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Chapter 1

Unsolvability of Hilbert’s

Tenth Problem

1.1 Hilbert’s Tenth Problem

Definition 1.1.1 (Hilbert’s Tenth Problem). Given a polynomial p with
integer coefficients, to decide whether there exist integers w1, . . . , wn such that
p(w1, . . . , wn) = 0.

Definition 1.1.2. A Diophantine equation is an equation of the form

p(w1, . . . , wn) = 0

where p(w1, . . . , wn) is a polynomial with integer coefficients, i.e., coefficients
from Z. Hilbert’s Tenth Problem is: to find an algorithm for deciding whether
a given Diophantine equation has an integer solution, i.e., w1, . . . , wn ∈ Z.

Hilbert proposed this problem in 1900. There was no progress until the
1950s, when M. Davis conjectured that Hilbert’s Tenth Problem is unsolvable,
i.e., no such algorithm exists. Davis, Putnam, and J. Robinson made further
progress toward this result, and Matiyasevich completed the proof in 1969.

A typical method for showing that a problem P is unsolvable is to reduce
the Halting Problem to P . Thus, a solution for P would give a solution to
the Halting Problem, and as the Halting Problem is known to be unsolvable,
P must then also be unsolvable. This is the method used here. We shall show
that the Halting Problem is reducible to Hilbert’s Tenth Problem.

The starting point for our presentation is the undecidability of true first-
order arithmetic, T1. Let the language L1 consist of {+,×, 0, 1,=}, where +
and × are binary operations, 0 and 1 are constants, and = is a binary relation.
The terms of L1 are variables x, y, z, . . ., the constants 0 and 1, and t1 + t2,
t1 × t2 where t1, t2 are terms. The formulas of L1 are atomic formulas t1 = t2
where t1, t2 are terms, and ¬A, A ∨ B, A ∧ B, A ⇒ B, A ⇔ B, ∃xA, ∀xA,
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where A,B are formulas and x is a variable. As usual, a sentence is a formula
with no free variables.

Let N = {0, 1, 2, . . .}, the set of natural numbers. We also use N to denote
the structure

(N,+,×, 0, 1,=),

i.e., the intended model of first-order arithmetic. Formulas of L1 may be in-
terpreted as usual in N, and each sentence of L1 is either true or false in N.
A theorem of Tarski says there is no algorithm to determine the truth value
of an L1-sentence in N. T1 is the complete theory consisting of all sentences
of L1 which are true in N. Thus Tarski’s result is that the theory T1 is unde-
cidable. Actually, Tarski shows that the Halting Problem H and many other
noncomputable sets and functions are definable over N, i.e., definable over T1.

When interpreted in N, terms of L1 are equivalent to polynomials with posi-
tive integer coefficients. For example, the term (x+y)×((1+1)×z+y) is equiva-
lent over N to 2xz+xy+2yz+y2, which is a polynomial in N[x, y, z]. Atomic for-
mulas of L1 are similarly equivalent to Diophantine equations: p(x1, . . . , xn) =
q(x1, . . . , xn) is equivalent to

p(x1, . . . , xn) − q(x1, . . . , xn) = 0,

and this is a typical Diophantine equation. Thus the existential sentence

∃x1 · · · ∃xn p(x1, . . . , xn) = q(x1, . . . , xn)

holds in N if and only if the Diophantine equation p(x1, . . . , xn)−q(x1, . . . , xn) =
0 has at least one solution in N.

Accordingly, we consider a modified form of Hilbert’s Tenth Problem.

Definition 1.1.3 (Modified Hilbert’s Tenth Problem). Given a poly-
nomial p(x1, . . . , xn) with coefficients from Z, to decide whether there exist
x1, . . . , xn ∈ N such that p(x1, . . . , xn) = 0.

Remark 1.1.4. The Modified Hilbert’s Tenth Problem is equivalent to the
original problem. Suppose first that the Modified Hilbert’s Tenth Problem were
solvable. Then the Diophantine equation p(w1, . . . , wn) = 0 has integer solu-
tions if and only if ∃x1 · · · ∃xn ∈ N such that p(±x1, . . . ,±xn) = 0, so Hilbert’s
Tenth Problem would be solvable. Conversely, if Hilbert’s Tenth Problem were
solvable, then p(x1, . . . , xn) = 0 has natural number solutions if and only if
p(t21 +u2

1 +v2
1 +w2

1 , . . . , t
2
n+u2

n+v2
n+w2

n) = 0 has integer solutions, so the Mod-
ified Hilbert’s Tenth Problem would also be solvable. This relies on Lagrange’s
Theorem: every natural number is the sum of four squares.

Note that Tarski’s Theorem and the Modified Hilbert’s Tenth Problem both
deal with different kinds of definability over N. We use the proof of Tarski’s
Theorem (see our Math 558 notes [14]) as the starting point for our proof of
unsolvability of the Modified Hilbert’s Tenth Problem.
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1.2 Σ1 Relations and Functions

To warm up, we consider yet another kind of definability over N.

Definition 1.2.1 (∆0 formulas). The ∆0 formulas of L1 are the smallest
class of formulas closed under propositional connectives (∧, ∨, ¬ , ⇒, ⇔) and
bounded quantification (∀x < t, ∃x < t, where t is a term not mentioning x).

Definition 1.2.2 (∆0 relations and functions). A relation R ⊆ N
k is ∆0

if it is definable by a ∆0 formula. A partial function ψ from N
k to N is ∆0 if

graph(ψ) is ∆0.

Example 1.2.3. The “less than” relation x < y is definable by the ∆0 formula
∃z < y (x + z + 1 = y).

Remark 1.2.4. The ∆0 relations are only a small subclass of the primitive
recursive relations. Nevertheless, many interesting relations are ∆0. E.g., a
result of Bennett shows that the 3-place exponential relation xy = z is ∆0. We
omit the proof.

Definition 1.2.5 (Σ1 formulas). A formula G is Σ1 it is of the form ∃xF
where F is ∆0.

Definition 1.2.6 (Σ1 relations and functions). A relation R ⊆ N
k is Σ1 if

it is definable over N by a Σ1 formula. A partial function ψ from N
k to N is Σ1

if graph(ψ) is Σ1.

We shall prove the following theorem.

Theorem 1.2.7. R is Σ1 if and only if R is recursively enumerable, i.e., Σ0
1. ψ

is Σ1 if and only if ψ is partial recursive.

The forward direction of the theorem is obvious, as Σ1 relations are clearly
Σ0

1, and Σ1 partial functions are clearly partial recursive. (See my Math 558
notes [14].) We must show the converse direction. In particular, we must show
that all primitive recursive functions are Σ1.

Lemma 1.2.8. The class of Σ1 relations is closed under unbounded existential
quantification, logical and, logical or, and bounded quantification.

Proof. Suppose G is Σ1. Then ∃xG is equivalent to ∃x∃y F , where F is ∆0.
This is then equivalent to ∃z ∃x < z ∃y < z F which is Σ1.

If ∃xF and ∃xG are both Σ1, then ∃xF ∧ ∃xG ≡ ∃x∃y (F ∧G). F ∧ G is
∆0 and so the formula is Σ1. The case for disjunction is similar.

Also, ∃x < t ∃y F ≡ ∃y ∃x < tF and so the class of Σ1 relations is closed
under bounded existential quantification.

We have ∀x < t ∃y F ≡ ∃z ∀x < t ∃y < z F . The formula ∀x < t ∃y < z F is
∆0 and thus the whole formula is Σ1 as required. Thus the class of Σ1 relations
is closed under bounded universal quantification.
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To finish the proof of Theorem 1.2.7, we now briefly review Gödel’s β func-
tion. The β function is a method of coding arbitrarily long finite sequences of
integers in an arithmetically effective way.

Lemma 1.2.9. For all k there exist infinitely many a such that

a+ 1, 2a+ 1, . . . , ka+ 1

are pairwise relatively prime.

Proof. Let a be any muliple of k!. If ia+ 1 and ja+ 1 are not relatively prime,
1 ≤ i < j ≤ k, let p be a prime dividing both ia+ 1 and ja+ 1. In particular p
does not divide a. Thus p > k by our choice of a. On the other hand, p divides
(ja+ 1) − (ia+ 1) = (j − i)a, so p divides j − i. This contradicts p > k.

The following is a well known result in number theory. We omit its proof.
See the Math 558 notes [14].

Lemma 1.2.10 (Chinese Remainder Theorem). Let m1, . . . ,mk be pair-
wise relatively prime. Given r1, . . . , rk such that 0 ≤ ri < mi for i = 1, . . . , k,
we can find r such that r ≡ ri mod mi for all i = 1, . . . , k.

Definition 1.2.11 (the β function). We define

β(a, r, i) = Rem(r, a · (i+ 1) + 1)

where Rem(y, x) is the remainder of y on division by x.

Corollary 1.2.12. Given r0, . . . , rk ≥ 0, we can find a, r ≥ 0 such that
β(a, r, i) = ri for all i = 0, . . . , k.

Proof. By Lemma 1.2.9 above, let a be such that a+1, 2a+1, . . . , (k+1)a+1 are
pairwise relatively prime, and a > max(r0, . . . , rn). By the Chinese Remainder
Theorem, we can find r such that r ≡ ri mod a(i+ 1)+ 1 for i = 0, . . . , k. Thus
β(a, r, i) = ri for i = 0, . . . , k.

Lemma 1.2.13. The β function is Σ1.

Proof. It suffices to show that Rem is Σ1. We have

Rem(y, x) = r ⇐⇒ r < x ∧ ∃q < y (y = qx+ r) .

Thus Rem and the β function are ∆0, hence Σ1.

Lemma 1.2.14. All primitive recursive functions are Σ1.

Proof. Z(x) = 0 is Σ1 via y = 0.
S(x) = x+ 1 is Σ1 via y = x+ 1.
Pki(x1, . . . , xn) = xi is Σ1 via y = xi.
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Given f(x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn))), where h, g1, . . . , gm
are Σ1, we have that f is Σ1, because

y = f(x1, . . . , xn) ⇐⇒ ∃z1 · · · ∃zm
(
y = h(z1, . . . , zm)) ∧

m∧

i=1

zi = gi(x1, . . . , xn)

)
.

Thus the class of Σ1 functions is closed under composition.
Given f(x1, . . . , xn) defined by

f(0, x1, . . . , xn) = g(x1, . . . , xn)

f((x+ 1, x1, . . . , xn) = h(x, f(x, x1, . . . , xn), x1, . . . , xn)

where g, h are Σ1, f is Σ1 because

y = f(x, x1, . . . , xn) ⇐⇒ ∃〈y0, y1, . . . , yx〉 (y0 = g(x1, . . . , xn) ∧
(∀i < x) yi+1 = h(i, yi, x1, . . . , xn))

⇐⇒ ∃a ∃r (β(a, r, 0) = g(x1, . . . , xn) ∧ β(a, r, x) = y ∧
(∀i < x)β(a, r, i+ 1) = h(i, β(a, r, i), x1, . . . , xn)) .

Thus the class of Σ1 functions is closed under primitive recursion.
It now follows that all primitive recursive functions are Σ1.

We can now prove:

Theorem 1.2.15. If ψ : N
k P−→ N is partial recursive, then ψ is Σ1.

Proof. Let e be an index of ψ, i.e., the Gödel number of a program which com-

putes ψ. Then ψ = ϕ
(k)
e , i.e., ψ(x1, . . . , xk) ≃ y ⇐⇒ ϕ

(k)
e (x1, . . . , xk) ≃

y ⇐⇒ ∃n (State(e, x1, . . . , xk, n))0 = 0 ∧ (State(e, x1, . . . , xk, n))k+1 = y),
where (State(e, x1, . . . , xk, n))0 and (State(e, x1, . . . , xk, n))k+1 are primitive re-
cursive functions (see Math 558 notes [14]). Thus ψ is Σ1.

The proof of Theorem 1.2.7 is now complete.

Corollary 1.2.16. The Halting Problem H is Σ1.

1.3 Diophantine Relations and Functions

Definition 1.3.1. A relation R ⊆ N
k is said to be Diophantine if there exists

a polynomial p(x1, . . . , xk, y1, . . . , yn) with coefficients from Z, such that

R = {〈x1, . . . , xk〉 ∈ N
k | ∃y1 · · · ∃yn p(x1, . . . , xk, y1, . . . , yn) = 0} .

Here y1, . . . , yn range over N. A partial function ψ is said to be Diophantine if
graph(ψ) is Diophantine.
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The following theorem is due to Matiyasevich 1969. It is known as Matiya-
sevich’s Theorem, or as the MDRP Theorem (standing for Matiyasevich, Davis,
Robinson, Putnam).

Theorem 1.3.2 (MDRP Theorem). R is Diophantine ⇐⇒ R is Σ1. ψ is
Diophantine ⇐⇒ ψ is partial recursive.

Corollary 1.3.3. The Halting Problem H = {e | ϕ(1)
e (0) ↓} ⊆ N is Diophan-

tine.

Corollary 1.3.4. Hilbert’s Tenth Problem is unsolvable.

So, our goal now is to prove the MDRP Theorem.
Note that the forward direction of the MDRP Theorem is obvious, as ψ

Diophantine implies ψ Σ1, which implies ψ partial recursive. For the converse,
we must show that all partial recursive functions are Diophantine.

By Theorem 1.2.7, it suffices to show that all Σ1 functions are Diophantine.
We begin with the following easy lemma.

Lemma 1.3.5. The binary relation < is Diophantine. The class of Diophan-
tine relations is closed under unbounded existential quantification, logical and,
logical or, and bounded existential quantification.

Proof. Clearly < is Diophantine, since x < y ⇐⇒ ∃z (x+ z + 1 = y).
If R(x1, . . . , xk, y) ≡ ∃z p(x1, . . . , xk, y, z) = 0 is Diophantine, then so is

∃y R(x1, . . . , xk, y) ≡ ∃y ∃z p(x1, . . . , xk, y, z) = 0, so trivially the class of Dio-
phantine relations is closed under unbounded existential quantification.

Suppose R1 = {〈x1, . . . , xk〉 ∈ N
k | ∃y p(x1, . . . , xk, y) = 0} and R2 =

{〈x1, . . . , xk〉 ∈ N
k | ∃z q(x1, . . . , xk, z) = 0} are both Diophantine. We then

have

∃y p(x1, . . . , xk, y) = 0 ∧ ∃z q(x1, . . . , xk, z) = 0 ⇐⇒
∃y ∃z (p(x1, . . . , xk, y) = 0 ∧ q(x1, . . . , xk, z) = 0) ⇐⇒

∃y ∃z (p(x1, . . . , xk, y)
2 + q(x1, . . . , xk, z)

2 = 0)

so R1 ∧ R2 is Diophantine. Thus the class of Diophantine relations is closed
under logical and.

Similarly, for logical or, we have

∃y p(x1, . . . , xk, y) = 0 ∨ ∃z q(x1, . . . , xk, z) = 0 ⇐⇒
∃y ∃z (p(x1, . . . , xk, y) = 0 ∨ q(x1, . . . , xk, z) = 0) ⇐⇒

∃y ∃z p(x1, . . . , xk, y) · q(x1, . . . , xk, z) = 0

so R1 ∨ R2 is Diophantine. Thus the class of Diophantine relations is closed
under logical or.

We also have (∃x < t)∃y p(x, x1, . . . , xn, y) = 0 if and only if ∃x (x < t ∧
∃y p(x, x1, . . . , xn, y) = 0). Thus the class of Diophantine relations is closed
under bounded existential quantification.
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In addition, we have the following easy lemma.

Lemma 1.3.6. Addition, multiplication, and the functions Quot and Rem given
by

y = qx+ r, r < x, Quot(y, x) = q, Rem(y, x) = r

as well as the Gödel β function are Diophantine. The class of Diophantine
functions is closed under composition.

Proof. Trivially + and · are Diophantine. We have Quot(y, x) = q ⇐⇒ ∃r (r <
x ∧ y = qx+ r), so Quot is Diophantine, and similarly for Rem. Closure under
composition is easy, as in the proof of Lemma 1.2.14. It now follows that β is
Diophantine.

By Lemma 1.3.5, to prove the MDRP Theorem, it remains only to show
that the class of Diophantine relations is closed under bounded universal quan-
tification. This is the hard part of the proof. Note that bounded universal
quantification was crucial in the proof of Lemma 1.2.14.

We shall follow the exposition of Davis [5]. Most of the work is contained in
the following lemma.

Lemma 1.3.7 (Main Lemma). The following functions are Diophantine.

1. (n, k) 7→ nk

2. (n, k) 7→
(
n
k

)

3. n 7→ n!

4. (a, b, k) 7→∏k
i=0(a+ bi)

The proof of the Main Lemma is difficult, and we postpone it to Section 1.6
below.

1.4 Bounded Universal Quantification

Our goal is to show that if R is Σ1 then R is Diophantine. As we have already
seen, it suffices to prove that the class of Diophantine relations is closed under
bounded universal quantification. Here is a flawed attempt at a proof of this.

Flawed Proof. We attempt to imitate the proof of Lemma 1.2.14 using the idea
of coding via Gödel’s β function. Assume that

(∀i)1≤i≤k ∃y1 · · · ∃yn p(k, i, . . . , y1, . . . , yn) = 0.

For each 1 ≤ i ≤ k pick witnesses y
(i)
1 , . . . , y

(i)
n such that p(k, i, . . . , y

(i)
1 , . . . , y

(i)
n ) =

0. Let u be an upper bound for k and y
(i)
j , 1 ≤ i ≤ k, 1 ≤ j ≤ n. Let t be any

multiple of u!. By the proof of Lemma 1.2.9, the moduli t + 1, . . . , kt + 1 are
pairwise relatively prime. By the Chinese Remainder Theorem 1.2.10, we can
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find r1, . . . , rn such that rj ≡ y
(i)
j mod it+1 for all 1 ≤ i ≤ k, 1 ≤ j ≤ n. Hence

for 1 ≤ i ≤ k we have

p(k, i, . . . , r1, . . . , rn) ≡ 0 mod it+ 1.

Form the product
∏k
i=1(it+1) = ct+1. We have 0 ≡ it+1 ≡ ct+1 mod it+1.

Multiplying by c and i respectively, we have 0 ≡ cit + c ≡ cit + i mod it + 1,
which implies c ≡ i mod it + 1. It follows that p(k, c, . . . , r1, . . . , rn) ≡ 0 mod
it + 1 for all i, 1 ≤ i ≤ k. Since the it + 1, 1 ≤ i ≤ k are pairwise relatively
prime, we have

p(k, c, . . . , r1, . . . , rn) ≡ 0 mod
k∏

i=1

(it+ 1)

≡ 0 mod ct+ 1.

The upshot is that we have “packaged” all of our equations for 1 ≤ i ≤ k into
one equation. But our problem is that it is only modulo ct+ 1.

Conversely, assume t is a multiple of u!, u ≥ k, ct + 1 =
∏k
i=1(it + 1) and

∃r1 · · · ∃rn p(k, c, . . . , r1, . . . , rn) ≡ 0 mod ct + 1. As before we have c ≡ i mod

it+ 1 for each 1 ≤ i ≤ k. Let y
(i)
j = Rem(rj , it+ 1). Then rj ≡ y

(i)
j mod it+ 1,

hence p(k, i, . . . , y
(i)
1 , . . . , y

(i)
n ) ≡ 0 mod it+ 1. If we knew that

|p(k, i, . . . , y(i)
1 , . . . , y(i)

n )| < it+ 1,

we could conclude
p(k, i, . . . , y

(i)
1 , . . . , y(i)

n ) = 0

and we would be finished.

In order to repair this flawed argument, we first present a simple lemma,
Lemma 1.4.1. After that, the proof of closure under bounded universal quan-
tification is given by Lemma 1.4.2.

Lemma 1.4.1. Given a polynomial p(k, i, . . . , y1, . . . , yn) we can find a poly-
nomial q(k, . . . , u) such that

1. q(k, . . . , u) ≥ u

2. q(k, . . . , u) ≥ k

3. q(k, . . . , u) ≥ |p(k, i, . . . , y1, . . . , yn)| for all i ≤ k and y1, . . . , yn ≤ u.

Proof. Let q(k, . . . , u) = |p|(k, k, . . . , u, . . . , u) + u + k where |p| is just p with
all coefficients replaced by their absolute values.

Lemma 1.4.2. (∀i)1≤i≤k∃y1 · · · ∃yn p(k, i, . . . , y1, . . . , yn) = 0 if and only if
there exist u, t, c, r1, . . . , rn such that:

1. t = q(k, . . . , u)!,
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2. ct+ 1 =
∏k
i=1(it+ 1) divides each of

∏u
y=0(rj − y), 1 ≤ j ≤ n,

3. p(k, c, . . . , r1, . . . , rn) ≡ 0 mod ct+ 1.

The point of this lemma is that, by 1.3.7, the right-hand side is Diophantine.
Thus we see that the class of Diophantine relations is closed under bounded
universal quantification.

Proof. ⇒: As before, we can find u, t, c, r1, . . . , rn such that

p(k, c, . . . , r1, . . . , rn) ≡ 0 mod ct+ 1

and rj ≡ y
(i)
j mod it + 1. Thus it + 1 divides rj − y

(i)
j . Since y

(i)
j ≤ u, it + 1

divides
∏u
y=0(rj − y). Since it + 1, 1 ≤ i ≤ k are pairwise relatively prime, it

follows that ct+ 1 divides
∏u
y=0(rj − y) for 1 ≤ j ≤ n, as required.

⇐: For each 1 ≤ i ≤ k pick a prime divisor pi of it+1. Since t = q(k, . . . , u)!,

we have pi > q(k, . . . , u). Let y
(i)
j = Rem(rj , pi). Note that y

(i)
j < pi. We claim

y
(i)
j ≤ u. To see this, note that pi divides it+1 which divides ct+1 which divides
∏u
y=0(rj − y), hence pi divides rj − y for some y ≤ u. Then y ≡ rj ≡ y

(i)
j mod

pi. Noting also that y ≤ u ≤ q(k, . . . , u) < pi, we see that y = y
(i)
j . Therefore

y
(i)
j ≤ u.

Next we claim that p(k, i, . . . , y
(i)
1 , . . . , y

(i)
n ) = 0 for 1 ≤ i ≤ k. By assumption

we have p(k, c, . . . , r1, . . . , rn) ≡ 0 mod ct+ 1. Recall that ct+ 1 =
∏k
i=1 it+ 1

and c ≡ i mod it+ 1. Therefore c ≡ i mod pi. Moreover ri ≡ y
(i)
j mod pi, so

p(k, i, . . . , y
(i)
1 , . . . , y(i)

n ) ≡ 0 mod ct+ 1

≡ 0 mod it+ 1

≡ 0 mod pi.

Since y
(i)
1 , . . . , y

(i)
n ≤ u, we have |p(k, i, . . . , y(i)

1 , . . . , y
(i)
n )| ≤ q(k, . . . , u) < pi.

Hence p(k, i, . . . , y
(i)
1 , . . . , y

(i)
n ) = 0 and our lemma is proved.

Lemma 1.4.2 shows that the class of Diophantine relations is closed under
bounded universal quantification. This completes the proof of the MDRP The-
orem 1.3.2, except that it remains to prove the Main Lemma.

1.5 The Pell Equation

The Main Lemma 1.3.7 asserts that the exponential function (n, k) 7→ nk and
similar functions are Diophantine. In order to prove this, we need a Diophan-
tine function which is of exponential growth. It turns out that the solutions of a
particular Diophantine equation known as Pell’s equation not only grow expo-
nentially but also are convenient in other ways. Following Davis ([5], reprinted
in [6, Appendix]), we give a self-contained, elementary presentation of all of the
number theory which we shall use.

11



1.5.1 Basic Properties

We begin with basic properties of the Pell equation.

Definition 1.5.1 (the Pell equation). A Pell equation is an equation of the
form x2 − dy2 = 1 where d = a2 − 1, a ≥ 2, a ∈ N.

Examples 1.5.2.

1. a = 2, x2 − 3y2 = 1.

2. a = 3, x2 − 8y2 = 1.

3. a = 4, x2 − 15y2 = 1.

Remark 1.5.3. If (x, y) is any integer solution of the Pell equation, then clearly

(x+ y
√
d)(x − y

√
d) = x2 − dy2 = 1.

Furthermore, (x, y) is a solution if and only if (|x|, |y|) is a solution, so we may
focus on solutions with x, y ≥ 0. In this case we have x+y

√
d ≥ 1, with equality

only if (x, y) = (1, 0).

Remark 1.5.4. There are two obvious solutions of the Pell equation, (1, 0) and
(a, 1). Moreover, there is an easy way of generating more solutions, as follows.

Lemma 1.5.5. If (x, y) and (x′, y′) are integer solutions of the Pell equation,
then so is (x′′, y′′) given by

x′′ + y′′
√
d = (x+ y

√
d)(x′ + y′

√
d).

Proof. Taking conjugates, we have

x′′ − y′′
√
d = (x− y

√
d)(x′ − y′

√
d).

Multiplying the two equations, we get

x′′2 − dy′′2 = (x2 − dy2)(x′2 − dy′2) = 1

and our lemma is proved.

We shall now show that all solutions are generated in this way.

Definition 1.5.6. For n ≥ 0 we define xn(a) and yn(a) by

xn(a) + yn(a)
√
d = (a+

√
d)n .

By Lemma 1.5.5, (xn(a), yn(a)) is a solution of Pell’s equation. When a is fixed,
we write xn = xn(a) and yn = yn(a).

Theorem 1.5.7. All natural number solutions of Pell’s equation are of the form
(xn, yn) for some n.

12



Proof. Otherwise there would be a solution (x, y) with

xn + yn
√
d < x+ y

√
d < xn+1 + yn+1

√
d .

By the above definition, this becomes

(a+
√
d)n < x+ y

√
d < (a+

√
d)n+1.

Dividing gives

1 <
x+ y

√
d

xn + yn
√
d
< a+

√
d

which simplifies to

1 < (x+ y
√
d)(xn − yn

√
d) < a+

√
d .

Multiplying the solutions as in Lemma 1.5.5 gives

1 < x′ + y′
√
d < a+

√
d.

Taking negative reciprocals, we get

−1 < −x′ + y′
√
d < −a+

√
d.

Adding, we get 0 < 2y′
√
d < 2

√
d, which implies 0 < y′ < 1, a contradiction.

We now obtain recurrences and explicit formulas for xn and yn.

Lemma 1.5.8. We have

xn±m = xnxm ± dynym,

yn±m = xmyn ± xnym.

Proof. Note that

xn±m + yn±m
√
d = (a+

√
d)n+m

= (xm ± ym
√
d)(xn ± yn

√
d)

= (xnxm ± dynym) + (xnym ± xmyn)
√
d.

Remark 1.5.9. In the special case m = 1, the previous lemma says

xn±1 = axn ± dyn,

yn±1 = ayn ± xn.

Adding these expressions for xn±1 and yn±1 respectively, we get recurrences

xn+1 = 2axn − xn−1,

yn+1 = 2ayn − yn−1.
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Theorem 1.5.10. We have the following explicit formulas:

xn =

⌈
1

2
(a+

√
d)n
⌉
,

yn =

⌊
1

2
√
d
(a+

√
d)n
⌋
.

Proof. To get an explicit formula for xn, we solve the recurrence xn+1 = 2axn−
xn−1. Setting xn = zn we get zn+1 = 2azn − zn−1. Dividing by zn−1 we get
the quadratic equation z2 = 2az − 1 which has solutions z = a ±

√
d. Thus

xn = A(a +
√
d)n + B(a −

√
d)n. Using our initial conditions x0 = 1 = A + B

and x1 = a = A(a +
√
d) + B(a −

√
d), we get A = B = 1/2. Thus xn =

(1/2)((a+
√
d)n + (a−

√
d)n) = ⌈(1/2)(a+

√
d)n⌉.

Similarly, to get an explicit formula for yn, we have yn = A(a+
√
d)n+B(a−√

d)n, but this time our initial conditions are y0 = 0 = A + B and y1 = 1 =
A(a+

√
d) + B(a−

√
d). These equations yield A = 1/2

√
d and B = −1/2

√
d.

Thus yn = (1/2
√
d)((a+

√
d)n + (a−

√
d)n) = ⌊(1/2

√
d)(a+

√
d)n⌋.

1.5.2 Divisibility Properties of y
n

We now obtain some divisibility properties of yn.

Theorem 1.5.11. GCD(xn, yn) = 1.

Proof. Let p be a prime dividing xn and yn. Then p divides x2
n − dy2

n = 1, a
contradiction.

Lemma 1.5.12. yn | yt if and only if n | t.
Proof. Assume n | t and let t = nk. We prove yn | ynk by induction on
k. For k = 0 we have yn | 0 = y0, and for k = 1 we have yn | yn. Now
yn(k+1) = ynk+n = xnynk + xnkyn, and by induction hypothesis yn | ynk, hence
yn | yn(k+1).

Conversely, assume yn | yt. Let t = qn + r with 0 ≤ r < n. We then have
yt = yqn+r = xryqn + xqnyr. Since yn divides yqn, it follows that yn divides
xqnyr. But since GCD(yqn, xqn) = 1, we have GCD(yn, xqn) = 1. Thus yn
divides yr, but since r < n we have yr < yn. Hence r = 0, so n | t.

Theorem 1.5.13. y2
n | yt if and only if nyn | t.

Proof. Note that

xnk + ynk
√
d = (a+

√
d)nk = (xn + yn

√
d)k =

k∑

i=0

(
k

i

)
xk−in yind

i/2.

Comparing coefficients of
√
d, we see that

ynk =
∑

0≤i≤k
i odd

(
k

i

)
xk−in yind

(i−1)/2 ≡ kxk−1
n yn mod y3

n.

14



Setting k = yn, we see that y2
n | ynk, i.e., y2

n | ynyn
. It follows by Lemma 1.5.12

that y2
n | yt for all t divisible by nyn. Conversely, suppose y2

n | yt. By Lemma
1.5.12 again, we have n | t, say t = nk, so y2

n | ynk. Moreover, we have already
seen that ynk ≡ kxk−1

n yn mod y3
n. It follows that y2

n | kxk−1
n yn, hence yn | kxk−1

n .
Since GCD(xn, yn) = 1, it follows that yn | k, hence nyn | nk = t.

Recall that xn+1 = 2axn − xn−1 and yn+1 = 2ayn − yn−1. We use these
recurrences to establish some easy properties of xn and yn, by induction on n.

Theorem 1.5.14. If a ≡ b mod c, then xn(a) ≡ xn(b), yn(a) ≡ yn(b) mod c.

Proof. For n = 0 we have x0(a) = 1 = x0(b) and y0(a) = 0 = y0(b). For n = 1
we have x1(a) = a ≡ b = x1(b) mod c, and y1(a) = 1 = y1(b). Inductively we
have xn+1(a) = 2axn(a) − xn−1(a) ≡ 2axn(b) − xn−1(b) ≡ xn+1(b) mod c, and
similarly yn+1(a) ≡ yn+1(b) mod c.

Theorem 1.5.15. yn ≡ n mod a− 1.

Proof. For n = 0, 1 we have y0 = 0, y1 = 1. Inductively we have yn+1 =
2ayn − yn−1 ≡ 2an− (n− 1) = 2(a− 1)n+ n+ 1 ≡ n+ 1 mod a− 1.

Theorem 1.5.16. If n is even, yn is even. If n is odd, yn is odd.

Proof. The initial values y0 = 0 and y1 = 1 are known. We have yn+1 =
2ayn − yn−1 ≡ −yn−1 ≡ yn−1 mod 2, so our result is obvious by induction.

1.5.3 Congruence Properties of x
n

We now prove a theorem telling for which i, j, n are xi ≡ xj mod xn.

Lemma 1.5.17. x2n±j ≡ −xj mod xn.

Proof. By Lemma 1.5.8 we have x2n±j = xn+(n±j) = xnxn±j + dynyn±j =
xnxn±j + dyn(ynxj ± xnyj). Continuing modulo xn, we have x2n±j ≡ dy2

nxj =
(x2
n − 1)xj ≡ −xj .

Lemma 1.5.18. x4n±j ≡ xj mod xn.

Proof. By the previous lemma we have x4n±j = x2n+(2n±j) ≡ −x2n±j ≡
−(−xj) = xj mod xn.

Lemma 1.5.19. For all 0 ≤ i < j ≤ 2n we have xi 6≡ xj mod xn. The only
exception is when a = 2, n = 1, x0 ≡ x2 mod x1.

Proof. If xn is odd, put q = (xn − 1)/2. Since 2q < xn, the numbers

−q,−q + 1 . . . ,−1, 0, 1, . . . , q − 1, q

are all pairwise 6≡ mod xn. Recalling xn = axn−1 + dyn−1, we have xn ≥
axn−1 ≥ 2xn−1, hence xn−1 ≤ xn/2, hence xn−1 ≤ q, since xn−1 is an integer.
It now follows that

−q ≤ −xn−1 < · · · < −x1 < −x0 = −1 < 0 < 1 = x0 < x1 < · · · < xn−1 ≤ q
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are pairwise 6≡ mod xn. Moreover, Lemma 1.5.17 tells us that xn+1 ≡ −xn−1,
. . . , x2n−1 ≡ −x1, x2n ≡ −x0, all mod xn, and trivially xn ≡ 0 mod xn. It is
now clear that all of x0, x1, . . . , xn−1, xn, xn+1, . . . , x2n are pairwise 6≡ mod xn.

If xn is even, put q = xn/2. Since 2q ≤ xn, the numbers

−q + 1,−q + 2, . . . ,−1, 0, 1, . . . , q − 1, q

are all pairwise 6≡ mod xn. As before we have xn−1 ≤ q, so our result follows
as before, unless xn−1 = q = xn/2. In this exceptional situation we have
2xn−1 = xn = axn−1 + dyn−1, hence a = 2 and yn−1 = 0, hence n = 1,
x1 = a = 2, x2 = 2ax1 − x0 = 8 − 1 = 7 ≡ 1 = x0 mod x1.

Lemma 1.5.20. If xi ≡ xj mod xn, where n ≥ 1, 0 < i ≤ n, and 0 ≤ j < 4n,
then either j = i or j = 4n− i.

Proof. Case 1: j ≤ 2n. By Lemma 1.5.19, i = j unless the exceptional case oc-
curs. But this implies {i, j} = {0, 2} and n = 1, contradicting our assumptions.

Case 2: 2n < j < 4n. Set j′ = 4n − j. Then 0 < j′ < 2n. By Lemma
1.5.18, xj′ ≡ xj mod xn, hence xi = xj′ mod xn. By Lemma 1.5.19, i = j′

unless the exceptional case occurs. This cannot happen, because both i and j′

are > 0.

Theorem 1.5.21. If 0 < i ≤ n and xi ≡ xj mod xn, then i = ±j mod 4n.

Proof. Put j = 4nq + r, where 0 ≤ r < 4n. By Lemma 1.5.18, xi ≡ xj ≡ xr
mod xn. By Lemma 1.5.20, i = r or i = 4n− r. Thus j ≡ r ≡ ±i mod 4n.

1.5.4 Diophantine Definability of x
n

and y
n

Theorem 1.5.22. The functions (a, k) 7→ xk(a) and (a, k) 7→ yk(a) are Dio-
phantine.

Proof. We show that x = xk(a) and y = yk(a) if and only if there exist b, u, v, s, t
and wi, 1 ≤ i ≤ 6, satisfying the following system of equations:

x2 + (a2 − 1)y2 = 1 (1.1)

u2 − (a2 − 1)v2 = 1 (1.2)

s2 − (b2 − 1)t2 = 1 (1.3)

v = w1y
2 (1.4)

b = 1 + 4w2y (1.5)

b = a+ w3u (1.6)

s = x+ w4u (1.7)

t = k + 4w5y (1.8)

y = k + w6 (1.9)

Note that (1.4)–(1.9) amount to saying y2 divides v, b ≡ 1 mod 4y, b ≡ a mod
u, s ≡ x mod u, t ≡ k mod 4y, y ≥ k.
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⇒: Assume x = xk(a) and y = yk(a). Set n = 2ky, u = xn(a), v = yn(a).
Clearly (1.1) and (1.2) hold. Since yk(a) ≥ k, (1.9) holds. By Theorem 1.5.13,
y2
k divides y2kyk

= yn, i.e., y2 divides v, so (1.4) is satisfied. By Theorem 1.5.11
we have GCD(u, v) = 1 hence GCD(u, y) = 1. Because n is even, yn(a) = v is
even (Theorem 1.5.16), hence u = xn(a) is odd, hence GCD(u, 4y) = 1. By the
Chinese Remainder Theorem, we can find b such that b ≡ 1 mod 4y and b ≡ a
mod u, so (1.5) and (1.6) are satisfied. Set s = xk(b) and t = yk(b), so (1.3) is
satisfied. Since b ≡ a mod u, we have xk(b) ≡ xk(a) mod u, so (1.7) is satisfied.
By Theorem 1.5.15, t = yk(b) ≡ k mod b − 1. Since 4y | b − 1, we have t ≡ k
mod 4y, so (1.8) is satisfied. Thus all of (1.1)–(1.9) are satisfied.

⇐: Assume (1.1)–(1.9). We want to prove x = xk(a) and y = yk(a). By
(1.1)–(1.3) there exist i, j, n such that x = xi(a), y = yi(a), u = xn(a), v =
yn(a), s = xj(b), t = yj(b). It remains only to show that i = k.

By (1.6) we have a ≡ b mod xn(a), hence xj(a) ≡ xj(b) mod xn(a). By
(1.7) we have xi(a) ≡ xj(b) mod xn(a). Hence xi(a) ≡ xj(a) mod xn(a). By
(1.4) we have yi(a)

2 | yn(a), hence yi(a) ≤ yn(a), hence i ≤ n. By Theorem
1.5.21 it follows that i = ±j mod 4n. By (1.4) we have yi(a)

2 | yn(a), hence
by Theorem 1.5.13 yi(a) | n. Thus i ≡ ±j mod 4yi(a). By (1.5) we have b ≡ 1
mod 4yi(a), i.e., 4yi(a) | b− 1. By Theorem 1.5.15, yj(b) ≡ j mod b− 1, hence
yj(b) ≡ j mod 4yi(a). But by (1.8) we also have yj(b) ≡ k mod 4yi(a). Thus
i ≡ ±j ≡ ±k mod 4yi(a). By (1.9) we have k ≤ yi(a), and obviously i ≤ yi(a),
hence i = k and we are done.

1.6 Proof of the Main Lemma

In this section we use properties of Pell’s equation to prove the Main Lemma
1.3.7. We begin by proving that the exponential function is Diophantine.

Lemma 1.6.1. For n, k ≥ 1 and a ≥ 2 we have

nk ≡ xk(a) − (a− n)yk(a) mod 2an− n2 − 1.

Proof. The proof is by induction on k. For the base cases k = 0 and k = 1,
we have x0 − (a − n)y0 = 1 = n0 and x1 − (a − n)y1 = a − (a − n) = n = n1.
Assuming our congruence for k − 1 and for k, we derive it for k + 1 using the
recurrences xk+1 = 2axk − xk−1 and yk+1 = 2ayk − yk−1. Namely,

xk+1 − (a− n)yk+1 = 2a(xk − (a− n)yk) − (xk−1 − (a− n)yk−1)

≡ 2ank − nk−1 = nk−1(2an− 1) mod 2an− n2 − 1

≡ nk−1n2 = nk+1 mod 2an− n2 − 1.

Our congruence is now proved for all k.

Lemma 1.6.2. If nk < a, then nk < 2an− n2 − 1.

Proof. Set g(z) = 2az − z2 − 1 where z is a real variable. We have g(1) =
2a − 2 ≥ a. Moreover, for 1 ≤ z < a we have g′(z) = 2a − 2z > 0, hence
g(z) ≥ a. In particular, for 1 ≤ n ≤ nk < a we have g(n) ≥ a > nk.
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Theorem 1.6.3. The function (n, k) 7→ nk is Diophantine.

Proof. Set a = xk+1(n+ 1). By Theorem 1.5.22 this is a Diophantine function
of n and k. By Theorem 1.5.10 we have nk < a. Hence by Lemma 1.6.2 we have
nk < 2an− n2 − 1. By Lemma 1.6.1 we have nk ≡ xk(a) − (a − n)yk(a) mod
2an− n2 − 1 for any a. But then, for this particular a, it follows that nk = the
remainder of xk(a)−(a−n)yk(a) on division by 2an−n2−1. It is now clear that
(n, k) 7→ nk is Diophantine, since (a, k) 7→ xk(a), yk(a) are Diophantine.

Having shown that the exponential function is Diophantine, we now show
that the other functions mentioned in the Main Lemma are Diophantine.

Theorem 1.6.4. The function (n, k) 7→
(
n
k

)
is Diophantine.

Proof. Given n and k, choose M > 2n. We have

(M + 1)n

Mk
=

n∑

i=0

(
n

i

)
M i−k = q + ǫ

where q =
∑n
i=k

(
n
i

)
M i−k is an integer, and

ǫ =

k−1∑

i=0

(
n

i

)
M i−k ≤ 1

M

n∑

i=0

(
n

i

)
=

1

M
2n < 1.

Moreover, q ≡
(
n
k

)
mod M , and

(
n
k

)
< 2n < M . It is now clear that z =

(
n
k

)
if

and only if

∃M ∃q
[
M > 2n ∧ q = Quot((M + 1)n,Mk) ∧ z = Rem(q,M)

]
.

Thus (n, k) 7→
(
n
k

)
is Diophantine.

Lemma 1.6.5. For any M > (2n)n+1 we have

n! = Quot

(
Mn,

(
M

n

))
=

⌊
Mn

(
M
n

)
⌋
.

Proof. We have

Mn

(
M
n

) =
Mnn!

M(M − 1) · · · (M − n+ 1)

=
n!

(1 − 1
M ) · · · (1 − n−1

M )

<
n!

(1 − n
M )n

= n!

(
1

1 − α

)n
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where α = n/M . Moreover

1

1 − α
= 1 +

α

1 − α
< 1 + 2α,

hence
(

1

1 − α

)n
< (1 + 2α)n

= 1 +

n∑

i=1

(
n

i

)
(2α)i

= 1 + 2α

n∑

i=1

(
n

i

)
(2α)i−1

< 1 + 2α

n∑

i=0

(
n

i

)

= 1 + (2α)(2n) = 1 + 2n+1α.

Thus

n! ≤ Mn

(
M
n

) < n! + 1

provided n! 2n+1α < 1, and this follows from n(n!)2n+1 < (2n)n+1 < M .

Theorem 1.6.6. The function n 7→ n! is Diophantine.

Proof. By the previous lemma we have

z = n! ⇐⇒ ∃M
[
M > (2n)n+1 ∧ z = Quot

(
Mn,

(
M

n

))]
.

This is Diophantine in view of Theorems 1.6.3 and 1.6.4.

Theorem 1.6.7. The function

(a, b, n) 7→ h(a, b, n) =

n∏

i=0

(a+ bi)

is Diophantine.

Proof. Given a, b, n, choose M > (a + bn)n+1 ≥ h(a, b, n) such that M is rela-
tively prime to b. Then b is invertible mod M , i.e., ∃c (bc ≡ 1 mod M), hence
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abc ≡ a mod M . It follows that

h(a, b, n) =
n∏

i=0

(a+ bi)

≡
n∏

i=0

(abc+ bi) mod M

≡ bn+1
n∏

i=0

(ac+ i) mod M

= bn+1

(
ac+ n

n+ 1

)
(n+ 1)! ,

hence h(a, b, n) = the remainder of bn+1
(
ac+n
n+1

)
(n + 1)! on division by M . It is

now clear that z = h(a, b, n) if and only if

∃M ∃c
[
M > (a+ bn)n+1 ∧ bc ≡ 1 mod M ∧ z = Rem

(
bn+1

(
ac+n
n+1

)
(n+ 1)!,M

) ]

and this is Diophantine in view of Theorems 1.6.3, 1.6.4, 1.6.6.

This completes the proof of the Main Lemma 1.3.7. Therefore, we have
now proved the MDRP Theorem 1.3.2 and with it the unsolvability of Hilbert’s
Tenth Problem.
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Chapter 2

Unsolvability of the Word

Problem for Groups

This chapter consists mainly of a proof that the word problem for groups is
unsolvable. This result is due to P. Novikov 1955 and Boone 1959. Boone’s
proof was simplified by Britton 1963. We follow the exposition of Rotman
[12, Chapter 12]. Note also that a more streamlined proof has been given by
Aanderaa/Cohen [2].

At the end of the chapter we present some related results, including unsolv-
ability of the triviality problem for groups.

2.1 Finitely Presented Semigroups

We shall first prove that the word problem for semigroups is unsolvable. This
result is due to Post 1947 and Markov 1947 and is much easier than unsolvability
of the word problem for groups.

Definition 2.1.1. A semigroup is a set S together with an associative binary
operation · : S×S → S. We consider only semigroups with an identity element,
i.e., 1 ∈ S such that s · 1 = 1 · s = s for all s ∈ S.

Example 2.1.2. Let a1, . . . , an be a finite alphabet. Let Sn be the set of
words on a1, . . . , an. A word is a finite sequence of letters of the alphabet,
W = ai1 · · ·aik , where 1 ≤ ij ≤ n for 1 ≤ j ≤ k. Here k is the length of W . If
k = 0, W is the empty word. Note that Sn is a semigroup under concatenation.
For example, If U = abaac, V = baba, then UV = abaacbaba. This semigroup

Sn = 〈a1, . . . , an〉

is called the free semigroup on a1, . . . , an.

Definition 2.1.3. Let R be a subset of Sn × Sn. We define an equivalence
relation ≈R on Sn. For W,W ′ ∈ Sn, define W ≈R W ′ if and only if there exists
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a finite sequence of words W = W0,W1, . . . ,Wt = W ′ such that, for each i < t,
Wi ∼R Wi+1, i.e., Wi = UXV andWi+1 = UY V for some (X,Y ) or (Y,X) ∈ R.
For W ∈ Sn we write [W ]R = {W ′ ∈ Sn |W ≈R W ′} = the equivalence class of
W modulo ≈R. We put S = Sn/≈R = the set of such equivalence classes. This
is a semigroup, with the operation · being given by [U ]R · [V ]R = [UV ]R. The
identity element is 1 = [ε]R where ε is the empty word. We frequently write W
instead of [W ]R. Our semigroup S is written as

S = 〈a1, . . . an | R〉.

Each (X,Y ) ∈ R is viewed as a relation X = Y which holds in S.

Example 2.1.4. Let S be the semigroup 〈a, b | a3 = 1, ab = ba〉. We refer
to S as the semigroup with generators a, b and relations a3 = 1, ab = ba.
Elements of S are words on the alphabet a, b except we can reduce equivalent
words, e.g., aababa = aaabba = aaabab = aaaabb = abb. In fact, each word is
equivalent to a unique one of the form aibj , where 0 ≤ i ≤ 2, j ≥ 0. Thus each
element of S has a normal form. The multiplication of normal forms is given
by aibjasbt = akbj+t, where k = Rem(i+ s, 3).

Definition 2.1.5. A finitely presented semigroup is a semigroup of the form
〈a1, . . . , an | R〉, where a1, . . . , an is a finite set of generators and R is a finite
set of relations.

Definition 2.1.6. Let S = 〈a1, . . . , an | R〉 be a finitely presented semigroup.
The word problem for S is the problem, given two words W,W ′ ∈ Sn, to decide
whether W = W ′ in S, i.e., whether W ≈R W ′.

Example 2.1.7. The word problem for 〈a, b | a3 = 1, ab = ba〉 is solvable,
because aibj = asbt in S if and only if i ≡ s mod 3, and j = t. In fact, each
word on a, b is equivalent to a unique normal form aibj, 0 ≤ i ≤ 2, j ≥ 0, and
two normal forms are equivalent if and only if they are equal.

Remark 2.1.8. In general, the word problem for a finitely presented semigroup
S = 〈A | R〉 is a recursively enumerable or Σ0

1 problem. This is becauseW = W ′

in S if and only if ∃t ∃ finite sequence of words W0,W1, . . . ,Wt such that

W ≡W0 ∼R W1 ∼R · · · ∼R Wt ≡W ′ .

Theorem 2.1.9 (Post, Markov). We can construct a finitely presented semi-
group S such that the word problem for S is unsolvable.

In order to prove this theorem, we shall encode the Halting Problem into
the word problem for a particular finitely presented semigroup.

Recall that a k-place partial function ψ is partial recursive if and only if it
is computable by some register machine program P . Please refer to the Math
558 notes [14] for the definition of register machine programs.

Let P be a register machine program. Recall that P(x1, . . . , xk) is the run of
P started with x1, . . . , xk in registers R1, . . . , Rk and all other registers empty.
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Lemma 2.1.10. We can find a program P such that, given x ∈ N, it is unde-
cidable whether P(x) halts.

Proof. By the Enumeration Theorem, let P be a program computing the partial

recursive function e 7→ ϕ
(1)
e (0): that is, P takes a number e, constructs the

program with that Gödel number, and then runs the program with input 0.
Thus P(e) halts if and only if e ∈ H , where H is the Halting Set. By Turing’s
work, H is undecidable, so the Halting Problem for P is undecidable.

Notation 2.1.11. We write

p0, p1, . . . , pi, . . .

for the prime numbers 2, 3, 5, 7, 11, . . .. Thus pi is the ith prime, where we start
indexing with 0.

Lemma 2.1.12. Given a k-place partial recursive function ψ(x1, . . . , xk), we
can find a 1-place partial recursive function ψ∗(z) such that

ψ∗(px1
1 · · · pxk

k ) ≃ p
ψ(x1,...,xk)
k+1

for all x1, . . . , xk, and ψ∗(z) is computable by a register machine program using
only two registers, R1 and R2.

Proof. Let P be a register machine program which computes ψ. Let

P1, . . . , Pk, Pk+1, . . . , Ps

be the registers used in P . We may safely assume that, whenever P(x1, . . . , xk)
halts, it leaves all registers except possibly Pk+1 empty. Our new program P∗

for ψ∗ will be constructed so as to simulate P using only two registers, R1 and
R2. In the new program, R1 is used to hold a number z which encodes the
contents of P1, . . . , Ps via prime power coding, i.e.,

z =

s∏

i=1

pzi

i

where zi is the content of Pi. Then R2 is used for scratch work. Each P+
i

instruction is replaced by a program for z 7→ z · pi. Each P−
i instruction is

replaced by a program for

z 7→
{

z/pi if pi divides z,

z otherwise.

We shall see that this simulation can be performed using only R1 and R2. It is

then clear that ψ∗(px1
1 · · · pxk

k ) ≃ p
ψ(x1,...,xk)
k+1 for all x1, . . . , xk.

The details of the simulation are as follows.

We replace // P+
i

ONMLHIJK // in P by Figure 2.1 in P∗.
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// R−
1

ONMLHIJK

��

e // R−
2

ONMLHIJK

��

e //

R+
2

ONMLHIJK

��

R+
1

ONMLHIJK

OO

...

��

R+
2

ONMLHIJK
@A

?>�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

00

Figure 2.1: Incrementing Pi. The number of R+
2 instructions is pi.

We replace // P−
i

ONMLHIJK //

e

��?
??

??
??

A

B

in P by Figure 2.2 in P∗.

We replace // stopONMLHIJK in P by // R−
1

ONMLHIJK

��

e // stopONMLHIJK

R+
2

ONMLHIJK

OO
in P∗.

This completes the proof of Lemma 2.1.12.

Theorem 2.1.13. We can find a program P using only two registers, R1 and
R2, such that, given x ∈ N, it is undecidable whether P(x) halts. Furthermore,
when it halts, R1 and R2 are empty.

Proof. We begin with the program of Lemma 2.1.10. Using Lemma 2.1.12 we

convert it to a program using only R1 and R2. We then replace // stopONMLHIJK
by

// R−
1

ONMLHIJK

klijho

99ss

e // R−
2

ONMLHIJK

klijho

99ss

e // stopONMLHIJK

to clear R1 and R2 before halting.
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R+
1

ONMLHIJK

��

// R−
1

ONMLHIJK

��

e // R−
2

ONMLHIJK

OO

e // A R+
1

ONMLHIJK

��

R+
2

ONMLHIJK

??�������

R−
1

ONMLHIJK

��

e // R+
1

ONMLHIJK // R−
2

ONMLHIJK

e

��

??�������

R+
1

ONMLHIJK

��
...

��

...

OO

B ...

��

R−
1

ONMLHIJK

WW0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

e // R+
1

ONMLHIJK

OO

R+
1

ONMLHIJK

WW0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Figure 2.2: Decrementing Pi. The number of R−
1 instructions is pi.

We now construct a semigroup S with unsolvable word problem.

Definition 2.1.14. Let P be a program using only two registers R1, R2 as in
Theorem 2.1.13. Let I1, . . . , Il be the instructions of P . As usual, I1 is the first
instruction executed, and I0 is the halt instruction. Our semigroup S will have
l+3 generators a, b, q0, q1, . . . , ql. If R1 and R2 contain x and y respectively, and
if Im is about to be executed, then we represent this state as a word baxqma

yb.
Thus a serves as a counting token, and b serves as an end-of-count marker. For
each m = 1, . . . , l, if Im says “increment R1 and go to In0 ,” we represent this
as a production qm → aqn0 or as a relation qm = aqn0 . If Im says “increment
R2 and go to In0 ,” we represent this as a production qm → qn0a or as a relation
qm = qn0a. If Im says “if R1 is empty go to In0 otherwise decrement R1 and
go to In1 ,” we represent this as a pair of productions bqm → bqn0 , aqm → qn1 ,
or as a pair of relations bqm = bqn0 , aqm = qn1 . If Im says “if R2 is empty
go to In0 otherwise decrement R2 and go to In1 ,” we represent this as a pair
of productions qmb → qn0b, qma → qn1 , or as a pair of relations qmb = qn0b,
qma = qn1 . Thus the total number of productions or relations is l+ +2l−, where
l = l+ + l− and l+ is the number of increment instructions and l− is the number
of decrement instructions. Let S be the semigroup described by these generators
and relations.

Theorem 2.1.15. P(x) halts if and only if baxq1b = bq0b in S.

Proof. The “if” part is clear. For the “only if” part, assume that baxq1b = bq0b
in S. This implies that there is a sequence of words baxq1b = W0 = · · · =
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Wn = bq0b where each Wi+1 is obtained from Wi by a forward or backward
production. We claim that the backward productions can be eliminated. In
other words, if there are any backward productions, we can replace the sequence
W0, . . . ,Wn by a shorter sequence. This is actually obvious, because if there is
a backward production then there must be one which is immediately followed
by a forward production, and these two must be inverses of each other, because
P is deterministic. Thus we see that baxq1b = bq0b via a sequence of forward
productions. This implies that P(x) halts. Our claim is proved.

From the previous theorem, it follows that our semigroup S has unsolvable
word problem. This proves Theorem 2.1.9.

2.2 The Boone Group

Definition 2.2.1. A group is a semigroup G such that ∀g ∈ G∃g−1 ∈ G such
that gg−1 = g−1g = 1.

Notation 2.2.2. Let A be an alphabet. We introduce new letters a−1, a ∈ A,
and we write A−1 = {a−1 | a ∈ A}. We also write (a−1)−1 = a. A word on
A ∪A−1 is said to involve a if it contains an occurrence of a or a−1.

Definition 2.2.3. A group presentation is a semigroup presentation

G = 〈A ∪A−1 | R〉

where R includes semigroup relations

aa−1 = a−1a = 1,

i.e., aa−1 = a−1a = ε, for all a ∈ A, where ε is the empty word. We abbreviate
this as

G = 〈A | R〉.
Note that G is a group, because for any word ae1i1 · · ·aek

ik
on A ∪A−1 we have

(ae1i1 · · · aek

ik
)−1 = a−ek

ik
· · · a−e1i1

.

Definition 2.2.4. A finitely presented group is a group with a finite presenta-
tion, i.e., G = 〈A | R〉 where A and R are finite.

Definition 2.2.5. Let G be a finitely generated group, and let A be a finite
generating set. The word problem for G is the problem, given a word W on
A ∪A−1, to decide whether W = 1 in G.

Remark 2.2.6. If G is a finitely generated group, the degree of unsolvability
of the word problem of G is independent of finite set of generators chosen. The
same holds for semigroups.
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We now exhibit a finitely presented group with unsolvable word problem.
To do this, we build upon our construction of a finitely presented semigroup
with unsolvable word problem. We use some special features of the earlier
construction.

Remark 2.2.7. In Section 2.1 we constructed a finitely presented semigroup
S = 〈A ∪Q | R〉 with unsolvable word problem, where

A = {a, b} , Q = {q0, . . . , ql} .

Recall that the relations of S were of the form

R = {Xiqmi
Yi = Uiqni

Vi | i ∈ I}

where Xi, Yi, Ui, Vi are words on A. We showed that, given words X,Y on A,
it is undecidable whether XqmY = bq0b in S.

We now introduce a new generator q = ql+1 into Q, and we introduce a
new relation bq0b = q into R. With this trivially modified presentation of the
semigroup S, we now have Q = {q, q0, . . . , ql}. Moreover, given words X,Y on
A, it is undecidable whether XqmY = q in S.

Notation 2.2.8. If X = ai1 · · · aik is a word on A, we write

X = a−1
i1

· · · a−1
ik
.

Note that X 6= X−1. If X and Y are words on A, we write (XqmY )∗ = XqmY .

We now construct a group with unsolvable word problem.

Definition 2.2.9 (the Boone group). Let

S = 〈A ∪Q | Xiqmi
Yi = Uiqni

Vi, i ∈ I〉

be a finitely presented semigroup as in Remark 2.2.7 above. Let G be the group
with generators

A ∪Q ∪ {ri | i ∈ I} ∪ {x, t, k}
and relations

xa = ax2

ria = axrix

r−1
i Xiqmi

Yiri = Uiqni
Vi

tx = xt, tri = rit

kx = xk, kri = rik

k(q−1tq) = (q−1tq)k

for all a ∈ A and i ∈ I. Note that G is a finitely presented group. This particular
group is due to Boone.
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Theorem 2.2.10 (Boone). Let X and Y be words on A. Put

Σ = (XqmY )∗ = XqmY.

The following are pairwise equivalent.

1. XqmY = q in S.

2. Σ = LqR in G, where L,R are some words on x, x−1, ri, r
−1
i , i ∈ I.

3. k(Σ−1tΣ) = (Σ−1tΣ)k in G.

Corollary 2.2.11. The word problem for the Boone group G is unsolvable.

Proof. This is immediate from 1 ⇔ 3 in Boone’s Theorem 2.2.10, plus the known
undecidability of XqmY = q in S.

Theorem 2.2.12 (P. Novikov, Boone). The word problem for groups is
unsolvable.

Proof. This is immediate from Corollary 2.2.11.

Before starting the proof of Boone’s Theorem 2.2.10, we give an example.

Example 2.2.13. Consider the register machine program P which empties R1

and halts:

startONMLHIJK // R−
1

ONMLHIJK

klijho

99ss

e // stopONMLHIJK .

The Post semigroup relations for P are:

aq1 = q1,

bq1 = bq0,

bq0b = q.

The corresponding Boone group relations are:

r−1
1 a−1q1r1 = q1,

r−1
2 b−1q1r2 = b−1q0,

r−1
3 b−1q0br3 = q.

In addition, the Boone group has a generator x and relations xa = ax2, xb = bx2,
ria = axrix, rib = bxrix, i = 1, 2, 3. This gives a subgroup G3 of the Boone
group (see also Lemma 2.3.6 below). The full Boone group is obtained by
introducing additional generators t, k and their associated relations.
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Consider P(1), the run of P starting with 1 in R1, 0 in R2. In the semigroup
we have

baq1b = bq1b = bq0b = q.

Hence in the group we have

q = r−1
3 b−1q0br3

= r−1
3 r−1

2 b−1q1r2br3

= r−1
3 r−1

2 b−1q1bxr2xr3

= r−1
3 r−1

2 b−1r−1
1 a−1q1r1bxr2xr3

= r−1
3 r−1

2 x−1r−1
1 x−1

︸ ︷︷ ︸
L

b−1a−1q1b xr1x
2r2xr3︸ ︷︷ ︸
R

.

Setting Σ = (baq1b)
∗ = b−1a−1q1b, we have q = LΣR, where L is a word on

x−1, r−1
i , i ∈ I, and R is a word on x, ri, i ∈ I. This is an instance of statement

2 of Boone’s Theorem.

We now begin the proof of Boone’s Theorem.

Proof of 1 ⇒ 2 and 2 ⇒ 3. Assume XqmY = q in S. Say

XqmY = W0 = · · · = Wn = q

where for each ν = 1, . . . , n there exists i ∈ I such that Wν−1 and Wν are of
the form PXiqmi

YiQ and PUiqni
ViQ, where P,Q are words on A.

Note that for any word P on A, we have riP = PR and Pr−1
i = LP , where

R,L are words on x, x−1, ri, r
−1
i . Hence in G we have

PUiqni
ViQ = Pr−1

i Xiqmi
YiriQ

= LPXiqmi
YiQR,

hence W ∗
ν−1 = LνW

∗
νRν for each ν = 1, · · · , n. Hence W ∗

0 = LW ∗
nR where

L = L1 · · ·Ln, R = Rn · · ·R1

are words on x, x−1, ri, r
−1
i , i ∈ I. But W ∗

0 = (XqmY )∗ = Σ, and W ∗
n = q∗ = q.

Thus we have Σ = LqR in G. Now, by the relations of G, we have

k(Σ−1tΣ) = kR−1q−1L−1tLqR

= kR−1q−1tqR

= R−1kq−1tqR

= R−1q−1tqkR

= R−1q−1tqRk

= R−1q−1L−1tLqRk

= (Σ−1tΣ)k .

Thus we have proved 1 ⇒ 2 and 2 ⇒ 3 in Boone’s Theorem.

It remains to prove 3 ⇒ 2 and 2 ⇒ 1.
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2.3 HNN Extensions and Britton’s Lemma

In order to finish the proof of Boone’s Theorem, we first study HNN extensions.

Remark 2.3.1. Given a group G, and given p ∈ G, the map G → G given
by g 7→ p−1gp is an automorphism of G. Such automorphisms are called inner

automorphisms. We shall see that all of the relations used to define the Boone
group G describe properties of inner automorphisms.

Theorem 2.3.2 (Higman/Neumann/Neumann). Let G be a group. Let
H,K be subgroups of G which are isomorphic to each other. Let φ : H ∼= K be
a particular isomorphism of H onto K. Then there exists a group G∗ ⊇ G and
a group element p ∈ G∗ such that p−1hp = φ(h) for all h ∈ H .

Definition 2.3.3 (HNN extensions). Let G = 〈A | R〉 be a group pre-
sentation. Let φ : H ∼= K be an isomorphism of a subgroup of G onto an-
other subgroup of G. Consider the group presentation G∗ = 〈A∗ | R∗〉 where
A∗ = A ∪ {p}, and R∗ = R ∪ {p−1Xp = φ(X)}X where X ranges over a set of
words on A ∪A−1 which generate H . We sometimes write this as

G∗ = 〈G, p | p−1Xp = φ(X)〉X .

By the HNN Theorem 2.3.2, the identity map a 7→ a, a ∈ A, gives an embedding
of G into G∗. Then G∗ is called an HNN extension of G, with stable letter p.

An important special case of an HNN extension is when φ is the identity
map and H = K, as follows.

Definition 2.3.4 (commuting HNN extensions). Let G = 〈A | R〉 be a
group. LetH be any subgroup ofG. ConsiderG′ = 〈A′ | R′〉 whereA′ = A∪{p},
and R′ = R ∪ {p−1Xp = X}X where X ranges over a set of generators of H .
Then G′ is called a commuting HNN extension of G, with stable letter p. Thus
we have

G′ = 〈G, p | p−1Xp = X〉X .
Note also that p−1Xp = X can be written as pX = Xp.

Remark 2.3.5. The Boone group is nothing but a finite sequence of HNN
extensions. More precisely, each of the letters in our presentation of the Boone
group was introduced as a stable letter for an HNN extension. In particular,
the letters t and k in Definition 2.2.9 are stable letters for commuting HNN
extensions. We spell all this out in the proof of the following lemma.

Lemma 2.3.6. The Boone group G (see Definition 2.2.9) is obtained as an
iterated HNN extension.

Proof. We start with the infinite cyclic group G0 = 〈x〉. Clearly

G1 = 〈x, a, a ∈ A | a−1xa = x2, a ∈ A〉
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is a multiple HNN extension (see Definition 2.6.2 below) of G0 with stable letters
a, a ∈ A.

Consider the free product

G2 = G1 ∗ 〈q, q0, . . . , ql〉

where 〈q, q0, . . . , ql〉 is the free group on q, q0, . . . , ql. We claim that

G3 = 〈G2, ri, i ∈ I | r−1
i axri = ax−1, r−1

i Xiqmi
Yiri = Uiqni

Vi, a ∈ A, i ∈ I〉

is a multiple HNN extension of G2 with stable letters ri, i ∈ I. To see this,
consider the subgroups Hi and Ki of G2 generated by Xiqmi

Yi, ax, a ∈ A, and
Uiqni

Vi, ax
−1, a ∈ A, respectively. It is not hard to see that Hi and Ki are

free on these generators. Hence there are isomorphisms φi : Hi
∼= Ki given by

φi(Xiqmi
Yi) = Uiqni

Vi, φi(ax) = ax−1, a ∈ A. Thus G3 is a multiple HNN
extension of G2 as claimed.

Next we have

G4 = 〈G3, t | tx = xt, tri = rit, i ∈ I〉

which is a commuting HNN extension of G3 with stable letter t. Finally, the
Boone group is

G = G5 = 〈G4, k | kx = xk, kri = rik, k(q
−1tq) = (q−1tq)k, i ∈ I〉

which is a commuting HNN extension of G4 with stable letter k.

Our proof of Boone’s Theorem will be based on a detailed understanding of
HNN extensions. A key property is given by Britton’s Lemma, below.

Definition 2.3.7. In an HNN extension, a pinch is a word of the form p−1Xp
or pXp−1 where X is a word on A ∪A−1 lying in H or K respectively. A word
containing no pinches is said to be reduced.

Remark 2.3.8. In an HNN extension, any word is equivalent to a reduced
word. This is because the relations of G∗ allow us to replace pinches by words
not involving p or p−1. Namely, if X is a word on A ∪ A−1 lying in H , then
p−1Xp = φ(X) is equivalent to a word on A∪A−1 lying in K. Likewise, if X is
a word on A ∪ A−1 lying in K, then pXp−1 = φ−1(X) is equivalent to a word
on A ∪A−1 lying in H .

Lemma 2.3.9 (Britton’s Lemma). Let W be a word involving p or p−1. If
W = 1 in G∗, then W contains a pinch.

The proofs of the HNN Theorem 2.3.2 and Britton’s Lemma 2.3.9 are spread
out over Sections 2.4, 2.5, 2.6 below.
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2.4 Free Products With Amalgamation

In order to prove the HNN Theorem and Britton’s Lemma, we first introduce
free products with amalgamation. The proof of the HNN Theorem is at the end
of this section.

Definition 2.4.1 (free product). Let G1, G2 be groups, which we assume
to be disjoint except for the identity element, 1. The free product G1 ∗ G2 is
the group consisting of all formal products g1 · · · gn where n ≥ 0, gi 6= 1, and
adjacent gi belong to distinct Gj . Note that distinct n-tuples g1, . . . , gn as above
give rise to distinct elements of G1 ∗G2.

Remark 2.4.2. Intuitively, the free product G1 ∗ G2 is the “largest” group
generated byG1∪G2. One way to see this is in terms of generators and relations:
if G1 = 〈A1 | R1〉 and G2 = 〈A1 | R2〉, then G1 ∗ G2 = 〈A1 ∪ A2 | R1 ∪ R2〉.
Another way to see it is in terms of a universal mapping property:

K

G1
//

::vvvvvvvvv
G1 ∗G2

OO�
�

�

G2
oo

ddHHHHHHHHH

This means that, given maps from G1 and G2 to K, a unique map from G1 ∗G2

to K is determined.

Example 2.4.3. The free group on n generators may be viewed as a free prod-
uct

Fn = 〈a1, . . . , an〉 = 〈a1〉 ∗ · · · ∗ 〈an〉
where 〈a1〉, . . . , 〈an〉 are infinite cyclic groups.

Corollary 2.4.4. G1 and G2 are subgroups of G1 ∗G2. Moreover, in G1 ∗G2

we have G1 ∩G2 = 1.

Corollary 2.4.5. For all g1, . . . , gn, n ≥ 1, gi 6= 1, with adjacent gi from
distinct Gj , we have g1 · · · gn 6= 1 in G1 ∗G2.

Definition 2.4.6 (free product with amalgamation). Let H be a subgroup
embedded in both G1 and G2 via ι1 : H →֒ G1 and ι2 : H →֒ G2. Define
G1 ∗H G2 = G1 ∗G2/N where N is the normal subgroup of G1 ∗G2 generated
by ι1(h)ι2(h)

−1, h ∈ H . The group G1 ∗H G2 is called a free product with

amalgamation. In terms of generators and relations, if G1 = 〈A1 | R1〉, G2 =
〈A2 | R2〉, and A1 ∩A2 = ∅, then

G1 ∗H G2 = 〈A1, A2 | R1, R2, ι1(X) = ι2(X)}X

where X ranges over a set of generators of H .
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Remark 2.4.7. There is a universal mapping property given by the following
diagram:

K

G1
//

::tttttttttt
G1 ∗H G2

OO�
�

�

G2
oo

ddJJJJJJJJJJ

H

ddJJJJJJJJJJ

::tttttttttt

This means that, given maps from G1 and G2 to K which induce the same map
from H to K, a unique map from G1 ∗H G2 to K is determined.

Remark 2.4.8. To obtain a concrete description of the elements of G1 ∗H G2,
assume H ⊆ G1 and H ⊆ G2. For each g ∈ Gj \ H , j = 1, 2 let g ∈ Gj \ H
be a representative of the coset gH . Note that we have uniquely g = gh for
some h ∈ H . Then G1 ∗H G2 is concretely the set of formal products g1 · · · gnh,
n ≥ 0, where adjacent gi come from distinct Gj \H , and h ∈ H .

Corollary 2.4.9. G1 and G2 are subgroups of G1 ∗H G2, and G1 ∩G2 = H .

Proof. The first statement is immediate from Remark 2.4.8. Suppose g1 ∈
G1 \ H , g2 ∈ G2 \ H . We have g1 = g1h1, g2 = g2h2, and g1 6= g2, hence
g1 6= g2.

Corollary 2.4.10. Let n ≥ 1 and let g1, . . . , gn ∈ Gj\H where adjacent gi come
from distinct Gj . Then in G1 ∗H G2 we have g1 · · · gn /∈ H , hence g1 · · · gn 6= 1.

Proof. For 1 ≤ i ≤ n we have gi /∈ H , hence gi = gihi, hi ∈ H . We then have

g1 · · · gn = g1h1g2h2 · · · gnhn
= g1h1g2h

′
2 · · · gnhn

· · ·
= g1g′2 · · · g′nh′

which is clearly /∈ H .

We now use a free product with amalgamation to prove the HNN Theorem.

Proof of the HNN Theorem 2.3.2. Let φ : H ∼= K with H,K ⊆ G. Let M =
G ∗ 〈u〉 where u is a new letter. Let P be the subgroup of M generated by
G ∪ u−1Hu. Note that P = G ∗ u−1Hu within M , because there can be no
equation g0(u

−1h1u)g1(u
−1h2u) · · · gn−1(u

−1hnu)gn = 1 with gi ∈ G, hi ∈ H ,
h1 6= 1, g1 6= 1, h2 6= 1, . . . , gn−1 6= 1, hn 6= 1, n ≥ 1.

Similarly, let N = G ∗ 〈v〉 where v is a new letter, and let Q = G ∗ v−1Kv
be the subgroup of N generated by G ∪ v−1Kv. Clearly P ∼= Q via θ defined
by θ(g) = g, θ(u−1hu) = v−1φ(h)v for all g ∈ G, h ∈ H .

Consider the free product with amalgamation G′ = M ∗θN . Note that G →֒
G′ via g 7→ g. For all h ∈ H we have u−1hu = v−1φ(h)v, hence p−1hp = φ(h)
where p = uv−1. This proves the HNN Theorem.
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We still need to prove Britton’s Lemma.

2.5 Proof of 3 ⇒ 2

In this section we prove Britton’s Lemma (Lemma 2.3.9) in the special case of
commuting HNN extensions (see Definition 2.3.4). We then use this special case
to obtain the implication 3 ⇒ 2 in Boone’s Theorem 2.2.10.

Notation 2.5.1. In the proof of Britton’s Lemma and Boone’s Theorem, we
shall frequently write W ≡ W ′ for words W and W ′, meaning that W and W ′

are identical as words. This is in contrast to W = W ′ which means merely that
W and W ′ are equal as elements of some group.

Let G = 〈A | R〉 be a group. Let H be a subgroup of G generated by words
Xi, i ∈ I, on A∪A−1. Let t be a new letter, and consider the commuting HNN
extension

G′ = 〈A, t | R, t−1Xit = Xi, i ∈ I〉 .

Lemma 2.5.2. G′ ∼= G∗H (H×〈t〉) via the canonical map a 7→ a, t 7→ t, a ∈ A.

Proof. Let H = 〈xi, i ∈ I | S〉 be a presentation of H on generators xi corre-
sponding to Xi, i ∈ I. Then G ∗H (H × 〈t〉) has the presentation

〈A, xi, i ∈ I, t | R,S, t−1xit = xi, Xi = xi, i ∈ I〉.

In this presentation, the relations S are superfluous, so we have

〈A, xi, i ∈ I, t | R, t−1xit = xi, Xi = xi, i ∈ I〉.

Now the generators xi, i ∈ I are superfluous, so we have simply

〈A, t | R, t−1Xit = Xi, i ∈ I〉

which is G′.

Lemma 2.5.3. Let W be a word involving t or t−1. If W = 1 in G′, then W
contains a pinch, i.e., a subword of the form t−1Xt or tXt−1 where X is a word
on A ∪A−1 lying in H .

Proof. If W contains a subword of the form t−1t or tt−1, we are done. Hence
we may safely assume

W ≡W0t
e1W1t

e2W2 · · ·Wn−1t
enWn = 1

where n ≥ 1, ei 6= 0, Wi is a word on A∪A−1, and W1, . . . ,Wn−1 are nonempty.
We proceed by induction on n. If n = 1 we have W ≡ W0t

e1W1 = 1 in G′,
hence te1 = W−1

0 W−1
1 in G′. However, by Lemma 2.5.2 G′ ∼= G∗H (H×〈t〉) is a

free product with amalgamation, hence by Corollary 2.4.9 te1 ∈ G∩ (H ×〈t〉) =
H , which is clearly impossible.
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Assume now that n > 1. Apply Corollary 2.4.10 to the factorization

W ≡W0(t
e1 )W1 · · ·Wn−1(t

en)Wn = 1.

Clearly te1 , . . . , ten /∈ H , hence at least one of W0,W1, . . . ,Wn lies in H . If
W0 ∈ H , replace W0(t

e1) by (W0t
e1) ∈ H × 〈t〉 \ H . If Wn ∈ H , replace

(ten)Wn by (tenWn) ∈ H × 〈t〉 \H . Applying Corollary 2.4.10 to the resulting
factorization, we see that at least one of W1, . . . ,Wn−1 lies in H . Thus

W ≡ · · · teiWit
ei+1 · · · = 1

where Wi ∈ H , 1 ≤ i ≤ n − 1. If ei and ei+1 are of opposite sign, then we
have our pinch, so we are done. If ei and ei+1 are of the same sign, consider the
equivalent word

W ′ ≡ · · · tei+ei+1WiWi+1 · · · = 1.

Since W ′ contains one less power of t, it follows by induction that W ′ contains
a pinch. But then W contains a pinch.

We have now proved the special case of Britton’s Lemma for commuting
HNN extensions (Lemma 2.5.3). The reader who is impatient to see the proof
of the full Britton’s Lemma may skip to the next section. We now use the
special case to prove the implication 3 ⇒ 2 in Boone’s Theorem.

Proof of 3 ⇒ 2. Recall from the proof of Lemma 2.3.6 that the Boone group
G = G5 is a commuting HNN extension of G4 with stable letter k, namely

G = 〈G4, k | kx = xk, kri = rik, k(q
−1tq) = (q−1tq)k, i ∈ I〉,

where G4 is the subgroup of G generated by the generators other than k. More-
over, G4 is a commuting HNN extension of G3 with stable letter t, namely

G4 = 〈G3, t | tx = xt, tri = rit, i ∈ I〉,

where G3 is the subgroup of G4 generated by its generators other than t.
Assume 3, i.e., k(Σ−1tΣ) = (Σ−1tΣ)k. By Britton’s Lemma with stable

letter k, Σ−1tΣ belongs to the subgroup generated by x, ri, q
−1tq, i ∈ I. Thus

there is an equation

W ≡ Σ−1tΣR0(q
−1te1q)R1 · · ·Rn−1(q

−1tenq)Rn = 1

where the Rj are (possibly empty) words on x, x−1, ri, r
−1
i , i ∈ I, and ej = ±1.

Choose this equation so that n is as small as possible. By Britton’s Lemma
with stable letter t, W contains a pinch teXt−e where e = ±1 and X = R for
some word R on x, x−1, ri, r

−1
i , i ∈ I. There are two cases.

Case 1: te is the first occurrence of t in W . Thus teXt−e ≡ tΣR0q
−1te1 .

Hence e = 1, e1 = −1, and X ≡ ΣR0q
−1. Since X = R, we have Σ = RqR−1

0 ,
which gives us 2 in Boone’s Theorem.
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Case 2: teXt−e ≡ tej qRjq
−1tej+1 for some j, 1 ≤ j ≤ n − 1. Hence ej = e,

ej+1 = −e and X ≡ qRjq
−1. We then have

q−1tejqRjq
−1tej+1q = q−1tejCtej+1q

= q−1tejRtej+1q

= q−1Rq

= q−1Xq

= q−1qRjq
−1q = Rj

so in W we may replace Rj−1q
−1tejqRjq

−1tej+1qRj+1 by Rj−1RjRj+1 contra-
dicting minimality of n. This completes the proof of 3 ⇒ 2.

2.6 Proof of Britton’s Lemma

Having proved a special case of Britton’s Lemma, we now use it to prove the
full lemma.

Lemma 2.6.1 (Britton’s Lemma). Let

G∗ = 〈G, p | p−1Xp = φ(X)〉X

be an HNN extension of G with stable letter p (see Definition 2.3.3). If W is a
word involving p or p−1, and if W = 1 in G∗, then W contains a pinch.

Proof. If W has a subword of the form p−1p or pp−1, we are done. Assume this
is not the case, i.e.,

W ≡W0p
e1W1 · · ·Wn−1p

enWn = 1

where n ≥ 1, e1, . . . , en 6= 0,W0, . . . ,Wn are words onA∪A−1, andW1, . . . ,Wn−1

are nonempty.
Introduce a new letter t, and form

G∗′ = 〈A, p, t | R, p−1Xp = φ(X), t−1Xt = X〉X

which is a commuting HNN extension of G∗ with stable letter t. In G∗′ we
have (tp)−1X(tp) = p−1t−1Xtp = p−1Xp = φ(X), so there is a homomorphism
ψ : G∗ → G∗′ given by a 7→ a, p 7→ tp, a ∈ A. Thus in G∗′ we have

W ′ = W0(tp)
e1W1 · · ·Wn−1(tp)

enWn = ψ(W ) = 1.

Applying Lemma 2.5.3 to W ′, we see that W ′ contains a “special pinch,” i.e., a
subword of the form t−1Y t or tY t−1 where Y is a word on A ∪A−1 ∪ {p} lying
in H .

If our special pinch is t−1Y t, then we have ei < 0, ei+1 > 0, and Y ≡Wi for
some i, 1 ≤ i ≤ n − 1. Since Y lies in H , Wi lies in H . Going back to G∗, we
see that W has a subword p−1Wip and this is a pinch.
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If our special pinch is tY t−1, then we have ei > 0, ei+1 < 0, and Y ≡ pWip
−1

for some i, 1 ≤ i ≤ n− 1. Since Y lies in H , Wi = p−1Y p lies in K. Going back
to G∗, we see that W has a subword pWip

−1 and this is a pinch.
This completes the proof of Britton’s Lemma.

We shall also need the following generalization.

Definition 2.6.2 (multiple HNN extension). Let G = 〈A | R〉 be a group
presentation. Assume that we have isomorphisms φi : Hi

∼= Ki, i ∈ I, where Hi

and Ki are subgroups of G. Consider the group presentation

G∗ = 〈A, pi, i ∈ I | R, p−1
i Xipi = φi(Xi)〉

where Xi, φi(Xi) range over generators of Hi,Ki respectively. We call this a
multiple HNN extension with stable letters pi, i ∈ I.

Lemma 2.6.3 (multiple Britton Lemma). Let G∗ be a multiple HNN ex-
tension of G as above. If W = 1 in G∗ and W involves at least one stable letter,
then W contains a pinch, i.e., a subword p−1

i Xpi or piXp
−1
i where X is a word

on A ∪A−1 lying in Hi or Ki respectively.

Proof. Let p1, . . . , pn be the stable letters occurring in W . We proceed by
induction on n. We may assume that G = G0 ⊆ G1 ⊆ · · · ⊆ Gn = G∗ where,
for each i = 0, . . . , n− 1, Gi+1 = 〈Gi, pi | . . .〉 is an HNN extension of Gi with
stable letter pi. By Britton’s Lemma with stable letter pn, W contains a subword
p−1
n Xpn or pnXp

−1
n where X is a word on A,A−1, p1, p

−1
1 , . . . , pn−1, p

−1
n−1 and

X lies in Hn or Kn respectively. If X does not involve p1, . . . , pn−1, then we
have our pinch. Otherwise, let Z be a word on A ∪ A−1 such that X = Z in
Gn−1. Then XZ−1 = 1 in Gn−1, so by inductive hypothesis XZ−1 contains a
pinch. But Z−1 is a word on A ∪A−1 only, so X contains a pinch.

2.7 Proof of 2 ⇒ 1

We now complete the proof of Boone’s Theorem 2.2.10.

Proof of 2 ⇒ 1. Assume 2, i.e.,

LXqmY R = q ,

where X and Y are words on A, and L and R are words on x, x−1, ri, r
−1
i , i ∈ I.

Note that our equation takes place in G3, the subgroup of the Boone group
generated by A, q, q0, . . . , ql, x, ri, i ∈ I. Recall also from the proof of Lemma
2.3.6 that G3 is a multiple HNN extension of G2 with stable letters ri, i ∈ I.
Here G2 is the subgroup generated by A, q, q0, . . . , ql, x.

We may safely assume that L,R are freely reduced, i.e., they do not contain
subwords of the form x−1x, xx−1, r−1

i ri, rir
−1
i , i ∈ I. Using this assumption,

we have:
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Lemma 2.7.1. L and R are {ri | i ∈ I}-reduced.

Proof. Otherwise, L or R contains a pinch of the form r−1
i xeri or rix

er−1
i where

e 6= 0. Thus, it suffices to show that xe, e 6= 0, cannot belong to the sub-
group Hi generated by Xiqmi

Yi, ax, a ∈ A, or to the subgroup Ki generated by
Uiqni

Vi, ax
−1, a ∈ A.

In the first case, suppose

W ≡W0(Xiqmi
Yi)

e1W1 · · ·Wn−1(Xiqmi
Yi)

en−1Wn = xe

where ej = ±1 and each Wj is a (possibly empty) word on ax, (ax)−1, a ∈ A.
This takes place in the free product G2 = G1 ∗ 〈q, q0, . . . , ql〉 where

G1 = 〈x, a, a ∈ A | a−1xa = x2, a ∈ A〉

(see the proof of Lemma 2.3.6). Therefore, by Corollary 2.4.5, W cannot involve
qmi

. Hence n = 0 and W ≡W0. Thus we have

x−eW0 ≡ x−e(a1x)
f1 · · · (akx)fk = 1

where aj ∈ A and fj = ±1. By the multiple Britton Lemma 2.6.3 with stable
letters a, a ∈ A, we see that x−eW0 contains a pinch of the form a−1xna or
ax2na−1 for some a ∈ A. By inspection of x−eW0, both forms are impossible.
Hence W0 is empty, hence xe = 1, hence e = 0, a contradiction.

The second case is similar. This proves the lemma.

We continue with the proof of 2 ⇒ 1. We are assuming LXqmY R = q in
the Boone group, and we wish to obtain XqmY = q in the Post semigroup.

Let N be the number of occurences of ri, r
−1
i , i ∈ I in L and R. We proceed

by induction on N . If N = 0, we have L = xs, R = xt, and our assumption
becomes

xsXqmY x
t = q.

Since no ri appears, this holds in the free product G1 ∗〈q, q0, . . . , ql〉, and clearly
xsX and Y xt belong to G1. By Corollary 2.4.5, it follows that qm = q and
xsX = Y xt = 1. Hence s = t = 0 and X and Y are empty, so our conclusion
XqmY = q in S trivially holds.

Assume now that N > 0. Hence, by the multiple Britton Lemma 2.6.3 with
stable letters ri, i ∈ I, there is a pinch in LXqmY R. By Lemma 2.7.1, L and R
are {ri | i ∈ I}-reduced, i.e., they individually do not contain a pinch. Hence
there must be a pinch which spans L and R. It follows that

LXqmY R ≡ L′rei x
sXqmY x

tr−ei R′

where e = ±1, L ≡ L′rei x
s, R ≡ xtr−ei R′, and rei x

sXqmY x
tr−ei is a pinch.

If e = −1, then xsXqmY x
t lies in the subgroup Hi generated by Xiqmi

Yi,
ax, a ∈ A. If e = 1, then xsXqmY x

t lies in the subgroup Ki generated by
Uiqni

Vi, ax
−1, a ∈ A. Since we are in the free product G1 ∗ 〈q, q0, . . . , ql〉, it is
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clear that m = mi, hence qm = qmi
. We consider only the case e = −1, the

other case being similar.
Since xsXqmY x

t lies in Hi, there exists an equation

W ≡ xsXqmY x
tW0(XiqmYi)

e1W1 · · ·Wn−1(XiqmYi)
enWn = 1

where ej = ±1 andWj is a possibly empty, freely reduced word on ax, (ax)−1, a ∈
A. Choose this equation so that n is as small as possible. Since our equation
W = 1 holds in the free product G1 ∗ 〈qm〉, it follows that 1 + e1 + · · ·+ en = 0
and, by Corollary 2.4.5, each of the words between two consecutive occurrences
of qm or q−1

m are = 1 in G1. In particular, if ej = 1 and ej+1 = −1, then
YiWjY

−1
i = 1, and if ej = −1 and ej+1 = 1, then Xi

−1WjXi = 1. Either way,
Wj = 1, hence (XiqmYi)

ejWj(XiqmYi)
ej+1 = 1 contradicting minimality of n.

Therefore, we must have e1 = · · · = en. Since 1 + e1 + · · · + en = 0, it follows
that n = 1 and e1 = −1. We now have

W ≡ xsXqmY x
tW0(XiqmYi)

−1W1

≡ xsXqmY x
tW0Y

−1
i q−1

m Xi
−1W1 = 1

in the free product G1 ∗〈qm〉. It follows by Corollary 2.4.5 that Y xtW0Y
−1
i = 1,

hence xsXXi
−1W1 = 1.

Lemma 2.7.2. Yi is an initial segment of Y , and Xi is a final segment of X .

Proof. We first show that Yi is an initial segment of Y . Let Y ′ ≡ Y −1
i Y after

cancelling subwords of the form a−1a for all a ∈ A. It suffices to show that
the first letter of Y ′ is positive (i.e., an element of A, not of A−1). If not, let
b−1 ∈ A−1 be the first letter of Y ′, and consider xtW0Y

′ = xtW0Y
−1
i Y = 1.

Applying the multiple Britton Lemma with stable letters a, a ∈ A, we see that
xtW0Y

′ contains a pinch aeZa−e, where e = ±1 and Z lies in 〈x〉. Since W0 is
a freely reduced word on ax, (ax)−1, a ∈ A, our pinch is not contained in xtW0.
Hence a−e must be the first letter of Y ′. Our pinch is then aeZa−e ≡ bxb−1,
hence x belongs to the subgroup of 〈x〉 generated by x2, a contradiction.

We have now proved that Yi is an initial segment of Y . The proof that Xi

is a final segment of X is similar.

By the previous lemma, let Y = YiY
′ and X = X ′Xi, where X ′ and Y ′ are

words on A. We then have

W0Y
′xt = W0Y Y

−1
i xt = 1 , xsX ′W1 = xsXXi

−1W1 = 1.

Consider the automorphism ψ of G1 given by ψ(a) = a for a ∈ A, and ψ(x) =
x−1. In particular, for all a ∈ A we have ψ(ax) = ax−1 = r−1

i axri. Since W0

and W1 are words on ax, (ax)−1, a ∈ A, we have

ψ(W0) = r−1
i W0ri , ψ(W1) = r−1

i W1ri.
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Moreover,

ψ(W0Y
′xt) = ψ(W0)Y

′x−t = 1 , ψ(xsX ′W1) = x−sX ′ψ(W1) = 1.

We now have:

q = LXqmY R

= L′r−1
i xsXqmi

Y xtriR
′

= L′r−1
i xsX ′Xiqmi

YiY
′xtriR

′

= L′r−1
i W−1

1 Xiqmi
YiW

−1
0 riR

′

= L′ψ(W1)
−1r−1

i Xiqmi
Yiriψ(W0)

−1R′

= L′ψ(W1)
−1Uiqni

Viψ(W0)
−1R′

= L′x−sX ′Uiqni
ViY

′x−tR′.

Note that L′x−s and x−tR′ are words on x, x−1, ri, r
−1
i , i ∈ I with N − 2 oc-

currences of ri, r
−1
i , i ∈ I. Hence, by induction hypothesis, X ′Uiqni

ViY
′ = q in

the semigroup S. Thus XqmY = X ′Xiqmi
YiY

′ = X ′Uiqni
ViY

′ = q in S, and
we have proved 1.

This completes our proof of Boone’s Theorem 2.2.10. Thus we have proved
that the word problem for groups is unsolvable.

2.8 Some Refinements

In this section we state without proof some refinements of Theorem 2.2.12 con-
cerning unsolvability of the word problem for groups.

The following result is due to Higman. For a proof, see Aanderaa/Cohen [2]
or Rotman [12, Chapter 12] or Shoenfield [13, Appendix].

Theorem 2.8.1 (Higman’s Theorem). Let G = 〈A | R〉 be a recursively
presented group, i.e., A and R are recursive. Then G is recursively embeddable
in a finitely presented group.

This following result is due to C. Miller [8, Corollary 3.9]. The proof uses
Higman’s Theorem.

Theorem 2.8.2 (C. Miller). We can construct a finitely presented group
G such that G and all nontrivial quotient groups of G have unsolvable word
problem.

In another direction, let G = 〈A | R〉 be a finitely presented group, and
consider the following sets of words on A ∪A−1.

1. S1 = {W |W = 1 in G}.

2. S2 = {W |W 6= 1 in some finite homomorphic image of G}.
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Remark 2.8.3. It is easy to see that S1 and S2 are disjoint and recursively
enumerable. Therefore, if S1 and S2 are complementary (i.e., if G is residually

finite), then S1 and S2 are recursive. To say that S1 is recursive means exactly
that the word problem for G is solvable.

The following result is due to Slobodskoi [17]. See also Kharlampovich [9].

Theorem 2.8.4 (Slobodskoi). We can construct a finitely presented group G
such that both S1 and S2 are nonrecursive.

The following stronger result has been announced by Aanderaa [1].

Theorem 2.8.5 (Aanderaa). We can construct a finitely presented group G
such that S1 and S2 are recursively inseparable.

2.9 Unsolvability of the Triviality Problem

In this section we consider group-theoretic problems of another kind, concerning
not just a single group, but rather a family of groups.

Definition 2.9.1 (triviality problem). The triviality problem for groups is
as follows.

Given a finitely presented group G = 〈A | R〉, to decide whether G
is the trivial group, i.e., G = 1.

Note that this is a Σ0
1 problem, because A is finite, and G = 1 ⇐⇒ ∀a ∈ A∃n ∃

finite sequence of words such that a ≡W0 ∼R W1 ∼R · · · ∼R Wn ≡ 1.

We shall show that the triviality problem for groups is unsolvable. This and
similar results (see Corollary 2.9.10 below) are due to Adian 1955 and Rabin
1958. It turns out that these results follow fairly easily from the unsolvability
of the word problem for groups.

Let G be a fixed, finitely presented group. We reduce the word problem for
G to the triviality problem for finite presented groups. The reduction is given
by the following definition and lemma.

Definition 2.9.2. Let G = 〈A | R〉 be a fixed, finitely presented group. Given
a word W on A ∪ A−1, let G′

W = 〈A′ | R′〉, where A′ = A ∪ {x, y, z}, and R′

consists of R plus the relations

(1) x−1(W−1y−1Wy)x = z−1yz

(2) x−2(yxy)x2 = z−2yz2

(3) x−3yx3 = z−3(yzy)z3

(4) x−3−i(yaiy)x
3+i = z−3−iyz3+i, 1 ≤ i ≤ n,

where A = {a1, . . . , an}. Note that G′
W is a finitely presented group.
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Lemma 2.9.3.

1. If W 6= 1 in G, then G embeds into G′
W .

2. If W = 1 in G, then G′
W is trivial.

Proof. Assume first that W 6= 1 in G. Within the free product G ∗ 〈x, y〉,
consider the subgroup H generated by y plus the left hand sides of equations
(1)–(4). It is straightforward to check that H is free on these generators (use
Corollary 2.4.5). Similarly, in the free group 〈y, z〉, consider the subgroup K
generated by y plus the right hand sides of (1)–(4). Again, K is free on these
generators. Thus, there is an obvious isomorphism θ : H ∼= K, and we have

G′
W

∼= (G ∗ 〈x, y〉) ∗θ 〈y, z〉,

i.e., G′
W is the free product of G ∗ 〈x, y〉 and 〈y, z〉 with H and K amalgamated

via θ. It follows that G →֒ G ∗ 〈x, y〉 →֒ G′
W .

Now assume W = 1 in G. Then W−1y−1Wy = 1 in G′
W , hence by (1) y = 1.

Hence by (2) x = 1, by (3) z = 1, and by (4) ai = 1, 1 ≤ i ≤ n. We conclude
that G′

W = 1.

Theorem 2.9.4 (unsolvability of the triviality problem). The triviality
problem for finitely presented groups is unsolvable.

Proof. Let G be a finitely presented group such that word problem for G is
unsolvable. Then W = 1 in G if and only if G′

W is trivial. Thus the word
problem for G reduces to the triviality problem for finitely presented groups.
Hence, the latter problem is unsolvable.

Using Theorem 2.9.4, S. Novikov has obtained the following undecidability
result in geometry. We state this result without proof.

Theorem 2.9.5 (S. Novikov). Fix n ≥ 5. If M is a finitely presented, com-
pact, connected, n-dimensional manifold without boundary, then it is undecid-
able whether M is diffeomorphic to the n-sphere, Sn. Instead of diffeomorphic,
we can say homeomorphic.

Remark 2.9.6. To each finitely presented, connected manifold M is associated
a finitely presented group π1(M), the fundamental group of M , consisting of the
homotopy classes of closed paths in M . It is well known that the fundamental
group of the n-sphere, Sn, is trivial. Conversely, there is a theorem of Smale
saying that, under certain circumstances, if the fundamental group of an n-
dimensional manifold M is trivial, then M ∼= Sn. Smale’s result is used in
the proof of S. Novikov’s result. For an exposition of the proof of S. Novikov’s
result, see Nabutovsky [10, Appendix]. Nabutovsky has applied S. Novikov’s
result to draw some purely geometrical consequences.

One easily generalizes Theorem 2.9.4 as follows.
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Definition 2.9.7. Let P be a property of groups which is invariant under
isomorphism. We call P a Markov property if there exist finitely presented
groups G1, G2 such that (1) G1 has property P , (2) for any group H ⊇ G2, H
does not have property P .

Examples 2.9.8. Let P = triviality, finiteness, Abelianness, solvability, nilpo-
tence, etc. Each of these properties is a Markov property.

Theorem 2.9.9 (Adian, Rabin). Let P be a Markov property. Given a
finitely presented group H , it is undecidable whether H has property P .

Proof. Fix a finitely presented group K with unsolvable word problem. Given
a word W in K, form the finitely presented group

HW = G1 × (K ×G2)
′
W .

If W = 1 in K, then HW = G1 has property P . If W 6= 1 in K, then G2 →֒
K×G2 →֒ (K×G2)

′
W →֒ HW , so HW does not have property P . Thus, the word

problem for K is reducible to the problem of deciding whether a given finitely
presented group has property P . Hence, the latter problem is unsolvable.

Corollary 2.9.10. Given a finite presented group H , it is undecidable whether
H is trivial, finite, Abelian, solvable, nilpotent, etc.
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Chapter 3

Recursively Enumerable

Sets and Degrees

In this chapter we study the lattice of recursively enumerable sets of natural
numbers, under inclusion. We also study the partial ordering of degrees of
unsolvability of recursively enumerable sets of natural numbers, under Turing
reducibility. A standard reference for these subjects is Soare [18]. A useful
supplementary reference is Rogers [11].

3.1 The Lattice of R.E. Sets

The purpose of this section is to introduce the lattice of recursively enumerable
sets. We begin by reviewing some basic properties of Σ0

1 relations on N, the set
of natural numbers.

Definition 3.1.1. Recall that R ⊆ N
k is recursive if the characteristic function

χR : N
k → N, defined by χR(x1, . . . , xk) = 1 if R(x1, . . . , xk) holds, 0 otherwise,

is recursive.

Definition 3.1.2. Recall that S ⊆ N
k is Σ0

1 if

S = {〈x1, . . . , xk〉 ∈ N
k | ∃y R(x1, . . . , xk, y)}

where R ⊆ N
k+1 is recursive.

Remark 3.1.3. In our definition of S being Σ0
1, instead of saying that R is

recursive, we could say that R is primitive recursive. Also, by Theorem 1.2.7,
this is equivalent to S being Σ1, i.e., we can say that R is ∆0. Moreover,
by Matiyasevich’s Theorem 1.3.2, this is equivalent to S being Diophantine.
However, we shall not make use of these results.

Proposition 3.1.4. S is recursive ⇐⇒ S is ∆0
1, i.e., S and ¬S are Σ0

1.
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Proof. The =⇒ direction is trivial. For the ⇐= direction, assume that S is ∆0
1,

say

S(x1, . . . , xk) ≡ ∃y R1(x1, . . . , xk, y), ¬S(x1, . . . , xk) ≡ ∃y R2(x1, . . . , xk, y).

Let f(x1, . . . , xk) = the least y such that R1(x1, . . . , xk, y) ∨ R2(x1, . . . , xk, y).
Then f is a recursive function, and S(x1, . . . , xk) ≡ R1(x1, . . . , xk, f(x1, . . . , xk)),
hence S is recursive.

Proposition 3.1.5. If S1, S2 ⊆ N
k are Σ0

1, then so are S1 ∪ S2 and S1 ∩ S2.

Proof. Let Si(x1, . . . , xk) ≡ ∃y Ri(x1, . . . , xk, y), i = 1, 2, where R1, R2 are re-
cursive. We have

(S1 ∪ S2)(x1, . . . , xk) ≡ ∃y (R1(x1, . . . , xk, y) ∨R2(x1, . . . , xk, y))

and

(S1 ∩ S2)(x1, . . . , xk) ≡ ∃y (R1(x1, . . . , xk, (y)1) ∧R2(x1, . . . , xk, (y)2))

so S1 ∪ S2 and S1 ∩ S2 are Σ0
1.

The next proposition is known as the Σ0
1 Uniformization Principle.

Proposition 3.1.6. Let S ⊆ N
k+1 be Σ0

1. Then there is a partial recursive

function ψ : N
k P−→ N such that

1. ψ(x1, . . . , xk) ↓ ⇐⇒ ∃y S(x1, . . . , xk, y),

2. ψ(x1, . . . , xk) ↓ =⇒ S(x1, . . . , xk, ψ(x1, . . . , xk)).

Proof. Let S(x1, . . . , xk, y) ≡ ∃z R(x1, . . . , xk, y, z) where R is recursive. Put
θ(x1, . . . , xk) ≃ the least w such that R(x1, . . . , xk, (w)0, (w)1). Note that θ is
a partial recursive function. Put ψ(x1, . . . , xk) ≃ (θ(x1, . . . , xk))0.

Proposition 3.1.7. ψ : N
k P−→ N is partial recursive ⇐⇒ graph(ψ) is Σ0

1.

Proof. ⇐=: If the graph of ψ is Σ0
1, let S = graph(ψ), and apply the previous

lemma to conclude that ψ is partial recursive.
=⇒: If ψ is partial recursive, let P be a program which computes ψ. Then

ψ(x1, . . . , xk) ≃ ϕ
(k)
e (x1, . . . , xk) where e = #(P). Thus ψ(x1, . . . , xk) ≃ y if

and only if

∃n ((State(e, x1, . . . , xk, n))0 = 0 ∧ (State(e, x1, . . . , xk, n))k+1 = y)

where the State function is primitive recursive. (See the Math 558 notes [14].)
Thus graph(ψ) is Σ0

1.

Proposition 3.1.8. S ⊆ N
k is Σ0

1 if and only if S = domain(ψ) for some partial

recursive function ψ : N
k P−→ N.
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Proof. If S is Σ0
1, say S(x1, . . . , xk) ≡ ∃y R(x1, . . . , xk, y) where R is recursive,

then we may take ψ(x1, . . . , xk) ≃ the least y such that R(x1, . . . , xk, y), and

clearly this is partial recursive. Conversely, if ψ is partial recursive, say ψ = ϕ
(k)
e ,

then the domain of ψ is {〈x1, . . . , xk〉 ∈ N
k | ∃n (State(e, x1, . . . , xk, n))0 = 0}

which is clearly Σ0
1.

The next proposition is known as the Σ0
1 Reduction Principle.

Proposition 3.1.9. If S1, S2 ⊆ N
k are Σ0

1, then we can find Σ0
1 sets S′

1, S
′
2 ⊆ N

k

such that S′
1 ⊆ S1, S

′
2 ⊆ S2, S

′
1 ∪ S′

2 = S1 ∪ S2, and S′
1 ∩ S′

2 = ∅.
Proof. Since S1 and S2 are Σ0

1, we can express them as

S1(x1, · · · , xk) ≡ ∃y R1(x1, . . . , xk, y), S2(x1, . . . , xk) ≡ ∃y R2(x1, · · · , xk, z)

where R1, R2 are recursive. Define S′
1 and S′

2 by

S′
1(x1, . . . , xk) ≡ ∃y [R1(x1, . . . , xk, y) ∧ ¬∃z < yR2(x1, . . . , xk, z) ] ,

S′
2(x1, . . . , xk) ≡ ∃y [R2(x1, · · · , xk, z) ∧ ¬∃z ≤ y R1(x1, . . . , xk, z) ] .

Clearly this works. Note the similarity to the proof of Rosser’s Theorem.

Corollary 3.1.10. If P1, P2 ⊆ N
k are Π0

1, and if P1 ∩ P2 = ∅, then there is a
recursive R ⊆ N

k such that P1 ⊆ R and P2 ∩R = ∅.
Proof. Let S1 = N

k \P1, S2 = N
k \P2, and apply the Reduction Principle 3.1.9.

Then S′
1 ∪ S′

2 = S1 ∪ S2 = N
k, S′

1 ∩ S′
2 = ∅, hence by Proposition 3.1.4 S′

1, S
′
2

are recursive. Set R = S′
2.

Remark 3.1.11. The previous corollary is known as the Π0
1 Separation Prin-

ciple. On the other hand, there is no Σ0
1 Separation Principle, as shown by the

next proposition.

Definition 3.1.12. S1, S2 ⊆ N
k are said to be recursively inseparable if there

is no recursive R ⊆ N
k such that S1 ⊆ R and R ∩ S2 = ∅.

Proposition 3.1.13. We can find Σ0
1 sets B1, B2 ⊆ N such that B1 ∩ B2 = ∅

and B1, B2 are recursively inseparable.

Proof. Put Bi = {e | ϕ(1)
e (e) ≃ i} for i = 1, 2. Clearly B1 ∩B2 = ∅ and B1, B2

are Σ0
1. If B1, B2 were recursively separable, let f : N → {1, 2} be recursive such

that f(e) = 2 for all e ∈ B1, and f(e) = 1 for all e ∈ B2. Since f is recursive,

f = ϕ
(1)
e for some e. If f(e) = 1, then ϕ

(1)
e (e) = 1, which implies e ∈ B1, which

implies f(e) = 2, a contradiction. The contradiction is similar if we assume
f(e) = 2. Thus B1, B2 are recursively inseperable.

We now introduce the lattice of recursively enumerable sets.

Definition 3.1.14 (recursively enumerable sets). Let A be a subset of N.
We say that A is recursively enumerable, abbreviated r.e., if it is either empty
or the range of a recursive function f : N → N.
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Theorem 3.1.15. A is recursively enumerable ⇐⇒ A is Σ0
1. Moreover, if

A is recursively enumerable and infinite, then A is the range of a one-to-one
recursive function.

Proof. Let A = range(f) where f : N → N is recursive. Then x ∈ A ⇐⇒
∃w f(w) = x and this is Σ0

1. Now assume that A is infinite and Σ0
1, say A =

{x | ∃y R(x, y)} where R recursive. Put

B = {2x3y | R(x, y) ∧ ¬∃z < y R(x, z)}.

Then B is infinite and recursive. Define πB : N → N by πB(n) = the nth
smallest element of B. This is known as the principal function of B. Clearly
πB is recursive, since we can obtain it by recursion as πB(0) = least element of
B, πB(n+ 1) = least w ∈ B such that w > πB(n). Now, let f(n) = (πB(n))0.
Clearly f is one-to-one and recursive, and range(f) = A.

The previous theorem says that r.e. sets are the same thing as Σ0
1 sets. Thus

we have the following properties of r.e. sets.

Theorem 3.1.16.

1. Let A1, A2 ⊆ N be recursively enumerable. Then we can find recursively
enumerable sets A′

1 ⊆ A1, A
′
2 ⊆ A2 such that A′

1 ∪ A′
2 = A1 ∪ A2 and

A′
1 ∩A′

2 = ∅.

2. We can find recursively enumerable sets B1, B2 ⊆ N such that B1∩B2 = ∅
and B1, B2 are recursively inseparable.

Proof. Part 1 is a special case of the Reduction Principle 3.1.9. Part 2 is a
restatement of Proposition 3.1.13.

An algebraic context for results of this kind is lattice theory.

Definition 3.1.17 (lattices). A lattice is a partially ordered set L = (L,≤) in
which any two elements have a least upper bound and a greatest lower bound.

Examples 3.1.18. We consider two familiar examples of lattices.

1. Consider the set of positive integers partially ordered by divisibility, i.e.,
a ≤ b ⇐⇒ a divides b. This is a lattice. The l.u.b. and g.l.b. operations
are just LCM and GCD.

2. Let X be a set. The powerset P (X) = {Y | Y ⊆ X} is a lattice under
inclusion, i.e., Y ≤ Z ⇐⇒ Y ⊆ Z. The l.u.b. and g.l.b. operations are
given by ∪ and ∩.

Definition 3.1.19 (the lattice of r.e. sets). We write

E = {A ⊆ N | A is recursively enumerable}.

By Proposition 3.1.5, E is a lattice under inclusion. The l.u.b. and g.l.b. opera-
tions are given by ∪ and ∩. We refer to E as the lattice of r.e. sets.
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Definition 3.1.20 (lattice terminology). In an abstract lattice-theoretic
context, the lattice operations l.u.b. and g.l.b. may be denoted ∨ and ∧ respec-
tively. If L is any lattice, we say that L is distributive if the laws a ∧ (b ∨ c) =
(a∧b)∨(a∧c) and a∨(b∧c) = (a∨b)∧(a∨c) hold. All of the lattices considered
in this chapter are distributive.

If a lattice L has a bottom element and a top element, they are denoted 0
and 1 respectively. For example, P (X) and E are lattices with 0 and 1. The
lattice of positive integers under divisibility has 0 but no 1.

Let L be a distributive lattice with 0 and 1. An element a ∈ L is said to
be complemented within L if there exists b ∈ L (necessarily unique) such that
a ∧ b = 0 and a ∨ b = 1. The whole lattice L is said to be complemented if
every element of L is complemented within L. For example, the lattice P (X) is
complemented. A Boolean algebra is defined to be a complemented distributive
lattice. Thus P (X) is a Boolean algebra, but E is not.

Remark 3.1.21. Let A ∈ E be an r.e. set. By Proposition 3.1.4, A is com-
plemented within E if and only if A is recursive. Since nonrecursive r.e. sets
exist, it follows that the lattice E is noncomplemented. Theorem 3.1.16 above
expresses further lattice-theoretic properties of E .

Remark 3.1.22. Later in this chapter (Sections 3.6 and 3.7), we shall prove
the following two theorems of Friedberg, which express yet more lattice-theoretic
properties of E . This is the beginning of a large subject.

1. If A ⊆ N is r.e. and not recursive, then we can find nonrecursive r.e. sets
B1, B2 such that A = B1 ∪ B2 and B1 ∩ B2 = ∅. (Furthermore, we can
demand that B1, B2 are recursively inseparable. According to Rogers [11,
Exercise 12.21], this refinement is due to K. Ohashi.)

2. We can find a nonrecursive r.e. set A ⊆ N such for any r.e. set B ⊇ A,
either B\A is finite or N\B is finite. Such an r.e. set A is called a maximal

r.e. set.

3.2 Many-One Completeness

A useful way to compare the recursion-theoretic complexity of subsets of N,
whether recursively enumerable or not, is via many-one reducibility.

Definition 3.2.1 (many-one reducibility). Let A,B ⊆ N. We say that A
is many-one reducible to B, abbreviated A ≤m B, if there exists a recursive
function f : N → N such that ∀x (x ∈ A ⇐⇒ f(x) ∈ B).

Definition 3.2.2 (m-completeness). An r.e. set C is said to be many-one

complete if, for all r.e. sets A, A ≤m C. We sometimes write m-complete as an
abbreviation for many-one complete.

Example 3.2.3. The most straightforward example is as follows. Let

C = { 2e3x | ϕ(1)
e (x) ↓ } .
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Clearly C is Σ0
1, hence r.e. We claim that C is many-one complete. To see this,

let A be an r.e. set. By Proposition 3.1.8, let ψ(x) be a partial recursive function
such that A = domain(ψ). Let e be an index of ψ, i.e., the Gödel number of a
program which computes ψ. (Using a notation to be introduced later, we can

write A = We, i.e., e is an index of A.) For all x ∈ N we have ψ(x) ≃ ϕ
(1)
e (x),

hence x ∈ A ⇐⇒ ψ(x) ↓ ⇐⇒ ϕ
(1)
e (x) ↓ ⇐⇒ 2e3x ∈ C. Thus A ≤m C via

the primitive recursive function f(x) = 2e3x. We have now shown that C is
m-complete.

In addition, we have the following examples.

Examples 3.2.4. Recall from Math 558 [14] the sets

H = {e ∈ N | ϕ(1)
e (0) ↓} = the halting set

and
K = {e ∈ N | ϕ(1)

e (e) ↓ } = the diagonal halting set .

Clearly H and K are Σ0
1, hence r.e.

Proposition 3.2.5. H and K are many-one complete.

Proof. Recall the Parametrization Theorem, which reads as follows. Given a
partial recursive function θ(x, y), we can find a primitive recursive function

f(x) such that ϕ
(1)
f(x)(y) ≃ θ(x, y) for all x, y. (For a proof of the Parama-

trization Theorem, see the Math 558 notes [14].) Given an r.e. set A, consider
the partial recursive function θ(x, y) ≃ 1 if x ∈ A, undefined otherwise. Ap-
ply the Parametrization Theorem to get a primitive recursive function f(x)

such that, for any y, ϕ
(1)
f(x)(y) ↓ ⇐⇒ x ∈ A. Setting y = 0, we see that

x ∈ A ⇐⇒ f(x) ∈ H . Setting y = f(x), we see that x ∈ A ⇐⇒ f(x) ∈ K.
Thus A ≤m H and A ≤m K via f .

Examples 3.2.6. In Chapters 1 and 2 we considered several mathematical
problems including Hilbert’s Tenth Problem, the Word Problem for groups,
and the Triviality Problem for groups. We pointed out that these each of these
problems is Σ0

1, i.e., recursively enumerable, and we proved that each of them
is unsolvable, i.e., nonrecursive. More precisely, we showed how to many-one
reduce the halting set H (or any other r.e. set) to each of them, via explicitly
specified, primitive recursive functions. In particular, each of these problems is
not only unsolvable but also many-one complete.

In a similar vein, one can show that many other well known unsolvable
problems such as the Validity Problem for the predicate calculus, the Decision
Problem for Z1 (= first-order arithmetic), etc., are r.e. and many-one complete.
It follows that each of these problems is many-one reducible to any of the others.
In this sense, all of these problems are equivalent, i.e., they are all equally
unsolvable.
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Remark 3.2.7. Later in this chapter (see Sections 3.10–3.16), we shall study
the general concept of degrees of unsolvability, due to Turing. From this point
of view, the upshot of our examples above is that a great many unsolvable
problems including the Halting Problem, Hilbert’s Tenth Problem, the Word
Problem for groups, the Validity Problem for predicate calculus, etc., are all of
the same degree of unsolvability.

3.3 Creative Sets

In this section we define an interesting class of r.e. sets, the creative sets. We
then prove a theorem due to Myhill 1955, which says that an r.e. set is creative
if and only if it is many-one complete.

Notation 3.3.1. Let

We = domain(ϕ(1)
e ) = {x ∈ N | ϕ(1)

e (x) ↓ } .

By Proposition 3.1.8, the sequence We, e = 0, 1, 2, . . . is an enumeration of all
the r.e. sets. We refer to this as the standard enumeration of the r.e. sets. Given
an r.e. set A, an index or r.e. index of A is any e ∈ N such that A = We. Clearly
any r.e. set has infinitely many indices.

Definition 3.3.2 (creative sets). An r.e. set C is said to be creative if there
exists a partial recursive function ψ(e) such that for all e, if We ∩ C = ∅, then
ψ(e) ↓ and ψ(e) /∈We ∪ C. We call ψ a creative function for C.

Proposition 3.3.3. If C is creative, then C is not recursive.

Proof. If C were recursive, then N \ C would be recursively enumerable, say
N\C = We. Then We∩C = ∅, hence ψ(x) ↓ and ψ(e) /∈We∪C, a contradiction
since We ∪C = N.

Remark 3.3.4. We have just proved that creative sets are nonrecursive. In
addition, we can say that a creative set C is “effectively nonrecursive.” By this
we mean that C is r.e. and nonrecursive and furthermore, the nonrecursiveness
holds because of a computable function ψ(e) which effectively provides a witness
for the fact that We is not the complement of C, for all r.e. sets We.

Example 3.3.5. The diagonal halting set K of Example 3.2.4 is creative.
Namely, a creative function for K is the identity function, ψ(e) = e for all
e. To see this, note that by definition K = {e | e ∈ We}. Hence, for all e, if
We ∩K = ∅, then e /∈ We and e /∈ K.

Exercise 3.3.6. Show that the r.e. sets C and H of Examples 3.2.3 and 3.2.4
are creative.

Exercise 3.3.7. Consider the set of Gödel numbers of sentences which are prov-
able in the theory Z1, first-order arithmetic, a.k.a., Peano Arithmetic. Show
that this set is creative. Instead of Z1, we could use any recursively axiomatiz-
able theory to which Rosser’s Theorem applies.
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Theorem 3.3.8. Let A and B be r.e. sets. If A is creative and A ≤m B, then
B is creative.

Proof. Assume that A is creative via ψ, and assume that A ≤m B via f . By the
Parametrization Theorem, let h(x) be a primitive recursive function such that

ϕ
(1)
h(x)(y) ≃ ϕ

(1)
x (f(y)) for all x, y. It follows that Wh(e) = f−1(We) for all e.

Now, if We ∩B = ∅, then Wh(e) ∩A = ∅, hence ψ(h(e)) ↓ and ψ(e) /∈ Wh(e) ∪A,
hence f(ψ(h(e))) /∈ We ∪ B. Thus, a creative function for B is given by e 7→
f(ψ(h(e))).

Corollary 3.3.9. Let C be an r.e. set. If C is m-complete, then C is creative.

Proof. We have already seen that creative r.e. sets exist. For example, we have
seen that K is creative. If C is m-complete, then K ≤m C, hence by the
previous theorem C is creative.

Our next goal is to prove the converse: if C is creative, then C is m-complete.

Lemma 3.3.10. If C is creative, then we can find a total recursive function
p(e) which is a creative function for C.

Proof. Let ψ(e) be a creative function for A which is partial recursive. Consider
the Σ0

1 predicate
S(e, x) ≡ ψ(e) ≃ x ∨ We ∩ C 6= ∅ .

Clearly ∀e ∃xS(e, x). By Σ0
1 uniformization (Proposition 3.1.6), we can find a

total recursive function p(e) such that ∀e S(e, p(e)) holds. Then p(e) is a total
creative function for C.

In order to prove that creative sets are m-complete, we need a mysterious
and powerful theorem known as the Recursion Theorem.

Theorem 3.3.11 (Recursion Theorem). Let θ(w, x1, . . . , xk) be a partial
recursive function. Then we can find e such that

ϕ(k)
e (x1, . . . , xk) ≃ θ(e, x1, . . . , xk)

for all x1, . . . , xk.

Example 3.3.12. We can find an e such that ϕ
(1)
e (x) = e + x for all x. In

particular, ϕ
(1)
e (0) = e, i.e., e is the Gödel number of a program which outputs

e. Thus, there is a program which outputs its own Gödel number.

Actually, we need an even more powerful result, namely a uniform version
of the Recursion Theorem. Here “uniform” means “parametrized.”

Theorem 3.3.13 (Uniform Recursion Theorem). Let θ(w, y, x1, . . . , xk)
be a partial recursive function. Then we can find a primitive recursive function
h(y) such that

ϕ
(k)
h(y)(x1, . . . , xk) ≃ θ(h(y), y, x1, . . . , xk)

for all y, x1, . . . , xk.
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Example 3.3.14. We can find a primitive recursive function h(y) such that

ϕ
(1)
h(y)(x) ≃ h(y) + y + x for all y, x.

Remark 3.3.15. The Recursion Theorem follows easily from the Uniform Re-
cursion Theorem, by treating the parameter y as a dummy variable.

Proof of the Uniform Recursion Theorem. We are given a partial recursive func-
tion θ(w, y, x1, . . . , xk). Use the Parametrization Theorem to find a primitive
recursive function f(w, y) such that

ϕ
(k)
f(w,y)(x1, . . . , xk) ≃ θ(w, y, x1, . . . , xk)

for all y, x1, . . . , xk. In the same way, find a primitive recursive function d(z)
such that

ϕ
(k)
d(z)(x1, . . . , xk) ≃ ϕ

(k)

ϕ
(1)
z (z)

(x1, . . . , xk)

for all z, x1, . . . , xk. Here the expression on the right hand side is assumed to

be undefined, if ϕ
(1)
z (z) is undefined. Finally, let g(y) be a primitive recursive

function such that
ϕ

(1)
g(y)(z) ≃ f(d(z), y)

for all y, z. We then have

ϕ
(k)
d(g(y))(x1, . . . , xk) ≃ ϕ

(k)

ϕ
(1)

g(y)
(g(y))

(x1, . . . , xk)

≃ ϕ
(k)
f(d(g(y)),y)(x1, . . . , xk)

≃ θ(d(g(y)), y, x1, . . . , xk)

so we may set h(y) = d(g(y)).

We are now ready to prove the following result of Myhill.

Theorem 3.3.16. An r.e. set is creative if and only if it is many-one complete.

Proof. We have already seen in Corollary 3.3.9 that m-complete sets are cre-
ative. It remains to prove that creative sets are m-complete. Let C be a creative
set. By Lemma 3.3.10, let p(e) be a total recursive function which is a creative
function for C. Let A be any r.e. set. We wish to show that A ≤m C. Consider
the partial recursive function θ(w, y, x) ≃ 1 if p(w) = x and y ∈ A, undefined
otherwise. By the Uniform Recursion Theorem, let h(y) be a primitive recursive

function such that ϕ
(1)
h(y)(x) ≃ θ(h(y), y, x) for all y, x. Thus Wh(y) = {p(h(y))}

if y ∈ A, and Wh(y) = ∅ if y /∈ A. For y ∈ A we have p(h(y)) ∈ Wh(y), hence
Wh(y) ∩ C 6= ∅, hence p(h(y)) ∈ C. For y /∈ A we have Wh(y) = ∅, hence
p(h(y)) /∈ C. Thus A ≤m C via the total recursive function f(y) = p(h(y)).
This shows that C is m-complete.
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Myhill 1955 has also obtained the following result, which says that any two
creative sets (or equivalently, m-complete sets) are recursively isomorphic to
each other.

Theorem 3.3.17. If C1 and C2 are creative sets, then there is a total recursive

function π : N
1-1 onto−→ N such that π(C1) = C2. Note that π is a recursive

permutation of the natural numbers.

Proof. We omit the proof.

Remark 3.3.18. Using Myhill’s results, we see that all of the specific, non-
recursive r.e. sets mentioned in Section 3.2 are not only of the same degree of
unsolvability, but also recursively isomorphic to each other.

3.4 Simple Sets

All of the nonrecursive r.e. sets which we have encountered so far are many-one
complete, and hence creative. Nevertheless, there exist nonrecursive r.e. sets
which are not creative. We now show one method for constructing such sets.

Definition 3.4.1 (simple sets). An r.e. set A is said to be simple if its com-
plement

A = ¬A = N \A
is infinite yet does not include an infinite r.e. set.

Clearly a simple set cannot be recursive, because by Proposition 3.1.4 the
complement of a recursive set is r.e.

Theorem 3.4.2. There exists a simple set.

Proof. Consider the Σ0
1 relation

S(e, x) ≡ x > 2e and x ∈We .

By Σ0
1 uniformization, let ψ(e) be a partial recursive function which uniformizes

S(e, x). In particular, if We is infinite, then ψ(e) ↓ and ψ(e) > 2e. Let A be the
range of ψ. Thus A is an r.e. set which has nonempty intersection with every
infinite r.e. set. To prove that A is simple, it remains to show that A is infinite.
This is so because |A ∩ {0, 1, . . . , 2x}| ≤ x for all x, which follows from the fact
that each element of A ∩ {0, 1, . . . , 2x} is of the form ψ(e) for some e < x.

Theorem 3.4.3. A creative set is not simple.

Proof. Let C be a creative set, and let p be a creative function for C. By the
Parametrization Theorem, let f(e, x) be a primitive recursive function such that
that Wf(e,x) = We ∪ {x} for all e, x. Let e0 be an index of the empty set, i.e.,
We0 = ∅. Extend this to a recursive sequence of indices e0, e1, e2, . . . by putting
en+1 = f(en, p(en)) for all n. By induction we have

Wen
= {p(e0), p(e1), . . . , p(en−1)}
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and Wen
∩ C = ∅, hence p(en) ↓ and p(en) /∈ Wen

∪ C, for all n. Thus

{p(e0), p(e1), . . . , p(en), . . .}
is an infinite r.e. subset of C. Hence C is not simple.

Corollary 3.4.4. There exist nonrecursive r.e. sets which are not creative,
hence not many-one complete.

3.5 Lattice-Theoretic Properties

Definition 3.5.1. A property of r.e. sets is said to be lattice-theoretic if it is
definable over the E , the lattice of r.e. sets.

Remark 3.5.2. In the previous definition, we could have used any of the lan-
guages {∩,∪,⊆} or {∩,∪} or {⊆} or {∩} or {∪} for E , without changing which
properties of r.e. sets are definable over E . This is because

A ⊆ B ≡ A ∪B = B ≡ A ∩B = A

and

A ∪B = the unique C such that ∀D (C ⊆ D ⇔ (A ⊆ D ∧B ⊆ D))

and

A ∩B = the unique C such that ∀D (C ⊇ D ⇔ (A ⊇ D ∧B ⊇ D)) .

Moreover, the top and bottom elements N and ∅ and the equality relation = for
the lattice E are definable in any of these languages.

Examples 3.5.3. The following properties of r.e. sets are lattice-theoretic.

1. A is recursive ⇐⇒ A is complemented, i.e.,

∃B (A ∪B = N and A ∩B = ∅).

2. A is finite ⇐⇒ ∀B (A ∩B is recursive).

3. A is simple ⇐⇒ A nonrecursive and ∀B (B infinite ⇒ A ∩B 6= ∅).
4. A and B are recursively inseparable ⇐⇒

¬∃R (R recursive ∧A ⊆ R ∧R ∩B = ∅).

Here of course the quantifiers range over E .

The following surprising theorem is due to Harrington.

Theorem 3.5.4. An r.e. set A is creative if and only if

(∃C ⊇ A) (∀B ⊆ C) (∃R) [R recursive, R ∩C nonrecursive, R ∩A = R ∩B ]

where the quantifiers range over E . Thus, the property of being creative is
lattice-theoretic.

Proof. We omit the proof.
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3.6 The Friedberg Splitting Theorem

The purpose of this section is to prove the following splitting theorem, due
essentially to Friedberg but with a small refinement due to Ohashi. We have
previously stated this result as the first item in Remark 3.1.22.

Theorem 3.6.1. Let A be a nonrecursive r.e. set. Then we can find r.e. sets
B1, B2 such that A = B1 ∪B2, B1 ∩B2 = ∅, and B1, B2 are recursively insepa-
rable. It follows that B1 and B2 are nonrecursive.

Remark 3.6.2. Note that this statement is lattice-theoretic.

In order to present the proof, we first introduce some notation.

Notation 3.6.3 (finite approximation). Recall from the Math 558 notes

[14] that ϕ
(1)
e (x) ≃ y if and only if

∃n [ (State(e, x, n))0 = 0 ∧ (State(e, x, n))2 = y ] .

We now introduce the finite approximation ϕ
(1)
e,s(x) ≃ y if and only if

e, x, y < s ∧ ∃n < s [ (State(e, x, n))0 = 0 ∧ (State(e, x, n))2 = y ] .

Note that the 4-place relation ϕ
(1)
e,s(x) ≃ y and the 3-place relation ϕ

(1)
e,s(x) ↓ are

primitive recursive, and ϕ
(1)
e,s(x) ≃ y implies e, x, y < s. Moreover,

ϕ(1)
e (x) ≃ y ⇐⇒ ∃s ϕ(1)

e,s(x) ≃ y ,

and
ϕ(1)
e (x) ↓ ⇐⇒ ∃s ϕ(1)

e,s(x) ↓ .

In addition, there is a monotonicity property:

(ϕ(1)
e,s(x) ≃ y ∧ s < t) ⇒ ϕ

(1)
e,t (x) ≃ y .

Recall also Notation 3.3.1, according to which We = domain(ϕ
(1)
e ). We now

introduce the finite approximation

We,s = domain(ϕ(1)
e,s) .

Again, the 3-place relation x ∈We,s is primitive recursive, and x ∈We,s implies
x, e < s. Moreover We =

⋃
sWe,s. Also, s < t implies We,s ⊆We,t.

We now prove the Friedberg Splitting Theorem.

Proof of Theorem 3.6.1. We are given a nonrecursive r.e. set, A. Let f : N → N

be a one-to-one, total recursive function such that A = range(f). Define As =
{f(0), . . . , f(s− 1)}. We have A =

⋃
sA

s. Also s < t implies As ⊂ At.
For each e ∈ N and i = 1, 2 there will be a requirement
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R2e+i : Bi ∩We 6= ∅ “if possible.”

We order these requirements as

R1, R2, . . . , R2e+1, R2e+2, . . .

where lowered numbered requirements will receive higher priority.
The construction will consist of a definition of a recursive function

g : N → {1, 2} .

At stage s+ 1 we shall define g(s) = 1 or g(s) = 2. We shall then define

Bs+1
1 = {f(n) | n ≤ s, g(n) = 1} , Bs+1

2 = {f(n) | n ≤ s, g(n) = 2} ,

beginning with B0
1 = B0

2 = ∅. At the end of the construction we shall define

B1 =
⋃

s

Bs1 = {f(n) | g(n) = 1} , B2 =
⋃

s

Bs2 = {f(n) | g(n) = 2} .

Obviously B1, B2 will be r.e. sets, because g is recursive. Moreover, this method
of construction automatically guarantees that A = B1 ∪B2 and B1 ∩B2 = ∅.

The details of the construction are as follows.
Stage 0. B0

1 = B0
2 = ∅.

Stage s+1. At this stage we define g(s), i.e., we decide whether f(s) goes
into B1 or into B2. Let es be the least e such that f(s) ∈ We,s and either
Bs1 ∩We,s = ∅ or Bs2 ∩We,s = ∅. If es is undefined, or if Bs1 ∩We,s = ∅, then
define g(s) = 1, i.e., put f(s) into B1, i.e., Bs+1

1 = Bs1 ∪ {f(s)}, Bs+1
2 = Bs2 .

Otherwise, define g(s) = 2, i.e., put f(s) into B2, i.e., Bs+1
2 = Bs2 ∪ {f(s)},

Bs+1
1 = Bs1 .

Note that, by construction, es takes on each possible value at most twice, so
lims es = ∞.

We claim that the construction gives r.e. sets B1, B2 which are recursively
inseparable. To see this, assume for a contradiction that R is a recursive set
separating B1, B2. We have B1 ⊆ R and B2 ∩R = ∅. Let e and k be such that
We = R and Wk = N \R. Then B1 ∩Wk = ∅ and B2 ∩We = ∅. Hence for all s
we have Bs1 ∩Wk,s = ∅ and Bs2 ∩We,s = ∅. For all sufficiently large s we have
es > e and es > k, hence by construction f(s) /∈ We,s ∪Wk,s. Thus, there is a
finite set F such that (∀x ∈ A \ F )∃s (x ∈ As+1 \ (We,s ∪Wk,s)). On the other
hand, it is obvious that (∀x ∈ N \A)∃s (x ∈ (We,s ∪Wk,s) \As+1). Hence A is
recursive, a contradiction. This completes the proof.

3.7 Maximal Sets

Definition 3.7.1 (maximal sets). An r.e. set A ⊆ N is said to be maximal if

1. A = N \A is infinite, yet

2. ∀ r.e. B ⊇ A, either B \A or N \B is finite.
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Remark 3.7.2. Maximality is a lattice-theoretic property. It is equivalent to
A being a maximal element of the lattice E∗ = E/{finite sets}.
Remark 3.7.3. If A is maximal, then A is simple. This is easily proved.

The following theorem is due to Friedberg. We have already stated this as
item 2 in Remark 3.1.22.

Theorem 3.7.4. There exists a maximal set.

Remark 3.7.5 (movable markers). In our construction of a maximal set A,
we shall have A =

⋃
sA

s where

A0 ⊆ A1 ⊆ · · · ⊆ As ⊆ · · ·

and each As is finite. Here A0, A1, . . . , As, . . . will be a recursive sequence of
finite sets. We shall write asn = the nth element of As, i.e.,

As = {as0 < as1 < · · · < asn < · · · } .

In addition, we shall have an = lims a
s
n = the nth element of A, so that

A = {a0 < a1 < · · · < an < · · · } .

A construction with these general features is known as a movable marker con-
struction. We think of asn as the position of the nth marker at stage s. Since
As ⊆ As+1, we have as+1

n = asj for some j ≥ n. This means that, whenever a
marker is moved, it always lands on a position that was previously occupied by
another marker. The fact that an = lims a

s
n <∞ means that the nth marker is

moved only finitely many times, and its final position is an.

Definition 3.7.6 (e-states). We define σ(e, x, s) = the e-state of x at stage
s. This is defined by σ(e, x, s) = 〈k0, k1, . . . , ke〉, where ki = 1 if x ∈ Wi,s, and
ki = 0 otherwise. In addition, we define σ(e, x) = lims σ(e, x, s) = the final
e-state of x.

Remark 3.7.7. The e-states are a bookkeeping device. Our strategy will be
to maximize the final e-state of ae with respect to the lexicographic ordering of
e-states. This ordering is defined by putting

〈k0, k1, . . . , ke〉 <lex 〈l0, l1, . . . , le〉

if and only if there exists i ≤ e such that k0 = l0, . . . , ki−1 = li−1, ki < li.

We now prove Theorem 3.7.4.

Proof. Our construction is as follows.
Stage 0. Put A0 = ∅, and a0

e = e for all e.
Stage s+1. We have As = {as0 < as1 < · · · < ase < · · · }. Choose the least e

such that σ(e, ase, s) <lex σ(e, asj , s) for some j > e. For this e, choose the least

such j. Put As+1 = As ∪ {ase, ase+1, . . . , a
s
j−1}. If there is no such e, do nothing,

i.e., As+1 = As.

57



Remark 3.7.8. By construction, asi ≤ as+1
i for all i. If no e is chosen at stage

s+ 1, then asi = as+1
i for all i. If e is chosen at stage s+ 1, then asi = as+1

i for
all i < e, and asj < as+1

j for all j ≥ e, and σ(e, ase, s) <lex σ(e, as+1
e , s+ 1).

Remark 3.7.9. Clearly the construction is primitive recursive, and A =
⋃
sA

s

is an r.e. set. The idea behind the construction is that for each index i we have
a requirement

Ri: for all e ≥ i, ae ∈Wi “if possible,”

with priority i. Lower numbered requirements receive higher priority, embodied
in the lexicographic ordering of e-states.

Lemma 3.7.10. For all e, ae = lims a
s
e exists and is finite, i.e., the eth marker

moves only finitely many times.

Proof. By induction on e, let s1 be such that ∀s > s1 ∀i < e (asi = as+1
i ). It

follows that ∀s ≥ s1 ∀i < e (i was not chosen at stage s+1). Hence, for every s ≥
s1, if ase < as+1

e then e was chosen at stage s+1, and σ(e, ase, s) <lex σ(e, as+1
e , s).

Since there are only 2e+1 e-states, it follows that {s ≥ s1 | ase < as+1
e } is of

cardinality < 2e+1. This proves our lemma.

Because of the previous lemma, we now know that

A = {a0 < a1 < · · · < ae < · · · }

is infinite.

Lemma 3.7.11. ¬∃e ∃j (e < j ∧ σ(e, ae) <lex σ(e, aj)).

Proof. Suppose not, i.e., e < j and σ(e, ae) <lex σ(e, aj). By Lemma 3.7.10, for
all sufficiently large s and all i ≤ j we have asi = ai and σ(e, ai, s) = σ(e, ai).
In particular ase = ae and σ(e, ase, s) = σ(e, ae) <lex σ(e, aj) = σ(e, asj , s). Hence

some i ≤ e must have been chosen at stage s+ 1, hence ase < as+1
e , and this is

a contradiction.

Lemma 3.7.12. ∀e (We ∩A or W e ∩A is finite ).

Proof. By induction on e, we have ∀k < e (Wk ∩ A or W k ∩ A is finite), i.e.,
σ(e−1, ai) = σ(e−1, aj) for all sufficiently large i and j. IfWe∩A andW e∩A are
both infinite, there exist i and j such that e ≤ i < j and σ(e−1, ai) = σ(e−1, aj)
and ai /∈ We and aj ∈ We. It follows that σ(i, ai) <lex σ(i, aj), contradicting
Lemma 3.7.11.

This completes the proof of Theorem 3.7.4.

58



3.8 The Owings Splitting Theorem and its Con-

sequences

Remark 3.8.1. Recall from Definition 3.1.20 that a Boolean algebra is a com-
plemented distributive lattice with 0 and 1. We state without proof the following
well known algebraic facts.

1. Every distributive lattice with 0 and 1 is a sublattice of a Boolean algebra
with the same 0 and 1.

2. Every Boolean algebra is isomorphic to a subalgebra of the Boolean alge-
bra (P (X),∪,∩, ∅, X), where X is a set.

3. Every finite Boolean algebra is isomorphic to P ({1, . . . , n}) for some n,
hence is of cardinality 2n.

On the other hand, there are plenty of distributive lattices with 0 and 1 which
are not complemented, i.e., not Boolean algebras. Examples are: (1) any linear
ordering with a bottom element 0 and a top element 1 and at least one additional
element; (2) the lattice of functions [0, 1]X for any nonempty set X . Here [0, 1]
is the unit interval in the real line.

Recall that E , the lattice of r.e. sets, is a distributive lattice with 0 and
1. It is not a Boolean algebra, because there exist nonrecursive r.e. sets. The
Friedberg Splitting Theorem says:

If A ∈ E is nonrecursive, then there exist nonrecursive B1, B2 ∈ E
such that B1 ∪B2 = A and B1 ∩B2 = ∅.

We now consider some closely related lattices.

Definition 3.8.2. We define

E∗ = E/{finite sets} .

Like E , E∗ is a distributive lattice with 0 and 1 and is not a Boolean algebra.
Unlike E , E∗ is atomless, i.e.,

∀a ∈ E∗ (a > 0 ⇒ ∃b ∈ E∗ (a > b > 0)) .

Definition 3.8.3. Let C be a fixed r.e. set. We define

E(C) = {A ∈ E | A ⊇ C} ,

the lattice of r.e. supersets of C. Again, E(C) is a distributive lattice, with
0 = C and 1 = N. Note that there is a lattice homomorphism E → E(C) given
by A 7→ A ∪ C. This homomorphism is a retraction. We define

E∗(C) = E(C)/{finite sets} .

This is again a distributive lattice with 0 and 1.
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Examples 3.8.4.

1. If C is cofinite, then |E∗(C)| = 1. This is a degenerate case, which we
shall ignore.

2. If C is a maximal set, then E(C) = {C∪F,C∪(N−F ) | F is finite}. Hence
E∗(C) = the 2-element Boolean algebra {0, 1}. In fact, this property is
equivalent to maximality of C.

3. Let C = C1∩C2 where C1, C2 are maximal sets such that C1∪C2 = N, e.g.,
C1 ⊆ {evens} and C2 ⊆ {odds}. Then E∗(C) = the 4-element Boolean
algebra {0, c1, c2, 1}. Here c1 and c2 are the equivalence classes of C1 and
C2 modulo finite sets.

4. Similarly let C = C1 ∩ · · · ∩ Cn where Ci is maximal and Ci, i = 1, · · ·n
are pairwise disjoint. Then E∗(C) = the 2n-element Boolean algebra.

5. In the same vein, there exist r.e. sets C such that E∗(C) is an infinite
Boolean algebra. This Boolean algebra can be atomless or non-atomless,
depending on C.

6. If C is a coinfinite r.e. set which is not simple (e.g., C = ∅, or C creative),
then the lattices E(C) and E∗(C) are not Boolean algebras.

Exercise 3.8.5. Show that E(C) is a Boolean algebra if and only if E∗(C) is a
Boolean algebra.

Remark 3.8.6. As we have just seen, E(C) and E∗(C) can look quite different
from E and E∗. Nevertheless, the Friedberg Splitting Theorem generalizes to
E(C). This is the content of the Owings Splitting Theorem, which we now state.

Theorem 3.8.7 (Owings). If A ∈ E(C) is noncomplemented, then there exist
noncomplemented B1, B2 ∈ E(C) such that A = B1 ∪B2 and B1 ∩B2 = C.

Remark 3.8.8. Setting C = ∅, we recover the Friedberg Splitting Theorem.

Before proving the Owings Splitting Theorem, we examine its consequences
concerning lattice-theoretic properties of E(C) and E∗(C).

Theorem 3.8.9. If E∗(C) is finite, then E∗(C) is a Boolean algebra. Hence
|E∗(C)| = 2n and C is the intersection of n maximal sets, for some n.

Proof. Suppose E∗(C) were not a Boolean algebra. It follows that E(C) is not a
Boolean algebra. Let A ∈ E(C) be noncomplemented. By the Owings Splitting
Theorem, let A = B1 ∪ B2 where B1 ∩ B2 = C and B1 and B2 are noncom-
plemented. By the Owings Splitting Theorem again, let B2 = B3 ∪ B4, where
B3 ∩B4 = C and B3 and B4 are noncomplemented. Continuing in this fashion,
we generate B1, B3, B5, . . .. This is an infinite sequence of noncomplemented
elements of E(C), the intersection of any two of which is C. It follows that
E∗(C) is infinite. This proves our theorem.
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Corollary 3.8.10. |E∗(C)| 6= 3.

Next we shall use the Owings Splitting Theorem to characterize the r.e.
sets C for which E(C) is a Boolean algebra. Recall that this property implies
that C is simple. We shall now define a subclass of the simple sets, called the
hyperhypersimple sets. This class was first defined by Post.

Definition 3.8.11 (hyperhypersimple sets).

1. An array is a uniformly r.e. sequence of r.e. sets. Thus an array consists
of a sequence of Σ0

1 sets Bi ⊆ N, i = 0, 1, 2, . . ., such that in addition the
2-place relation {〈x, i〉 | x ∈ Bi} is Σ0

1. By the Parametrization Theorem,
this is equivalent to saying that Bi = Wf(i) for all i, where f(i) is some
primitive recursive function.

2. An r.e. set C is said to be hyperhypersimple, abbreviated hhsimple, if C
is infinite and there does not exist an array of pairwise disjoint r.e. sets
Wf(i), i = 0, 1, 2, . . ., such that Wf(i) ∩ C 6= ∅ for all i.

Theorem 3.8.12 (Lachlan). E(C) is a Boolean algebra if and only if C is
hyperhypersimple.

Proof. In this proof we shall apply a uniform version of the Owings Splitting
Theorem. The uniform version reads as follows.

Given an r.e. index of a noncomplemented A ∈ E(C), we can recur-
sively find r.e. indices of noncomplemented B1, B2 ∈ E(C) such that
B1 ∪B2 = A and B1 ∩B2 = C.

Assume now that E(C) is not a Boolean algebra. Let A ∈ E(C) be noncom-
plemented. Repeatedly apply the Owings Splitting Theorem as in the proof of
Theorem 3.8.9 to generate an infinite sequence of noncomplemented sets

B1, B3, . . . , B2i+1, . . . ∈ E(C) ,

the intersection of any two of which is C. By the uniformity, we may assume that
B1, B3, . . . , B2i+1 are uniformly r.e., i.e., they form an array. This is almost what
we want, except that these sets are not pairwise disjoint (unless C = ∅). To make
them pairwise disjoint, let ψ(x) be a partial recursive function which uniformizes
the Σ0

1 relation S(x, i) ≡ x ∈ B2i+1. By the Parametrization Theorem, let f(i)
be a primitive recursive function such thatWf(i) = {x | ψ(x) ≃ i} for all i. Then

clearlyWf(i), i = 0, 1, 2, . . ., are pairwise disjoint, and Wf(i)∩C = B2i+1∩C 6= ∅
for all i. Thus C is not hhsimple.

Conversely, assume that C is not hhsimple. Let Wf(i), i = 0, 1, 2, . . . be an

array of pairwise disjoint r.e. sets such that Wf(i) ∩ C 6= ∅ for all i. Set

A = C ∪
∞⋃

i=0

(Wi ∩Wf(i)) .
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Obviously A ∈ E(C). We claim that A is noncomplemented in E(C). Suppose
B ∈ E(C) is the complement of A within E(C), i.e., A∩B = C and A∪B = N.
Let e be such that B = We. Let x ∈Wf(e) ∩C. Since the Wf(i), i = 0, 1, 2, . . .,
are pairwise disjoint, we have x ∈ B ⇔ x ∈ We ⇔ x ∈ We ∩Wf(e) ⇔ x ∈ A.
This contradiction completes the proof.

Exercises 3.8.13.

1. Show that C is hhsimple if and only if, for all r.e. sets A, A ∪ C is r.e.

2. Show that if C1 and C2 are hhsimple then C1 ∩ C2 is hhsimple.

3.9 Proof of the Owings Splitting Theorem

In this section we prove Theorem 3.8.7, the Owings Splitting Theorem.

Remark 3.9.1. The general framework for the proof will be the same as for the
Friedberg Splitting Theorem. Let A and C be r.e. sets. Let f be a one-to-one
recursive function which enumerates A. We write As = {f(0), . . . , f(s − 1)}.
Similarly, let Cs be an enumeration of C. Just as in Section 3.6, we shall
recursively decide at stage s+ 1 whether to put f(s) into B1 or into B2. Thus
we shall automatically have B1, B2 r.e. and B1 ∪B2 = A and B1 ∩B2 = ∅.

In order to prove the Owings Splitting Theorem, we shall want to make sure
that B1 ∪C and B2 ∪C are noncomplemented in E(C). Note that, for any r.e.
sets B and C, B ∪ C is complemented in E(C) if and only if B ∪ C is r.e. In
other words, there exists e such that We = B∪C. In particular, We∩B \C = ∅.
Therefore, our strategy in the construction will be to make We ∩Bi \C 6= ∅ “if
possible,” for all e and for i = 1, 2. As in Section 3.6, these requirements will
have a priority ordering given by (e′, i′) < (e, i) if and only if 2e′ + i′ < 2e+ i.

As part of our construction, in order to mitigate the effect of C, we shall
define an auxiliary recursive function h(e, i, s) for all e and for i = 1, 2. This
function will somehow control the process.

The details of our construction are as follows.
Stage 0. Let B0

1 = B0
2 = ∅. Let h(e, i, 0) = 0 for all e and for i = 1, 2.

Stage s+1. If ∃x < h(e, i, s) such that x ∈ We,s∩Bsi \Cs, let h(e, i, s+1) =
h(e, i, s). Otherwise, let h(e, i, s + 1) = h(e, i, s) + 1. Set y = f(s). Choose
the least (e, i) such that y ∈ We,s and y < h(e, i, s). Put y into Bi, i.e.,
Bs+1
i = Bsi ∪ {y}. If no such (e, i) exists, put y into B1.

By construction, B1, B2 are r.e. and A = B1 ∪ B2 and B1 ∩ B2 = ∅. Note
also that h(e, i, s) ≤ h(e, i, s+ 1) for all s.

Definition 3.9.2. Say that (e, i) is good if lims h(e, i, s) < ∞. Otherwise, say
that (e, i) is bad.

Lemma 3.9.3. (e, i) is good ⇐⇒ We ∩Bi \ C 6= ∅.
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Proof. =⇒: Assume (e, i) is good but We ∩Bi \C = ∅, i.e., We ∩Bi ⊆ C. Since
(e, i) is good, let s be so large that h(e, i, t) = h(e, i, s) ∀t > s. Let t > s be so
large that ∀x < h(e, i, s) (x ∈ We ∩ Bi ⇒ x ∈ Ct). Hence ¬∃x < h(e, i, t) (x ∈
We,t∩Bti \Ct). Therefore h(e, i, t+1) = h(e, i, t)+1 > h(e, i, s), a contradiction.

⇐=: Assume (e, i) is bad andWe∩Bi\C 6= ∅. Fix x ∈ We∩Bi\C. Since (e, i)
is bad, lims h(e, i, s) = ∞, hence for all sufficiently large s we have x < h(e, i, s)
and x ∈We,s ∩Bsi \Cs, hence h(e, i, s+ 1) = h(e, i, s), a contradiction.

Lemma 3.9.4. If (e, i) is good, then {s | (e, i) is chosen at stage s+1} is finite.

Proof. If (e, i) is chosen at stage s + 1, we have y = f(s) < h(e, i, s). Since
lims h(e, i, s) < ∞ and f is one-to-one, this can happen only finitely many
times.

Lemma 3.9.5. Suppose (e, i) is bad. If (e, i) is chosen at stage s + 1, then
y = f(s) ∈ C.

Proof. Since (e, i) is chosen at stage s + 1, we have y = f(s) ∈ We,s and
y < h(e, i, s) and y ∈ Bs+1

i . So y ∈ We∩Bi. Hence, by Lemma 3.9.3, y ∈ C.

Lemma 3.9.6. Assume that A ∪ C is noncomplemented in E(C). Then for
i = 1, 2, Bi ∪ C is noncomplemented in E(C).

Proof. Suppose that Bi ∪ C is complemented in E(C), say We = Bi ∪ C. In
particular, We ∩ Bi \ C = ∅, hence (e, i) is bad. By Lemma 3.9.4, let s1 be so
large that, for all s ≥ s1 and all good (e′, i′) < (e, i), (e′, i′) is not chosen at
stage s+ 1. Put

W̃e = {x | ∃s ≥ s1 (x ∈We,s ∧ x /∈ As ∧ x < h(e, i, s))} .

Clearly W̃e is r.e.
We claim that W̃e ∪ C is the complement of A ∪ C in E(C).
Suppose first that x /∈ A∪C. Since Bi ⊆ A, we have A ⊆ Bi, hence x ∈ We.

Since (e, i) is bad, for all sufficiently large s ≥ s1 we have x < h(e, i, s), and

x ∈ We,s. Since x /∈ A, x /∈ As, hence x ∈ W̃e.

Suppose next that y ∈ W̃e∩A. Since y ∈ W̃e, let s ≥ s1 be such that y ∈ We,s

and x /∈ As and y < h(e, i, s). Since y ∈ A and y /∈ As = {f(0), . . . , f(s)}, let
t > s be such that y = f(t). Clearly y ∈ We,t and y < h(e, i, t). Hence, by
construction, at stage t + 1 some bad (e′, i′) ≤ (e, i) was chosen. Hence, by
Lemma 3.9.5, y ∈ C.

We have now proved our claim. Thus A ∪ C is complemented in E(C).

The proof of the Owings Splitting Theorem 3.8.7 is now complete.

Remark 3.9.7. Our construction above is uniform. Therefore, given r.e. indices
for A and C, we can use the Parametrization Theorem to primitive recursively
find r.e. indices for B1 and B2. This extra uniformity was used in the proof of
Lachlan’s Theorem 3.8.12.
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3.10 Oracle Computations

In this section we discuss oracle computations, i.e., computations where the
computing device has the ability to consult an oracle. Intuitively, an oracle is
a “black box” which, given a natural number as input, immediately produces a
natural number as output. Our formal definitions are as follows.

Definition 3.10.1 (oracles). An oracle is a total function f : N → N. We
write N

N for the set of all oracles. Note that N
N is also known as the Baire

space.

Definition 3.10.2. Recall from Math 558 [14] that a register machine program
consists of four kinds of instructions: a start instruction

startONMLHIJK // ,

increment instructions

// R+
i

ONMLHIJK // ,

decrement instructions

// R−
i

ONMLHIJK e //
// ,

and stop instructions

// stopONMLHIJK .

We now introduce a fifth kind of instruction

// ROi
ONMLHIJK //

called an oracle instruction. In the presence of an oracle f , the effect of ROi
ONMLHIJK

is to replace the content n of Ri by f(n). In other words, if Ri contains n

before executing ROi
ONMLHIJK , then afterward Ri contains f(n). We define an oracle

program to be a register machine program as in Math 558 [14], except that
oracle instructions are allowed.

Definition 3.10.3 (oracle computations). Let P be an oracle program, let f
be an oracle, and let x1, . . . , xk ∈ N, where k ≥ 0. We denote by Pf (x1, . . . , xk)
the unique run of P using oracle f starting with x1, . . . , xk in R1, . . . , Rk and
all other registers empty. As before, the output of Pf (x1, . . . , xk) is the content
of Rk+1 if and when Pf (x1, . . . , xk) halts. If e = #(P) = the Gödel number of
P , we write

ϕ(k),f
e (x1, . . . , xk) ≃ the output of Pf (x1, . . . , xk) .
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We also introduce notations such as

W f
e = domain(ϕ(1),f

e ) .

Definition 3.10.4 (f-recursive functions, etc.). Let f ∈ N
N be a fixed

oracle. A partial function ψ : N
k P−→ N is said to be partial f -recursive or

partial recursive in f or partial recursive relative to f , if there exists e ∈ N such

that ψ(x1, . . . , xk) ≃ ϕ
(k),f
e (x1, . . . , xk) for all x1, . . . , xk ∈ N. Similarly, a set

A ⊆ N is said to be f -recursively enumerable if and only if A = W f
e for some

e ∈ N, etc.

Remark 3.10.5. If the oracle f happens to be recursive, then clearly ψ is
partial f -recursive ⇐⇒ ψ is partial recursive, A is f -r.e. ⇐⇒ A is r.e.,
etc. Thus we see that oracle computations are a generalization of ordinary,
non-oracle computations.

Remark 3.10.6 (relativization to an oracle). Let f ∈ N
N be a fixed oracle.

A routine generalization of the Enumeration Theorem from Math 558 [14] asserts
that for each f ∈ N

N and each k ≥ 0 the partial function

(e, x1, . . . , xk) 7→ ϕ(k),f
e (x1, . . . , xk)

is partial f -recursive. Similarly, all of our previous results about partial re-
cursive functions, r.e. sets, the arithmetical hierarchy, etc., generalize routinely
to partial f -recursive functions, f -r.e. sets, the f -arithmetical hierarchy, etc.,
where f ∈ N

N is an arbitrary oracle. This process of routine generalization,

replacing ϕ
(k)
e by ϕ

(k),f
e , etc., is known as relativization to f .

Definition 3.10.7 (relativized arithmetical hierarchy). Let f ∈ N
N be a

fixed oracle. For k, n ≥ 1, a relation S ⊆ N
k is said to be Σ0,f

n if there exists an
f -recursive relation R ⊆ N

k+n such that

S(x1, . . . , xk) ≡ ∃y1 ∀y2 · · · ynR(x1, . . . , xk, y1, y2, . . . , yn)

where there are n alternating quantifiers, and the last quantifier is existential
if n is odd, universal if n is even. A relation P ⊆ N

k is said to be Π0,f
n if ¬P

is Σ0,f
n . A relation D ⊆ N

k is said to be ∆0,f
n if it is both Σ0,f

n and Π0,f
n . The

classes Σ0,f
n , Π0,f

n , ∆0,f
n , n ≥ 1 are known as the f -arithmetical hierarchy. All of

the standard results about the arithmetical hierarchy (see Math 558 notes [14])
generalize routinely to the f -arithmetical hierarchy, for each f ∈ N

N.

Remark 3.10.8. Instead of viewing f as a fixed oracle, we may choose to view
f as a variable ranging over the Baire space N

N. In this way, one develops a kind
of recursion theory over N

N, including a version of the arithmetical hierarchy
over N

N, etc. The starting point of this theory is the following definition.

Definition 3.10.9 (partial recursive functionals).

1. A partial functional is a partial function Ψ : N
N ×N

k P−→ N, where k ≥ 0.
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2. A partial functional Ψ : N
N ×N

k P−→ N is said to be partial recursive if it
is computable, i.e., if there exists e ∈ N such that

Ψ(f, x1, . . . , xk) ≃ ϕ(k),f
e (x1, . . . , xk)

for all f ∈ N
N and all x1, . . . , xk ∈ N.

Example 3.10.10. We exhibit an oracle program which computes the partial
recursive functional Ψ(f, x) ≃ the least y ≥ x such that f(y) > 0.

R+
1

ONMLHIJK

��

R−
2

ONMLHIJK
e

oo // R
+
1

ONMLHIJKoo

startONMLHIJK // R−
1

ONMLHIJK

��

e // RO3
ONMLHIJK // R−

3
ONMLHIJK

e

__???????

// stopONMLHIJK

R+
2

ONMLHIJK // R+
3

ONMLHIJK

__???????

Letting e be the Gödel number of this program, we have ϕ
(1),f
e (x) ≃ Ψ(f, x) for

all f ∈ N
N and all x ∈ N.

The Enumeration, Parametrization, and Recursion Theorems from Math 558
[14] easily generalize to partial recursive functionals, as follows:

Theorem 3.10.11 (Enumeration Theorem). For each k ≥ 0 we have a
partial recursive functional

(f, e, x1, . . . , xk) 7→ ϕ(k),f
e (x1, . . . , xk) .

Theorem 3.10.12 (Parametrization Theorem). Given a partial recursive
functional Ψ(f, x0, x1, . . . , xk), we can find a primitive recursive function h(x0)
such that

ϕ
(k),f
h(x0)

(x1, . . . , xk) ≃ Ψ(f, x0, x1, . . . , xk)

for all f ∈ N
N and all x0, x1, . . . , xk ∈ N.

Theorem 3.10.13 (Recursion Theorem). Given a partial recursive func-
tional Ψ(f, x0, x1, . . . , xk), we can find an index e ∈ N such that

ϕ(k),f
e (x1, . . . , xk) ≃ Ψ(f, e, x1, . . . , xk)

for all f ∈ N
N and all x1, . . . , xk ∈ N.

In this vein we obtain an alternative generalization of the arithmetical hier-
archy from Math 558 [14], as follows.
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Definition 3.10.14 (arithmetical hierarchy). For k ≥ 0, a relation R ⊆
N

N × N
k is said to be recursive if its characteristic function χR : N

N × N
k → N

is recursive. For k ≥ 0 and n ≥ 1, a relation S ⊆ N
N × N

k is said to be Σ0
n if

there exists a recursive relation R ⊆ N
N × N

k+n such that

S(f, x1, . . . , xk) ≡ ∃y1 ∀y2 · · · ynR(f, x1, . . . , xk, y1, y2, . . . , yn)

where there are n alternating quantifiers, and the last quantifier is existential if
n is odd, universal if n is even. A relation P ⊆ N

N × N
k is said to be Π0

n if ¬P
is Σ0

n. A relation D ⊆ N
N × N

k is said to be ∆0
n if it is both Σ0

n and Π0
n.

3.11 Degrees of Unsolvability

We now introduce Turing degrees, a.k.a., degrees of unsolvability.

Definition 3.11.1 (Turing reducibility). Let f and g be total functions,
i.e., f, g ∈ N

N. We say that f is Turing reducible to g, abbreviated f ≤T g, if
f is computable using g as an oracle, i.e., f is recursive relative to g, i.e., f is
g-recursive, i.e.,

∃e ∀x f(x) = ϕ(1),g
e (x) .

Proposition 3.11.2. For f, g, h ∈ N
N, we have

1. f ≤T f , and

2. if f ≤T g and g ≤T h, then f ≤T h.
Proof. Straightforward. Note that, if we write

REC(f) = {h ∈ N
N | h is f -recursive} ,

then f ≤T g if and only if REC(f) ⊆ REC(g).

Definition 3.11.3. For f, g ∈ N
N we say that f is Turing equivalent to g,

abbreviated f ≡T g, if f ≤T g and g ≤T f , i.e., REC(f) = REC(g).

Proposition 3.11.4. ≡T is an equivalence relation on N
N.

Proof. Immediate from Proposition 3.11.2.

Definition 3.11.5 (Turing degrees). We let DT denote the set of equivalence
classes of N

N modulo Turing reducibility:

DT = N
N/≡T .

Elements of DT are known as Turing degrees or degrees of unsolvability or some-
times just degrees. For any f ∈ N

N, the Turing degree of f is

degT (f) = {g ∈ N
N | f ≡T g} .

We partially order DT by letting degT (f) ≤ degT (g) if and only if f ≤T g.
Clearly this relation does not depend on the representative chosen from each
equivalence class.
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The structure of the partial ordering (DT ,≤) has received much scrutiny in
hundreds of research papers. In this section we mention only the most basic
properties of DT .

Proposition 3.11.6. DT has a least element, 0, which is just the set REC of
recursive functions.

Proof. Straightforward, since any recursive function is g-recursive for all g.

Proposition 3.11.7. Every pair of Turing degrees a,b ∈ DT has a least upper
bound a ∨ b ∈ DT . Thus (DT ,≤) is an upper semilattice.

Proof. Let a = degT (f) and b = degT (g) be given, where f ∈ N
N and g ∈

N
N. We define a function f ⊕ g ∈ N

N by letting (f ⊕ g)(2n) = f(n) and
(f ⊕ g)(2n+ 1) = g(n) for all n ∈ N. We claim that

degT (f ⊕ g) = degT (f) ∨ degT (g) ,

i.e., degT (f ⊕ g) is the least upper bound of degT (f) and degT (g). Clearly
f ≤T f ⊕ g and g ≤T f ⊕ g. For any h ∈ N

N, if f ≤T h and g ≤T h, then it is
straightforward to show that f ⊕ g ≤T h.

Definition 3.11.8 (Turing degrees of sets). Given a set A ⊆ N, we define
degT (A) = degT (χA). In other words, the Turing degree of a set A ⊆ N is
defined to be the Turing degree of its characteristic function χA : N → N.
The following proposition shows that there is no loss in considering only Turing
degrees of sets, rather than functions.

Proposition 3.11.9. Every Turing degree contains (the characteristic function
of) a set.

Proof. Let degT (f) be an arbitrary Turing degree, where f ∈ N
N. It is straight-

forward to prove that f ≡T χA where A = Gf = {2n3m | f(n) = m}. The
proof uses the fact that f is a total function.

Definition 3.11.10. For f ∈ N
N, we let f ′ = Hf be the Halting Problem

relative to f , i.e.,
f ′ = Hf = {e | ϕ(1),f

e (0) ↓} .
We can show that Hf is a complete Σ0,f

1 set, i.e., Hf is Σ0,f
1 and every Σ0,f

1 set
A ⊆ N is ≤m Hf . This is the relativization to f of the fact that the Halting

Problem H = {e | ϕ(1)
e (0) ↓} is a many-one complete r.e. set.

Proposition 3.11.11. For all f, g ∈ N
N we have

1. f <T H
f .

2. If f ≤T g then Hf ≤T Hg.

3. f ≤T g if and only if Hf ≤m Hg.
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4. Hf ≡T ¬Hf but Hf 6≡m ¬Hf .

Proof. Straightforward.

Definition 3.11.12 (the Turing jump). For any Turing degree a = degT (f)
we let a′ = degT (f ′) = degT (Hf ). The degree a′ is called the Turing jump of a.
By Proposition 3.11.11, f ≡T g implies Hf ≡T Hg. Thus a′ is well defined for
all a ∈ DT . The Turing jump operator J : DT → DT is defined by J(a) = a′.

Lemma 3.11.13. For any Turing degree a we have the strict inequality a < a′.
For all a,b ∈ DT , if a ≤ b then a′ ≤ b′.

Proof. This is immediate from Proposition 3.11.11.

Definition 3.11.14. For a ∈ DT we define the iterated Turing jumps of a by
induction as follows. Let a(0) = a, and let a(n+1) = (a(n))′ for each n ∈ N. Note
that if a = degT (A) then a(n) = degT (A(n)), where A(0) = A and A(n+1) =
A(n)′.

An interesting relationship between Turing degrees and the arithmetical hi-
erarchy is given by the following theorem due to Post.

Theorem 3.11.15 (Post). For n ≥ 1, a set A ⊆ N is Σ0
n if and only if it is

r.e. relative to 0(n−1). More generally, for A,B ⊆ N, A is Σ0,B
n if and only if A

is r.e. relative to B(n−1).

Proof. We omit the proof. See my Spring 2004 lecture notes [15].

Corollary 3.11.16. For n ≥ 1, A is ∆0
n if and only if A ≤T 0(n−1). More

generally, A is ∆0,B
n if and only if A ≤T B(n−1).

Proof. A is ∆0,B
n ⇐⇒ A,¬A are Σ0,B

n ⇐⇒ A,¬A are r.e. relative to
B(n−1) ⇐⇒ A is recursive relative to B(n−1), i.e., A ≤T B(n−1).

We note the following special case.

Corollary 3.11.17. A ≤T 0′ if and only if A is ∆0
2.

3.12 The Sacks Splitting Theorem and its Con-

sequences

A substructure of (DT ,≤) which has received a huge amount of attention is the
recursively enumerable Turing degrees.

Definition 3.12.1. Let

ET = {degT (A) | A is recursively enumerable} .

The elements of ET are called recursively enumerable Turing degrees, or r.e.

Turing degrees, or sometimes just r.e. degrees.
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The essential structure of ET is given by the following proposition.

Proposition 3.12.2.

1. 0,0′ ∈ ET .

2. 0 is the bottom element of ET .

3. 0′ is the top element of ET .

4. ET is closed under l.u.b. This means that if a,b ∈ ET then a ∨ b ∈ ET .

Proof. Statements 1 and 2 are obvious. If A is r.e., then by Proposition 3.2.5
A ≤m H = 0′, hence A ≤T 0′ and this gives statement 3. Alternatively,
statement 3 follows from Corollary 3.11.17. For statement 4, note that if A,B ⊆
N are r.e. then so is

A⊕B = {2n | n ∈ A} ∪ {2n+ 1 | n ∈ B}

and χA⊕B = χA ⊕ χB.

Remarks 3.12.3.

1. There are many Turing degrees a such that a ≤ 0′ yet a /∈ ET . Examples
are provided by the Kleene/Post construction (see for instance [15]).

2. There are many sets B ⊆ N such that degT (B) ∈ ET yet B is not r.e. For
example, let B be the complement of a nonrecursive r.e. set.

At this moment, we have not yet proved that there exist any r.e. Turing
degrees other than 0 and 0′. We shall prove the following theorem, which gives
this and much more information concerning the structure of the r.e. degrees.

Theorem 3.12.4 (Sacks Splitting Theorem). Let A ⊆ N be a nonrecursive
r.e. set. Let C ⊆ N be nonrecursive. There exist r.e. sets B1 and B2 such that

1. A = B1 ∪B2,

2. B1 ∩B2 = ∅,

3. B1 6≤T B2,

4. B2 6≤T B1,

5. 0 <T B1 <T A,

6. 0 <T B2 <T A,

7. B1 ⊕B2 ≡T A,

8. C 6≤T B1,

9. C 6≤T B2.
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Before proving the Sacks Splitting Theorem, we note some of its corollaries.
Say that b1,b2 ∈ DT are incomparable, and write b1 | b2, if b1 6≤ b2 and
b2 6≤ b1.

Corollary 3.12.5. For any a ∈ ET with a > 0, there exist b1,b2 ∈ ET such
that a > b1 > 0, a > b2 > 0, a = b1 ∨ b2, and b1 | b2.

Proof. This is an immediate translation of parts 1–7 of the Sacks Splitting
Theorem 3.12.4.

Corollary 3.12.6 (Friedberg, Muchnik). There are incomparable r.e. Tur-
ing degrees in ET .

Proof. Apply Corollary 3.12.5 with a = 0′.

Corollary 3.12.7. There is an infinite strictly descending sequence of r.e. Tur-
ing degrees. There is an infinite set of pairwise incomparable r.e. Turing degrees.

Proof. Start with a0 = 0′. By Corollary 3.12.5 find r.e. degrees a1,a2 < a0 such
that a1 | a2. By Corollary 3.12.5 again, find r.e. degrees a3,a4 < a2 such that
a3 | a4. Continuing in this fashion, we see that a0 > a2 > a4 > · · · is an infinite
descending sequence of r.e. degrees, while a1,a3,a5, . . . is an infinite sequence
of pairwise incomparable r.e. degrees.

Corollary 3.12.8. For any a > 0 in ET , there exists b in ET such that a >
b > 0.

Proof. Apply Corollary 3.12.5 to a.

Corollary 3.12.9 (Friedberg, Muchnik). There exists a recursively enu-
merable Turing degree a which is intermediate, i.e., 0 < a < 0′. Equivalently,
a 6= 0,0′.

Remark 3.12.10 (natural examples). The previous corollary is the solu-
tion to Post’s Problem (see Rogers [11]). Another interesting and important
problem, which remains open, is to find an example of a recursively enumer-
able Turing degree other than 0 and 0′ which is mathematically natural. The
term “mathematically natural” has not been rigorously defined, but we would
recognize such an example if we saw one.

3.13 Proof of the Sacks Splitting Theorem

We now turn to the proof of the Sacks Splitting Theorem. We begin by noting
that many of the conclusions will follow automatically, if we can only prove that
A 6≤T B1 and A 6≤T B2.

Lemma 3.13.1. Let A,B1, B2 be r.e. sets such that A = B1∪B2 and B1∩B2 =
∅. Then A ≡T B1 ⊕ B2. Moreover, if A 6≤T B1 and A 6≤T B2, then B1 6≤T B2

and B2 6≤T B1, hence 0 <T B1 <T A and 0 <T B2 <T A.
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Proof. Assume first that A,B1, B2 are r.e. with A = B1 ∪B2 and B1 ∩B2 = ∅.
We have n ∈ A ⇐⇒ (n ∈ B1 ∨ n ∈ B2), so clearly A ≤T B1 ⊕ B2. For the
converse, note that

n ∈ B1 ⇐⇒ (n ∈ A ∧ n /∈ B2) .

Since ¬B2 is Π0
1, it follows that B1 is Π0,A

1 . But B1 is Σ0
1, hence Σ0,A

1 , so we

actually have that B1 is ∆0,A
1 , i.e., B1 is A-recursive, i.e., B1 ≤T A. A similar

argument shows that B2 ≤T A. We now see that B1 ⊕B2 ≤T A.
Now assume in addition that A 6≤T B1 and A 6≤T B2. We therefore have

B1 <T A and B2 <T A. Since B1 ⊕ B2 ≡ A, it follows that B1 and B2 are
Turing incomparable, hence nonrecursive.

We shall obtain the Sacks Splitting Theorem as a consequence of the follow-
ing theorem of Binns, which is not only more general but also easier to state.

Theorem 3.13.2 (Binns Splitting Theorem). Let P ⊆ N
N be Π0

1 with no
recursive members, i.e., P ∩ REC = ∅. Let A be an r.e. set. Then we can find
r.e. sets B1, B2 such that A = B1∪B2, B1 ∩B2 = ∅, and there is no f ∈ P such
that f ≤T B1 or f ≤T B2.

Proof. We postpone the proof to Section 3.15.

Remark 3.13.3. The next lemma shows that the Binns Splitting Theorem
implies its own generalization, replacing the Π0

1 set P ⊆ N
N by a Σ0

3 set S ⊆ N
N.

However, it fails for Π0
3 sets. For example, it fails badly for the Π0

3 set

N
N \ REC = {f | f is not recursive},

as shown by the Friedberg Splitting Theorem.

Definition 3.13.4 (weak equivalence).

1. For S ⊆ N
N, let Ŝ be the Turing upward closure of S, i.e.,

Ŝ = {g ∈ N
N | (∃f ∈ S) (f ≤T g)} .

2. For S1, S2 ⊆ N
N, we say that S1 and S2 are weakly equivalent, and write

S1 ≡w S2, if and only if Ŝ1 = Ŝ2.

Lemma 3.13.5. Given a Σ0
3 set S ⊆ N

N, we can find a Π0
1 set P ⊆ N

N such
that P ≡w S.

Proof. The proof uses the technique of Skolem functions. Since S is Σ0
3, we have

S = {f ∈ N
N | ∃k ∀m ∃nR(f, k,m, n)}

where R is recursive. Put

P = {〈k〉a(f ⊕ g) | ∀mR(f, k,m, g(m))} .
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Here 〈k〉a(f ⊕ g) is our notation for the unique h ∈ N
N such that h(0) = k

and h(2m + 1) = f(m), and h(2m + 2) = g(m) for all m. Clearly P is Π0
1.

Moreover, if 〈k〉a(f ⊕ g) ∈ P , then f ∈ S. Conversely, if f ∈ S, let k be
such that ∀m ∃nR(f, k,m, n), and define g by putting g(m) = least n such that
R(f, k,m, n). Then g ≤T f , hence 〈k〉a(f ⊕ g) ≤T f and ∈ P .

Definition 3.13.6 (Π0
2 singletons). We say that f ∈ N

N is a Π0
2 singleton if

the singleton set {f} is Π0
2. This is equivalent to {f} being Σ0

3.

Lemma 3.13.7. If f ≤T 0′ then f is a Π0
2 singleton.

Proof. Assume f ≤T 0′. By Corollary 3.11.17 f is ∆0
2, i.e., the predicate

D(n,m) ≡ f(n) = m is ∆0
2. Hence

P = {g ∈ N
N | ∀nD(n, g(n))} = {g ∈ N

N | g = f} = {f}

is Π0
2 as a subset of N

N, i.e., f is a Π0
2 singleton.

Proposition 3.13.8. The Binns Splitting Theorem implies the Sacks Splitting
Theorem.

Proof. Assume the Binns Splitting Theorem 3.13.2. We deduce the Sacks Split-
ting Theorem 3.12.4. Let A be a nonrecursive r.e. set, and let C be a nonre-
cursive set. Because A is r.e., we have A ≤T 0′. If C ≤T 0′ put S = {χA, χC},
otherwise put S = {χA}. By Lemma 3.13.7 S is Σ0

3. By Lemma 3.13.5 let
P ≡w S be Π0

1. Apply the Binns Splitting Theorem to A and P to obtain r.e.
sets B1, B2 such that B1 ∪ B2 = A and B1 ∩ B2 = ∅ and there is no f ∈ P
such that f ≤T B1 or f ≤T B2. Since P ≡w S and B1, B2 ≤T 0′, we have
A 6≤T B1, A 6≤T B2, C 6≤T B1, C 6≤T B2. The remaining conclusions of the
Sacks Splitting Theorem now follow, in view of Lemma 3.13.1.

It remains to prove the Binns Splitting Theorem.

3.14 Finite Approximations

For most proofs involving degrees of unsolvability, it is necessary to consider
finite approximations to oracle computations. Intuitively, if an oracle compu-

tation ϕ
(1),f
e (x) halts, then this computation can only use a finite amount of

information from the oracle f , because it only performs a finite number of steps
before halting. We state this insight formally as Proposition 3.14.3 below.

Notation 3.14.1 (finite sequences). We let Seq = N
<N denote the set of

finite sequences of natural numbers. The length of σ ∈ Seq is denoted lh(σ).
For f ∈ N

N and n ∈ N we write

f [n] = 〈f(0), f(1), . . . , f(n− 1)〉 ∈ Seq .

Thus lh(f [n]) = n. We write f ⊃ σ if f extends σ, i.e., if f [n] = σ where
n = lh(σ). For σ, τ ∈ Seq we write σ ⊂ τ if σ is an initial segment of τ , i.e.,
lh(σ) < lh(τ) and σ(i) = τ(i) for all i < lh(σ).

73



Definition 3.14.2 (finite approximations). For e, s, x, y ∈ N and σ ∈ Seq,
we write

ϕ(1),σ
e,s (x) ≃ y

if and only if e, x, y < s and for some (equivalently, all) f ∈ N
N extending σ,

the oracle computation ϕ
(1),f
e (x) halts in fewer than s steps with output y, and

during this computation, no oracle information from f is used except the part
of f which is in σ.

Proposition 3.14.3. We have:

1. ϕ
(1),f
e (x) ≃ y if and only if ∃n ∃s ϕ(1),f [n]

e,s (x) ≃ y.

2. ϕ
(1),f
e (x) ≃ y if and only if ∃s ϕ(1),f [s]

e,s (x) ≃ y.

3. If s ≤ t and σ ⊆ τ , then ϕ
(1),σ
e,s (x) ≃ y implies ϕ

(1),τ
e,t (x) ≃ y.

4. The 5-place relation ϕ
(1),σ
e,s (x) ≃ y is primitive recursive.

Proof. Straightforward.

Definition 3.14.4 (use functions).

1. u(f, e, x) = the supremum of all n such that the oracle information f(n)

is used in the computation of ϕ
(1),f
e (x).

2. u(σ, e, x, s) = the supremum of all n < lh(σ) such that the oracle infor-

mation σ(n) is used in the first s steps of the computation of ϕ
(1),σ
e,s (x).

Proposition 3.14.5.

1. u(f, e, x) = lims u(f [s], e, x, s).

2. The 4-place function u(σ, e, x, s) is primitive recursive.

Proof. Straightforward.

Definition 3.14.6 (trees). A tree is a set T ⊆ Seq such that σ ⊂ τ , τ ∈ T
implies σ ∈ T . If T is a tree, a path through T is any f ∈ N

N such that f [n] ∈ T
for all n. The set of all paths through T is denoted [T ].

Proposition 3.14.7. Given a Π0
1 set P ⊆ N

N, we can find a primitive recursive
tree T ⊆ Seq such that P = [T ].

Proof. Let P ⊆ N
N be Π0

1. Then P = {f | ∀nR(f, n)} where R is recursive. Let

e be an index of χR, i.e., ϕ
(1),f
e (n) = χR(f, n) for all f ∈ N

N and n ∈ N. Define

T =

{
σ ∈ Seq

∣∣∣∣ ∀n < lh(σ) ϕ
(1),σ
e,lh(σ)(n) 6≃ 0

}
.

Then T is a primitive recursive tree, and P is the set of paths through T .
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Notation 3.14.8. For A ⊆ N we write

1. ϕ
(1),A
e (x) ≃ ϕ

(1),χA
e (x),

2. u(A, e, x) ≃ u(χA, e, x).

3. A[n] = χA[n],

3.15 Proof of the Binns Splitting Theorem

We now restate and prove the Binns Splitting Theorem 3.13.2.

Theorem 3.15.1. Let P ⊆ N
N be Π0

1 with P ∩ REC = ∅. For any r.e. set
A we can find r.e. sets B1, B2 such that A = B1 ∪ B2, B1 ∩ B2 = ∅, and
¬∃f ∈ P (f ≤T B1 ∨ f ≤T B2).

Proof. The general framework for the proof is as for the Friedberg Splitting
Theorem. Let f be a one-to-one recursive function such that A = range(f). We
write As = {f(0), . . . , f(s − 1)}. Our construction will be such that at stage
s+ 1 we have already defined Bs1 and Bs2 with As = Bs1 ∪Bs2 and Bs1 ∩Bs2 = ∅
and at this stage we decide whether to put f(s) into B1 or B2.

Our requirements for the Binns Splitting Theorem are

R(e, i) : ϕ(1),Bi
e /∈ P .

As usual, we define a priority ordering of the requirements by putting

(e′, i′) < (e, i)

if and only if 2e′+i′ < 2e+i. Our strategy for satisfyingR(e, i) will be to preserve
computations tending to put ϕBi

e into P . This may seem counterintuitive, since
R(e, i) requires that ϕBi

e /∈ P . However, by preserving finite approximations to
ϕBi
e , we will eventually force ϕBi

e to be either recursive or not total, hence /∈ P .
By Proposition 3.14.7 let T be a primitive recursive tree such that P =

[T ], the set of paths through T . Thus ϕBi
e ∈ P if and only if ∀xϕ(1),Bi

e (x) ↓
and ∀y

〈
ϕBi
e (x)

∣∣ x < y
〉
∈ T . Note also that if ϕ

(1),Bi
e (x) ↓ then ϕ

(1),Bi
e (x) =

lims ϕ
(1),Bs

i [s]
e,s (x) and u(Bi, e, x) = lims u(B

s
i [s], e, x, s). We define the length

function by

l(e, i, s) = sup
{
y
∣∣ ∀x < y ϕ

(1),Bs
i [s]

e,s (x) ↓ and
〈
ϕ

(1),Bs
i [s]

e,s (x)
∣∣ x < y

〉
∈ T

}
.

We define the restraint function by

r(e, i, s) = sup
{
u(Bsi [s], e, x, s)

∣∣ x ≤ l(e, i, s) and ϕ
(1),Bs

i [s]
e,s (x) ↓

}
.

Roughly speaking, the length function l(e, i, s) measures the amount of agree-

ment between ϕ
(1),Bs

i [s]
e,s and the tree T , while the restraint function r(e, i, s)
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tells us how much oracle information needs to be preserved, in order to keep
this agreement, for the sake of requirement R(e, i).

Our construction is as follows.
Stage 0: B0

1 = B0
2 = ∅.

Stage s+ 1: Let x = f(s). Choose the least (e, i) such that x ≤ r(e, i, s). If
i = 1 or (e, i) is undefined, enumerate x into B2. If i = 2, enumerate x into B1.

This completes the construction.
The injury set I(e, i) is defined by

I(e, i) = {s+ 1 | f(s) ∈ Bs+1
i \Bsi and f(s) ≤ r(e, i, s)} .

This is the set of stages at which R(e, i) is injured. By construction, if s+ 1 ∈
I(e, i) then some (e′, i′) < (e, i) was chosen at stage s + 1. In other words, a
requirement can be injured only for the sake of requirements of higher priority.

Lemma 3.15.2. The following hold for all e, i.

1. I(e, i) is finite.

2. ϕ
(1),Bi
e /∈ P .

3. r(e, i) = lims r(e, i, s) exists and is finite.

Proof. We prove 1, 2, and 3 by simultaneous induction on (e, i). Assume that 1,
2, and 3 hold for all (e′, i′) < (e, i). Put r = max{r(e′, i′) | (e′, i′) < (e, i)}. Let
s1 be such that As[r+1] = A[r+1] and r(e′, i′, s) = r(e′, i′) for all (e′, i′) < (e, i)
and s ≥ s1. Then by construction I(e, i) ⊆ {0, . . . , s1 + 1}, so this injury set is
finite. This proves 1.

To prove 2, assume for a contradiction that ϕ
(1),Bi
e ∈ P . Then, given y, we

can effectively find s > s1 such that ∀x ≤ y ϕ
(1),Bs

i [s]
e,s (x) ↓ and

〈
ϕ

(1),Bs
i [s]

e,s (x)
∣∣ x ≤ y

〉
∈ T .

For all such s we have y ≤ l(e, i, s), hence u(Bsi [s], e, y, s) ≤ r(e, i, s). More-

over s + 1 /∈ I(e, i), hence by construction ϕ
(1),Bs+1

i [s+1]
e,s+1 (y) = ϕ

(1),Bs
i [s]

e,s (y). It

follows that ϕ
(1),Bi
e (y) = ϕ

(1),Bs
i [s]

e,s (y) for all such s. Thus ϕ
(1),Bi
e is recursive,

contradicting our assumption that P ∩ REC = ∅. This proves 2.

To prove 3, consider the least y such that either ϕ
(1),Bi
e (y) ↑ or

〈
ϕ(1),Bi
e (x)

∣∣ x ≤ y
〉
/∈ T .

Choose s2 > s1 such that ϕ
(1),Bs

i [s]
e,s (x) ↓= ϕ

(1),Bi
e (x) for all x < y and all s ≥ s2.

Note that for all s ≥ s2 we have
〈
ϕ

(1),Bs
i

e,s (x)
∣∣ x < y

〉
=
〈
ϕ(1),Bi
e (x)

∣∣ x < y
〉

∈ T ,

hence l(e, i, s) ≥ y and r(e, i, s) ≥ u(Bsi [s], e, x, s) for all x < y.
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Case 1: ϕ
(1),Bs

i [s]
e,s (y) ↑ for all s ≥ s2. Then for all s ≥ s2 we have l(e, i, s) = y

and r(e, i, s+ 1) = r(e, i, s).

Case 2: ϕ
(1),Bs

i [s]
e,s (y) ↓ for some s ≥ s2. Then for any such s we have

r(e, i, s) ≥ u(Bsi [s], e, y, s) ,

hence by construction ϕ
(1),Bs+1

i [s+1]
e,s+1 (y) = ϕ

(1),Bs
i [s]

e,s (y). It follows that for all

such s we have ϕ
(1),Bi
e (y) = ϕ

(1),Bs
i [s]

e,s (y), hence

〈
ϕ

(1),Bs
i [s]

e,s (x)
∣∣ x ≤ y

〉
/∈ T ,

hence again l(e, i, s) = y and r(e, i, s+ 1) = r(e, i, s).
In either case we have r(e, i, s+1) = r(e, i, s) for all sufficiently large s. Thus

3 holds, and our lemma is proved.

This completes the proof of the Binns Splitting Theorem.

Exercise 3.15.3. A Turing degree b is said to be low if b′ = 0′. Prove that
the r.e. Turing degrees b1 = degT (B1) and b2 = degT (B2) constructed in the
proof of the Binns Splitting Theorem 3.15.1 are low.

3.16 Some Additional Results

In this section we mention some additional results and problems concerning r.e.
Turing degrees.

More to come ......
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Chapter 4

Randomness

It seems appropriate to call an infinite sequence of 0’s and 1’s “random” if it
is the result of an infinite sequence of independent coin tosses using a fair or
unbiased coin. The purpose of this chapter is to define and discuss a mathemat-
ically rigorous, recursion-theoretic concept of randomness which corresponds
to this intuitive, non-mathematical notion. References for this material are
Downey/Hirschfeldt [7] and Simpson [16].

4.1 Measure-Theoretic Preliminaries

In this section we present the measure-theoretic background material which we
shall need.

Definition 4.1.1 (the Cantor space).

1. The Cantor space is the set

2N = {0, 1}N = {X : N → {0, 1}} .
Note that each X ∈ 2N is an infinite sequence of 0’s and 1’s, namely
X = 〈X(0), X(1), . . . , X(n), . . .〉.

2. We write Seq2 = 2<N = the set of finite sequences of 0’s and 1’s. According
to our Notation 3.14.1, for all σ ∈ Seq2 and X ∈ 2N we have X ⊃ σ if and
only if X [lh(σ)] = σ. For σ ∈ Seq2 we put

Nσ = {X ∈ 2N | X ⊃ σ} .
We view the Cantor space 2N as a topological space with basic open sets
Nσ, σ ∈ Seq2. Thus U ⊆ 2N is said to be open if there exists G ⊆ Seq2

such that U =
⋃
σ∈GNσ.

Remark 4.1.2. It is easy to see that the above-defined topology on the Cantor
space is the same as the product topology on 2N =

∏
n∈N

{0, 1}, where the two-
point space {0, 1} has the discrete topology. Therefore, by Tychonoff’s Theorem,
2N is compact.
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Remark 4.1.3. The points of 2N are just the infinite sequences of 0’s and 1’s.
Eventually we are going to define what it means for a point of 2N to be random.
The standard method of formalizing informal notions such as independence and
probability is by means of measure theory, as we shall now explain.

Definition 4.1.4 (probability measures). Let I be a nonempty set. A σ-
algebra on I is a set S ⊆ P (I), the powerset of I, such that ∅ ∈ S and I ∈ S
and S is closed under the operations of countable union, countable intersection,
and complementation. A probability measure on I is a function µ : S → [0, 1],
where S is a σ-algebra on I, such that µ(∅) = 0 and µ(I) = 1 and

µ(
∞⋃

n=1

Sn) =
∞∑

n=1

µ(Sn)

for all sequences of pairwise disjoint sets S1, S2, . . . ∈ S. This last property is
known as countable additivity. A probability space is an ordered triple (I,S, µ)
as above. For S ∈ S, the measure of S is the real number µ(S).

Remark 4.1.5. Let (I,S, µ) be a probability space. A set S ⊆ I such that
S ∈ S is called an event. For S ∈ S, the measure of S is thought of as the
probability of the event S, i.e., the likelihood that a “random” or “randomly
chosen” element of I will belong to S. Note that we have not yet rigorously
defined the concept “random.”

Definition 4.1.6 (Borel sets, regularity).

1. Let I be a topological space. The Borel sets of I are the smallest σ-algebra
on I containing the open sets of I. A Borel probability measure on I is
a probability measure µ on I such that the domain of µ consists of the
Borel sets of I.

2. Let (I,S, µ) be a probability space such that I is also a topological space,
and S includes the Borel sets of I. We say that µ is regular (with respect
to the given topology on I) if, for all S ∈ S,

µ(S) = inf{µ(U) | S ⊆ U and U is open} .

Theorem 4.1.7 (the fair coin measure). There exists a Borel probability
measure µ on 2N such that, for all σ ∈ Seq2, µ(Nσ) = 1/2lh(σ). Note that µ
is unique with these properties. We refer to µ as the fair coin measure on 2N,
because it arises by viewing X ∈ 2N as the result of a sequence of independent
tosses of a fair coin. It can be shown that µ is regular.

Proof. We omit the proof. See any measure theory textbook.

Definition 4.1.8 (null sets). In any probability space, a null set is any subset
of a set of measure 0. Thus T ⊆ I is null if and only if T ⊆ S for some S ∈ S
such that µ(S) = 0. Note also that, if µ is regular, then T is null if and only if
∀ǫ > 0 ∃ open set U such that T ⊆ U and µ(U) ≤ ǫ. Equivalently, T ⊆ ⋂n Un
where each Un is open and µ(Un) ≤ 1/2n.
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4.2 Effective Randomness

In this section we define what it means for a point X ∈ 2N to be “effectively
random.” In this context, “effectively” means “recursion-theoretically.”

We first consider what it means for a subset of 2N to be “effectively open.”
From now on, let µ be the fair coin measure on 2N.

Definition 4.2.1. A set U ⊆ 2N is said to be Σ0
1 if U = {X ∈ 2N | ∃k R(X, k)}

where R is recursive. A sequence of sets Un ⊆ 2N, n ∈ N, is said to be uniformly

Σ0
1 if Un = {X ∈ 2N | ∃k R(X, k, n)} for some fixed recursive predicate R.

Proposition 4.2.2 (effective openness). U ⊆ 2N is Σ0
1 if and only if U

is effectively open, i.e., U =
⋃
σ∈GNσ for some recursively enumerable G ⊆

Seq2. Moreover, we may assume that G is primitive recursive and pairwise

incompatible, i.e., there are no σ, τ ∈ G such that σ ⊂ τ . A similar result holds
for uniformly Σ0

1 sequences of sets of Un ⊆ 2N, n ∈ N.

Proof. Assume that U is Σ0
1, say U = {X ∈ 2N | ∃kR(X, k)} where R is

recursive. Let e be such that ϕ
(1),X
e (0) ≃ least k such that R(X, k). Then

U = Ue = {X ∈ 2N | ϕ(1),X
e (0) ↓} .

A e with this last property is called an index of U , or a Σ0
1 index of U . Thus

we have a uniform Σ0
1 indexing of all Σ0

1 subsets of 2N.
We now use the idea of finite approximations from Section 3.14. Given an

index e of U ⊆ 2N, define G ⊆ Seq2 by

G = Ge = {σ ∈ Seq2 | ϕ(1),σ
e (0) ↓ ∧ ¬∃τ ⊂ σ ϕ(1),τ

e (0) ↓ } .

Then U =
⋃
σ∈GNσ and G is primitive recursive and pairwise incompatible.

Conversely, if U =
⋃
σ∈GNσ where G is r.e., then clearly U is Σ0

1. The uniform
version is proved similarly.

Remark 4.2.3. As usual, we relativize as follows. Given an oracle f ∈ N
N, we

say that U ⊆ 2N is Σ0,f
1 if U = {X ∈ 2N | ∃k R(f ⊕X, k)} where R is recursive.

It can be shown that U ⊆ 2N is open if and only if U is Σ0,f
1 for some f . Thus

we see a close analogy between open sets and r.e. sets. This analogy can be
pushed much farther.

The following is a recursion-theoretic analog of Definition 4.1.8.

Definition 4.2.4 (effectively null sets). A set T ⊆ 2N is said to be effectively

null if there exists a uniformly Σ0
1 sequence of sets Un ⊆ 2N, n ∈ N, such that

T ⊆ ⋂n Un and µ(Un) ≤ 1/2n for all n.

We are now ready to define our concept of recursion-theoretic randomness.

Definition 4.2.5 (randomness). A point X ∈ 2N is said to be effectively

random, or just random, if X does not belong to any effectively null set. An
equivalent condition is that the singleton set {X} is not effectively null.
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Corollary 4.2.6. µ({X ∈ 2N | X is random}) = 1.

Proof. There are only countably many effectively null sets. By countable addi-
tivity, their union is null. The corollary is a restatement of this.

Remark 4.2.7. The great mathematician Kolmogorov invented probability
theory. He also invented a theory of algorithmic randomness, known as Kol-

mogorov complexity. Our concept of randomness was originally formulated in
1966 by Martin-Löf, a former Ph. D. student of Kolmogorov. It can be shown
that this concept of randomness is closely related to Kolmogorov complexity.

Proposition 4.2.8. If X ∈ 2N is recursive, then X is not random.

Proof. If X is recursive, then the sets Un = NX[n] are uniformly Σ0
1 of measure

1/2n. Hence {X} =
⋂
n Un is effectively null, hence X is not random.

Proposition 4.2.9. If a Π0
1 set P ⊆ 2N is of measure 0, then it is effectively

null. It follows that no X ∈ P is random.

Proof. Let e be a Σ0
1 index of 2N \ P . Then P = {X ∈ 2N | ϕ(1),X

e (0) ↑}. Put

Vs = {X ∈ 2N | ϕ(1),X[s]
e,s (0) ↑ }. Clearly the sets Vs, s ∈ N are uniformly Σ0

1,
and V0 ⊇ V1 ⊇ · · · ⊇ Vs ⊇ · · · and P =

⋂
s Vs. Hence by countable additivity

lims µ(Vs) = µ(P ) = 0. The function s 7→ µ(Vs) is primitive recursive, so let
h(n) = the least s > n such that µ(Vs) ≤ 1/2n. Then h is recursive, hence
the sets Un = Vh(n), n ∈ N, are uniformly Σ0

1. Moreover µ(Un) ≤ 1/2n and
P =

⋂
n Un, so P is effectively null.

Remark 4.2.10. Let us say that X ∈ 2N is weakly random if X does not belong
to any Π0

1 subset of 2N of measure 0. We have just shown that if X is random
then X is weakly random. The converse does not hold. For example, any Cohen
generic X ∈ 2N is weakly random but not random.

We pause to mention the following useful property of random sequences.
Note that this property is in fact equivalent to randomness.

Theorem 4.2.11 (Solovay). Assume that A ∈ 2N is random. If Un ⊆ 2N,
n ∈ N, are uniformly Σ0

1 such that

∞∑

n=0

µ(Un) < ∞ ,

then {n ∈ N | A ∈ Un} is finite.

Proof. Let c be such that
∑∞

n=0 µ(Un) ≤ c <∞. For each k ≥ 1 put

Wk = {X ∈ 2N | ∃≥k n (X ∈ Un)} .

Note that the sets Wk, k ≥ 1, are uniformly Σ0
1. We claim that µ(Wk) ≤ c/k.

To see this, write

Wk,s = {X ∈ 2N | (∃≥k n ≤ s) (X ∈ Un)}
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and note that Wk =
⋃
sWk,s. We have

c ≥
∞∑

n=0

µ(Un) ≥
s∑

n=0

µ(Un)

=

s∑

n=0

∫

X

Un(X) dX =

∫

X

s∑

n=0

Un(X) dX

≥
∫

X

kWk,s(X) dX = k µ(Wk,s)

so µ(Wk,s) ≤ c/k. It follows that µ(Wk) = sups µ(Wk,s) ≤ c/k as claimed. Let
h be primitive recursive such that h(n) ≥ 2nc for all n. Then Wh(n) is uniformly
Σ0

1 of measure ≤ 1/2n. Since A is random, we have A /∈ ⋂nWh(n) =
⋂
kWk, so

A /∈Wk for some k, i.e., ∃<k n A ∈ Un. Thus {n | A ∈ Un} is finite.

We end this section with the following interesting result.

Theorem 4.2.12 (Martin-Löf). The union of all effectively null sets is effec-
tively null.

Corollary 4.2.13. We can write {X ∈ 2N | X is not random} =
⋂
n Un where

Un is uniformly Σ0
1 and µ(Un) ≤ 1/2n for all n.

Proof. Put S = {X ∈ 2N | X is not random}. By the definition of randomness, S
is the union of all effectively null sets. It follows by Theorem 4.2.12 that S itself
is effectively null. Thus S ⊆ ⋂n Un where Un is uniformly Σ0

1 and µ(Un) ≤ 1/2n

for all n. But clearly
⋂
n Un itself is effectively null, hence S =

⋂
n Un.

Remark 4.2.14 (tests for randomness, effectively null Gδ sets). The
following terminology is sometimes used. Define a test or test for randomness

to be an effectively null Gδ set, i.e., a set of the form
⋂
n Un where Un is uniformly

Σ0
1 and µ(Un) ≤ 1/2n for all n. We say thatX ∈ 2N passes the test ifX /∈ ⋂n Un.

By the definition of randomness, X is random if and only if X passes all tests.
Corollary 4.2.13 tells us that there is a universal test, i.e., a test such that if X
passes that test then it passes all tests and is therefore random.

We may reformulate Corollary 4.2.13 by saying that the set {X ∈ 2N | X is
not random} is effectively null Gδ. Moreover, it is the largest effectively null Gδ
set, which is the same as the largest effectively null set.

Corollary 4.2.15. {X ∈ 2N | X is random} is Σ0
2.

Proof. By the definition of the arithmetical hierarchy, S ⊆ 2N is Π0
2 if and only

if S =
⋂
n Un where Un is uniformly Σ0

1. In particular, by Corollary 4.2.13,
{X ∈ 2N | X is not random} is Π0

2, hence {X ∈ 2N | X is random} is Σ0
2.

Corollary 4.2.16. For all ǫ > 0 we can find a Π0
1 set P ⊆ 2N such that

∀X (X ∈ P ⇒ X is random) and µ(P ) > 1 − ǫ.

Proof. Put P = 2N \ Un, where Un is as in Corollary 4.2.13, and ǫ > 1/2n.
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Remark 4.2.17. We cannot improve Corollary 4.2.16 to say that there exists
a Π0

1 set P ⊆ 2N such that ∀X (X ∈ P ⇒ X is random) and µ(P ) = 1. This is
obvious, because any nonempty Σ0

1 subset of 2N is of positive measure.

We now prove Martin-Löf’s Theorem 4.2.12.

Notation 4.2.18 (the tilde notation). Recall from the proof of Proposition
4.2.2 that for every Σ0

1 set U ⊆ 2N there exists an index e such that

U = Ue = {X ∈ 2N | ϕ(1),X
e (0) ↓ } = {X ∈ 2N | ∃s ϕ(1),X[s]

e,s (0) ↓ } .

Moreover, the sets Ue for all e ∈ N are uniformly Σ0
1. We put

Ue,s =
{
X ∈ 2N

∣∣ ϕ(1),X[s]
e,s (0) ↓

}

and note that Ue =
⋃
s Ue,s and Ue,0 ⊆ Ue,1 ⊆ · · · ⊆ Ue,s ⊆ · · · . Note also

that µ(Ue,s) is a rational number, and the function (e, s) 7→ µ(Ue,s) is primitive
recursive. Now, given an index e and a rational number r, define

Ũ = Ũr = Ũe,r = {X | ∃s (X ∈ Ue,s ∧ µ(Ue,s) ≤ r)} .

Note that Ũe,r is uniformly Σ0
1 for all e ∈ N and all rational r. The following

properties of Ũe,r are easily verified.

1. Ũe,r ⊆ Ue.

2. µ
(
Ũe,r

)
≤ r.

3. If µ(Ue) ≤ r then Ũe,r = Ue.

We may describe Ũe,r as “Ue enumerated so long as its measure is ≤ r,” or “the
Σ0

1 subset of 2N with index e, enumerated so long as its measure is ≤ r.”

Proof of Theorem 4.2.12. Define Σ0
1 sets Ve ⊆ 2N, e ∈ N, as follows. Given

e, compute ϕ
(1)
e (e). If ϕ

(1)
e (e) ↑, let Ve = ∅. If ϕ

(1)
e (e) ≃ i, let Ve = the Σ0

1

subset of 2N with index i enumerated so long as its measure is ≤ 1/2e. Note
that Ve is uniformly Σ0

1 and µ(Ve) ≤ 1/2e. Define S =
⋂
n Un where Un =⋃∞

e=n+1 Ve. Note that Un is uniformly Σ0
1. Moreover, µ(Un) ≤∑∞

e=n+1 µ(Ve) ≤∑∞

e=n+1 1/2e = 1/2n, so S is effectively null. We claim that S ⊇ T for all
effectively null sets T . To see this, suppose T is effectively null, say T ⊆ ⋂nWn

where Wn ⊆ 2N is uniformly Σ0
1 and µ(Wn) ≤ 1/2n. By the Parametrization

Theorem, let h be a primitive recursive function such that, for all n, h(n) is a
Σ0

1 index of Wn. Let e be an index of h qua recursive function, i.e., let e be such

that ϕ
(1)
e (n) ≃ h(n) for all n. Then ϕ

(1)
e (e) ≃ h(e) is a Σ0

1 index of We. Since
µ(We) ≤ 1/2e, it follows that Ve = We, hence T ⊆ Ve. Since h has infinitely
many indices qua recursive function, we see that T ⊆ Ve for infinitely many e.
It follows that T ⊆ Un for all n, i.e., T ⊆ S. This completes the proof.
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4.3 Randomness Relative to an Oracle

In this section we relativize our concept of randomness to a Turing oracle, and
we prove some theorems concerning the relativized concept.

Definition 4.3.1. Let f ∈ N
N be an oracle. We say that A ∈ 2N is f -random,

or random over f , or random relative to f , if there is no uniformly Σ0,f
1 sequence

of sets Ufn ⊆ 2N, n ∈ N, such that A ∈ ⋂n Ufn and µ(Ufn ) ≤ 1/2n for all n.

Remark 4.3.2. Recall that if A is recursive then A is not random. This
relativizes to the following statement: if A ≤T f then A is not f -random.

Notation 4.3.3. For A,B ∈ 2N recall that A⊕B ∈ 2N is defined by

(A⊕B)(2n) = A(n) , (A⊕B)(2n+ 1) = B(n) ,

for all n. Thus 2N × 2N ∼= 2N via the mapping (A,B) 7→ A⊕B.

Theorem 4.3.4. If A ⊕ B is random, then A is random over B, and B is
random over A.

Proof. Suppose B is not random over A, say B ∈ ⋂n V An where V An is uniformly

Σ0,A
1 of measure ≤ 1/2n. For an arbitraryX ∈ 2N, let V Xn be V An with A replaced

by X . (More precisely, let V Xn be the Σ0,X
1 set with Σ0,X

1 index h(n) where h

is a fixed primitive recursive function such that V An is the Σ0,A
1 set with Σ0,A

1

index h(n).) Define

Wn =
{
X ⊕ Y

∣∣X ∈ 2N and Y ∈ Ṽ Xn

}

where Ṽ Xn is V Xn enumerated so long as its measure is ≤ 1/2n. (See our Notation
4.2.18.) Note that Wn is uniformly Σ0

1. By Fubini’s Theorem, µ(Wn) ≤ 1/2n.

Since Ṽ An = V An and B ∈ V An , it follows that A⊕B ∈ Wn for all n. Thus A⊕B
is not random. We have now proved that if A⊕B is random then B is random
over A. The proof that A is random over B is similar.

Corollary 4.3.5. If A⊕B is random, then A 6≤T B and B 6≤T A.

Corollary 4.3.6. If A⊕B is random, then A and B are random.

The preceding theorem has a converse due to van Lambalgen 1987.

Theorem 4.3.7 (van Lambalgen). If A is random, and if B is random over
A, then A⊕B is random.

Proof. Suppose A⊕B is not random, say A⊕B ∈ ⋂nWn whereWn is uniformly
Σ0

1 and µ(Wn) ≤ 1/2n. By passing to a subsequence, we may assume that
µ(Wn) ≤ 1/22n. For all X ∈ 2N and n ∈ N put

V Xn = {Y ∈ 2N | X ⊕ Y ∈Wn}

84



and note that V Xn is uniformly Σ0,X
1 . For all n ∈ N put

Un =

{
X ∈ 2N

∣∣∣∣ µ(V Xn ) >
1

2n

}

and note that Un is uniformly Σ0
1. By Fubini’s Theorem we have

µ(Wn) =

∫

X

∫

Y

Wn(X ⊕ Y ) dY dX =

∫

X

∫

Y

V Xn (Y ) dY dX

≥
∫

X

Un(X)V Xn (Y ) dY dX ≥
∫

X

Un(X)
1

2n
dX

=
1

2n

∫

X

Un(X) dX =
1

2n
µ(Un) ,

hence µ(Un) ≤ 2nµ(Wn) ≤ 2n/22n = 1/2n. Since µ(Un) ≤ 1/2n and A is
random, it follows by Solovay’s Theorem 4.2.11 that {n | A ∈ Un} is finite.

Thus µ(V An ) ≤ 1/2n for all but finitely many n. Moreover V An is uniformly Σ0,A
1

and B ∈ ⋂n V An . Thus B is not random over A. This proves the theorem.

The following result is due to Joseph Miller 2004.

Theorem 4.3.8 (J. Miller). Assume that A is random, A ≤T B, and B is
random over C. Then A is random over C.

Proof. Fix e such that A = ϕ
(1),B
e . For each σ ∈ Seq2 put

Vσ = {Y ∈ 2N | σ ⊆ ϕ(1),Y
e } .

Note that B ∈ VA[n] for all n. Moreover, Vσ is uniformly Σ0
1, and σ | τ ⇒

Vσ ∩ Vτ = ∅.
Lemma 4.3.9. There is a constant c such that µ(VA[n]) ≤ c/2n for all n.

Proof. For each rational number c put

Uc =

{
X ∈ 2N

∣∣∣∣ ∃n µ
(
VX[n]

)
>

c

2n

}
.

Note that Uc is uniformly Σ0
1. Let Gc be the set of σ ∈ Seq2 such that µ(Vσ) >

c/2lh(σ) and σ is minimal with this property. Thus Uc =
⋃
σ∈Gc

Nσ. Since Gc
is pairwise incompatible, the sets Vσ, σ ∈ Gc, are pairwise disjoint. We have
µ(Uc) =

∑
σ∈Gc

1/2lh(σ), hence

1 = µ(2N) ≥ µ

(
⋃

σ∈Gc

Vσ

)
=
∑

σ∈Gc

µ(Vσ) ≥
∑

σ∈Gc

c

2lh(σ)
= c µ(Uc) .

Thus µ(Uc) ≤ 1/c for all c. In particular, µ(U2n) ≤ 1/2n for all n. Since A
is random, it follows that A /∈ U2n for some n, hence A /∈ Uc for some c. The
lemma follows.

85



Let c be a rational number as in the lemma. Let Ṽσ = Vσ enumerated so long
as its measure is ≤ c/2lh(σ). Then Ṽσ is uniformly Σ0

1 of measure ≤ c/2lh(σ). By

the lemma we have ṼA[n] = VA[n] for all n.
Now suppose A is not random over C, say A ∈ ⋂i UCi where UCi is uniformly

Σ0
1 and µ(UCi ) ≤ 1/2i. As in the proof of Proposition 4.2.2, let GCi ⊆ Seq2 be

uniformly Σ0,C
1 and pairwise incompatible such that UCi =

⋃
σ∈GC

i
Nσ. Put

WC
i =

⋃
σ∈GC

i
Ṽσ. Then WC

i is uniformly Σ0,C
1 and

µ(WC
i ) =

∑

σ∈GC
i

µ(Ṽσ) ≤
∑

σ∈GC
i

c

2lh(σ)
= c µ(UCi ) ≤ c

2i
.

Moreover, since A ∈ UCi and B ∈ VA[n] = ṼA[n] for all n, we have B ∈ WC
i for

all i. Thus B is not random over C. This proves the theorem.

Definition 4.3.10 (n-randomness). For n ≥ 1, A ∈ 2N is said to be n-random

if A is random relative to 0(n−1). Thus 1-randomness is just randomness, while
2-randomness is randomness relative to the Halting Problem, etc.

Corollary 4.3.11. Assume A is random, A ≤T B, and B is n-random. Then
A is n-random.

Proof. This is a special case of Theorem 4.3.8.

Definition 4.3.12. A ∈ 2N is said to be arithmetically random if A is n-random
for all n ≥ 1.

Corollary 4.3.13. If A is random, A ≤T B, and B is arithmetically random,
then A is arithmetically random.
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