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§1. Introduction.

In this paper we study certaln fairly weak formal systems which are neverthe-
less just strong enough to formalize certaln aspects of mathematical practice. All
of the systems we consider use classical logie.

Dy ATR_ we mean the formal system of arithmetical transfinite recursion with

quantifier gree induction on the natural numbers. This 1s an interesting finitely
axiomatizable subsystem of second order arithmetic. It was first isolated by H.
Friedman [10], [11]., Detailed studies of it have appeared in Steel [28],
Friedman/McAloon/Simpson [13], and Simpson [27]. A precise description of the

language and axioms of ATR_ is given in §2 below.

The interest of ATR0 gas by now been well established. On the one hand, it
was shown [10], [11], [13], [26]1, [27], [28] that ATR0 is just strong enough to
prove many mathematical theorems which depend on having a good theory of countable
well orderings. Indeed many such theorems, when stated in the language of second

order arithmetic, turn out to be provably equivalent to ATR, over a weak base

theory. (As an example here we may cite the theorem that eSery uncountable Borel
set contains a perfect subset. Statements involving Borel sets, perfect sets, and
countable well orderings are formalized in the language of second order arithmetic
by means of codes.) On the other hand, it was shown in [13] that ATR0 is proof
theoretically not very strong; e.g. its proof theoretic ordinal is just the
Feferman/Schlitte ordinal PO.

Although ATR0 1s a subsystem of second order arithmetic, the purpose of this

paper 1s to examine ATR, from a set theoretic viewpoint. To this end we isolate

0

in §2 a certain finitely axiomatizable system of set theory, ATR;, whose key axiom

asserts that every well ordering is isomorphic to a von Neumann ordinal. The

system ATRS appears to be a very natural and interesting fragment of
ZF = Zermelo/Fraenkel set theory. We show in §3 that ATRS

extension of ATRO. This is done by showing that A'I‘RO is strong enough to carry

is a conservative
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out the usual arguments in which hereditarily countable sets are encoded by count-

able well founded trees.
8

0
This amounts

In §4 we study models of ATR We show that any countable model of ATR

8
0’ o
has a proper é-transitive submodel which is again a model of ATRO.
to showing that every countable model of ATR  has a proper Ei elementary sub-

0
model. Throughout this paper we employ mainly model theoretic methods, although

proof theoretic results are mentioned briefly from time to time.
8
0
theory, i.e. the theory of admissible sets [1], [2]. KP is also a natural and

In §5 we compare ATR. with the better known system KP = Kripke/Platek set

interesting subsystem of ZF. Intuitively speaking, ATRS is different from KP
because Barwise compactness is internal to the system, rather than being a prop-
erty of models of the system as it is for KP.

Independently of our work, McAloon and Ressayre [23] defined a system of set
theory which 1s similar to ATRS, and stated a result similar to our Theorem 3.6.
Our Theorem 4.10 was proved in answer to a question raised by McAloon and Rassayre
[23]. Friedman [12], after learning about our results in §3, devised an elegant
theory of sets and classes which is also a conservative extension of ATRO.
§2. The systems ATR, and ATRS.

The language of second order arithmetic comsists of +, -, 0, 1, =, <, €,

number variables i, j, k, m, n, ..., set variables X, Y, Z, ... , propositional
connectlves, number quantifiers ¥n, 3dn, and set quantifiers VX, 3X. Number
variables are intended to range over the set « of natural numbers, and set vari-
ables are intended to range over subsets of . A formula in thevlanguage of sec-
ond order arithmetic is said to be arithmetical if it contains no set quantifiers.
The weakest formal system we shall consider is ACA0 which consists of the usual

ordered semiring axioms for @, the quantifier free induction axiom
0€X&Vk(k€X —» k+HLE€X) -+ Yk(keX)

and arithmetical comprehension axioms

IXYm(meX «— 6(m))

where ©6(m) 1s arithmetical and does not mention X. It can be shown that ACA0
is finitely axiomatizable: the principal axiom asserts that for any set X,
the Turing jump of X exists.

Within ACA0 we have the arithmetical pairing function

(m,n) = %(m+n+l)(m+n) + m.
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Binary relations R on the natural numbers are identified with sets X =
{(myn) : m R n}. A well ordering is a binary relation=<{ on the natural numbers

which is a linear ordering of its field, such that
YX[¥n(¥Ym=< n(méX) - néx) - yYn(n€x)].

We write WO(<) to mean that =< is a well ordering in the sense just described.
Thus WO(<<) is a Hi formula with a free set variable =<,

The system ATR_. consists of ACA0 plus a scheme of arithmetical trans-—

0
finite recursion which asserts that arithmetical comprehension can be iterated

along any well ordering. ATR0 includes all axioms of the form

WO(=<) ~ Ix¥ivVnl(,n) X < 8(3,{(i,m) : m=< n&(1,m)€x})]

where 6(j,Y) 1s arithmetical, It can be shown that ATR) is finitely axio-

matizable: the axioms are those of ACAO plus a I sentence asserting that the

2
Turing jump operator can be iterated along any well ordering starting at any set.

In §5 we shall briefly consider the scheme of transfinite induction which

consists all instances of
Wo(< ) &¥n(¥m< no(m) ~ p(n)) -+ ¥ne(n)

where ¢ 1is an arbitrary formula. A formula is said to be Zi (respectively
ﬂt) if it consists of a string of k set quantifiers beginning with an exlsten-

tial (respectively universal) one, followed by an arithmetical formula. By
1

Ek— TI0

plus the transfinite induction scheme restricted to formulas ¢ which are

(respectively HIJ;—TIO) we mean the formal system consisting of ACA0

can be found

Zl (respectively Hi). More information on Zi-TIO and Hi—TIO

k
in Simpson [27].

The set theoretic language is just the first order language with =, €, and

set theoretic variables u,v,w,x,¥,... . We employ without comment a number of
abbreviations which are familiar from textbooks on ZF set theory. Consider the

following set theoretic axioms:
1. Axiom of extensionality: VYu(uéx «— ufy) +x = y.
2. Axiom of regularity: =x # ¢ = Jué€x(uflx = ¢).
3. Axiom of infinity: 3Ix(¢€x & Yuex(ul {u} € x)).

4. Axioms asserting that the universe is closed under primitive recursive

set functions (Jensen/Karp [22]).

5. A set r of ordered pairs is said to be regular if

Yx(x#¢ - Jué€xVvéx (v,u) £ r). Our key axiom asserts that if r 1s regular then
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there exists a function f with field(r) € domain(f) and, for all u € domain(f),

f(u) = {f(v) : (v,u) € r}.
6. Axiom of choice: Vx3r (r is a well ordering of x).
7. Axiom of countability: Vx (x 1s countable).

Our basic system ATRZ consists of axioms 1 through 5. Axioms 6 and 7 are
regarded as optional extra axioms. Actually, our main interest is in the full
system consisting of axioms 1 through 7, 1i.e. ATRE plus the axiom of count-
ability.

Note that ATRS is a subsystem of ZF. We shall begin §3 by showing that
ATR® is finitely axiomatizable. Hence ATRS plus the axiom of countability is

finitely axiomatizable.

§3. Conservative extension result,

In this section we present some basic results about ATRS and about the re-
lationship between ATRS and ATR_.. Keep in mind that ATR® is a system of set

0 0
theory while ATR_ 1is a system of second order arithmetic.

0

3.1 Theorem. ATRS is finitely axiomatizable.

Proof. We claim that the scheme of closure under primitive recursive set

functions can be replaced by an axiom asserting closure under rudimentary func-—
tions FO--F8 (Jensen [21] p. 239), plus an axiom asserting that for any tran-
sitive set t and ordinal a, the constructible hierarchy La(t) starting at t
exists, plus an axiom Vx3t(x€t & t is transitive). To prove the claim, note
first that axiom 5 (applied to linear orderings r) yields closure under primi-

tive recursive ordinal functions. Now apply Theorem 2.5 of Jensen/Karp [22].

3 2 Remark. We remark on some alternative simplified axlomatizations of
=t =]

ATRS. One may add the axiom of choice to ATR If this is done, then axiom 5

s
0 0°
can be replaced by its speclal case in which r is a linear ordering. (The spec-
ial case just says that every well ordering is isomorphic to an ordinal.) Clearly
the axiom of countability implies the axiom of choice. In the presence of the
axiom of countability, a different simplification is possible: the axiom about
La(t) can be replaced by its special case in which a = and t = ¢, We omit
proof of these remarks. We conjecture that either of the mentioned simplifica-

tions can be made even without the axiom of choice.

In any case we have:

3.3 Lemma. In any model of ATRS, the hereditarily countable sets form

a model of ATRS plus the axiom of countability.
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Proof. Obvious, (A set 1s said to be hereditarily countable if the smallest

transitive set containing it is countable.)

We now exhibit a close relationship of mutual interpretability between ATR(S)
and ATRO. Assume that the language of second order arithmetic has been inter-
preted into the set theoretic language in the usual way: number variables range

over ®, set varlables range over subsets of w, etc. We then have:

3.4 Lemma. Each axiom of ATR. is a theorem of ATR®,

Proof. Let ~{ be a well ordering of w, let 8(j,X) be an arithmetical
formula, and let o(n,Y) be an arithmetical formula which asserts that Y is

the result of iterating & along =X up to n. Thus ¢{(n,Y) says
Y={(,m) : ;< n & 06(j,{(1,kx) : k<m & (1,k) € YD].

Reasoning in ATRS, let t be the transitive closure of {[<}, let a be the
ordinal of <, and for each n let |n| < a be the ordinal of the restrictilom
of € to {m: m=<n}., Using the axiom of regularity, prove by induction on |n|

that L, contains a set Y such that ¢(n,Y). We omit details.

nJ+l(t)

s
3.5 Lemma. Any model of ATRO can be expanded to a model of ATRO plus

the axiom of countability.

Proof. Within ATR0 we make the following definitions. A tree is a non-
empty set T of (codes for) finlte sequences of natural numbers such that
sCt&t€T—+s5 €T, Atree T 1is said to be well founded if T has no path,
i.e. there is no function f such that Yn f[(n]€T where fIn] = (£f{0),..., f(n~1)).
Trees T and T’ are said to be isomorphilc, written T & T”, if there
exlsts an isomorphism between them, i.e: an order preserving biljection of T onto
T, 1If s and t are finite sequences of natural numbers, s t is the con-
catenation of s followed by t. If T 1s a tree and s € T, we write
Ts = {t:s™t € T}. A tree T 1s said to be suitable if it is well founded and,
for all s €T, if sXm? € T and s™n)} € T and Ts,\(m)g Tﬂn)

The point of the definition is

then m = n.

Clearly the class of suitable trees is Hi.
that 1f T and T’ are suitable then there is at most one order preserving bi-

jection of T onto T’. Hence the relation T = T’ of isomorphism between suit-

able trees 1is Ai on H]]:. If T and T’ are suitable trees we write T € T’
to mean n({n)€ T’ & T=T’, .). The relation ¢ is again Ai on Hl. We are

{n} 1

using the Z:ll axlom of choice, a consequence of ATRO.
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We interpret the set theoretlc language into the language of second order
arithmetic as follows. Set theoretic variables are interpreted as ranging over
suitable trees, The equality relation = between set theoretic variables is in-
terpreted as =, and € 1is interpreted as €. The idea here is that a well

founded tree T 1is to be identified with a hereditarity countable set

It] = {1 : (n) € T}.

(n)l

The restriction to suitable trees is for convenience only. Note that for suitable
trees we have |T| = |T“| if and only if T = T/, and |[T| € [T”| if and only
1f T T T

We must verify that the suitable tree interpretations of axioms 1 thrdugh
7 are theorems of ATRO. Recall that a set theoretic formula is AO 1f it is
built up using only bounded quantifiers Vuéx, Juéx. Note‘that for each AO
formula w(xl,...,xn) the corresponding suitable tree formula w(Tl,...,Tn) is

1

Al on the Hi class of suitable trees. Hence we may apply Ai comprehension
(a consequence of ATRO) to get closure under rudimentary functions. Further-
more, given suitable trees corresponding to a transitive set t and an ordinal
@, we can use arithmetical transfinite recursion along a well ordering of type
w*a to define a suitable tree corresponding to La(t)' The rest of the verifica-
tion is routine.

The above discussion implies that any model M of ATR0 can be expanded to
a model M® of ATR; plus the axiom of countability. The elements of ue
are the equivalence classes of suitable trees in M under = in M. This com-
pletes the proof of Lemma 3.5.

Combining Lemmas 3.3, 3.4 and 3.5 we obtain immediately the following con-

servative extension result (one may compare Theorem 4.6 of Feferman [6]):

3.6 Theorem. Let ¢ be a sentence in the language of second order arith-

metic. The following are equivalent.

(1) ATRS plus the axiom of countability proves o3

8

(ii) ATRO proves o;
(iii) ATRO proves o.

84. Models of ATRg.

et M= (IM|, €) and N = (|N], €) be models of ATR]. We say that N

is an €-transitive submodel of M 1f |N| ¢ |M; and, for all a ¢ |M| and

b € [N[, a GMla 1f and only 1f a € |N| and a EN b. The purpose of thils sec-
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8
s 0
which is again a model of ATRO. This answers a question which was raised by

tion Is to prove that every model of ATR. has a proper €-transitive submodel
McAloon and Ressayre [23].

The main part of our argument consists In showing that the proofs of certain
well known theorems from hyperarithmetic theory can be pushed through in ATRO.
Our notation for hyperarithmetic theory is as in §3 of [13]. We say that X 1s

. P . . Y . . Y
hyperarithmetic in Y if there exists e ¢ 0 such that X is recursive in He.

The principal axiom of ATR is equivalent to the assertion that

0
7Y Ve(e€0Y - Hz exists).

We say that X dis Zi in Y if there exists a Zi formula o¢(m,Y), with
no free set variables other than Y, such that VYm(méX «— ¢(m,Y)). We say that
X 1is Ai in Y if both X and w\X are Zi in Y. A well known theorem
of Kleene [17] asserts that X 1is hyperarithmetic in Y if and only if X is
Ai in Y. The following lemma entails that Kleene's theorem is provable in
ATR

0
4.1 Lemma. The following is provable in ACAO. Let Y be a set such that
Ye(e (OY +»H§ exists). Then for all X, X is hyperarithmetic in Y if and only

Proof. Recall (from §3 of [13]) that there is an arithmetical formula
H(Y,e,Z) such that 1f e € OY then HZ is defined as the unique Z such that
H(Y,e,Z). Suppose first that X is hyperarithmetic in Y, Then X = (H:)i for

some e € OY and some 1i. Thus we have

m€X <+ FZ(H(Y,e,2) & m € (2)))

— YZ(H(Y,e,Z) =+ m € (Z)i)

so X 1is Ai in Y.
Conversely, suppose that X 1is Ai in Y. 1In ACAO alone we can prove

that OY is complete ﬂi in Y <(although we cannot prove that OY exlsts as a
set). Hence we can find a recursive function f such that Ym(m€X <= f(m) € OY)
For 1i,j ¢ OY write |i|Y = fj]Y to mean that there exists an order isomorphiem
of {e : e <3 i} onto a proper initial segment of {e : e Sg i}. Such an iso-~

morphism 1s called a comparison map. Under the given hypothesis on Y, we can
Y 1,1y .
li{" = (1]  since the appropriate

prove in ACA_  that either }i]Y = ij{Y or

0
comparison map is recursive in Hz. We claim that there exists e € OY such that

Y
[f(m) " = |e|Y for all m ¢ X. If not, then for all 1 we have that 1 ¢ 0¥

if and only 1f 1€ 0] and mmex & Jil' < [e@|"). Hence 07 1s zi in Y,

contradicting the fact that OY is complete Hi in Y. This proves the claim,



262 5.G. SIMPSON

We now see that for all m, m € X if and only if If(m)fYS leiY via a comparison
map which is recursive in HZ' Thus X 1is arithmetical in Hz. It follows that
X 1s hyperarithmetic in Y. This completes the proof of Lemma 4.1.

We now proceed to show that the proof of a result of Gandy, Kreilsel, and Tait
[14] can be pushed through in ATRO. For sets of integers X and Y write

X € Y to mean that Ji(X = (Y)i) where (Y)i = {m : (m,1) € Y}.

4.2 Lemma, The following is provable in ATRO. Let A and Y be sets

such that A is not hyperarithmetic in Y. Let o¢(X,¥) be a zi formula with
no free set varilables other than X and Y. If 3%p(X,Y) then 3IX(p(X,Y)
&AfX).

Proof. Let Ei-ACO be the 21 axlom of choice, 1.e.

Y13x6(i,X) - HYVie(i,(Y)i)

for arlthmetical 6. We shall make use of the result of Friedman [7], [11] that
ATR0 proves Z?-ACO.

If X,Y € 2 and if o(X,Y) 1is a formula In the language of second order
arithmetic, write 2Z Fw¢(X,Y) to meén that Z encodes a countable w-model of
¢(X,¥), i.e. ¢(X,Y) 1is true when the bound set variables in it are interpreted
as ranging over {(Z)i : 1 € w}. A formula is sald to be essentially Zi if it
is in the smallest class of formulas contalning the arithmetical formulas and
closed under existential set quantification and universal number quantification.
In view of Zi-ACO it is easy to see that ATR0 proves the following instance
of an w-model reflection principle: for essentially Zi formulas ©(X,Y), 1if

¢(X,Y) 1s true then 3Z(Z IZ; ACA, + o (X,¥)).

With these observations in mind, we now proceed to the procf of Lemma 4.2.
Let f,g,h,... be function variables intended to range over unary functions from
@ 1Into w. We assume that such variables have been introduced into the language
of second order arithmetic in the usual way. We write (f)i(m) = f((m,1)) and
fin] =(£(0),..e,f(n-1})). In view of ACA0 and the Kleene normal form theorem

for Zi formulas, it will suffice to prove the following assertion in ATRO:

Let g be a function which is not hyperarithmetic in Y. Let 6(t,Y}) be an

arithmetical formula with no free set (or functlon) variables other than Y. If

3f¥n8(f[n),Y) then 3f(Vna(f[n],Y) & Vi g # (f)i).

1-
Y ¥ 1
Ye(e€ld - He exists); g dis not hyperarithmetile in Y; 3f¥no(f[n],Y). We can

Assume the hypotheses. The following true statements are essentially 7

therefore find Z such that 2Z h) ACAO + these statements. Say that a finite

sequence t 1s good if
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Z h; I (Ynd(£[nT,Y) & F[Lh(t)] = t).

Clearly the empty sequence 1s good. We claim that i{f s dis good then for all 1
we can find a good t > s such that g[Eh((t)i)] # (t)i. If not, then for all
m and n we would have that g(m) = n if and only 1f Z FOJH good t (t>2 s
& (t)i(m) =n). Hence Z Fm g is Ai in Y. Hence by Lemma 4.1 it would
follow that Z Fw g 1s hyperarithmetic in Y. This contradiction proves the
claim.

Now standing outside Z and applying the claim repeatedly, we can find good
sequences tO E_tl < e E_ti & ... so that for all 1, g[@h((ti)i)] ¥ (ti)i.
(The sequence of good sequences to,tl,... is recursive in the satisfdctlon set

for the w-model Z.) Putting f = U we get Yn8(f[n],Y) and Vi g # (f)i'

160 %1
This completes the proof of Lemma 4.2,

Write

X®Y = {2n : néX} U {2n+l : n€Y}.

4.3 Lemma. The following is provable in ATRO. et A and Y be sets

such that A 1is not hyperarithmetic in Y. Let ¢(X,Y) be a Ei formula with
no free set variables other than X and Y. If 3dp(X,Y¥) then 3IxX[p(X,¥) & A

not hyperarithmetic in X @ Y].

Proof. Let V(X,Y,Z) be a Zi formula saying that X,Y € Z and

XY

z f=m ACA_ + o(X,Y) + Ve(eEOXW > B exlsts).

0

Since the statement 1in questlon is essentially Zi, we can find X and Z such
that A £ Z and, for the given Y, V¥(X,Y,2) holds. Then clearly YW(W hyper-
arithmetic in X ® Y > W € Z). Thus we have {X,¥) and A 1is not hyperarith-

metic in X ® Y. This proves Lemma 4.3.

4,4 Lemma. The following is provable in ATRO. Let ¢(X,Y) be a Zi formula

with no free set variables other than X and Y. If 3o(X,Y) and if A is
such that Vi[(A)i is not hyperarithmetic in Y], then 3IX[o(X,Y] & Vi[(A)1 not

hyperarithmetic in X @ YI1].

Proof. Straightforward generalization of the proofs of Lemmas 4,2 and 4.3.

Note that one cannot strengthen the conclusion to say that for all A there
exists X such that ¢(X,Y) and 71[(A); hyperarithmetic in X &Y ~>—(A)i
hyperarithmetic in Y].
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let M be a model of ATR0 and let N be a submodel of M. We =ay that N

is a Zi elementary submodel of M if N has the same integers as M and, for

all Ei formulas ¢ with parameters from N, N satisfies ¢ 1f and only if M

satisfies ¢. Note that any such N 1s again a model of ATRO, since ATRO is

axiomatized by IIl sentences,

2
4.5 Theorem. Let M be a countable model of ATR_, and let A,Y € M be
Saserse——— _— (4] ———T ——

such that Mk Y1[(A), is not hyperarithmetic in Y]. Then M has a zi

elementary submodel N such that Y € N and Vi(A)i £ N.

Proof. Let ¢(e,X,Y) be a universal Ei formula and let {en :n € w} be
an enumeration of the integers of M. Fix A,Y ¢ M as in the hypothesis of the
theorem. Use Lemma 4.4 repeatedly to define a sequence of sets XO,Xl,...,

Xn,... €M such that X. =Y and for all n,MF Vi[(A)i is not hyperarithmetic

0

i S i ®,,,.® - i
in XO Xn], and if M F X @(en,X,XO Xn) then Xn+l is such an
X. Let N be the submodel of M consisting of {Xn :n € w}. It is clear that

M satisfies the desired conclusions.

4.6 Corollary. Let M be a countable model of ATRO. Then

N{N:N is a Zi elementary submodel of M}

{A :ME A is hyperarithmetic}.

Procf, Immediate from the previous theorem.

4.7 Remark. An w-model M 1s said to be a P-model if M 1is a Zi elemen-~
tary submodel of the w-model consisting of all subsets of w. A special case of

Corollary 4.6 is that if M 1is a B-model then

N{N:N is a Zi elementary submodel of M}

= {A : A is hyperarithmetic}.

This special case had been proved earlier by Simpson [25].

1
4.8 Corollary., Let M be a countable model of ATRO. Then M has a Zl

elementary submedel N such that N # M.

Proof, Immediate from the previous corollary in view of the well known fact

that ATR0 proves 3dA (A 1s not hyperarithmetic).
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4.9 Remark. A consequence of Corollary 4.8 is that every wo-model of ATR0

has a proper w-submodel which is again a model of ATR This result had been

9"
proved earlier by Quinsey (Chapter 6 of [24]) using a completely different method.
Actually Quinsey proved the following generalization. Let T 2 ATR0 be a recur-
sively axiomatizable theory in the language of second order arithmetic. Then any

w-model of T has a proper w-submodel which is again a model of T. The w-sub-
1
models produced by Quinsey [24] are not in general 21 elementary.

We now use the results of §3 to reformulate Theorem 4.5 in set theoretic

terms,

4.10 Theorem. Let M = (]M[,EM) be a countable model of ATRE. Let A

and Y be sets of integers in M such that M F=Vi ém[(A)i is not hyperarith-

metic in Y]. Then M has an €-transitive submodel N=(|N|,€N) such that

Y €N, Vi(A)i £ N, and N is apain a model of ATRS

Proof. In view of Theorem 3.3 we may assume that M F Yx (x 1s countable).

Let M be the model of ATR0 consisting of the integers and sets of integers in
M. The proof of Lemma 3.5 shows that, conversely, M is canonically isomorphic
to M% = {suitable trees in M}. Now by Theorem 4.5 let N be a zi elementary
submodel of M such that Y ¢ N and Vi(A)i £ N. Let N be the submodel of M
consisting of those elements which are represented by suitable trees in N. Note
that since N is a Zi elementary submodel of M, for T ¢ N we have NF T

is suitable 1f and only if M F T 1is suiltable. Using this remark it 1s easy to
check that N 1s an €-transitive submodel of M and is canonically isomorphic

to N°. By the proof of Lemma 3.5 it follows that N F ATRS’.

The next corollary answers a question of McAloon and Ressayre [23].

4,11 Corollarz. Let M be a countable model of ATRg. Then M has a

proper ¢-transitive submodel N which is again a model of ATRS,

Proof. Immediate from Theorem 4.10.

The next corollary is anticipated by Friedman [8].

CK
4,12, Corollary. ATRS has a well founded model of height Wy -

Proof. let M be the well founded model consisting of all hereditarily
countable sets. Apply Theorem 4.10 with Y = ¢, A = Kleene's 0. We get a well

founded model N of ATRS which does not contain (. Hence N has height

CoCK
1"
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4.13 Remark. The well known fact that

L = {[TI : T 1is a hyperarithmetic suitable tree}
S

is provable in ATR Therefore, in view of Corollary 4.6, it is natural to con-

s

0’ s

jecture that for every countable M F ATR,

N {N : N is an €é-transitive submodel of M and N }= ATR;} = {x : M != x €L CK}'
| “

We have been unable to prove this conjecture, even in the special case when M 1is

well-founded of height mgK

§5. Comparison with KP.

In this section we compare ATRg to anothar, much better known, fragment of
ZF, namely KP = Kripke/Platek set theory, which we take to include the axiom of
infinity. For background material on KP see Barwise [1]}, [2]. For our purposes

we take KP to consist of axioms 1 through 4 (see §2 above) plus the AO

collection scheme

Yu3ve (u,v) ~ ¥xIyVu€xIveyp(u,v)

where ¢ 1s A plus the foundation scheme

0,

Yu(Yveuh(v) = ¥ (u)) - Yu) ()

where ¥ 18 arbitrary. A AO formula i1s by definition a set theoretic formula
in which all quantifiers are bounded, 1.e. of the form Vuéx or Ju€x.

Let KPB be KP minus the foundation scheme. Of course KP; implies
foundation for A_ formulas, and KPa has the same well founded models as KXP,

viz. the admissible sets [1], [2]. However, models which are not well founded

will play a role in our work, so we shall insist on the distinction between KPB

and KP. We shall also consider Intermediate systems such as KPB + Zk founda-

tion (respectively KP0 + Hk foundation) in which the foundation scheme is re-

stricted to formulas ¥ which are Zk (respectively Hk). A set theoretic
formula is said to be Zk (respectively Hk) if it consists of a string of k

quantifiers beginning with an existential (respectively universal) one, followed

by a AO formula.

We begin by pointing out that there exist well founded models of ATRE which

and vice versa., For X C w let &t be the least ordi-

are not models of KP. 3

OD
nal not recursive in X.

5.1 Lemma, ATRE plus KPB together prove that w§

In particular, 1f M is a well founded model of ATRE + KPj, then X €M

exists for all X ¢ w.
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X
implies wl € M,

Proof. We reason in ATRS + KPB. Given X < o let {-(ﬁ :m € w} be an
enumeration of all binary relations <4 on ® such that < is recursive in X
and = 1is a linear ordering of its field. For all m € w, either there exists
Y € w such that Y witnesses ~WO(<(§), or there exists f such that f{ wit-

nesses WO(—(ﬁ) by mapping the field of <($ isomorphically onto an ordinal.

(This follows from the principal axiom of ATR(S).) Hence by &

exists a set y such that for each m € @w some appropriate witness lies in vy.

collection there

Hence mi exists since it is just {range(f) : f € y & Om € w(f witnesses

WO(-(ﬁ))}. This completes the proof.
Let mSK = wﬁ = the least non recursive ordinal. It is well known that KPB
has well founded models of height ugx. (Indeed, L oK is the smallest well
W
1

founded model of KPB.) We have also seen (in Corollary 4.12 above) that ATRS
has well founded models of height aﬁK. The next theorem was anticipated by
Simpson [25].

5.2 Theorem. Any well founded model of ATRS of height mgk

model of KP_ . Any well founded model of KPB of heipht m?K is not a model of

0
of ATR

is not a

s
0"
Proof. Immediate from the previous lemma.

Next we present a model theoretic argument showing that ATR; is stronger

than KPO.

5.3 Theorem, ATR; proves the existence of an w-model of KPO + Hl founda-

tion.

Proof. Reasoning in ATR let M and M, € M. be countable w-models of

ACA0 as constructed in the prgof of Corgllary 4.% (ii? of [27]). Form an

w~structure for the set theoretic language as follows. Interpret set theoretic
variables as ranging over trees T € Ml such that .MO }=T is suitable., Inter-
pret set theoretic equality = as = in Ml, and interpret € as € in Ml'
(See the proof of Lemma 3.5 above.) It is not hard to see that this interpreta-

tion gives a model of KPB + T, foundation.

5.4 Remark. KP and related systems have been studied from a proof theo-

retic viewpoint. It is known from Howard [15], [16]) and Jdger [20] that KP
proves the same arithmetical sentences as Hi - TIO (=Uu Hi—

TIO) or equiva-
k€w
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+ parameterless ﬂi—CA s

[5] or equivalently ACA o

lently Feferman's system IDl 0

i.e. ACA0 plus comprehension for ﬂi formulas with no free set variables.
These results can also be proved model theoretically (cf. Friedman [8]). In any
case, it follows that the proof theoretic ordinal of KP is the Howard ordinal

959+10. Let KP  be KPB plus full induction on the natural numbers. It is

known from Friedman (unpublished, but see [7], [9], and footnote 8 of [6]) and

Jiger [19] and Cantini [3] that the proof theoretic ordinal of KP~ + Hl founda-

tion is 8500. On the other hand, by §4 of [13] together with Theorem 3.6 above,
we know that the proof theoretic ordinal of ATR; is FO = 020, Thus 1t emerges

that ATRE is intermediate in strength between KP and KP~ + Hl foundation.

In the rest of this section we study what many would consider the canonical

0 into ATRS. It is well known that the smallest
- . s
well founded model of KPO is LmCK' In ATR0 we cannot prove that LmCK ex-
1 1

ists as a set (see Corollary 4.12 above) but we can Interpret the formula

or obvious interpretation of XP

x €L cxk s an abbreviation for
“

Ja(x ELG &~ = a LB F KP).

We then have:

5.5 Theorem. ATRS - @ cK E KPB). In other words, ATRS proves the
“1
axioms of KPO relativized to the transitive class LmCK.
1
Proof. It is well known and easy to see that LwCK = {|T| : T 1is a hyper-
1
arithmetic suitable tree}. The usual proof of this fact goes through in ATRS.
Then AO collection for LmCK reduces to the well knowm Zi bounding principle
which is provable in ATRO. 1

In a similar vein we have:
5.6 Theorem.
o

1 ' -
(1) ATRS + 7.-TI. F (L CK E KP. + Z, foundation).

0 1770 1 0 1

. s 1 L - .
(ii) ATR + T1)-TL, S (LmtlzK E KP + T, foundation).

(i11) ATRS + ioTI. - (L ck E kP).
0 o 0 @y
Proof. In ATRS one can prove as usual [2] that a property of hyperarith-

metic sets is Hi if and only if it is Zl over LmCK. This gives (i) and (ii),
1
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and (i1i) 1is also clear.

) 5.7 Corollary. KPS does not_prove I, ot I foundation., In fact,
KPO does not prove

p{0)&Vkew(p (k) —+ p(k+1)) —+ Yk€ap (k)

for 7. or Tl set theoretic formulas ¢.

1 — 1
Proof. It follows from the proof of Corollary 2.10 of [27] that ATRO is
consistent with the failure of some parameterless instances of Hi and Zi in-

duction on the natural numbers. As in Theorem 5.6 these failures of Hi and Zi

induction, interpreted iIn LmCK, become failures of Zl and Hl foundation
1
respectively.

5.8 Corollary. There is an w-model of KP~ + Hl foundation which is not

a model of Zl foundation.

Proof. By the proof of Corollary 4.3 of [27] let M be an w-model of
Zi-TIO in which there is a failure of some parameterless instance of Hi—TIO. As
in the proof of the previous Corollary, the LwCK of M° satisfies Hl founda-
tion but not Zl foundation. 1

We finish with some inconclusive remarks concerning the formalization of
ordinal recursion theory. An occasionally useful theorem of KP 1is the El re-

cursion theorem ([1],[2]). The usual proof of Zl recursion is formalizable in

+ Hl foundation. It would be in-

KPS + 2 foundation but apparently not in KPB

teresting to know how much of the foundation scheme is needed to carry out the
metarecursive priority arguments of Kreisel/Sacks [18] and Driscoll [4]. (For

that matter, how much ordinary induction is needed for ordinary priority arguments

on «?) The most usual form of a metarecursive priority construction is that one
CK

defines a metarecursively enumerable set A = U{AG : o<y } where the binary re-
lation & € A% s explicitly primitive recursive. This can be carried out in
KPB. One then proves by induction on n € @ that the nth requirement is satis-

field. This step seems to require instances of induction up to n which by
Corollary 5.7 are not provable in KPS. It may be necessary to use a nonrecursive
indexing of requirements by integers less than some fixed (nonstandard) integer

N.
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