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Abstract

In this paper we apply some fundamental concepts and results from
recursion theory in order to obtain an apparently new example in sym-
bolic dynamics. Two sets X and Y are said to be Medvedev equivalent if
there exist partial computable functionals from X into Y and vice versa.
The Medvedev degree of X is the equivalence class of X under Medvedev
equivalence. There is an extensive recursion-theoretic literature on the lat-
tices Es and Ew of Medvedev degrees and Muchnik degrees of nonempty
effectively closed subsets of {0, 1}N. We now prove that Es and Ew consist
precisely of the Medvedev degrees and Muchnik degrees of 2-dimensional
subshifts of finite type. We apply this result to obtain an infinite collec-
tion of 2-dimensional subshifts of finite type which are, in a certain sense,
mutually incompatible.

1 Background

Definition 1.1. Let A be a finite set of symbols. The full 2-dimensional shift
on A is the dynamical system consisting of the natural action of Z

2 on the
compact set AZ

2

. A 2-dimensional subshift is a nonempty closed set X ⊆ AZ
2
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ment Endowment at the Pennsylvania State University. In addition, the author thanks Ali
Dashti for telling him of the results in Cenzer/Dashti/King [9], and Benjamin Weiss for calling
his attention to the papers of Hochman/Meyerovitch [19] and Mozes [26], and the referee for
helpful remarks.
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which is invariant under the action of Z2. A 2-dimensional subshift X is said
to be of finite type if it is defined by a finite set of forbidden configurations.
An interesting paper on 2-dimensional subshifts of finite type is Mozes [26]. A
standard reference for the 1-dimensional case is the book of Lind/Marcus [22],
which also includes an appendix [22, §13.10] on the 2-dimensional case.

Definition 1.2. If X is a 2-dimensional subshift, the shift operators S1, S2 :
X → X are defined by S1(x)(m,n) = x(m+1, n) and S2(x)(m,n) = x(m,n+1)
for all x ∈ X and (m,n) ∈ Z

2. If X and Y are 2-dimensional subshifts, a shift
morphism1 of X into Y is a continuous function f : X → Y which commutes
with the shift operators, i.e., f(S1(x)) = S1(f(x)) and f(S2(x)) = S2(f(x)) for
all x ∈ X . It follows that f commutes with the action of Z2 on X and Y . A
shift isomorphism of X onto Y is a shift morphism of X one-to-one onto Y , i.e.,
a homeomorphism of X onto Y which commutes with S1 and S2. We say that
X and Y are shift isomorphic if there exists a shift isomorphism of X onto Y .

Remark 1.3. In the study of 2-dimensional subshifts of finite type, it has been
useful to note that they are essentially the same thing as tiling problems in the
sense of Wang [49].

On the one hand, if F is a finite set of Wang tiles, let TF be the set of tilings
of the plane by F . Identifying TF as a subset of F Z

2

, it is clear that TF is a 2-
dimensional subshift of finite type. Conversely, given a 2-dimensional subshift of
finite type, X , it is easy to construct a finite set of Wang tiles, F , such that TF is
computably isomorphic toX . Namely, let r be a positive integer which is greater
than or equal to the diameters of all of the forbidden configurations defining X ,
and let F ⊆ A{1,...,r}2

be the set of r × r configurations which do not contain
any of the forbidden configurations. Our isomorphism of X onto TF associates
to each point x ∈ X a tiling t ∈ TF defined by t(m,n)(i, j) = x(m + i, n + j)
for all (m,n) ∈ Z

2 and (i, j) ∈ {1, . . . , r}2. The adjacency rules for τ1, τ2 ∈ F
are: (a) τ1 is allowed to occur immediately to the left of τ2 if and only if
τ1(i+1, j) = τ2(i, j) for all 1 ≤ i ≤ r− 1 and 1 ≤ j ≤ r, and (b) τ1 is allowed to
occur immediately below τ2 if and only if τ1(i, j + 1) = τ2(i, j) for all 1 ≤ i ≤ r
and 1 ≤ j ≤ r − 1.

Mozes [26, 27] and recently Hochman/Meyerovitch [19] have used the tiling
methods of Wang [49] and Robinson [31] to construct 2-dimensional subshifts
of finite type with interesting dynamical properties.

Remark 1.4. In this paper we shall examine 2-dimensional subshifts of fi-
nite type from the viewpoint of recursion theory, also known as computabil-
ity theory, the branch of mathematics which grew out of Turing’s celebrated
theory of computability and unsolvability. Some classical references for recur-
sion/computability theory are [14, 32, 47]. Two recent references are [15, 30].
The purpose of the next few definitions and remarks is to briefly explain the
recursion-theoretic concepts which we shall need in §§2 and 3 below.

1Note that a shift morphism f : X → Y need not be onto Y . In this respect our terminology
may differ from that of other authors.
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Definition 1.5 (Turing oracles).

1. Let N = {1, 2, . . .} be the set of positive integers. Let A = {a1, . . . , ak}
be a finite set of symbols. Let AN = {x | x : N → A} be the space of all
functions from N into A. We endow A with the discrete topology and AN

with the product topology.

2. Let M be a deterministic Turing machine program with tape symbols
a1, . . . , ak, 0, 1, b. Here b is a blank symbol, and we assume that A ∩
{0, 1, b} = ∅. Given x ∈ AN and n ∈ N, we denote byM(x, n) the output of
the unique run ofM with oracle x and input n provided this run eventually
halts. More precisely, M(x, n) = a means that the program M , starting
in its initial state with x inscribed using elements of A at tape positions
−1,−2,−3, . . . and n inscribed in binary notation using 0’s and 1’s at tape
positions 0, 1, 2, . . . , j and blanks at tape positions j + 1, j + 2, . . . where
2j ≤ n < 2j+1, runs for a finite number of deterministic computational
steps and then reaches a halting state with the symbol a at tape position
0. For a fuller explanation of Turing’s oracle concept, see Davis [14] and
Rogers [32, Chapter 9].

Definition 1.6 (Medvedev and Muchnik degrees).

1. Let Φ : ⊆AN → AN be a partial functional from AN into AN, i.e., a
function whose domain and range are subsets of AN. The domain of Φ
is denoted dom(Φ). We say that Φ is partial recursive (see Rogers [32,
§15.3]) or partial computable if there exists a deterministic Turing machine
program M which computes Φ in the following sense: for all x ∈ AN we
have x ∈ dom(Φ) if and only if for all n ∈ N there exists a ∈ A such
that M(x, n) = a, in which case Φ(x)(n) = a. Note that each partial
computable functional Φ : ⊆AN → AN is continuous on its domain.

2. Let X and Y be subsets of AN. We say that X and Y are computably
homeomorphic if there exist partial computable functionals Φ,Ψ : ⊆AN →
AN such that X ⊆ dom(Φ) and Y ⊆ dom(Ψ) and Φ maps X one-to-one
onto Y and Ψ(Φ(x)) = x for all x ∈ X .

3. We say that Y is Medvedev reducible to X (see Rogers [32, §13.7] and
Medvedev [23]) if there exists a partial computable functional Φ : ⊆AN →
AN such that X ⊆ dom(Φ) and Φ(x) ∈ Y for all x ∈ X . We say that X
and Y are Medvedev equivalent if X is Medvedev reducible to Y and Y is
Medvedev reducible to Y .

4. We say that Y is Muchnik reducible to X (see Muchnik [28]) if for each x ∈
X there exists a partial computable functional Φ such that x ∈ dom(Φ)
and Φ(x) ∈ Y . We say that X and Y are Muchnik equivalent if X is
Muchnik reducible to Y and Y is Muchnik reducible to X .

5. Obviously computable homeomorphism implies Medvedev equivalence, and
Medvedev equivalence implies Muchnik equivalence. However, the con-
verses do not hold. The equivalence classes under Medvedev equivalence
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and Muchnik equivalence are known as Medvedev degrees and Muchnik
degrees respectively.

Remark 1.7. The idea behind Medvedev and Muchnik degrees is to regard
each set X ⊆ AN as the solution set of a so-called “mass problem,” prob(X), the
problem of finding at one least element ofX , where “to find” means “to compute
in the sense of Turing.” Accordingly, one says that the problem prob(X) is
“solvable” if it has at least one computable solution, i.e., the set X contains
at least one point which is Turing computable. Similarly, one could say that
prob(Y ) is “reducible” to prob(X) if each solution of prob(X) can be used as a
Turing oracle to compute at least one solution of prob(Y ), or in other words, Y
is Muchnik reducible to X . Thus for instance prob(X) is solvable if and only if
X is Muchnik reducible to Y for all Y , if and only if X is Medvedev reducible
to Y for all Y . In general, the Medvedev or Muchnik degree of a mass problem
is a measure of the “degree of unsolvability” or “degree of difficulty” which
is inherent in the problem. In this way one can use Medvedev and Muchnik
degrees to classify unsolvable mathematical problems.

Remark 1.8. For |A| ≥ 2 it is straightforward to construct a computable
homeomorphism of AN onto {0, 1}N. Therefore, the Medvedev degrees and
Muchnik degrees of subsets of AN are the same as those of subsets of {0, 1}N.

Definition 1.9 (effectively closed sets).

1. A subset of AN is said to be effectively closed or Π0
1 (see Rogers [32,

Chapter 15]) if it is the complement of the union of a computable sequence
of basic open neighborhoods in AN. Equivalently, X ⊆ AN is effectively
closed if there exists a deterministic Turing machine programM such that
for all x ∈ AN, x ∈ X if and only if M(x, 1) never halts.

2. In view of Remark 1.8, each effectively closed set X ⊆ AN is computably
homeomorphic to an effectively closed set P ⊆ {0, 1}N. It follows that P
has the same Medvedev degree as X and the same Muchnik degree as X .

3. Let Es (respectively Ew) be the partial ordering of Medvedev degrees
(respectively Muchnik degrees) of nonempty effectively closed subsets of
{0, 1}N. Here the partial ordering of Es is given by defining the Medvedev
degree of P ⊆ {0, 1}N to be ≤ the Medvedev degree of Q ⊆ {0, 1}N if and
only if P is Medvedev reducible to Q, and similarly for Ew.

4. The partial orderings Es and Ew have the same bottom element, namely,
the equivalence class consisting of all subsets of {0, 1}N which contain at
least one computable point. The common bottom element of Es and Ew is
denoted 0.

Remark 1.10 (the lattices Es and Ew).

1. The partial orderings Es and Ew in Definition 1.9 are distributive lattices.
Moreover, there is a natural lattice homomorphism of Es onto Ew obtained
by mapping the Medvedev degree of P to the Muchnik degree of P .
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2. The lattices Es and Ew are mathematically rich and have been studied
extensively. See Alfeld [1], Binns [2, 3, 4, 5], Binns/Simpson [6], Cen-
zer/Hinman [10], Cole/Simpson [12], Hudelson [20], and Simpson [34, 35,
37, 38, 39, 40, 41, 42, 43, 44, 45].

Remark 1.11. For our purposes in this paper, we shall need to apply the above
concepts not only to subsets of AN but also to subsets of AZ

2

. In order to do
this, we shall use a simple one-to-one correspondence between Z

2 and N. For
instance, let θ : Z2 → N be the one-to-one correspondence given by

θ(m,n) =
(φ(m) + φ(n)− 1)(φ(m) + φ(n) − 2)

2
+ φ(m)

where

φ(m) =

{

2m if m > 0,

1− 2m if m ≤ 0.

We may then identify subsets of AZ
2

with corresponding subsets of AN. In this
way Definitions 1.6 and 1.9 and Remarks 1.7, 1.8 and 1.10 for subsets of AN

apply equally well to subsets of AZ
2

.

Remark 1.12. Recent research has revealed that Ew contains a large number of
specific, interesting Muchnik degrees associated with particular mass problems
which are of foundational interest. For example, the top degree in Ew is the
Muchnik degree of the problem of finding a complete, consistent theory which
contains the usual axioms for first-order arithmetic. Another interesting degree
in Ew is the Muchnik degree of the problem of finding an infinite sequence of
0’s and 1’s which is algorithmically random in the sense of Martin-Löf [39, 41].
Other interesting degrees in Ew are closely related to other interesting topics in
the foundations of mathematics. Among these topics are reverse mathematics
[36, 39], almost everywhere domination [42], measure-theoretic regularity [44],
the hyperarithmetical hierarchy [12, 44], effective Hausdorff dimension [24, 46]
and Kolmogorov complexity [20]. A new survey of this research area is [45].

2 Medvedev degrees of subshifts

Remark 2.1. Let X be a 2-dimensional subshift. In the following theorem we
see that the Medvedev degree of X , the Muchnik degree of X , and the com-
putable homeomorphism type ofX depend only on the shift isomorphism type of
X . This suggests the possibility that Medvedev degrees, Muchnik degrees, and
computable homeomorphism types may be useful as invariants for the problem
of classifying 2-dimensional subshifts up to shift isomorphism. More evidence
for such a possibility is presented in Theorems 2.5, 2.9 and 3.4 below.

Theorem 2.2. All shift morphisms f : X → Y are given by partial computable
functionals. If X and Y are shift isomorphic, then X and Y are computably
homeomorphic, hence Medvedev equivalent, hence Muchnik equivalent.
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Proof. Let A and B be finite sets of symbols such that X and Y are subshifts
of the full 2-dimensional shifts AZ

2

and BZ
2

respectively. Let f : X → Y be
a shift morphism. By the Curtis/Hedlund/Lyndon Theorem (see Boyle [8] or
Lind/Marcus [22]) f is a block code, i.e., we can find an integer r ≥ 0 and a

projection π : A{−r,...,r}2

→ B such that

f(x)(m,n) = π(Sm
1 Sn

2 (x) ↾ {−r, . . . , r}2)

for all x ∈ X and (m,n) ∈ Z
2. In particular f is given by a partial computable

functional. If moreover f is a shift isomorphism of X onto Y , it follows that f
is a computable homeomorphism of X onto Y . This completes the proof.

Remark 2.3. Let X be a 2-dimensional subshift. If X contains a periodic
point, one can easily show (see for instance the second and third paragraphs of
[31, §1]) that X contains a point which is Turing computable, so by part 4 of
Definition 1.9 the Medvedev degree of X is 0, the degree of solvable problems.
Thus Medvedev degrees and Muchnik degrees are of no interest in the case of
subshifts with periodic orbits. However, there are many 2-dimensional subshifts
of finite type which do not have periodic points [18, 26, 27, 29, 31], and in this
case the Medvedev degrees and Muchnik degrees could well serve as a useful
classification tool. See also Remarks 1.12 and 2.10.

Remark 2.4. An open problem is to characterize the computable homeomor-
phism types of 2-dimensional subshifts of finite type. Clearly any 2-dimensional
subshift of finite type is an effectively closed subset of AZ

2

and is therefore com-
putably homeomorphic to, hence of the same Medvedev degree and Muchnik
degree as, a nonempty effectively closed subset of {0, 1}N. We shall now prove
a theorem in the opposite direction. Namely, every nonempty effectively closed
subset of {0, 1}N is of the same Medvedev degree, hence of the same Muchnik
degree, as some 2-dimensional subshift of finite type. This characterization of
the Medvedev degrees and Muchnik degrees of 2-dimensional subshifts of finite
type appears to be new, but see Remark 2.7 below.

Theorem 2.5. Given a nonempty effectively closed set P ⊆ {0, 1}N, we can
find a 2-dimensional subshift of finite type which is of the same Medvedev degree
as P , hence of the same Muchnik degree as P .

Proof. Our proof uses the tiling constructions of Robinson [31] and Hanf [18]
and Myers [29].

Let F be a finite set of Wang tiles, and let τ ∈ F be a distinguished tile
in F . We write T τ

F = {t ∈ TF | t(0, 0) = τ}. The tilings in T τ
F are said

to be origin-constrained. Given an effectively closed set P ⊆ {0, 1}N, Hanf [18]
shows how to construct an origin-constrained tiling system F, τ and a projection
π : F → {0, 1} such that

P = {〈π(t(n, 0)) | n ∈ N〉 | t ∈ T τ
F }.

Namely, F and τ are such that each origin-constrained tiling t ∈ T τ
F describes

a non-halting run of a particular deterministic Turing machine M program
starting with
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〈π(t(−n, 0)) | n ∈ N〉 ∈ {0, 1}N

inscribed at positions −1,−2,−3, . . . of the Turing machine tape. The distin-
guished tile τ represents the initial internal state of M . We can then construct
a fixed partial computable functional Φ : ⊆{0, 1}N → F Z

2

which is independent
of t and maps 〈π(t(−n, 0)) | n ∈ N〉 to t. Thus T τ

F and P are computably
homeomorphic.

Now, starting with F and τ as above, Myers [29] shows how to construct a
finite set of tiles F ′ and a projection π′ : F ′ → F with the following properties:

1. F ′ is a Robinson set of tiles.

(Unexplained terms are defined in Myers’ paper [29].)

2. For each tiling t′ ∈ TF ′ , the π′-images of the center rows of the finite
boards of t′ are synchronized.

3. For each tiling t′ ∈ TF ′ , the result of piecing together the π′-images of
the center rows of the finite boards of t′ is 〈t(n, 0) | n ∈ Z〉 for some
t ∈ T τ

F . Using this piecing-together procedure, we can construct a fixed
computable functional which maps t′ to t.

4. Given an origin-constrained tiling t ∈ T τ
F , we can find a (nonunique) tiling

t′ ∈ TF ′ such that 〈t(n, 0) | n ∈ Z〉 is the result of piecing together the
π′-images of the center rows of the finite boards of t′. Moreover, we can
construct a fixed partial computable functional which maps t to such a t′.

Properties 3 and 4 imply that TF ′ is Medvedev equivalent to T τ
F . Therefore,

TF ′ is Medvedev equivalent to P . Since TF ′ is a 2-dimensional subshift of finite
type, our theorem is proved.

Remark 2.6. Actually Hanf [18] and Myers [29] dealt only with effectively
closed sets P ⊆ {0, 1}N of the form

P = S(I, J) = {x ∈ {0, 1}N | x separates I, J}

where I and J are recursively enumerable subsets of N. However, their con-
structions work just as well for arbitrary effectively closed sets P ⊆ {0, 1}N.

Remark 2.7. Leonid A. Levin has kindly informed us that our Theorem 2.5
was already implicit in his remark [21, last paragraph of §3] concerning tilings
of the plane with a 2-adic coordinate system.

Definition 2.8. Let S2 be the set of all 2-dimensional subshifts. For X,Y ∈ S2

we write X ≥ Y if there exists a shift morphism f : X → Y . Obviously ≥ is
transitive and reflexive. We write X ≡ Y if X ≥ Y and Y ≥ X . Obviously ≡ is
an equivalence relation on S2. Obviously X ≡ Y whenever X and Y are shift
isomorphic, but the converse does not hold. Let S2/≡ be the set of equivalence
classes of S2 modulo ≡. There is an obvious partial ordering of S2/≡ induced
by ≥. It is easy to verify that, under this partial ordering, S2/≡ is a distributive
lattice. Let S2

fin be the subset of S2 consisting of the 2-dimensional subshifts of
finite type. It is easy to verify that S2

fin
/≡ is a sublattice of S2/≡.
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Theorem 2.9. There is a natural lattice homomorphism of S2
fin
/≡ onto Es.

Namely, for each X ∈ S2
fin we map the ≡-equivalence class of X to the Medvedev

degree of X.

Proof. The greatest lower bound and least upper bound operations in each of
the lattices S2/≡, S2

fin
/≡, Es, Ew are given by disjoint union and Cartesian

product respectively. In particular, our mapping of S2
fin/≡ to Es is a lattice

homomorphism. By Theorem 2.5 this homomorphism is onto Es.

Remark 2.10. A consequence of Theorem 2.9 is that there is a natural lattice
homomorphism of S2

fin/≡ onto Ew, obtained by mapping the ≡-equivalence class
of X ∈ S2

fin
to the Muchnik degree of X . In particular we have a new invariant,

the Muchnik degree, associated to (shift isomorphism types of) 2-dimensional
subshifts of finite type. Obviously this invariant is qualitatively different from
other such invariants which have been considered previously in the symbolic
dynamics literature. Moreover, this new invariant is of clear interest, inasmuch
as Ew is known to contain many specific, natural Muchnik degrees which are
closely related to significant topics in the foundations of mathematics. See also
Remark 1.12 above.

3 An application

Remark 3.1. We shall now present an application which is stated purely
in terms of 2-dimensional subshifts, with no reference to Medvedev degrees
or Muchnik degrees. Namely, we shall construct an infinite collection of 2-
dimensional subshifts of finite type which are, in a certain sense, mutually in-
compatible.

Definition 3.2. If X and Y are 2-dimensional subshifts on k and l symbols
respectively, let X+Y and X×Y be the disjoint union and Cartesian product of
X and Y . These are 2-dimensional subshifts on k+l and kl symbols respectively.
If X = (X,S1, S2) is a 2-dimensional subshift on k symbols, and if a, b, c, d are
integers such that ad − bc 6= 0, let X [a, b, c, d] = (X,Sa

1S
b
2, S

c
1S

d
2 ). This is a

2-dimensional subshift on k|ad−bc| symbols.

Definition 3.3. If U is a collection of 2-dimensional subshifts, let cl(U) be the
closure of U under the operations of Definition 3.2. In other words, cl(U) is the
smallest collection of 2-dimensional subshifts with the following properties:

1. For all X ∈ U , X ∈ cl(U).

2. For all X ∈ cl(U) and Y ∈ cl(U), X + Y ∈ cl(U) and X × Y ∈ cl(U).

3. For allX ∈ cl(U) and all a, b, c, d ∈ Z with ad−bc 6= 0, X [a, b, c, d] ∈ cl(U).

Theorem 3.4. We can find an infinite collection of 2-dimensional subshifts of
finite type, W, such that for all partitions of W into two subcollections, U and
V, there is no shift morphism of X into Y for any X ∈ cl(U) and Y ∈ cl(V).
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Proof. By Binns/Simpson [6] let Pi, i = 1, 2, . . ., be nonempty effectively closed
subsets of {0, 1}N whose Muchnik degrees are independent, i.e., Pii + · · ·+Pim is
not Muchnik reducible to Pj1 ×· · ·×Pjn provided {i1, . . . , im}∩{j1, . . . , jn} = ∅.
By Theorem 2.5, for each i = 1, 2, . . . let Xi be a 2-dimensional subshift of finite
type which is Medvedev equivalent, to Pi, hence Muchnik equivalent to Pi. Let
W be the collection Xi, i = 1, 2, . . ., and let U ,V be a partition of W . By
induction on X ∈ cl(U) and Y ∈ cl(V) we can easily show that neither of X and
Y is Muchnik reducible to the other. Hence by Theorem 2.2 there is no shift
morphism of X into Y or vice versa. Q.E.D.

Remark 3.5. In our proof of Theorem 3.4, all of the subshifts in W are of
different Muchnik degrees, hence of different Medvedev degrees. The referee
has kindly informed us that, using classical methods, one can obtain a similar
result in Medvedev degree 0. Namely, for each prime number p choose an almost
one-to-one extension of the p-adic odometer.

Remark 3.6. In this paper we have dealt only with 2-dimensional subshifts.
What about the 1-dimensional case? Clearly Theorem 2.2 holds in this context.
On the other hand, Theorems 2.5 and 2.9 and 3.4 fail, because all 1-dimensional
subshifts of finite type contain periodic points and are therefore of Medvedev
degree zero. (We thank the referee for pointing out the failure of Theorem 3.4
in this context.) What about effectively closed 1-dimensional subshifts? Cen-
zer/Dashti/King [9] have constructed a 1-dimensional effectively closed subshift
which is of nonzero Medvedev degree. Recently Miller [25] improved this result
by showing that Theorems 2.5 and 2.9 hold for 1-dimensional effectively closed
subshifts. And from this plus Binns/Simpson [6] it follows that Theorem 3.4
holds in the same context.
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