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§0. Introduction.
In this paper we explore some technical questions related to the formal sys-

tem ATRO of arithmetical transfinite recursion with quantifier free induction on

the natural numbers. This system, and indeed all of the formal systems considered
in this paper, are subsystems of second order arithmetic and use classical logic.

The specific system ATR, was introduced by Friedman [4] and was studied in

0
some detail by Friedman, McAloon and Simpson [6]. (A stronger system ATR, con-

sisting of ATRO plus full induction on the natural numbers, had been introduced
earlier by Friedman [3] and had been studied by Friedman [1] and Steel [13].)

The interest of ATR., has by now been well established. On the one hand, it

0

was shown in [3], [4], [6] and [13] that ATR0 is just strong enough to formalize

many mathematical theorems which depend on having a good theory of countable well
orderings. Indeed, many such theorems turn out to be provably equivalent to ATR0
over a relatively weak base thoery ACAO. (As an example here we may cite the
theorem that every uncountable Borel set contains a perfect subset.) On the other
hand, it was shown in [6] that ATR0 is proof theoretically not very strong, e.g.
its proof theoretic ordinal is just the Feferman/Schlitte ordinal TO. (From recent
work of Jdger [10] and Friedman (§5 below) it follows that the proof theoretic

ordinal of ATR is FEO.)

The purpose of thils paper is to study the systems Zi—TIO and Hi—TIo of
Zi and Hi transfinite induction along arbitrary well orderings of the natural
numbers. These systems were defined in [4]. We show in §2 that Zi_TIO is .
1 ordinary induction, or equivalently ATRO plus Hl
ordinary induction. (Here 'ordinary" means "along the usual well ordering of the

equivalent to ATR0 plus Zl

natural numbers™.) We also show that Zi—TIO is properly stronger than ATRO. In
1 1

§4 we show that Hi—TIO is equivalent to the system Z‘.l--DCO of Zl dependent

choices with quantifier free induction on the natural numbers {denoted HDC0 in

[4]). These results in §§2 and 4 answer questions which were naturally suggested by
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the results of [4] and [13].

In §3 we use the results of §2 to prove a conjecture from [6] concerning
partition calculus in ATRO. It was known from [6] that ATR0 proves that
Galvin/Prikry theorem for closed sets. We now show in §3 that ATRO does not
prove the Galvin/Prikry theorem for finite sequences of closed sets.

The author would like to thank Harvey Friedman for helpful conversations and

William Howard for helpful correspondence.

§1. Preliminaries
All of the formal systems considered in this paper are in the language of

second order arithmetic which consists of +,.,0,1,=,<,€¢, number variables k,m,

n,..., set variables X,Y,..., propositional connectives, number quantifiers,
and set quantifiers. Number wariables are intended to range over natural numbers
and set variables are intended to range over sets of natural numbers. For general
background see Kreisel [11].

A formula 1is saild to be arithmetical if it contains no set quantifiers. The
weakest system we shall consider is ACA_. which consists of the usual ordered

0
semiring axioms for the natural numbers, the quantifier free induction axiom

DEX&Vk (k€X+k+1€X) + Vk(keX),

and arithmetical comprehension axioms

X Ym(m € X++06(m))

where 6 1is arithmetical and does not contain X. It 1s easy to see that ACAO
is finitely axiomatizable. All systems are assumed te include ACAO.
Within ACA0 we have the arithmetical pairing function
1
(m,n) = E{m +n+ 1){m+ n) +m
A binary relation R on the natural numbers is identified with a set
X= {(mn) : m Rn}. A well ordering is a binary relation <« which is a linear

ordering of the natural numbers such that
YX{Yn(Vn< n(m€X)-n€X)+¥n(n€x) 1.

We write WO(€) to mean that < is a well ordering of the natural numbers. Thus

WO) 1is a Hi formula with a free set variable =<, The scheme of transfinite

induction (TIO) consists of all instances of
Wo(<)&n(Ym < np(m) + o(n)) - Vnyp(n)

where ¢ 1s an arbitrary formula.
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. . 1 . .
A Zi (respectively Hn) formula is one consisting of n set quantifiers
beginning with an existential (respectively universal) one followed by an arith-

. 1
metical matrix. By Zn-TI (respectively Hi-TIO) we mean the system consisting

0

of ACA0 plus the transfinite induction scheme TI0 restricted to Zi (respec-

tively Hi) formulas ¢. It 1s known that the system

Hi—TIO (= Uneapi-TIO) is not finitely axiomatizable. (See the beginning of §4
below.) The main purpose of this paper is to study the systems Zi—TIO and

o
1770

We shall have occasion to consider certain comprehension and choice prin-

ciples. By Hi-CA we mean ACA0 plus all comprehension axioms

0
X Ym(m € X > p(m))
. . 1 . A1
in which ¢ 1is Hn and does not contain X, By An—CAO we mean ACA0 plus
all instances of
¥m (e (m) <+ ~f(m)) + I Ym(m € X <> 9(m))

where ¢ and V¥ are Hi and do not contaln X. Write (Y)k = {y : (y,k) €Y}.

By Zi—ACO we mean ACAO plus all instances of the countable cholce scheme

Yk 3Xp (k,X) ~ 3¥¥ko (k, (¥), )

where ¢ is Zi and does not contain Y or bound occurrences of k. By

Zi—DCO we mean ACA0 plus all instances of the Zi dependent choice scheme

VXY (X,Y) 2k ((2) 5 (2) )

k+1

where ¢ 1is Zi and does not contain Z or k. It is well known and easy to

1 . .l . . 1 .
see that En+1—DC0 includes zn_._l—AC0 which includes An+l-CAO which includes
1 . 1 , , 1 1
Hn—CAD. Obviously Hl—CA0 implies Ll—TIO and Hl—TIO. It 1s known from [2]

and [9] that Hi-CAO is proof theoretically stronger than Hi-TIO.

An important role in this paper will be played by the system ATRO. ATR0

consists of ACAO plus the scheme of arithmetical transfinite recursion

WOR) —
IIy¥n[{y,n) €X < 8(y,{(x,m):m=<<n & (x,m) € X})]

where 6(y,X) is arithmetical. Intuitively, X 1is a set obtained by 1lterating
arithmetical comprehension along the well ordering < . It is easy to see that
ATR is finitely axiomatizable: the axioms are those of ACAO plus a H;

o]
sentence asserting that the Turing jump operator can be iterated along any well
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ordering starting at any set.

For background information on ATR, see [1], [3], [6]. One may alsa con-

0
sult [4] and [13], but see the comment just before Lemma 2.7 below. Two impor-

tant facts which we shall need are

(1) ATRO proves Zi—ACO;

(11) ATRO proves comparabllity of well orderings, i.e. if -<l and *(2
are well orderings of « then they are isomorphic or one is 1somorphic to a
proper initial segment of the other. (We say that -{1 and 4(2 are isomorphic if
there exists a binary relation of isomorphism between them.)

Each of the systems above may be strengthened by adding the induction scheme

9 (0)&Vk(p (k) ~ (k+1)) ~ Vko (k)

where ¢ 1is arbitrary. Thils scheme formalizes the principle of proof by induc-

tion on the natural numbers., If § denotes one of our systems with only the

0
quantifier free induction axiom, then S will dencte SO plus the induction
scheme, For instance, ATR = ATRO + induction scheme, and Zi—TI = Zi—TIO + in-

duction schemre,

§2, Zi transfinite induction.

In this section, restrictions of the ordinary induction scheme will play an

lmportant role. By Zi (respectively Hi) induction we mean the induction

scheme restricted to formulas ¢ which are Zi (respectively Hi). Note that

the induction scheme restricted to arithmetical ¢ 1is provable in ACAO.
In addition to Zi and Hi induction on the natural numbers, it will be

convenient to consider the following finite form of Hi—CAO which we call finite
1

Hl—CAot

Yn3XVi=n({d € X <= ¢(i))

1
where ¢ is a Hl formula not containing X.

the following are pairwise equivalent:

2.1 Lemma. Over ACA

0
1. ﬂi induction (on the natural numbers);
2. Zi induction (on the natural numbers);
3. finite II-CA..

170

Proof. 1 «— 2: Assume Hi induction., Suppose Vk{p(k) - ¢(k+l)) and

~p(n) where ¢ 1is El Prove by induction on 1 = n that ~p(n-i). In par-

1
ticular ~(0). This proves Zi induction from Hi induction. The converse is

similar.



Ei and H} transfinite induction 243

2 + 3: Note first that Ei induction implies finite Zi—ACO, i.e. the

scheme

YkIXO (k,X) — Vn3YVk<ne(k,(Y)k)

1

1
fails, i.e. for some fixed n, there is no set X

where 6 1s arithmetical and Y does not occur in 6. Now let ¢ be a II
formula for which ﬂi-CAO
such that ¥1i <n (i € X ~— ¢(1)). Let V¥(k) say that there exists a finite set
s ¢ {0,1,...,n} of cardinality k such that Vi(i € s > ¢(i)). Clearly v(9)
and Yk (k) - ¥ (k+l)), and by finite Zi-ACO the formula (k) 41is equivalent
to a Hi formula. Hence by ﬂi induction we have in particular V¥ (n+2) which

is absurd.

3+ 1: Suppose ¢{(0) and VYk(p(k) - ¢(k+l)) where ¢ is ﬂi. Given n,
by finite Hi—CAO there exists X such that Vk=<n(k € X «> ¢(k)), Then 0 € X

and Vk<n(k€X + k+tl €X) so by quantifier free induction we have n € X, 1i.e.
¢(n). This completes the proof.
For technical reasons we consider the following weak form of Zi_ACO which
we call weak Zi—ACO:
VYkItxe (k,X) - HYVks(k,(Y)k)
where 6 1s arithmetical, Y does not occur in 6, and 3J!X abbreviates "there
exlsts a unique X such that." Weak Zi—AC is of course not to be confused

0

with finite Zi-ACO which was introduced in the proof of Lemma 2,1.

1 . 1 , 1
2.2 Lemma., Al-TI0 plus finite Zl—ACO implies weak Zl ACO.

Proof. By ACA, there exist Skolem functions for any arithmetical formula.

0

Thus to prove weak Z%—AC it suffices to prove

0

Yk3I£Ynb(k,£[n]) - Hngvne(k,gk[n])

where 0 1s arithmetical, f and g are function variables (Intended to range
over one-place functions from natural numbers to natural numbers),

fln] = {f(0)y.e.,f(n-1)? , and gk(m) = g({m,k)). Assume the hypothesis
Yk3I1f¥noO(k,f[n]) and let T be the tree of unsecured finite sequences for the
conclusion, i.e. t € T if and only if Yk = £h(t)Vn = ﬂh(tk)e(k,tk[n]). If the
conclusion fails, then T has no path, i.e. the Kleene/Brouwer ordering of T

is a well ordering. Define t € T to be good if and only if

Jg(¥k SBh(t)VnS(k,ngn]) & g[éh(t)]=t),

Vg (Vk = ¢h(t)Vnb(k,g, [n]) - glth(t)]=t).
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By hypothesis and finite Zi—ACO these two definitions of goodness are equivalent,

Thus the property of goodness is A Trivially the empty sequence is good, and

1
the hypothesils easily implies that each good t € T has a good immedliate exten-

sion in T. Thus we have a failure of Ai-TIO along the Kleene/Brouwer ordering

of T. This completes the proof.

Remark. The scheme of weak Zi_ACO is perhaps of some independent interest.

It 1g easy to see that Ai-CAO implies weak Zi—ACO and that every «—model of
weak Zi—ACO is closed under relative hyperarithmeticity. Hence the hyperarith-
metic sets form the minimum w-model of weak Ei—ACO. Another easy observation

is that given any descending sequence of Turing degrees separated by Turing jump,
the reals recursive in all degrees in the sequence form an w-model of weak

Ei—ACO. For more information about such sequences see Friedman [5] and Steel [12].

Van Wesep [l4] has shown that there exists an «w-model of weak Zi—ACO which is

not a model of Ai_CAO' L
The next lemma expresses the well known fact that number variables in II

1

predicates can be uniformized, provably in ATRO.

2,3 Lemma, Let o¢(n) be a Hi formula., There exists a Hi formula ¢*(n)

such that ATR0 proves Yn(p*(n) - ¢(n)) and dnp(n) -+ Alnp*(n).

Proof. Let -(n be the Kleene/Brouwer ordering of the tree of unsecured se~
quences for ¢(n). Thus by ACAO we have that ¢(n) holds if and only if ‘(n
is a well ordering. Put o¢*(n) if and only if ¢(n) & ~3p<:n(—<p 1s isomorphic
to -<£) & NHp(-'(P 1s isomorphic to a proper initial segment of -(n). This works

because ATR0 proves comparability of well orderings.

2.4 Lemma. Let VY{(m) and ¢(mn) be H} formulas. Then ATR0 plus ﬂi

induction (on the natural numbers) proves

Ym[y(m) » 3n[¥(n)&p (m,n)]] -
Ympy (m) - IE[E(0)=m&Yi[W(£(1))&p(£(1),£{i+1))]]1].

Proof. Assume Ym[y(m)->"n[VY(n)&p(m,n)]]. By ATR0 and the previous lemma

we may also assume VYm[y(m) - F'np(m,n)]. Fix m such that Y (m) holds, Let
8{k,s) say that s encodes a finite sequence of length k+l such that s(0) = m
and VYi<k[U(s(i))&o(s(i),s(d+1))]. By Zi_ACO (a2 consequence of ATRO), the

statement Js6(k,s) is Hi S0 we can use Hi induction to prove that this

statement holds for all k, Thus we have V¥k3!s8(k,s). Hence, by Ai_CAO (a
consequence of Zi-ACO), there exists f such that VYk&8(k,f[k+1l]}, 1.e.

f(0) = m and Vi[V(£f(i))&p(f(i),£(itl))]. This completes the proof.
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2.5 Theorem. The following are palrwise equivalent:

1. ATR. plus Hl induction (along the natural numbers);

0 1
2, ATR0 plus Zi induction (along the natural numbers);
1
3. ATRO plus finite Hl—CAO.
1
4, Zl—TIO.

Proof. The pairwise equivalence of 1, 2, and 3 1is by Lemma 2.1, Let <
be a linear ordering of the natural numbers on which Zi—TIO fails, 1.e. we have

a Hi formula ¥(m) such that 3mj(m) and VYm[¥y(m) > n< mi(n)]. By Lemma 2.4

we obtain a function £ such that Vk[{y(k)&fk+1)<< £f(k)], 1.,e. f 1s an infi-

nite descending sequence through < . This proves 1 - 4,

Obviously Zi-TIO includes Zi induction on the natural numbers so it re-

mains only to prove that Zi-TIO implies ATRO. Assume Zi'TIO' By Lemma 2,2

we have weak Zi—AC Let <4 be a well ordering and suppose we are given an

o
arithmetical formula ©(y,X). Let ¢(n,X) be the arithmetical formula which

asserts that X is the result of iterating 0 along < up to n, i.e.
X={(v,m):m=<n & 0(y,{(x,k):k<Lm & (x,k)eX])}.

It is easy to see that for each n there 1s at most one X such that ¢{(n,X).

o We must prove YniX¢(n,X). Let n be fixed. By Ei-TIO

we may assume Vm< niXp(m,X). Hence ¥Ym< n3!Xp(m,X) so by weak Zi—ACO there

exists Y such that Vm< n@(m,(Y)m). Then clearly o(n,X) if we put

In order to prove ATR

X= {(y,m):m<€ n & e(y,(Y)m)}. This completes the proof.

1
2.6 Corollary. (Friedman [3], Steel [13]). The systems ATR and Zl—TI

{(both with full induction on the natural numbers) are equivalenth

We shall now show that Zi—TIO is properly stronger than AIRO. This result

contradicts a claim which was made in Theorem 8 of [4] and on page 22 of [13].

2,7 Lemma. Over Zi-AC0 the following are equivalent:

1. Zi induction (on the natural numbers):

2, Hi soundness of ACAO,

able in ACAO is true.

. . 1
i.e. the assertion that any H3 sentence prov-—

Proof. 2 - 1: Suppose that we have a failure of Zi induction, i.e. ¢(0)

and Vk(p(k) - ¢{(k+l)) and ~op{n) for some fixed n. By H; soundness of ACAO

let M be a model of ACA0 plus ©(0) plus Vk{p(k) - 9o(k+l)) plus ~y(n).
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The standard integers are canonically identified with an initial segment of the
integers of M, Let Z = {m:MF ~p(m)}. Then Z contains the standard integer

n yet has no least element, This i1s absurd,

1l - 2: Reasoning in Zi_ACO’ let ¢ be a true E; sentence. We shall use

Zi induction to prove consistency of ACA0 plus o. Let L be the language of

second order arithmetic augmented by set constants Ci’ i € w. Write
o = JUYX3¥8(U,X,Y) where 6 is arithmetical and let ¢(U,X,Y) be the arithme-

tical formula

VA6, (K, (D) ) & Wy = (D),]

where W? denotes the ith set recursively enumerable in X. Let T be the

L-theory consisting of RCA (= ordered semiring axioms plus recursive compre-

0
hension plus quantifier free induction) together with axioms @(CO,Ci,Ci+1), i€,

We shall prove consistency of T. Let T be the restriction of T to Ci’

k
1 =k, Fix a set U0 such that VXHYG(UO,X,Y). By Zi_ACO we have
VX3Y¢(U0,X,Y). Hence by Zi induction we have

) 1.

YkIZVi < k[ (Z)O=U0 & (p(UO, (z)i, (Z)i+l

It follows by cut elimination that Vk(Tk 1s consistent). Hence by the compact-
ness theorem T dis consistent, But from any model of T we can easily extract
a model of ACA0 plus ¢ by throwing away all sets except those which are re-
cursive in Ci for some i € w. Thus ACAd plus o 1is consistent, This com-

pletes the proof.

2.8 Theoren, Zi—TIO proves Hé soundness of AIRO, i.e. the assertion

1 . . 1
that_any H3 sentence provable in ATR0 is true. In particular 21 TI0 proves
consistency of ATRO.

Proof. We reason in Zl—TI . By Theorem 2.5 we have ATR, and hence

1770 0
Zi_ACO' Let o be a true Zé sentence. We know that ATR0 consists of ACA0
plus a H; sentence so we may as well assume that o Includes this H2

sentence. Now apply Lemma 2,7 to conclude that ACA0 plus ¢ 1is consistent,

i,e. ATR0 plus ¢ 1is consgistent.

1
2,9 gCorollary. ATR0 does not_ prove El—TIO.

Proof., Immediate from Theorem 2,8 plus G8del's second incompleteness

theoren.
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i 1 .
2,10 gorollary. ATR0 does not prove Hl induction, El induction, or

. 1
finite Hl—CAO.

Proof. Immediate from the previous Corollary plus Theorem 2.5.

§3. Partition calculus in Z‘.i—TIO.

In this section we use the notation of §3 of [6]. We study closed sets in

the space [m]m of infinite sets of natural numbers. It was shown in [6] that

ATRO is equivalent to ACAO plus the Galvin/Prikry theorem for closed sets,

i.e. the assertion that for every closed set C E_[w]m there exists A € [m}(JJ

such that either [A]m_g c or [al®nc-= $. The purpose of this section is to

prove a similar result in which ATR, 1s replaced by the stronger theory Zi-TIom
A set UCw is said to be hyperarithmetic if U is recursive in Hb for

some b € (.

3,1 Lemma (ATRO). Let Ci’ i < n be a recursively coded finite sequence
1o

of closed sets in [w} . If there is no hyperarithmetic U ¢ [u)]m such that

Ji < n{U]m n Ci = ¢ then there exists A € [m]m such that Vi< n[A]m S_Ci.

Proof. The proof of Theorem 3.8 of [6] actually establishes this stronger

result,
3.2 Theorem. Over ACA0 the following are equivalent:
1
1, Zl—TIO,

2, For any finite sequence of closed sets C E_[m]m, i < n, there exists

A€ [m]w such that for each 1 < n either [A]w € C, or [A]m n Ci = 4.

i

Proof., 1 - 2: By relativization we may safely assume that the given se~
quence of closed sets Ci’ i < n, is recursively coded.

We claim that there exists a hyperarithmetic set U € [m]m such that for
each 1 < n either [U]w n Ci = ¢ or there is no hyperarithmetic V € [U]w such
that [V]m n Ci = ¢. Suppose not. Let V{(k) be the assertion that there exists
a hyperarithmetic V € [m]w and a finite set s of cardinality k such that
Vi € s (i & (V1N C = ). Clearly ¥(0) and VK(¥(l) > y(ct1)). By Zi-ACO

{a consequence of ATRO) the formula ¥(k) is equivalent to a Hi formula.

Hence by Hi induction we have V(n+l) which is absurd. This proves the claim.

Let U be as in the above claim. By finite Hi_CAO let

{1<n: (U1 N c, = #}. The claim tells us that there is no hyperarithmetic

]

m

[U]® such that 3ieX [V]w N C1 = ¢. Hence by Lemma 3.1 there exists

w

A € [U]w such that VYi€X [A]w < Ci' Hence for each 1 < n either [A]” ¢ Ci
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(if i €X) or [A]“’nci=¢ (1f i £ X).

2 +1: We already know (by Theorem 3,2 of [6]) that the partition theoren
3.2.2 implies ATRO. By Theorem 2,5 it remains to show that the partition theorem

also implies finite Hi—CAO. Let ¢(1) be Hi and let Ti

clated tree of unsecured sequences, i.e. ¢(i) holds if and only if there is no

<
Cw be the asso-

path through T For any X ¢ [w]m let Tx ¢ o be the function which enumer-

i.
ates the elements of X in increasing order. Put X € Ci if and only if Ty

majorizes a path through Ti’ i,e. Eij(f(j)Snx(j) & f[j]ETi) or equivalently
by Kénig's lemma Vk3t(tETi & £h(t)=k & Vij<k t(j)Snx(j)). Clearly Ci is a
closed set in [w]®. Now given n, use the partition theorem 3.2.2 to get

A ¢ [0]® such that for each i < n either [a1® < Ci or [A]1®n Ci = ¢. Then
for 1 <n we have (i) if and only if ~[A]® c C,. The latter formula is

1
arithmetical so by ACA0 we have 3XVi<n(ién <+ ¢(1)). This completes the proof
of the theorem,
The following corollary establishes a conjecture which was stated after

Theorem 3.9 in [6].

3.3 (Corollary. The partition theorem 3.2.2 is not provable in ATRO.

Proof. Immediate from Theorems 3,2 and 2.9.

An argument similar to the above proof of Theorem 3,2 establishes the follow-
ing result which was discovered jointly by S. Shelah and the author, long before

the author's discovery of Theorem 3,2.

3.4 Theorem, Qver ACA0 the following are equivalent:
1
1. ﬂl—CA

0;

2. For any infinite sequence of closed sets Ci < [m]m, i€ o,
A € [0]” such that for each k € A and i<k either [a/{kN®ccC, or
[A/{k}“ N C, = 6. (Here A/{k} = {n€Ain>k}.)

there exists

§4. ﬂi transfinite induction.

Friedman [3] has shown that over ACA0 the transfinite induction scheme

=u_ plm
n€w n

Hi—TI is equivalent to the «w-model reflection scheme Zi-RFNO =

] 0
1 1
) Z -RFN,.. Here Zn-RFN

1
N 0 asserts that for any I sentence Q(Xl,...,Xm)

0

yeoasX there exists a countable w-model M of ACA
1 m 0

such that Xl,...,Xm €M and M Fm w(xl,...,xm). It is natural to ask how much

with set parameters X

transfinite induction is equivalent to how much w-model reflection. As a rule,

special cases of this question appear to be difficult. However, one special case
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is answered by the following theorem.

4,1 Theorem. Over ACA. the following are pairwise equivalent:

0
1
1. Hl—TIO.
1
2. Zl-DCO.
1
3. ZB-RFNO'

Remark. The equivalence of 2 and 3 is due to Friedman [1]. The equiva-
lence of 1 and 2 may be derived from the appendix of Howard [8] together with
the reduction of BIl to BI0 in Howard/Kreisel [9]. The equivalence of 1 and
2 subsumes several results which have been stated by Friedman in Theorem 4.2 of

[3] and Theorem 8 of [4].

Proof of Theorem 4.1. 1 - 2: Similar to the proof of Lemma 2.2. Recall

1 . 1
that Z1-DC, says YX3vp (X,Y) 32Vk¢((2)k,(2)k+l) where ¢ is El. By ACA,
there exist Skolem functions for the arithmetical matrix of ¢, so to prove
Zi-DCO it suffices to prove

Yfdgine (£f[n],ginl) ﬂ-HthVme(hk[n],hk+l[n])

where f£,g,h are function variables, @& is arithmetical, £[n] =
{ £(0),.+.,f(mn-1)) , and hk(m) = h((m,k)). Assume the hypothesis and let T be

the tree of unsecured sequences for the conclusion, 1.e. t € T 1if and only if

[n]).

¥k < £n(e)¥n = min(fh(r,),2h(c il

)8 [l

If the conclusion fails then T has no path, i.e. the Kleene/Brouwer ordering of

T is a well ordering. Say that t € T {is good if

3h(Vk<8h(t)Vne(hk[n],h [n]) & h[Zh(t)]=t).

k+1
Clearly the empty sequence is good, and the hypethesis Vf3g¥né(f[n],g[n])
implies that each good t has a good immediate extension. The property of good-

ness 1is Zi so we have a failure of Hi-TIO along the Kleene/Brouwer ordering of

T.
2 » 3: Similar to Lemma 2.7. Let w(UO) be a true Zi sentence with a set
0" Write m(UO) = BVVXHYG(UO,V,X,Y) where 6 is arithmetical. Fix

U1 such that VXHYB(UO,UI,X,Y). Let ¢(X,Y) say that (Y)0 = U0 and (Y)l Ul

and

parameter U

V333K (U, U, (), (1)) & Wy = (1))

th set recursively enumerable in X, By Z]]_'—DCO there

). Clearly M = {((Z)k)i : k€w&i€w} 1s a

where W§ is the i

exists Z such that ka((z)k,(z)k+l

countable «w-model of ACA0 plus ¢(UO). This proves Z;-RFNO.



250 S.G. SIMPSON

3->1: Let ~£ ©be a linear ordering of the natural numbers and assume that
we have a failure of Hi-TIO on <, i.e. Vo(vm << nw(m) -+ ¢(n)) and ~op(p)
1

where ¢ 1is Hl. By 23

1
< and satisfying.

-RFNO there exists a countable wmodel M containing

Vn(¥n < np(m) - ¢(n)) & ~e(p).

By ACA0

ment under < . Hence <€ 1s not a well ordering. This completes the proof of

let Z = {n: M Fm ~p(n)}. Thus Z 18 nonempty and has no least ele-

Theorem 4.1.

1
4,2 QCorollary. (1) l'[l-'I‘I0 plus ATR0 proves the existence of an «w-model

1 .-
of 21 TI, (ii) ATR0

Proof, The first part is immediate from Theorems 4.1 and 2.5 since ATRO

1
proves the existence of an w-model of Hl-TI.

consists of ACA. plus a H% sentence., For the second part, reasoning in ATRO,

the proof of Thegrem 3.7 of [6] gives ¢ ¢ 0+ \ 0 and a countable w-model L of
ACA0 satisfying "c € 0 and H exists." Since ¢ # 0 let AC {a: a <5 e}
be such that Vb 50 c(V&<0b(aEA) -+ b€A). Put Ml = {X:HaEA(MO Fu) X is rec;rs—
ive in Ha)}. It is not hard to see that Ml is a countable wmodel of Zl—DC0

and hence of Hi—TI.

4,3 Corollary. Neither of Zi-TI and Hi—TI implies the other, and there

exlst w-models for the independence.

Proof. Both directions are immediate from Corollary 4.2 plus the w-model
form of GYdel's second incompleteness theorem (for which see Friedman [5] or

Steel [12]).

Remark. The two previous corollaries are not really new since 1t is well

known [7] that the hyperarithmetic sets satisfy Zi_DCO' However, this fact is

although it is provable in Zl—TIO.

not provable in ATR 1

0!

§5. Remark on a system considered by Jdger,

After the main part of this paper was written, Harvey Friedman pointed out
that the idea of the proofs of Theorems 2.8 and 4.l above can be used to settle
the relationship between ATR and a related system ATRJ considered by Jdger

[10]. With Friedman's permission we include this result here.

Let ATRg be just like ATR0 except that arithmetical transfinite recursion

J
is only assumed to hold for well orderings which are primitive recursive. ATR

is ATRg plus full induction on the integers.

Say that X € o 1s low if wi = mEK, i,e. any well ordering of the natural

numbers which is recursive in X is isomorphic to a primitive recursive well

ordering of the natural numbers.
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5.1 Lemma. Let o(X,Y) be arithmetical with no free set variables other

than X and Y. Then ATRg proves
X low & J¥p(X,Y) - 3 low Yo(X,Y).

Proof. We use the notation of §3 of [6]. In ACA.0 we can prove that for

all X, Ox is complete Hi in X and hence not Zi in X. Write

XBY = {2nin€X}U{2n+1:n€Y}.
Assume now that X 48 low and 3Yp(X,Y). By ATRg we have that for each e € OX
there exists ¥ such that ¢(X,Y) and HﬁeY exists. Since OX is not Zi in

X it follows that there exist Y,e,2 such that ¢(X,Y), e € Oi \ OX, and

H(X®Y,e,2), i.e. 2 is a pseudo—Hﬁew. We claim now that X ® Y is low. This

follows from Theorem 4 of [5] relativized to X @ Y.
As in §4 of [6] write X << Y to mean that there exists Z recursive in Y

such that for all i, X and the Turing jump of (Z)i+1 are recursive in (Z)i'

J
5.2 Lemma. ATR0 proves V low XI¥(X<<Y).

Proof. This a straightforward combination of the proofs of Lemma 5.1 above

and Lemma 4.6 of [6].

5.3 Theorem. (Friedman). ATR and ATRJ prove the same Hl sentences.
= 1

For every model of ATRJ there is a model of ATR with the same integers..

Proof. Let i be a model of ATR’ plus o where o 1is a Zi sentence.
Write o = JX¢(X) where ¢ is arithmetical. Within MJ apply Lemma 5.1 to get

a low set XO such that w(Xo) holds, Consider the Zi assertion

3ZVk[(Z)0 = XO & (Z)k << (Z)k+l]'

We would like to find 2Z ¢ MY such that this holds in MJ. Unfortunately we can-
not do this, but we shall find such a Z which is first order definable over MJ.

By ACA, we can write our Zl assertion in the form

0 1
3kaVme(fk[m],fk+l[m])
where 0§ 1is arithmetical., Disregarding Skolem functions, Vme(fk[m],fk+1[m])
- ; J ..
says that f0 = X, and fk << fk+l' Within M~ define a finite sequence t to
be good if

(J1ow f)[Vk<£h(t)Vme(fk[m],fk+1[m]) & f[Zh(t)]=t].

Clearly the empty sequence is good, and by Lemmas 5.1 and 5.2 each good sequence

has a good immediate extension.
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By induction on n we can prove that there exists a lexicographically left-
most good sequence of length n. Let £ be the leftmost "path” through the
"tree" of good sequences. (We use quotation marks to indicate that the objects in
question are not elements of MJ but merely first order definable over MJ.) By
Lemma 4.6 of [6] the "sets" which are recursive in fk for some k form a model
M of ATR0 with the same integers as M, This model M 1is first order defin-
able over MJ and therefore satisfies full induction since MJ does. Thus M
is a model of ATR. Also M contains Xo and hence satisfies o¢. This proves

the theorem.

5.4 (Corollary. The proof theoretic ordinal of ATR is FEO.

Proof., From Theorem 5,3 it follows that ATR has the same proof theoretic

ordinal as ATRJ. Jdger [10] has shown that the proof theoretic ordinal of ATRJ

is Ts .
0

By a similar but easier argument one has:

. J 1
5.5 Theorem (Friedman). ATR0 and ATRO prove the same Hl sentences.

Every model of ATRg has a submodel with the same integers which is a model of
ATRO.
Proof. Let Mg be a model of ATRg Plus ¢ where o 1is a Zi sentence.

Write o = 3Xp(X) where ¢ 1s arithmetical, By Lemmas 5.1 and 5.2 we can find

J
k’k €w, such that MO satisfies w(ZO) and Zk << Zk+l°

Here k ranges over standard integers. By Lemma 4.6 of [6] the sets which are

a sequence of sets 2

recursive in Zk for some k form a model MO of ATRO. This model MO is a
submodel of Mg.
The next corollary was proved earlier by Friedman [4], [6].

5.6 gCorollary. The proof theoretic ordinal of ATR0 is FO.

have the same

oo

Proof. From Theorem 5.5 it follows that ATRO and ATR
proof theoretic ordimal. Jiger [10] has shown that the proof theoretic ordinal

J
of ATR0 is FO.

We do not know the proof theoretic ordinal of Zi—TIO or of Zi-TIO +

1 i 1
Hl-TIO or of Zl—TI + Hl-TI.

It 1s fairly clear that the proofs of Theorems 5.3 and 5.5 can be made to
yield general results in the style of Theorems 2.8 and 4.1. We leave these

general formulations to the reader.
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