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Abstract. We exhibit a close correspondence between L1-computable func-
tions and Schnorr tests. Using this correspondence, we prove that a point
x ∈ [0, 1]d is Schnorr random if and only if the Lebesgue Differentiation The-

orem holds at x for all L1-computable functions f ∈ L1([0, 1]d).

1. Introduction

Throughout mathematics there are many measure-theoretic theorems of the form
“property P holds for almost all x.” An important component of the theory of al-
gorithmic randomness has been to prove that random points satisfy such theorems.

Recently, there has been interest in the converse problem, namely, to characterize
notions of randomness in terms of classical theorems which hold almost everywhere.
An example of such a classical theorem is the Birkhoff Ergodic Theorem.

Theorem 1.1 (Birkhoff’s Ergodic Theorem). Given a probability space (X,µ), an
ergodic1 transformation T : X → X , and a function f ∈ L1(X,µ), we have

(1) lim
n→∞

1

n

∑

i<n

f(T i(x)) =

∫
f dµ

for almost all x ∈ X .

A connection between Birkhoff’s theorem and algorithmic randomness appeared
in [16], where it was shown (see also [9]) that (1) holds for every L1-computable
function f and every Martin-Löf random point x.

In ergodic theory, a point x is called typical2 for a given transformation T if (1)
holds for every bounded continuous function f . In [7], a characterization of Schnorr
randomness in terms of dynamical typicalness was given. Here we state a slightly
improved version, obtained using a result from [1] (see also [8]) which concerns the
computability of the rate of convergence of ergodic averages.
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1A transformation T : X → X is said to be ergodic (with respect to a probability measure µ

on X) if for every measurable set A satisfying T−1(A) = A either µ(A) = 1 or µ(A) = 0.
2The set of typical points has full measure. We remark that, if in the definition of typical point

we relax the functions f to be integrable only (or even characteristic functions of measurable sets),
then the resulting set of typical points would be empty.
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Theorem 1.2. ([1], [8]) Let X be a computable probability space. A point x ∈ X
is Schnorr random if and only if x is typical for every computable ergodic transfor-
mation T : X → X .

The question of whether a similar characterization would hold for Martin-Löf
randomness was raised. A positive answer to this question was given independently
by Franklin, Greenberg, Miller, and Ng [6] and Bienvenu, Day, Hoyrup, Mezhirov
and Shen [2], who proved the following.

Theorem 1.3 ([6], [2]). Let X be a computable probability space, and let T : X →
X be a computable ergodic transformation. Then, a point x ∈ X is Martin-Löf
random if and only if

lim
n→∞

1

n

∑

i<n

χA(T
i(x)) = µ(A).

for all effectively closed sets A.

Similarly but in a somewhat different direction, Brattka, Miller and Nies [3] have
obtained some interesting equivalences between randomness and differentiability.

Theorem 1.4 ([3]). For x ∈ [0, 1] we have

(1) x is computably random if and only if every nondecreasing computable
function f : [0, 1] → R is differentiable at x.

(2) x is Martin-Löf random if and only if every computable function f : [0, 1] →
R of bounded variation is differentiable at x.

(3) x is weakly 2-random if and only if every almost everywhere differentiable
computable function f : [0, 1] → R is differentiable at x.

We now turn to the subject of the present paper, an analysis of the Lebesgue
Differentiation Theorem. The classical theorem reads as follows.

Theorem 1.5 (Lebesgue Differentiation Theorem). For each f ∈ L1([0, 1]
d) we

have

(2) f(x) = lim
Q→x

∫
Q
fdµ

µ(Q)

for almost all x ∈ [0, 1]d. The limit is taken over all cubes Q containing x as the
diameter of Q tends to 0.

In [14] it was shown that, for each f ∈ L1([0, 1]
d) which is L1-computable in

the sense of Definition 2.6 below, the equation (2) holds for all x ∈ [0, 1]d which
are random in the sense of Martin-Löf. At the end of [14], the question of the
converse was posed. The purpose of the present paper is to answer this question
by sharpening the results of [14]. Roughly speaking, our main result is as follows:

Theorem 1.6. A point x ∈ [0, 1]d is Schnorr random if and only if (2) holds for
all L1-computable functions f ∈ L1([0, 1]

d).

In other words, the Lebesgue Differentiation Theorem characterizes Schnorr ran-
domness. Moreover, our proof of Theorem 1.6 establishes certain relationships
between Schnorr tests and L1-computable functions. In Lemma 3.15 below we as-
sociate to each L1-computable function f ∈ L1([0, 1]

d) a Schnorr test such that
(2) holds for all x ∈ [0, 1]d which pass the test. Consequently, by Theorem 3.16
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below, (2) holds for all Schnorr random x. In Lemma 3.14 we obtain a compu-
tationally motivated estimate of the rate of convergence in (2). In Theorem 4.7
below, we associate to each Schnorr test an L1-computable f ∈ L1([0, 1]

d) such
that for all x ∈ [0, 1]d which fail the test, the limit in (2) does not exist. Combining
these results, we have a close correspondence between L1-computable functions and
Schnorr tests.

Methodologically, our proofs are perhaps somewhat novel. In verifying our
Schnorr tests, we use Tarski’s quantifier elimination theorem for the real num-
ber system (see Lemma 3.3 below) as well as some ideas from computable measure
theory [12, 15] (see Lemmas 2.12 and 3.5 below). So far as we know, this is the
first time that quantifier elimination has been applied in randomness theory.

2. Preliminary definitions and notation

Notation 2.1. Fix a positive integer d, the dimension. We consider real-valued,
Lebesgue measurable functions f and Lebesgue measure µ on the unit cube [0, 1]d

in d-dimensional Euclidean space. The L1-norm is defined by

‖f‖1 =

∫

[0,1]d
|f | =

∫

x∈[0,1]d
|f(x)| dµ(x) .

Recall that L1([0, 1]
d) is the space of all f such that ‖f‖1 is finite. Moreover, for

all f, g ∈ L1([0, 1]
d) we have ‖f − g‖1 = 0 if and only if µ({x | f(x) 6= g(x)}) = 0.

Notation 2.2. We use Q as a variable ranging over cubes in [0, 1]d. Thus Q denotes
a set of the form

(3) Q =
{
〈x1, . . . , xd〉

∣∣ |xi − ai| ≤ r for all i = 1, . . . , d
}

where a1, . . . , ad, r are real numbers with 0 ≤ ai − r < ai + r ≤ 1. If a1, . . . , ad, r
are rational, we say that Q is a rational cube. Throughout this paper, letters such
as i, j, k, l,m, n, . . . range over the natural numbers.

Remark 2.3. The classical Lebesgue Differentiation Theorem (see for instance
[17]) reads as follows. Given f ∈ L1([0, 1]

d) we can find a set S depending on f
such that µ(S) = 0 and

f(x) = lim
Q→x

∫
Q
fdµ

µ(Q)

for all x /∈ S. The limit is taken over all cubes Q containing x as the diameter of
Q tends to 0.

Definition 2.4. A finite step function is a function of the form

f(x) =

k∑

i=1

ciχQi
(x)

where χQi
is the characteristic function of a cube Qi in [0, 1]d. If c1, . . . , ck and

Q1, . . . , Qk are rational we say that f is a finite rational step function.

Remark 2.5. It is well known that, given f ∈ L1([0, 1]
d) and ǫ > 0, we can find a

polynomial fǫ with rational coefficients such that ‖f − fǫ‖1 < ǫ. Such polynomials
are describable by finite strings of symbols which are amenable to computation.
In the following definition and throughout this paper, we view such polynomials
as computable approximations of f . Moreover, instead of rational polynomials, we
could equally well use finite rational step functions.
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Definition 2.6. A function f ∈ L1([0, 1]
d) is said to be L1-computable if there

exists a computable sequence of polynomials with rational coefficients, denoted fn,
such that

(4) ‖f − fn‖1 ≤ 1

2n

for all n. Equivalently, f ∈ L1([0, 1]
d) is L1-computable if and only if there exists

a computable sequence of finite rational step functions fn such that (4) holds.

Remark 2.7. The idea behind Definition 2.6 is that we are endowing L1([0, 1]
d)

with the structure of a computable metric space. The L1-computable functions are
then the computable points of that space. For more on the theory of computable
metric spaces, see [12, §2.4].
Definition 2.8.

(1) An open ball in [0, 1]d is a set of the form

B(a, r) =
{
x ∈ [0, 1]d

∣∣ |x− a| < r
}

where a = 〈a1, . . . , ad〉 ∈ [0, 1]d and |x − a| denotes Euclidean distance.
If a1, . . . , ad, r are rational, we say that B(a, r) is a rational open ball or a
basic open set. Note that rational open balls, like polynomials with rational
coefficients amd finite rational step functions, are amenable to computation.

(2) A set U ⊆ [0, 1]d is said to be Σ0
1 if

U =

∞⋃

i=0

B(ai, ri)

where B(ai, ri), i = 0, 1, . . . is a computable sequence of rational balls. A
Σ0

1 set is also known as an effectively open set, because it is the union of a
computable sequence of basic open sets.

(3) A sequence of sets Un ⊆ [0, 1]d, n = 0, 1, 2, . . . is uniformly Σ0
1 if

Un =

∞⋃

i=0

B(an,i, rn,i)

for all n, where B(an,i, rn,i), n = 0, 1, 2, . . ., i = 0, 1, 2, . . . is a computable
double sequence of rational balls.

(4) A set P ⊆ [0, 1]d is effectively closed or Π0
1 if its complement is effectively

open.

The next two definitions can be found in [13, §3.1]. See also [5].

Definition 2.9. A Martin-Löf test is a uniformly Σ0
1 sequence of sets Un ⊆ [0, 1]d,

n = 0, 1, 2, . . . such that µ(Un) ≤ 1/2n for all n. A point x ∈ [0, 1]d is said to pass

the test if x /∈ ⋂∞
n=0 Un. We say that x is Martin-Löf random if it passes every

Martin-Löf test.

Definition 2.10. A Schnorr test is a Martin-Löf test Un, n = 0, 1, 2, . . . such that
µ(Un) is uniformly computable for all n. We say that x is Schnorr random if it
passes every Schnorr test.

Remark 2.11. In [14] it was shown that if x is Martin-Löf random, the Lebesgue
Differentiation Theorem holds at x for all L1-computable functions. We now prove,
in Section 3 below, that the same result holds if x is Schnorr random. The converse
is proved in Section 4.
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In order to construct Schnorr tests, we shall use the following lemma.

Lemma 2.12. Let U, V ⊆ [0, 1]d be Σ0
1 sets. Then U∩V and U∪V are Σ0

1 sets. If in
addition µ(U) and µ(V ) are computable real numbers, then µ(U ∩V ) and µ(U ∪V )
are computable real numbers. Moreover, these statements hold uniformly.

Proof. A proof can be found in [15, Lemma 2.3.1.2]. See also [12]. �

Remark 2.13. Given a Martin-Löf test or a Schnorr test Un, n = 0, 1, 2, . . .,
we may safely assume (by taking intersections and applying Lemma 2.12) that
Un+1 ⊆ Un holds for all n.

3. Schnorr points are Lebesgue for L1-computable functions

Thr purpose of this section is to prove Theorem 3.16. Essentially, Theorem 3.16
says that the Lebesgue Differentiation Theorem 1.5 holds for all Schnorr random
points x ∈ [0, 1]d and all L1-computable functions f ∈ L1([0, 1]

d).

Remark 3.1. The key lemmas in this section are Lemmas 3.6 and 3.13. The idea
of these lemmas is to associate Schnorr tests Vk and V ∗

k to each L1-computable

function f . The Vk’s insure the existence of the limit f̂(x) = limn→∞ fn(x), and
the V ∗

k ’s insure that x is a Lebesgue point for f . In order to construct the Vk’s and
the V ∗

k ’s, we employ the method of effective quantifier elimination as embodied in
the following well known theorem, due originally to Tarski.

Theorem 3.2. The theory of real closed ordered fields is complete, decidable, and
admits elimination of quantifiers.

Proof. See for instance [10, Theorem 8.4.4, page 385]. �

Lemma 3.3. Let S be a set in the d-dimensional unit cube [0, 1]d such that S
is first-order definable over the real number system. Then, the d-dimensional
Lebesgue measure of S is a computable real number. Moreover, this holds uni-
formly in the given first-order definition of S.

Proof. We use the following well known fact: given a non-zero polynomial f ∈
Z[x1, . . . , xd], the set {x ∈ [0, 1]d | f(x) = 0} is of measure 0. Now, given a first-
order definition of a set S in [0, 1]d as above, apply effective quantifier elimination
to obtain a quantifier-free definition of S. Let f1, ..., fn ∈ Z[x1, . . . , xd] be a list of
the nonzero polynomials which occur in the quantifier-free definition of S. For each
i = 1, ..., n let

Ui = {x ∈ [0, 1]d | fi(x) > 0},
Vi = {x ∈ [0, 1]d | fi(x) < 0},
Ci = {x ∈ [0, 1]d | fi(x) = 0}.

Then each Ci is of measure 0. Thus [0, 1]d is the disjoint union of a set of measure
0 plus at most 2n-many sets of the form W1 ∩ · · · ∩ Wn where each Wi is either
Ui or Vi. Moreover, each of the sets W1 ∩ · · · ∩Wn is effectively open, and S and
[0, 1]d \ S may be written as the union of some of these sets plus a set of measure
0. Since the measure of an effectively open set is left recursively enumerable, it
follows that the measure of S is recursive, i.e., computable. The same argument
holds uniformly. �

The following simple lemma is extremely useful in probability theory.
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Lemma 3.4 (Chebyshev Inequality). Given f ∈ L1 and ǫ > 0, let

S(f, ǫ) = {x | |f(x)| > ǫ} .
Then µ(S(f, ǫ)) ≤ ‖f‖1/ǫ.
Proof. We have ‖f‖1 =

∫
|f |dµ ≥

∫
S(f,ǫ)

|f |dµ ≥ ǫµ(S(f, ǫ)). �

Lemma 3.5. Let U =
⋃∞

n=1 Un where Un is uniformly Σ0
1 and µ(Un) is uniformly

computable and µ(Un) ≤ 1/2n for all n. Then U is Σ0
1 and µ(U) is computable.

Moreover, this holds uniformly.

Proof. For all n ∈ N we have Un =
⋃∞

k=1 Bnk where Bnk, k = 0, 1, 2, . . . , is a
computable sequence of rational balls. Thus, by diagonalization, we can write U
as the union of a computable sequence of rational balls. Thus U is Σ0

1. By Lemma

2.12
⋃k

n=1 Un is Σ0
1 and has computable measure uniformly in k. In addition,

µ(
⋃∞

n=k Un) ≤ 1/2k−1. Thus, letting ck = µ
(⋃k

n=1 Un

)
, we have a computable

sequence of real numbers which effectively approximates µ(U). �

Lemma 3.6 (see [4, Proposition 4.1]). Let f ∈ L1([0, 1]
d) be L1-computable with

polynomial approximations fn as in Definition 2.6. Then, we can find a uniformly
Σ0

1 sequence of sets Vk, k = 0, 1, 2, . . ., such that the following statements hold:

(1) µ(Vk) ≤ (2 +
√
2)/2k−1.

(2) The sequence µ(Vk), k = 1, 2, . . . is uniformly computable.
(3) For all x /∈ Vk and n ≥ k we have

|fi(x) − f2n(x)| ≤ 2 +
√
2

2n

for all i ≥ 2n.

Proof. Let Vk =
⋃∞

i=2k Si where Si = S(fi − fi+1, 1/2
i/2). By Lemma 3.4 we have

µ(Vk) ≤
∞∑

i=2k

µ(Si) ≤
∞∑

i=2k

2i/2‖fi − fi+1‖1 ≤
∞∑

i=2k

2i/2· 2
2i

≤
∞∑

i=2k

2

2i/2
=

2(2 +
√
2)

2k
.

Moreover, as in [14], Vk is uniformly Σ0
1.

We claim that that µ(Vk) is uniformly computable. By Lemma 3.4 we have
µ(Si) ≤ 1/2i/2, so by Lemma 3.5 it suffices to show that µ(Si) is uniformly com-
putable. But Si is uniformly first-order definable, so by Lemma 3.3 Si has com-
putable measure uniformly in i. This proves our claim.

Finally, for all x /∈ Vk and n ≥ k and i ≥ 2n we have

|fi(x) − f2n(x)| ≤
i−1∑

l=2n

|fl(x) − fl+1(x)|

≤
∞∑

l=2n

|fl(x) − fl+1(x)|

≤
∞∑

l=2n

1

2l/2

=
2 +

√
2

2n
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and this completes the proof. �

Lemma 3.7 (see [4, Remark 4.3]). Let f ∈ L1([0, 1]
d) be L1-computable with

polynomial approximations fn as in Definition 2.6. Then limn→∞ fn(x) exists for
all Schnorr random x.

Proof. Let x ∈ [0, 1]d be Schnorr random. The sets Vk of Lemma 3.6 form a Schnorr
test. Since x is Schnorr random, we can find k such that x /∈ Vk. Moreover, for
all x /∈ Vk and n ≥ k we have |fi(x) − f2n(x)| ≤ (2 +

√
2)/2n for all i ≥ 2n. Thus

fn(x) converges uniformly for all x /∈ Vk. In particular limn→∞ fn(x) exists. �

Definition 3.8. Given an L1-computable function f ∈ L1([0, 1]
d), define

f̂(x) =





lim
n→∞

fn(x) if x is Schnorr random,

0 otherwise.

where fn is a computable sequence of approximations as in Definition 2.6. The

following theorem implies that f̂ does not depend on the choice of fn.

Theorem 3.9.

(1) If f ∈ L1([0, 1]
d) is L1-computable, then ‖f − f̂‖1 = 0.

(2) Given L1-computable functions f, g ∈ L1([0, 1]
d), we have ‖f − g‖1 = 0 if

and only if f̂(x) = ĝ(x) for all x.

Thus f̂ is a canonical representative of the equivalence class of f modulo the equiv-
alence relation ‖f − g‖1 = 0.

Proof. For part 1, suppose ‖f − f̂‖1 > 0, i.e., µ({x | |f(x) − f̂(x)| > 0}) > 0.

Let ǫ > 0 be so small that µ({x | |f(x) − f̂(x)| > ǫ}) > ǫ. By Lemma 3.6,

we have |f̂(x) − f2n(x)| ≤ (2 +
√
2)/2n for all Schnorr random x /∈ Vn, where

µ(Vn) ≤ (2 +
√
2)/2n−1, for all n. It follows that

µ({x | |f(x) − f2n(x)| > ǫ− (2 +
√
2)/2n}) > ǫ − (2 +

√
2)/2n−1

for all n. Thus

‖f − f2n‖1 > (ǫ− (2 +
√
2)/2n)(ǫ− (2 +

√
2)/2n−1)

for all n, contradicting the fact that ‖f − f2n‖1 goes to 0 as n goes to infinity.

For part 2, note that f̂(x) = ĝ(x) for all x, implies ‖f − g‖1 = ‖f̂ − ĝ‖1 = 0 in

view of part 1. It remains to prove that if ‖f − g‖1 = 0 then f̂(x) = ĝ(x) for all

x. By the definition of f̂ , it suffices to prove f̂(x) = ĝ(x) for all Schnorr random x.
Let

Wk = {x | (∃n ≥ k) (|f2n(x)− g2n(x)| > 1/2n)} =

∞⋃

n=k

Sn

where Sn = S(f2n−g2n, 1/2
n). ClearlyWk is uniformly Σ0

1. Moreover, ‖f−g‖1 = 0
implies ‖f2n − g2n‖1 ≤ 1/22n−1, so by Lemma 3.4 we have

µ(Wk) ≤
∞∑

n=k

µ(Sn) ≤
∞∑

n=k

2n

22n−1
=

∞∑

n=k

1

2n−1
=

1

2k−2
.

Moreover Sn is uniformly first-order definable, hence by Lemma 3.3 µ(Sn) is uni-
formly computable, and by Lemma 3.4 we have µ(Sn) ≤ 1/2n−1. Thus by Lemma
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3.5 µ(Wk) is uniformly computable and the sets Wk form a Schnorr test. In partic-
ular, if x is Schnorr random we have x /∈ Wk for some k, hence |f2n(x)− g2n(x)| ≤
1/2n for all n ≥ k, hence f̂(x) = ĝ(x). �

Remark 3.10. Part 1 of the above theorem follows from the fact that, for an

L1-computable function f , the representative f̂ restricted to Martin-Löf random
points, equals the layerwise computable representative [11, Proposition 4.2,Theorem
4.3]. The second part of the above theorem may be viewed as a refinement of [11,
Theorem 4.3].

The following lemma is the key ingredient in the classical proof of the Lebesgue
Differentiation Theorem.

Lemma 3.11 (Hardy/Littlewood Inequality). We can find a positive constant c
depending only on the dimension d such that the following holds. Given f ∈
L1([0, 1]

d) and ǫ > 0, let S∗(f, ǫ) be the union of all cubes Q such that

(5)

∫
Q
|f |dµ

µ(Q)
> ǫ

holds. Then µ(S∗(f, ǫ)) ≤ c‖f‖1/ǫ.

Proof. See [14, Lemma 4.5]. �

Remark 3.12. If Q is a cube as in (3), note that
∫
Q
fdµ and µ(Q) depend contin-

uously on a1, . . . , ad, r since µ is absolutely continuous. Therefore, it is often possi-
ble to restrict attention to rational cubes. For instance, in the classical statements
of the Lebesgue Differentiation Theorem and the Hardy/Littlewood Inequality, it
makes no difference whether we consider arbitrary cubes or rational cubes. The
advantage of rational cubes is that they are amenable to computation.

Lemma 3.13. Let f ∈ L1([0, 1]
d) be L1-computable with polynomial approxima-

tions fn as in Definition 2.6. Let c be the constant from Lemma 3.11. Then, we can
find uniformly Σ0

1 sets V ∗
k , k = 1, 2, . . . , such that the following statements hold:

(1) µ(V ∗
k ) ≤ c

2 +
√
2

2k−1
.

(2) The sequence µ(V ∗
k ) is uniformly computable.

(3) For all x /∈ V ∗
k and n ≥ k we have

∫
Q |f − f2n|dµ

µ(Q)
≤ 2 +

√
2

2n

for all Q ∋ x.

Proof. We imitate the proof of Lemma 3.6 replacing the Chebyshev inequality
by the Hardy-Littlewood inequality. Let V ∗

k =
⋃∞

i=2k S
∗
i where S∗

i = S∗(fi −
fi+1, 1/2

i/2). By Remark 3.12 the sets V ∗
k are uniformly Σ0

1. By Lemma 3.11 we

have µ(V ∗
k ) ≤

∑∞
i=2k µ(S

∗
i ) ≤

∑∞
i=2k 2

i/2c‖fi − fi+1‖1 ≤
∑∞

i=2k 1/2
i/2 = 2c(2 +√

2)/2k. Moreover, by definition we have

S∗
i =

{
x ∈ [0, 1]d

∣∣∣ (∃Q ∋ x)

(
1

µ(Q)

∫

Q

|fi − fi+1| ≥
1

2i/2

)}
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where Q ranges over cubes in [0, 1]d. Thus S∗
i is first-order definable, so by Lemma

3.3 µ(S∗
i ) is computable, uniformly in i. Since µ(S∗

i ) ≤ 2c/2i/2 it follows by Lemma
3.5 that µ(V ∗

k ) is computable, uniformly in k.
Suppose now that x /∈ V ∗

k . Then for all rational cubes Q containing x and all
n ≥ k and i ≥ 2n we have

1

µ(Q)

∫

Q

|fi − fi+1| ≤
1

2i/2
.

Thus
1

µ(Q)

∫

Q

|f − f2n| ≤
∞∑

i=2n

1

2i/2
≤ 2 +

√
2

2n

and this completes the proof. �

Lemma 3.14. Let f ∈ L1([0, 1]
d) be L1-computable with polynomial approxima-

tions fn as in Definition 2.6. Then, we can find a computable sequence of rational
numbersDn such that the following holds. For all k and all n ≥ k and all x /∈ Vk∪V ∗

k

we have ∣∣∣∣∣ limm→∞
fm(x)−

∫
Q
f

µ(Q)

∣∣∣∣∣ ≤ 2 +
√
2

2n−1
+Dn · (diameter of Q)

for all Q ∋ x. Here Vk and V ∗
k are as in Lemmas 3.6 and 3.13 respectively. In

particular, if x ∈ [0, 1]d is Schnorr random, we have
∣∣∣∣∣f̂(x)−

∫
Q f

µ(Q)

∣∣∣∣∣ ≤ 2 +
√
2

2n−2
+Dn · (diameter of Q).

Proof. Since f2n is a polynomial with rational coefficients, we can compute a pos-
itive rational number Dn which is an upper bound of the maximum gradient
max{|∇f2n(x)| | x ∈ [0, 1]d}. It follows by the Mean Value Theorem that

∣∣∣∣∣f2n(x) −
∫
Q f2n

µ(Q)

∣∣∣∣∣ ≤ Dn · (diameter of Q)

for all x ∈ Q. By Lemmas 3.6 and 3.13 we have

| lim
n→∞

fn(x)− f2n(x)| ≤ 2 +
√
2

2n−1

and ∣∣∣∣∣

∫
Q
f

µ(Q)
−
∫
Q
f2n

µ(Q)

∣∣∣∣∣ ≤
∫
Q
|f − f2n|
µ(Q)

≤ 2 +
√
2

2n−1

for all n ≥ k whenever Q ∋ x /∈ Vk ∪ V ∗
k . Combining these inequalities we obtain

the desired conclusion. �

Lemma 3.15. Given an L1-computable function f ∈ L1([0, 1]
d) with polynomial

approximations fn as in Definition 2.6, there exists a Schnorr test Un, n = 1, 2, . . .
such that for all x /∈ ⋂n Un,

lim
n→∞

fn(x) = lim
Q→x

∫
Q f

µ(Q)

where the limit is taken over all Q ∋ x as the diameter of Q tends to 0.

Proof. This follows from Lemma 3.14. �
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Theorem 3.16. Let f ∈ L1([0, 1]
d) be L1-computable. Then for all Schnorr ran-

dom x we have

(6) f̂(x) = lim
Q→x

∫
Q f

µ(Q)

where the limit is taken over all cubes Q ∋ x as the diameter of Q tends to 0.

Proof. The sets Vk and V ∗
k form Schnorr tests. Hence, for any Schnorr random

x ∈ [0, 1]d we can find k such that x /∈ Vk ∪ V ∗
k . Given ǫ > 0 let n ≥ k be so large

that
2 +

√
2

2n−2
<

ǫ

2
and let Dn be as in Lemma 3.14. We then have∣∣∣∣∣f̂(x) −

∫
Q f

µ(Q)

∣∣∣∣∣ <
2 +

√
2

2n−2
+

ǫ

2
< ǫ

for all Q of diameter < ǫ/2Dn. This completes the proof. �

Remark 3.17. Lemma 3.15, combined with the fact that every Schnorr test admits
computable points passing the test (see for instance [15, Theorem 5.1.0.4]), implies
the following interesting observation.

Corollary 3.18. Given a computable sequence of L1-computable functions fi ∈
L1([0, 1]

d) with approximating sequences fin as in Definition 2.6, and given an
effectively closed set P ⊆ [0, 1]d of computable positive measure, we can effectively
find a computable point x ∈ P such that for each i we have

lim
n→∞

fin(x) = lim
Q→x

∫
Q f

µ(Q)

where the limit is taken over all Q ∋ x as the diameter of Q tends to 0.

Remark 3.19. The classical Lebesgue Differentiation Theorem (see Remark 2.3)
follows from Theorem 3.16 by relativization to an arbitrary Turing oracle. Thus,
Lemma 3.14 and Theorem 3.16 may be viewed as computationally motivated re-
finements or generalizations of the Lebesgue Differentiation Theorem. Such results
were first obtained by Pathak in [14] which was based on her undergraduate research
project performed under Simpson’s supervision.

4. Lebesgue points for L1-computable functions are Schnorr

Remark 4.1. In this section we shall prove a converse to Theorem 3.16. Namely,
if x ∈ [0, 1]d is such that the limit in (6) exists for all L1-computable functions
f ∈ L1([0, 1]

d), then x is random in the sense of Schnorr. In fact, we shall associate
a particular f to each Schnorr test, as stated in Lemmas 4.5 and 4.6.

Definition 4.2. Two cubes Q1 and Q2 are said to be almost disjoint if their
intersection is entirely contained in the boundary of Q1.

Lemma 4.3. Let Q1, . . . , Qn be a finite sequence of pairwise almost disjoint ratio-
nal cubes, and let R be a rational cube such that R 6⊆ Q1 ∪ · · · ∪Qn. Then, we can
effectively extend Q1, . . . , Qn to a longer finite sequence of pairwise almost disjoint
rational cubes Q1, . . . , Qn, Qn+1, . . . , Qn+k such that

Q1 ∪ · · · ∪Qn ∪Qn+1 ∪ · · · ∪Qn+k = Q1 ∪ · · · ∪Qn ∪R.
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Proof. Let m ∈ N be the common denominator of all of the coordinates of all of the
vertices of Q1, . . . , Qn, R. We can then break up each of these cubes into almost
disjoint cubes with edge length 1/m. That is, we can write each of Q1, . . . , Qn, R
as a finite union of pairwise almost disjoint cubes of the form

{
〈x1, . . . , xd〉

∣∣∣ xi ∈
[
li
m
,
li + 1

m

]
, i = 1, . . . , d

}

where l1, . . . , ld are natural numbers less than m. Let Qn+1, . . . , Qn+k be a list of
the cubes of this form that are contained in R and not contained in Q1, . . . , Qn.
This gives our desired conclusion. �

Lemma 4.4. Given a nonempty Σ0
1 set U ⊆ [0, 1]d, we can effectively find a

computable sequence of pairwise almost disjoint rational cubes Qi such that U =⋃∞
i=1 Qi.

Proof. Let Ri, i = 1, 2, . . . be a computable sequence of rational cubes such that
U =

⋃∞
i=1 Ri. We shall refine this to a pairwise almost disjoint sequence. As-

sume inductively that we have found a pairwise disjoint sequence of rational cubes

Q1, . . . , Qnk
such that

⋃k
i=1 Ri =

⋃nk

j=1 Qj . We may safely assume that Rk+1 6⊆
⋃k

i=1 Ri. Apply Lemma 4.3 to effectively find a longer pairwise disjoint sequence of

rational cubes Q1, . . . , Qnk+1
with nk+1 > nk such that

⋃k+1
i=1 Ri =

⋃nk+1

j=1 Qj . Let-
ting k go to infinity we obtain a computable sequence of pairwise disjoint rational
cubes Qj , j = 1, 2, . . . such that

⋃∞
i=1 Ri =

⋃∞
j=1 Qj . �

Lemma 4.5. Given a Schnorr test Un, n = 1, 2, . . . , we can construct a bounded
(in fact 0, 1-valued) L1-computable function f ∈ L1([0, 1]

d) such that

lim sup
Q→x

∫
Q fdµ

µ(Q)
≥ 3

4
and lim inf

Q→x

∫
Q fdµ

µ(Q)
≤ 1

4

for all x = 〈x1, . . . , xd〉 ∈
⋂

n Un such that x1, . . . , xd are irrational.

Proof. Let Seq be the set of finite sequences of natural numbers. For σ = 〈i1, . . . , in〉 ∈
Seq we write |σ| = n = the length of σ. We use 〈〉 to denote the empty sequence,
i.e., the unique member of Seq of length 0. For σ, τ ∈ Seq let σaτ be their concate-
nation, i.e., σ followed by τ .

To each σ ∈ Seq we effectively associate a rational cube Qσ by induction on
|σ|. We begin with Q〈〉 = [0, 1]d. Given Qσ, we effectively find an integer nσ

so large that µ(Qσ ∩ Unσ
) < µ(Qσ)/4. Then we apply Lemma 4.4 to effectively

obtain a pairwise almost disjoint computable sequence of rational cubes Qσa〈i〉,
i = 0, 1, 2, . . . such that

Unσ
∩ (interior of Qσ) =

∞⋃

i=0

Qσa〈i〉 .

In this way we construct Qσ for all σ ∈ Seq.
Similarly we assign values to f . For all x ∈ Qσ \ Unσ

let

f(x) =

{
1 if |σ| is odd,
0 if |σ| is even.

In particular f(x) is defined for all x ∈ [0, 1]d \⋂n Un. Since f is 0, 1-valued and

µ(
⋂

n Un) = 0, we clearly have f ∈ L1([0, 1]
d).
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Now let x = 〈x1, . . . , xd〉 ∈ ⋂n Un be such that x1, . . . , xd are irrational. Let
h : N → N be such that x ∈ Qh↾k for all k. (Note that the existence of h is not
guaranteed if even a single coordinate of x is rational, because then x could be on
the boundary of a cube Qσ, in which case x /∈ ⋃iQσa〈i〉 even though x ∈ Qσ∩Unσ

.)
If k is odd we have f = 1 on Qh↾k \ Unh↾k

, hence

1

µ(Qh↾k)

∫

Qh↾k

fdµ ≥ µ(Qh↾k \ Unh↾k
)

µ(Qh↾k)
>

3

4

so lim supQ→x

∫
Q fdµ/µ(Q) ≥ 3/4. If k is even we have f = 0 on Qh↾k \ Unh↾k

,

hence
1

µ(Qh↾k)

∫

Qh↾k

fdµ ≤ µ(Qh↾k ∩ Unh↾k
)

µ(Qh↾k)
<

1

4

so lim infQ→x

∫
Q fdµ/µ(Q) ≤ 1/4.

It remains to show that f is L1-computable. We shall construct a computable
sequence of finite rational step functions fm which approximates f . In order to
construct fm, we shall first construct a finite sequence of integers lm,1, . . . , lm,m.
Assume inductively that we have defined lm,1, . . . , lm,k where 0 ≤ k < m. Let

Tm,k = {〈i1, . . . , ik〉 | 0 ≤ i1 ≤ lm,1, . . . , 0 ≤ ik ≤ lm,k} .
For each σ ∈ Tm,k we know that Unσ

∩ (interior of Qσ) =
⋃∞

i=0 Qσa〈i〉 and µ(Unσ
∩

Qσ) is effectively computable. Hence, we can effectively find lm,k+1 so large that

∑

σ∈Tm,k

µ(Wσ) <
1

2m+k
where Wσ = Unσ

∩Qσ \
lm,k+1⋃

i=0

Qσa〈i〉 .

This completes the definition of lm,1, . . . , lm,m. We now define fm as follows. For

all x ∈ (interior of Qσ) \
⋃lm,k+1

i=0 Qσa〈i〉 where σ ∈ Tm,k and 0 ≤ k < m, let

fm(x) =

{
1 if |σ| is odd,
0 if |σ| is even.

For all other x let fm(x) = 0.
Note that f(x) = fm(x) for all x except possibly when x ∈ Wσ for some σ ∈ Tm,k

and 0 ≤ k < m, or when x ∈ Qσ for some σ such that |σ| = m. We shall use this
observation to show that ‖f − fm‖1 is small. First, note that

µ


 ⋃

k<m

⋃

σ∈Tm,k

Wσ


 <

∑

k<m

1

2m+k
<

1

2m−1
.

In addition, by construction of the Qσ’s we have

µ

(
∞⋃

i=0

Qσa〈i〉

)
<

µ(Qσ)

4

for each σ, hence by induction on m we have

µ



⋃

|σ|=m

Qσ


 ≤ 1

4m
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in view of almost disjointness. Since f and fm are 0, 1-valued, it follows that

‖f − fm‖1 <
1

2m−1
+

1

4m
<

1

2m−2

for all m. Thus f is L1-computable. �

Lemma 4.6. Let x = 〈x1, . . . , xd〉 ∈ [0, 1]d be such that at least one of x1, . . . , xd

is rational. Then, we can construct a bounded (in fact 0, 1-valued) L1-computable
function f ∈ L1([0, 1]

d) such that

lim sup
Q→x

∫
Q
fdµ

µ(Q)
≥ 3

4
and lim inf

Q→x

∫
Q
fdµ

µ(Q)
≤ 1

4
.

Proof. We may safely assume that x1 = q is rational. For each n let Sn ⊆ [0, 1]d

be a slice of [0, 1]d defined by Sn = ([q − 1/22n, q + 1/22n] ∩ [0, 1])× [0, 1]d−1. The
width of this slice is µ(Sn) = µ([q− 1/22n, q+1/22n]∩ [0, 1]) ≤ 1/22n−1. Moreover
S0 = [0, 1]d and x ∈ ⋂n Sn. Define f ∈ L1([0, 1]

d) by

f(x) =

{
1 if x ∈ Sn \ Sn+1 where n is odd,

0 if x ∈ Sn \ Sn+1 where n is even.

Let Qn be a cube such that x ∈ Qn ⊆ Sn and the edge length of Qn is equal to
the width of Sn, so that µ(Qn) = µ(Sn)

d. For odd n we have f = 1 on Qn \ Sn+1,
hence

1

µ(Qn)

∫

Qn

fdµ ≥ µ(Qn \ Sn+1)

µ(Qn)
≥ 3

4

so lim supQ→x

∫
Q fdµ/µ(Q) ≥ 3/4. For even n we have f = 0 on Qn \ Sn+1, hence

1

µ(Qn)

∫

Qn

fdµ ≤ µ(Qn ∩ Sn+1)

µ(Qn)
≤ 1

4

so lim infQ→x

∫
Q
fdµ/µ(Q) ≤ 1/4.

It remains to show that f is L1-computable. Consider a computable sequence of
finite rational step functions fk defined by

fk(x) =

{
1 if x ∈ Sn \ Sn+1 where n is odd and n < k,

0 otherwise.

Then ‖f − fk‖1 ≤ µ(Sk) ≤ 1/22k−1 and thus f is L1-computable. �

Theorem 4.7. For all x ∈ [0, 1]d the following are pairwise equivalent.

(1) x is Schnorr random.

(2) lim
Q→x

∫
Q f

µ(Q)
exists for all L1-computable functions f ∈ L1([0, 1]

d).

(3) For all L1-computable functions f ∈ L1([0, 1]
d) and approximating se-

quences fn as in Definition 2.6, we have

lim
n→∞

fn(x) = lim
Q→x

∫
Q
f

µ(Q)

and both limits exist.

Proof. The implication 1 ⇒ 3 has been proved in Theorem 3.16. The implication
3 ⇒ 2 is trivial, and 2 ⇒ 1 is obtained by combining Lemmas 4.5 and 4.6. �
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Remark 4.8. Clearly the numbers 1/4 and 3/4 in Lemmas 4.5 and 4.6 are arbitrary
and can be replaced by any pair ǫ, 1− ǫ with 0 < ǫ < 1. Indeed, one can construct
a 0, 1-valued L1-computable function f such that lim infQ→x

∫
Q
fdµ/µ(Q) = 0 and

lim supQ→x

∫
Q fdµ/µ(Q) = 1 for all x ∈ ⋂n Un. Thus for any x ∈ [0, 1]d which

is not Schnorr random, the Lebesgue Differentiation Theorem for 0, 1-valued L1-
computable functions fails as badly as possible. We thank the referee for pointing
this out.
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