B
1 set P ⊆ Q

such that µ(P ) ≥ µ(Q)− ǫ.

Proof. See Dobrinen/Simpson [7, Theorem 3.3]. �

In light of the above results plus Dobrinen/Simpson [7, Conjecture 3.1, State-
ment 4], the following definition has been made by Kjos-Hanssen [13].
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Definition 5.4 (Kjos-Hanssen 2005). We say that B is positive-measure domi-

nating if every Π0
2 subset of 2

ω of positive measure includes a Π0,B
1 set of positive

measure. Equivalently, every Π0,0′

1 subset of 2ω of positive measure includes a

Π0,B
1 set of positive measure.

We then have:

Theorem 5.5 (Kjos-Hanssen 2005). B is positive-measure dominating if and

only if 0′ ≤LR B.

Proof. This is immediate from the special case A = 0′ of Theorem 4.6. �

Corollary 5.6 (Kjos-Hanssen 2005). The set

PMD = {B | B is positive-measure dominating}

is Σ0
3.

Proof. This is immediate from Theorem 5.5 and Corollary 4.14. �

Our main goal in this section will be to prove the following theorem.

Theorem 5.7 (Kjos-Hanssen/Miller/Solomon 2006).
The following properties of a Turing oracle B are pairwise equivalent.

1. B is uniformly almost everywhere dominating.

2. B is almost everywhere dominating.

3. B is positive-measure dominating.

4. 0′ ≤LR B.

Remark 5.8. Theorems 5.2, 5.3, 5.5, and 5.7 have implications for the re-
verse mathematics of measure-theoretic regularity. See Dobrinen/Simpson [7],
Binns/Kjos-Hanssen/Lerman/Solomon [2], Cholak/Greenberg/Miller [5], Kjos-
Hanssen [13], and Kjos-Hanssen/Miller/Solomon [14]. Namely, it now appears
likely that all of the measure-theoretic regularity statements considered by Do-
brinen/Simpson [7] are in some sense equivalent.

Corollary 5.9 (Kjos-Hanssen/Miller/Solomon 2006).
The sets

AED = {B | B is almost everywhere dominating}

and

UAED = {B | B is uniformly almost everywhere dominating}

are Σ0
3. In fact, AED = UAED = PMD.

Proof. This is immediate from Corollary 5.6 and Theorem 5.7. �
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Remark 5.10. Corollaries 5.6 and 5.9 are of significance for the study of weak
degrees (a.k.a., Muchnik degrees) of mass problems associated with nonempty
Π0

1 subsets of 2ω. This aspect has been examined in Kjos-Hanssen [13] and in
Simpson [28]. See also Simpson [27] for some newer results.

We now turn to the proof of Theorem 5.7. The proof (see Remark 5.14
below) will be based on the following lemma and theorem.

Lemma 5.11 (Kjos-Hanssen/Miller/Solomon 2006).
Assume A ≤LR B. Let f : ω → ω be recursive. For all A-r.e. sets I such that∑
i∈I 1/2

f(i) <∞, there exists a B-r.e. set J ⊇ I such that
∑
i∈J 1/2

f(i) <∞.

Proof. We use the following fact from analysis. Given 0 < ai < 1, i = 0, 1, . . .,
we have

∑∞
i=0 ai <∞ if and only if

∏∞
i=0(1− ai) > 0.

See for instance Olmstead [23, Theorem III, page 525].
To prove our lemma, let A,B, f, I be as in the hypotheses of the lemma. We

may safely assume that f(i) 6= 0 for all i. Let

Di = {X ∈ 2ω | ∃n (X(n) = 1 and g(i) ≤ n < g(i+ 1))}

where g(i) =
∑i−1

k=0 f(k). Note that the Di’s are mutually independent and

clopen and µ(Di) = 1 − 1/2f(i). Consider the Π0,A
1 set P =

⋂
i∈I Di. By

hypothesis
∑
i∈I 1/2

f(i) <∞, hence

µ(P ) =
∏
i∈I µ(Di) =

∏
i∈I(1− 1/2f(i)) > 0.

Let Q ⊆ P be Π0,B
1 such that µ(Q) > 0. Let J = {i | Di ⊇ Q}. Clearly J ⊇ I

and J is B-r.e. Moreover
⋂
i∈J Di ⊇ Q, hence

∏
i∈J(1− 1/2f(i)) =

∏
i∈J µ(Di) = µ(

⋂
i∈J Di) ≥ µ(Q) > 0,

hence
∑

i∈J 1/2
f(i) <∞, Q.E.D. �

Remark 5.12. Under the same hypothesis, A ≤LR B, we can obtain the fol-
lowing stronger conclusion. Given a recursive sequence of recursive real numbers
ri ≥ 0, i = 0, 1, . . ., and given an A-r.e. set I such that

∑
i∈I ri < ∞, we can

effectively find a B-r.e. set J ⊇ I such that
∑
i∈J ri <∞.

Theorem 5.13 (Kjos-Hanssen/Miller/Solomon 2006).

Assume A ≤LR B and A ≤T B′. Then every Π0,A
1 subset of 2ω includes a Σ0,B

2

set of the same measure.

Proof. Assume A ≤LR B and A ≤T B′. We must show that every Π0,A
1 set

includes a Σ0,B
2 set of the same measure. Equivalently, we shall show that every

Σ0,A
1 set is included a Π0,B

2 set of the same measure.

Let U ⊆ 2ω be Σ0,A
1 . Write
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U = {X | ∃n (X ↾ n ∈ SA)}

where SA ⊆ 2<ω is A-r.e. and prefix-free. Let

I = {(σ, τ) | τ ∈ SA with use σ ⊂ A}.

Thus U = {X | ∃n ∃σ ((σ,X ↾ n) ∈ I)}. Clearly I is A-r.e. and
∑

(σ,τ)∈I 1/2
|τ | =

∑
τ∈SA 1/2|τ | ≤ 1.

By Lemma 5.11 let J ⊇ I be B-r.e. such that
∑

(σ,τ)∈J 1/2
|τ | <∞.

We may safely assume that A ∈ 2ω. Since A ≤T B′, let A = limsAs be a
B-recursive approximation of A. Let

Vs = {X ∈ 2ω | ∃n ∃σ ((σ,X ↾ n) ∈ Js)}

where

Js = {(σ, τ) ∈ J | ∃t ≥ s (τ ∈ SAt with use σ ⊂ At)}.

Clearly
⋂
s Vs is Π0,B

2 . Moreover I ⊆
⋂
s Js, hence U ⊆

⋂
s Vs.

Claim 1: I =
⋂
s Js.

To see this, suppose (σ, τ) /∈ I. Then either (1) σ 6⊂ A, or (2) σ ⊂ A but
τ is not in SA with use σ. In case (1) we have σ 6⊂ At for all sufficiently large
t, hence (σ, τ) /∈

⋂
s Js. In case (2) we have σ ⊂ At for all sufficiently large t,

hence τ is not in SAt with use σ, hence again (σ, τ) /∈
⋂
s Js, proving our claim.

Claim 2: µ(U) = µ(
⋂
s Vs).

To see this, fix ǫ > 0. Let F be a finite subset of J such that
∑

(σ,τ)∈J\F 1/2|τ | <

ǫ. Let s be so large that, for all (σ, τ) ∈ F , if (σ, τ) /∈ I then (σ, τ) /∈ Js. Then

µ(Vs \ U) ≤
∑

(σ,τ)∈Js\I
1/2|τ | ≤

∑
(σ,τ)∈J\F 1/2|τ | < ǫ

proving our claim.

This completes the proof of Theorem 5.13. �

Remark 5.14. Theorem 5.7 is just the special case A = 0′ of Theorem 5.13 in
light of Theorems 5.2, 5.3, 5.5.

6 Some examples

We have seen in Theorem 5.3 that every Turing oracle B ≥T 0′ is almost every-
where dominating. In this section we construct a B <T 0′ which is almost every-
where dominating. Such examples were first given by Cholak/Greenberg/Miller
[5]. We also construct a C such that 0′ ≤LR C yet 0′ is not low-for-random
relative to C.

To obtain our examples, we combine a construction of Kučera/Terwijn [16]
with the Pseudojump Inversion Theorem of Jockusch/Shore [12] and the Join
Theorem of Posner/Robinson [24].
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Theorem 6.1 (Kučera/Terwijn 1997). We can find a nonrecursive r.e. set

A ⊆ ω such that A ≤LR 0, i.e., A is low-for-random.

Proof. By Corollary 3.3 we know that {X ∈ 2ω | X is random} is Σ0
2 and of

measure 1. Therefore, we can find a Π0
1 set P ⊆ 2ω such that µ(P ) > 1/2

and ∀X (X ∈ P ⇒ X is random). By uniformly relativizing the construction

of P to an arbitrary Turing oracle C, we obtain2 a Π0,C
1 set PC ⊆ 2ω such

that µ(PC) > 1/2 and ∀X (X ∈ PC ⇒ X is C-random). For C ∈ 2ω let

UC = PC = 2ω \ PC . Note that UC is uniformly Σ0,C
1 and µ(UC) < 1/2.

To prove the theorem, we shall build a nonrecursive r.e. set A and a Σ0
1 set

V ⊇ UA such that µ(V ) < 1. Letting Q = 2ω \ V , it will follow that Q is a Π0
1

subset of PA of positive measure. Hence by Theorem 4.6 A ≤LR 0, Q.E.D.
It remains to build A and V as specified.
We first establish some notation. Let We, e = 0, 1, . . . be a recursive enu-

meration of the r.e. subsets of ω. Let We,s be the set of n ∈ ω which get into
We by means of a computation in ≤ s steps. Thus We =

⋃
sWe,s. Let UCs be

the set of X ∈ 2ω which get into UC by means of a computation in ≤ s steps
using only oracle information from C ↾ s. Thus UCs , s = 0, 1, . . . is a uniformly
C-recursive sequence of clopen sets in 2ω, and UC =

⋃
s U

C
s .

Our r.e. set A ⊆ ω will be constructed as A =
⋃
sAs where A0 ⊆ A1 ⊆ · · · ⊆

As ⊆ · · · is a recursive sequence of finite sets. Let V =
⋃
s U

As
s . Clearly UA ⊆

V ⊆ 2ω and V is Σ0
1. Our construction of A will insure that µ(V \ UA) ≤ 1/2.

Since µ(UA) < 1/2, we shall have µ(V ) < 1 as desired.
Note that UAs

s , s = 0, 1, . . . is a recursive sequence of clopen sets in 2ω. Let
Vt = UAt

t \
⋃
s<t U

As
s . Then Vt, t = 0, 1, . . . is a recursive, pairwise disjoint

sequence of clopen sets in 2ω, and V =
⋃
s U

As
s =

⋃
t Vt.

Our construction of A is as follows. At stage 0 let A0 = ∅. At stage s + 1,
for each e < s such that As ∩We,s = ∅, look for n ∈ We,s such that n ≥ 2e and∑
n<t≤s µ(Vt) ≤ 1/2e+2 and put the least such n into As+1.
Finally let A =

⋃
sAs. Clearly A is r.e. By construction, for each e at most

one n is put into A for the sake of We. Therefore, our condition n ≥ 2e insures
that A = ω \A is infinite.

Lemma 6.2. For each e, if We is infinite then A ∩We 6= ∅.

Proof. Since the Vt’s are pairwise disjoint, we have
∑
t µ(Vt) = µ(

⋃
t Vt) =

µ(V ) ≤ 1. Assume that We is infinite. Let n ∈We be so large that n ≥ 2e and∑
n<t µ(Vt) ≤ 1/2e+2. Let s be so large that n ∈ We,s. Then by construction

As+1 ∩We,s 6= ∅. �

Since A is infinite, it follows that A is nonrecursive. (Actually, A is a simple
r.e. set. Compare Post’s original construction of a simple r.e. set, as exposited
in Rogers [25, Section 8.1].)

Lemma 6.3. We have µ(V \ UA) ≤ 1/2.

2For example, we may take PC = 2ω \UC
2

where UC
n , n = 0, 1, 2, . . . is a universal Martin-

Löf test for C-randomness as in Theorem 3.2.
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Proof. Given X ∈ V \ UA, let t be such that X ∈ Vt. Then X ∈ UAt

t \ UA,
hence A ↾ t 6= At ↾ t. In other words, at some stage s+1 > t, some n < t is put
into As+1 for the sake of We for some e < s. For this particular e, the set of
such X ’s is ⊆

⋃
n<t≤s Vt, hence of measure ≤

∑
n<t≤s µ(Vt) ≤ 1/2e+2. Hence

the set of all such X ’s is of measure ≤
∑

e 1/2
e+2 = 1/2. �

This completes the proof of Theorem 6.1. �

We now present the Pseudojump Inversion Theorem.

Definition 6.4. For an arbitrary Turing oracle C, let WC
e , e = 0, 1, . . . be a

standard, uniform enumeration of all C-r.e. subsets of ω. For each fixed e, the
operator Je : 2

ω → 2ω given by Je(C) = C⊕WC
e is called a pseudojump operator

or an REA-operator. (The acronym REA stands for “r.e. and above”.)

Remark 6.5. Note that the Turing jump operator J(C) = C ⊕ C′ is an ex-
ample of a pseudojump operator. The Pseudojump Inversion Theorem 6.6, due
to Jockusch/Shore [12, Theorem 2.1], is a generalization of the Jump Inver-
sion Theorem due to Friedberg (see Rogers [25, Chapter 13, Corollary IX(a)]),
replacing the Turing jump operator by an arbitrary pseudojump operator.

Theorem 6.6 (Pseudojump Inversion Theorem). For any pseudojump operator

Je and any A ≥T 0′, we can find a B such that Je(B) ≡T B ⊕ 0′ ≡T A.

Proof. For C ∈ 2ω and e ∈ ω, we write WC
e,s to denote the set of n ∈ ω

which get into WC
e by means of a computation in ≤ s steps using only oracle

information from C ↾ s. Note that WC
e =

⋃
sW

C
e,s. We also write WC

e,s = W τ
e

where τ = C ↾ s.
Given A ∈ 2ω, our construction of B is as follows. We define a sequence of

strings τ0 ⊆ τ1 ⊆ · · · ⊆ τn ⊆ · · ·, n = 0, 1, . . .. Let τ0 = 〈〉. For each n, given
τ2n, if there exists τ ⊇ τ2n such that n ∈ W τ

e , let τ2n+1 be the least such τ .
Otherwise let τ2n+1 = τ2n. For each n let τ2n+2 = τ2n+1

a〈A(n)〉. Finally let
B =

⋃
n τn. By construction, the sequence 〈τn | n ∈ ω〉 is easily seen to be

recursive in each of the Turing oracles Je(B) = B⊕WB
e and B⊕ 0′ and A⊕ 0′.

From this, the desired conclusions follow easily. �

We now use the Pseudojump Inversion Theorem to obtain an example of a
B <T 0′ such that B is almost everywhere dominating.

Theorem 6.7. There exists B <T 0′ such that B is almost everywhere domi-

nating.

Proof. By uniformly relativizing Theorem 6.1 to an arbitrary Turing oracle C,
we obtain a pseudojump operator Je such that for all C, Je(C) is >T C and
≤LR C. Applying the Pseudojump Inversion Theorem 6.6 to this operator, we
see that for all A ≥T 0′ there exists B <T A such that A ≡T B ⊕ 0′ and
A ≤LR B. (Then by Theorem 8.9 we necessarily have A′ ≤tt B′.) In particular,
letting A = 0′, we obtain B <T 0′ such that 0′ ≤LR B. (Then by Theorem
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8.9 we necessarily have 0′′ ≤tt B′.) By Theorem 5.7 B is almost everywhere
dominating. �

Remark 6.8. In the example of Theorem 6.7, we have 0′ ⊕ B ≡T 0′ ≤LR B,
hence 0′ is low-for-random relative to B. We now use the Join Theorem of
Posner/Robinson [24] to obtain a different kind of example, namely a C such
that 0′ ≤LR C, hence C is almost everywhere dominating, yet 0′ is not low-for-
random relative to C.

Theorem 6.9 (Join Theorem). Given A such that 0 <T A ≤T 0′, we can find

a C such that A⊕ C ≡T C′ ≡T 0′.

Proof. See Posner/Robinson [24]. �

Theorem 6.10. There exists C such that C is almost everywhere dominating

yet 0′ is not low-for-random relative to C.

Proof. Let B be as in Theorem 6.7, i.e., B <T 0′ and 0′ ≤LR B. Relativizing
the Join Theorem 6.9 to B and letting A = 0′, we obtain C such that B ≤T C
and 0′ ⊕ C ≡T C′ ≡T B′. We then have 0′ ≤LR B ≤T C, hence 0′ ≤LR C. (It
follows that C′ ≤T 0′′ and 0′′ ≤tt C′.) By Theorem 5.7 C is almost everywhere
dominating. We claim that 0′⊕C 6≤LR C, i.e., 0′ is not low-for-random relative
to C. To see this, note that 0′ ⊕ C ≤LR C would imply (0′ ⊕ C)′ ≤T C′ (see
Theorem 8.8) which would imply C′′ ≤T C′, a contradiction. �

7 Remarks on Theorem 5.13

This section consists of some technical remarks showing that Theorem 5.13 is,
in various senses, best possible.

Remark 7.1. The converse of Theorem 5.13 holds. In other words, if every
Π0,A

1 set includes a Σ0,B
2 set of the same measure, then A ≤LR B and A ≤T B′.

To see this, assume the conclusion of Theorem 5.13, i.e., every Π0,A
1 set

includes a Σ0,B
2 set of the same measure. Then A ≤LR B in view of Theorem

4.6. It remains to prove A ≤T B′. Consider the Σ0,A
1 set U =

⋃
n∈AOn where

On = {X ∈ 2ω | 〈0, . . . , 0︸ ︷︷ ︸
n

, 1〉 ⊂ X} .

Note that µ(U) =
∑
n∈A 1/2n+1. Our assumption implies that U ⊆ Q for some

Π0,B
2 set Q such that µ(U) = µ(Q). Write Q =

⋂
k Vk where Vk is uniformly

Σ0,B
1 . Then n ∈ A if and only if On ⊆ Q, if and only if ∀k (On ⊆ Vk), if and only

if ∀k ∃s (On ⊆ Vk,s). Thus A is Π0,B
2 . Similarly we can show that A = ω \A is

Π0,B
2 . Thus A is ∆0,B

2 , i.e., A ≤T B′, Q.E.D.

Remark 7.2. The hypothesis A ≤T B
′ cannot be dropped from Theorem 5.13.

To see this, recall from Remark 4.4 that there exists a B such that A ≤LR B for
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uncountably many A. In particular, there are uncountably many A such that
A ≤LR B yet A 6≤T B′. For such A and B, the conclusion of Theorem 5.13
cannot hold, in view of Remark 7.1.

The following special case of Theorem 5.13 seems interesting in view of
Remarks 4.3 and 4.4.

Theorem 7.3. Assume A⊕B ≤LR B, i.e., A is low-for-random relative to B.

Then every Π0,A⊕B
1 subset of 2ω includes a Σ0,B

2 set of the same measure.

Proof. We first prove a lemma which is well known. See also Remark 10.12
below.

Lemma 7.4. If A⊕B ≤LR B then A⊕B ≤T B′.

Proof. Assume A ⊕ B ≤LR B. By Theorem 10.10 we have A ⊕ B ≤LK B,
i.e., KB(τ) ≤ KA⊕B(τ) + O(1). From this it follows easily that KB(A ↾ n) ≤
KB(n)+O(1). In other words, using the terminology of Nies [21], A is K-trivial

relative to B. By Chaitin’s Theorem (see Downey/Hirschfeldt/Nies/Stephan [9,

Corollary 6.7(ii)]) relative to B, it follows that A is ∆0,B
2 , i.e., A ≤T B

′, hence
A⊕B ≤T B′. �

Theorem 7.3 is now immediate from Theorem 5.13 plus Lemma 7.4. �

Remark 7.5. Comparison of Theorems 5.13 and 7.3 suggests the following
question. If A ≤LR B and A ≤T B′, does it follow that A ⊕ B ≤LR B? The
answer to this question is negative. Indeed, letting C be as in Theorem 6.10,
we have 0′ ≤LR C and 0′′ ≤tt C′ yet 0′ ⊕ C 6≤LR C.

Question 7.6. If A ≤LR B and (A⊕B)′ ≤tt B′, does it follow that A⊕B ≤LR

B? (Compare Theorem 8.9 below.)

8 Superhighness

In this section we present some new results concerning the relationship between
LR-reducibility and truth-table reducibility.

Remark 8.1. Recall from Rogers [25, Chapters 8 and 9] the notion of truth-
table reducibility, denoted ≤tt. A result of Nerode (see Rogers [25, Chapter 9,
Theorem XIX]) says that for all A,B ∈ 2ω, A ≤tt B if and only if A = Φ(B)
for some total recursive functional Φ : 2ω → 2ω. Thus truth-table reducibility
is a special case of Turing reducibility.

Definition 8.2. Let B be a Turing oracle. We say that B is high if 0′′ ≤T B′,
i.e., 0′′ is Turing reducible to B′. We say that superhigh if 0′′ ≤tt B′, i.e., 0′′ is
truth-table reducible to B′.

Among other things, we are going to prove that if B is almost everywhere
dominating then B is superhigh. We begin with the following definition and
lemma.
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Definition 8.3. Let A and B be Turing oracles.

1. We say that A is jump-traceable by B if for each partial A-recursive
function ψA(n) there exist recursive functions f(n) and g(n) such that
∀n (ψA(n)↓ ⇒ ψA(n) ∈ WB

f(n)) and ∀n (|WB
f(n)| ≤ g(n)).

2. We say that A is weakly jump-traceable by B if for each partial A-recursive
function ψA(n) there exists a recursive function f(n) such that ∀n (ψA(n) ↓
⇒ ψA(n) ∈WB

f(n)) and ∀n (WB
f(n) is finite).

Lemma 8.4. If A ≤LR B then A is jump-traceable by B.

Proof. Consider the A-r.e. set I = {(n,m) | ψA(n) ≃ m}. We have
∑

(n,m)∈I 1/2
n =

∑
n∈dom(ψA) 1/2

n ≤ 2 <∞.

By Lemma 5.11 let J ⊇ I be B-r.e. such that
∑

(n,m)∈J 1/2
n <∞, say

∑
(n,m)∈J 1/2

n ≤ 2c.

Let f be a recursive function such that for all n,

WB
f(n) = {m | (n,m) ∈ J}.

Setting g(n) = 2n+c we obtain the desired conclusions. Note that the bounding
function g(n) is not only recursive but primitive recursive. �

Lemma 8.5. If A is weakly jump-traceable by B, then A′ ≤T A⊕B′.

Proof. Consider the partial A-recursive function ψA(e) ≃ least s such that

ϕ
(1),A
e,s (e) ↓. Note that A′ = dom(ψA). By weak jump-traceability, let f(e)

be recursive such that ∀e (ψA(e) ↓⇒ ψA(e) ∈ WB
f(e)) and ∀e (WB

f(e) is finite).

Consider the total function h(e) = max(WB
f(e)∪{0}). Note that h(e) is recursive

relative to B′, and e ∈ A′ if and only if ϕ
(1),A
e,h(e)(e) ↓. Thus A

′ ≤T A⊕B′. �

Lemma 8.6. If A is jump-traceable by B and B-r.e., then A′ ≤tt B
′.

Proof. Since A is B-r.e., let A =
⋃
sAs where As, s = 0, 1, . . . is a B-recursive

sequence of finite sets with A0 ⊆ A1 ⊆ · · · ⊆ As ⊆ As+1 ⊆ · · ·. We identify
the sets A and As with their characteristic functions. Consider the partial A-

recursive function θA(e) ≃ the least σ ⊂ A such that ϕ
(1),σ
e,|σ| (e) ↓. Clearly A′ =

dom(θA) = {e | θA(e) ↓}. By jump-traceability let f(e) and g(e) be recursive
functions such that ∀e (θA(e) ↓⇒ θA(e) ∈ WB

f(e)) and ∀e (|WB
f(e)| ≤ g(e)). We

may safely assume that each σ ∈ WB
f(e) satisfies ϕ

(1),σ
e,|σ| (e) ↓. For all e and all

i < g(e) let σe,i ≃ the ith member ofWB
f(e) in order of B-recursive enumeration.

We may now compute A′ from B′ as follows. Given e, for each i < g(e) ask
the B′ oracle whether ∃s (σe,i ↓⊂ As) and whether ∃s ∃t (s < t and σe,i ↓⊂ As
and σe,i 6⊂ At). Upon receiving the answers to these 2g(e)-many questions, we
know the finite set Fe = {i < g(e) | σe,i ↓⊂ A}. Then e ∈ A′ if and only if Fe
is nonempty. Thus A′ ≤tt B′, Q.E.D. �
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Remark 8.7. In the proof of Lemma 8.6 we have ϕ
(1),A
e (e) ≃ ϕ

(1),σe,i

e,|σe,i|
(e) for

any i ∈ Fe. Thus we see that, under the hypotheses of Lemma 8.6, the function

hA(e) =

{
ϕ
(1),A
e (e) + 1 if ϕ

(1),A
e (e) ↓,

0 otherwise

is B′-recursive with recursively bounded use of B′ and unbounded use of B. This
conclusion is in general strictly stronger than either of the conditions A′ ≤tt B′

and A jump-traceable by B. However, it is equivalent to their conjunction if
A ≥T B, and it is equivalent to each of them individually if A ≥T B and A is
B-r.e.

Theorem 8.8. If A ≤LR B then A′ ≤T A⊕B′.

Proof. This is immediate from Lemmas 8.4 and 8.5. �

Theorem 8.9. If A ≤LR B and A is B-r.e., then A′ ≤tt B′.

Proof. This is immediate from Lemmas 8.4 and 8.6. �

Theorem 8.10. If 0′ ≤LR B then 0′′ ≤tt B′.

Proof. This is the special case A = 0′ of Theorem 8.9. �

Theorem 8.11. If B is almost everywhere dominating, then B is superhigh.

Proof. This is a restatement of Theorem 8.10 in light of Theorem 5.7. �

Remark 8.12. Our Theorems 8.8, 8.9, 8.10, 8.11 are closely related to some
results of Nies [21, 22]. Nies proved that if A ≤LR 0 then A is superlow, i.e.,
A′ ≤tt 0′ (see Nies [21, Corollary 7.6]). Relativizing the arguments of Nies to a
Turing oracle B, one can show that if A⊕B ≤LR B then (A⊕B)′ ≤tt B′. (See
also Remark 10.12 below.) In particular, if 0′ ⊕ B ≤LR B then 0′′ ≤tt B′. Our
Theorem 8.10 improves this by weakening the hypothesis 0′⊕B ≤LR B to 0′ ≤LR

B. In addition, Nies [21, paragraph preceding Proposition 8.3] announced that
if A and B are r.e. and A ≤LR B then A′ ≤tt B′. Our Theorem 8.9 improves
this by eliminating the hypothesis that B is r.e.

Question 8.13. If A ≤LR B and A ≤T 0′, does it follow that A′ ≤tt B′?

9 Counterexamples via duality

In the previous section we have seen that if B is almost everywhere dominating
then B is superhigh, which implies that B is high. In this section we present
counterexamples showing that neither of these implications can be reversed.

In order to obtain our counterexamples, we use a duality technique which
has been used previously by Jockusch/Shore [12], Mohrherr [20], Nies [21], and
Kjos-Hanssen [13]. The technique is based on the following theorem due to
Jockusch/Shore [12] which we call the Duality Theorem.
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Theorem 9.1 (Duality Theorem). Given a pseudojump operator Je, we can

find an r.e. set B such that Je(B) ≡T 0′.

Proof. See Jockusch/Shore [12, Theorem 3.1]. �

We shall see that the Duality Theorem provides a powerful method of passing
from “lowness properties” to “highness properties” as in Table 1. The meaning
of Table 1 is that, if we have a uniformly relativizable construction of an r.e.
set A with some but not all of the properties on the left side of the table, then
we can apply the Duality Theorem to obtain an r.e. set B with corresponding
properties on the right side of the table.

≤T 0 ≥T 0′

low high

superlow superhigh

≤LR 0 ≥LR 0′

low-for-random a. e. dominating

Table 1: Duality

As our first application of the Duality Theorem, we note the following im-
provement of the counterexample in Theorem 6.7. A similar result was first
obtained by Cholak/Greenberg/Miller [5] using a different method.

Theorem 9.2 (Cholak/Greenberg/Miller 2004). There exists an r.e. set B
which is <T 0′ and almost everywhere dominating.

Proof. In Theorem 6.1 we have constructed an r.e. set A which is >T 0 and
≤LR 0. By uniformly relativizing this construction to an arbitrary Turing oracle
C, we obtain a pseudojump operator Je such that for all C, Je(C) is >T C and
≤LR C. Applying the Duality Theorem 9.1 to this operator, we obtain an r.e.
set B which is <T 0′ and ≥LR 0′. It follows by Theorems 5.7 and 8.11 that
B is almost everywhere dominating and therefore superhigh. Examples of this
kind were first obtained by Cholak/Greenberg/Miller [5, Section 2]. See also
Binns/Kjos-Hanssen/Lerman/Solomon [2]. �

We now apply the Duality Theorem to obtain additional counterexamples.

Lemma 9.3. There exists an r.e. set which is superlow and not low-for-random.

Proof. We omit the proof, which is fairly straightforward. �

Theorem 9.4. There exists an r.e. set B which is superhigh and not almost

everywhere dominating.

Proof. By uniformly relativizing the proof of Lemma 9.3, we obtain a pseudo-
jump operator Je such that for all C, Je(C) is superlow relative to C and not
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low-for-random relative to C. In other words, Je(C)
′ ≤tt C′ and Je(C) 6≤LR C.

Applying the Duality Theorem 9.1, we obtain an r.e. set B such that 0′′ ≤tt B′

and 0′ 6≤LR B. It follows by Theorem 5.7 that B is superhigh and not almost
everywhere dominating. �

The next lemma is due to Bickford/Mills and Mohrherr [20].

Lemma 9.5. There exists an r.e. set A which is low and not superlow.

Proof. See Mohrherr [20, Theorem 3] and Bickford/Mills (reference in Mohrherr
[20]). �

The following counterexample is due to Mohrherr [20].

Theorem 9.6. There exists an r.e. set B which is high and not superhigh.

Proof. We argue as in Mohrherr [20, Theorem 5]. By uniformly relativizing the
proof of Lemma 9.5, we obtain a pseudojump operator Je such that for all C,
Je(C) is low and not superlow relative to C. In other words, Je(C)

′ is ≤T C′

and 6≤tt C′. Applying the Duality Theorem 9.1, we obtain an r.e. set B such
that 0′′ is ≤T B

′ and 6≤tt B
′. In other words, B is high and not superhigh. �

10 Prefix-free Kolmogorov complexity

In our exposition of Martin-Löf randomness and LR-reducibility in Sections 3
through 8 above, we have followed the effective measure-theoretic and descrip-
tive set-theoretic approach due to Kučera [15]. The purpose of this section
is to explain an alternative approach in terms of relativized prefix-free Kol-
mogorov complexity. This approach is the one which has been followed by
Downey/Hirschfeldt/Nies/Stephan [9] and Nies [21].

Lemma 10.1. Given a recursive sequence of natural numbers mi, i = 0, 1, . . .
such that

∑∞
i=0 1/2

mi ≤ 1, we can effectively find a recursive, one-to-one, prefix-

free sequence of strings σi, i = 0, 1, . . . such that |σi| = mi for all i.

Proof. Assume inductively that we have chosen σi, 0 ≤ i < k. Assume also
that we have chosen another finite set of strings, Dk. Define a partition to be a
finite, maximal, prefix-free set of strings. We start with D0 = {〈〉} and assume
inductively that Dk has the following properties:

(a) Dk ∩ {σi | 0 ≤ i < k} = ∅.

(b) Dk ∪ {σi | 0 ≤ i < k} is a partition.

(c) The strings in Dk are all of different lengths. I.e., for all ρ, σ ∈ Dk, if
ρ 6= σ then |ρ| 6= |σ|.

In fact we shall have a stronger property: ∀ρ, σ ∈ Dk (ρ <lex σ ⇒ |ρ| > |σ|),
where <lex denotes the lexicographical order.
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We claim that mk ≥ min{|ρ| | ρ ∈ Dk}.
Otherwise mk < min{|ρ| | ρ ∈ Dk}, hence by (c) we have

1

2mk
>

∑

ρ∈Dk

1

2|ρ|
,

hence by (b) we have

k∑

i=0

1

2mi
=

1

2mk
+

k−1∑

i=0

1

2mi
>

∑

ρ∈Dk

1

2|ρ|
+

k−1∑

i=0

1

2|σi|
= 1 ,

a contradiction.
By the above claim, let ρk ∈ Dk be such that |ρk| ≤ mk and |ρk| is as large

as possible. Let
σk = ρk

a〈0, . . . , 0︸ ︷︷ ︸
mk−|ρk|

〉 .

Then |σk| = mk and σk 6⊆ σi, σi 6⊆ σk for 0 ≤ i < k. Let

Dk+1 = Dk \ {ρk} ∪ {ρk
a〈0, . . . , 0︸ ︷︷ ︸

j

, 1〉 | 0 ≤ j < mk − |ρk|} .

It is easy to verify that (a), (b), (c) hold with k + 1 in place of k. �

Definition 10.2. We define a machine to be a partial recursive function from
2<ω into 2<ω. A machine M is said to be prefix-free if its domain

dom(M) = {σ ∈ 2<ω |M(σ) ↓}

is prefix-free.

If M is a prefix-free machine, then clearly
∑

M(σ)↓ 1/2
|σ| ≤ 1, and this

is known as the Kraft Inequality. Conversely we have the following theorem
attributed by Nies [21, Theorem 3.2] and Downey/Hirschfeldt/Nies/Stephan [9,
Theorem 2.1] to Chaitin [3].

Theorem 10.3 (Kraft/Chaitin Theorem). Let L be an r.e. subset of ω × 2<ω

such that
∑

(m,τ)∈L 1/2
m ≤ 1. Then we can effectively find a prefix-free machine

M such that for all (m, τ) ∈ L there exists σ such that |σ| = m and M(σ) ≃ τ .

Proof. Let (mi, τi), i = 0, 1, . . . be a one-to-one recursive enumeration of L. By
Lemma 10.1 let σi, i = 0, 1, . . . be a recursive, prefix-free sequence of strings
such that |σi| = mi for all i. Define M(σi) = τi for all i. �

Remark 10.4. In the Kraft/Chaitin Theorem 10.3, the pairs (m, τ) ∈ L are
sometimes called axioms for the prefix-free machineM . The idea of the theorem
is that we can construct a prefix-free machine given only an abstract description
of the machine in terms of axioms.
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Definition 10.5 (prefix-free Kolmogorov complexity). A prefix-free machine
U is said to be universal if for all prefix-free machines M there exists a string
ρ such that for all strings σ, M(σ) ≃ U(ρaσ). The prefix-free Kolmogorov

complexity of a string τ is defined to be

K(τ) = min{|σ| | U(σ) ≃ τ}

where U is a universal prefix-free machine. Note that K(τ) is well defined up
to within O(1). In other words, if we let

K̂(τ) = min{|σ| | Û(σ) ≃ τ}

where Û is another universal prefix-free machine, then |K(τ) − K̂(τ)| ≤ O(1),

i.e., ∃c ∀τ (|K(τ) − K̂(τ)| ≤ c).

Corollary 10.6. Let L be an r.e. subset of ω×2<ω such that
∑

(m,τ)∈L 1/2
m <

∞. Then for all (m, τ) ∈ L we have K(τ) ≤ m+O(1).

Proof. Let c be such that
∑

(m,τ)∈L 1/2
m ≤ 2c. Then

∑
(m,τ)∈L 1/2

m+c ≤ 1, so

by the Kraft/Chaitin Theorem 10.3 let M be a prefix-free machine such that
for all (m, τ) ∈ L there exists σ such that |σ| = m + c and M(σ) = τ . Let
ρ be such that M(σ) ≃ U(ρaσ) for all σ. Then for all (m, τ) ∈ L we have
K(τ) ≤ m+ c+ |ρ|. This completes the proof. �

The following theorem has been attributed by Chaitin [3, Remark following
Theorem 4.2] and Nies [21, Section 1] to Claus Peter Schnorr.

Theorem 10.7 (Schnorr’s Theorem). Given X ∈ 2ω, we have that X is random

if and only if K(X ↾ n) ≥ n−O(1), i.e., ∃c ∀n (K(X ↾ n) ≥ n− c).

Proof. For c = 1, 2, . . . let Vc = {X | ∃n (K(X ↾ n) < n−c)}. Note that Vc ⊆ 2ω

is uniformly Σ0
1. We claim that µ(Vc) < 1/2c. To see this, for each τ such that

K(τ) < |τ | − c choose σ such that U(σ) = τ and |σ| < |τ | − c. Here U is a
universal prefix-free machine. By the Kraft Inequality we have

∑

σ

1

2|σ|
≤ 1

hence

µ(Vc) ≤
∑

τ

1

2|τ |
<

∑

σ

1

2|σ|+c
≤

1

2c

thus proving the claim. We now see that Vc, c = 1, 2, . . . is a Martin-Löf test.
Therefore, if X is random, we have ∃c (X /∈ Vc), i.e., ∃c ∀n (K(X ↾ n) ≥ n− c),
i.e., K(X ↾ n) ≥ n−O(1). This is one direction of the theorem.

For the converse, assume X is not random, say X ∈
⋂
n Un where Un ⊆ 2ω

is uniformly Σ0
1 and µ(Un) ≤ 1/2n, n = 1, 2, . . .. Let Tn be uniformly r.e. and

prefix-free such that Un =
⋃
τ∈Tn

Nτ . We have

∑

n

∑

τ∈T2n

1

2|τ |−n
=

∑

n

2nµ(U2n) ≤
∑

n

2n

22n
=

∑

n

1

2n
= 1 .
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Hence by Corollary 10.6, K(τ) ≤ |τ | − n+O(1) for all n and all τ ∈ T2n. Since
X ∈ U2n for all n, it follows that K(X ↾ n) 6≥ n−O(1). �

Remark 10.8. The above definitions and results can be uniformly relativized
to an arbitrary Turing oracle C. Thus, a prefix-free C-machine is a partial
C-recursive function M from 2<ω to 2<ω such that dom(M) is prefix-free. We
define KC(τ) = min{|σ| | UC(σ) ≃ τ} where UC is a universal prefix-free C-
machine. The relativization of Schnorr’s Theorem says thatX ∈ 2ω is C-random
if and only if KC(X ↾ n) ≥ n−O(1).

Definition 10.9 (Nies 2002). Let A and B be Turing oracles. We say that A is
LK-reducible to B, abbreviated A ≤LK B, if KB(τ) ≤ KA(τ) +O(1). In other
words, for some constant c we have KB(τ) ≤ KA(τ) + c for all strings τ .

Theorem 10.10 (Kjos-Hanssen/Miller/Solomon 2006).
The following statements are pairwise equivalent.

1. A ≤LK B.

2. A ≤LR B.

3. For any A-r.e. set I ⊆ ω × ω such that
∑

(m,n)∈I 1/2
m < ∞, there exists

a B-r.e. set J ⊇ I such that
∑

(m,n)∈J 1/2
m <∞.

Proof. The implication 1 ⇒ 2 follows from Schnorr’s Theorem relativized to A
and B. The implication 2 ⇒ 3 follows from Lemma 5.11. Now assume 3 and let
I = {(m, τ) | KA(τ) ≤ m}. Clearly I is A-r.e. and

∑
(m,τ)∈I 1/2

m < 2 <∞, so

let J ⊇ I be B-r.e. such that
∑

(m,τ)∈J 1/2
m < ∞. By Corollary 10.6 relative

to B we have KB(τ) ≤ m+O(1) for all (m, τ) ∈ J . Since I ⊆ J it follows that
KB(τ) ≤ KA(τ) +O(1) for all τ . This proves 3 ⇒ 1. �

Remark 10.11. The reducibilities ≤LK and ≤LR were originally defined by
Nies [21, Section 8]. In the direction of Theorem 10.10, Nies proved the equiva-
lence A ≤LK 0 ⇐⇒ A ≤LR 0 (see [21, Corollary 5.3]) and noted that A ≤LK B
implies A ≤LR B. The full equivalence A ≤LK B ⇐⇒ A ≤LR B is due to
Kjos-Hanssen/Miller/Solomon [14].

Remark 10.12. By means of relativized prefix-free Kolmogorov complexity,
one can prove a number of interesting results concerning ≤LR for which no
other proofs are presently known. Among these results are:

1. If A ≤LR 0 and B ≤LR 0 then A⊕B ≤LR 0. (See Nies [21, Theorem 6.2]
and Downey/Hirschfeldt/Nies/Stephan [9, Theorem 7.2].) More generally,
if A⊕ C ≤LR C and B ⊕ C ≤LR C then A⊕ B ⊕ C ≤LR C.

Caution: It is not in general true that if A ≤LR C and B ≤LR C then
A ⊕ B ≤LR C. Indeed, in Theorem 6.10 above we have constructed a C
such that 0′ ≤LR C yet 0′ ⊕ C 6≤LR C.
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2. If A ≤LR 0 then A ≤T 0′, in fact A′ ≤tt 0′ (see Nies [21, Corollary 7.6]).
More generally, if A⊕B ≤LR B then A ≤T B′ (see Lemma 7.4 above), in
fact (A⊕B)′ ≤tt B′.

3. If A ≤LR 0 then we can find an r.e. set D such that D ≤LR 0 and A ≤T D,
in fact A ≤tt D. (See Nies [21, Theorems 7.4 and 6.2].) More generally,
if A⊕B ≤LR B then we can find a B-r.e. set D such that D ⊕B ≤LR B
and A ≤T D, in fact A ≤tt D. See also Theorem 8.9 above.

4. If A ≡LR B then A⊕B ≤LR A and A⊕B ≤LR A (see Nies [21, Proposition
8.3(iii)]), hence A ≤T B′ and B ≤T A′, in fact A′ ≡tt B′ ≡tt (A⊕B)′.

In particular, for each B there are only countably many A such that
A ≡LR B.

Caution: By Miller/Yu [18, 19], there exists a B such that {A | A ≤LR B}
is uncountable. In fact, Barmpalias/Lewis/Soskova [1] have shown that
this holds for any B which is generalized superhigh.

The presently available proofs of most of these results use not only relativized
prefix-free Kolmogorov complexity but also the formidable “golden run” ma-
chinery of Nies [21, Section 6]. It would be desirable to find alternative proofs
in the style of Sections 3–8 above.
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[21] André Nies. Lowness properties and randomness. Advances in Mathemat-

ics, 197:274–305, 2005.
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