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Chapter 1

Computability in core

mathematics

1.1 Review of computable functions

For the sake of completeness, we will review the basic definitions from elemen-
tary recursion theory that will be necessary for our study of computability in
core mathematics. We write ω = {0, 1, 2, . . .} for the set of nonnegative integers.
For k ≥ 1, ωk denotes the set of sequences of elements of ω of length k.

1.1.1 Register machines

Recall that a register machine is composed of an infinite number of registers,
usually denoted by bins as shown in Figure 1.1. Each register holds a natural
number. Register machines execute register machine programs. Register ma-
chine programs are flow-charts of four types of instructions shown in Figure 1.2.
The increment instruction adds 1 to the value of the register specified in the
instruction. Program flow then continues along the out arrow. The decrement
instruction checks to see if the value in the specified register is greater than zero,
if not the program continues execution along the arrow labeled e. Otherwise,
the value in the specified register is decremented and the program continues
execution along the unlabeled arrow. For every program there is one and only
one start instruction. The stop instruction halts program execution. There may
be many stop instructions in a program flow chart. A simple program is shown
in Figure 1.2.

Let P denote a register machine program. When we run P with inputs
x1, . . . , xk, we assume that these inputs are initially placed into the registers
R1, . . . , Rk and that all other registers are empty. If and when P halts (i.e.,
completes its execution), the output is stored in register Rk+1. We denote a run
of a register machine with program P on inputs x1, . . . , xk by P(x1, . . . , xk).

The k-place number-theoretic function computed by P is denoted f
(k)
P . Thus
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Figure 1.1: A register machine computing y = f
(k)
P (x1, . . . , xk). Here y is the

result stored in register Rk+1 after running P(x1, . . . , xk).

f
(k)
P (x1, . . . , xk) = y means that y is the output after running P with inputs
x1, . . . , xk. For a more detailed review of register machines and register machine
programs, see [18].

Each register machine program P can be assigned a natural number #(P),
in a recursive one-to-one way. This number is called the Gödel number of P , or

an index of f
(k)
P . We write y = ϕ

(k)
e (x1, . . . , xk) to indicate that the program

with Gödel number e with inputs x1, . . . , xk eventually halts with output y.

1.1.2 Recursive and partial recursive functions

Definition 1.1.1 (recursive function). A k-place function f : ωk → ω is
computable (equivalently, recursive) if there exists a register machine program
P that computes it, i.e., for all x1, . . . , xk ∈ ω, P(x1, . . . , xk) eventually halts

with y = f(x1, . . . , xk) = f
(k)
P (x1, . . . , xk) as the output.

A k-place partial function is a function from a subset of ωk to ω. We write

ψ : ωk
P→ ω to indicate that ψ is a k-place partial function. The fact that a

partial function ψ may not be defined for some arguments x1, . . . , xk ∈ ω leads
us to consider expressions that may or may not have a numerical value. Let E
be such an expression. We say that E is defined if E has a numerical value, and
in this case, we write E ↓. Otherwise, we say that E is undefined and we write
E ↑. Furthermore, we write E1 ≃ E2 to mean that E1 and E2 are either both
defined and equal or both undefined. The symbol ≃ is called strong equality.

Definition 1.1.2 (partial recursive function). A partial function ψ : ωk
P→
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Figure 1.2: The four register machine instructions and a sample program.
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ω is partial recursive if and only if there is a register machine program P such

that ∀x1, . . . , xk ψ(x1, . . . , xk) ≃ f
(k)
P (x1, . . . , xk).

Definition 1.1.3. A set (or relation) R ⊆ ωk is said to be computable (or
equivalently recursive) if the characteristic function χR : ωk → {0, 1} of R is a
computable function.

Definition 1.1.4. A set A ⊆ ω is said to be recursively enumerable (abbreviated
r.e.) if it is the range of a partial recursive function.

By a problem we mean a set A ⊆ ω. We often can use Gödel numberings to
express problems in other areas of mathematics in this more formal sense. We
will see an example of this when we discuss the word problem for groups and
semigroups. A problem is said to be solvable if and only if it is a recursive set,
otherwise unsolvable. The classification of unsolvable problems is an important
theme in recursion theory.

1.1.3 The µ-operator

Let R ⊆ ωk+1 be a computable relation. Suppose we wish to search for the least
y ∈ ω such that R(x1, . . . , xk, y) holds. We write this as

ψ(x1, . . . , xk) ≃ µy R(x1, . . . , xk, y).

The operator µ is called the minimization operator or the least number operator
and can be used to create partial recursive functions from recursive sets. Since
our search for a y satisfying R(x1, . . . , xk, y) may not halt, ψ(x1, . . . , xk) may
be undefined.

For example, if R is a recursive subset of ω × ω and for each m there is an
n such that 〈m,n〉 ∈ R, then the function m 7→ µn 〈m,n〉 ∈ R is recursive.

1.2 Introduction to computable algebra

1.2.1 Computable groups

Definition 1.2.1. A computable group is a group 〈G, ·〉 whose elements form a
recursive subset of ω and whose multiplication is a recursive function.

Proposition 1.2.2. Let 〈G, ·〉 be a computable group. Then the function
a 7→ a−1 is computable.

Proof. To compute a−1 for an element a ∈ G, we first find 1G, then search for
the unique element b such that a · b = 1G. That is, a−1 = µb (a · b = 1G).

Remark 1.2.3. If 〈G, ·G〉 is a computable group, the identity element 1G can
be defined as the unique a ∈ G such that a · a = a. Therefore the function
a 7→ a−1 from Proposition 1.2.2 is uniformly computable given indices for G
and ·G.
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Remark 1.2.4. One could study the notion of a “primitive recursive group.”
The corresponding version of Proposition 1.2.2 would not automatically hold for
primitive recursive groups, because a 7→ a−1 might not be primitive recursive.
Therefore, we would have to assume this separately, if desired.

Remark 1.2.5. Many groups which arise in practice can be identified with
computable groups. This can be done by means of Gödel numbering.

Examples 1.2.6.

1. The additive group Q of rational numbers is (canonically isomorphic to)
a computable group. Each r ∈ Q can be identified with a unique pair
of integers 〈a, b〉, with a, b relatively prime, b > 0, r = a/b. Assuming a
suitable Gödel numbering for Z, we can code Q as the set

{2#(a)3#(b) | a, b ∈ Z, (a, b) = 1, b > 0}.

There is a computable multiplication function on this set which gives it
the group structure of the additive group of rationals.

2. The multiplicative group of nonzero rational numbers is (canonically iso-
morphic to) a computable group.

3. The group GL2(Q), consisting of invertible 2 × 2 matrices of rationals
under matrix multiplication, is (canonically isomorphic to) a computable
group. We choose a simple Gödel numbering scheme for matrices:

#

(
a b
c d

)
= 2#(a)3#(b)5#(c)7#(d)

where a, b, c, d ∈ Q. There is a computable multiplication function which
gives the computable set of such Gödel numbers with ad − bc 6= 0 the
structure of GL2(Q).

Remark 1.2.7. Clearly, every computable group is countable. Because there
are 2ℵ0 countable groups but only ℵ0 indices of computable groups, there must
be a noncomputable countable group. While there are concrete examples of non-
computable countable groups, none of the known examples is mathematically
natural.

We note that many familiar algebraic constructions preserve computability.
For example, the direct product of two computable groups is computable.

For another example, let us review the definition of a quotient group. Let
〈G, ·〉 be a group, and let N be a subgroup of G. Define an equivalence relation
≡N on G by letting a ≡ b iff a · b−1 ∈ N . For a ∈ G, we let [a] denote the
equivalence class of a in G/ ≡N . When N is a normal subgroup, the equivalence
classes form a group under the operation [a] · [b] = [a · b]. This is the quotient
group G/N .
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Theorem 1.2.8. If 〈G, ·〉 is a computable group and N ⊆ G is a computable
normal subgroup of G, then the quotient group G/N is (canonically isomorphic
to) a computable group.

Proof. Let 〈G, ·〉 and N be as above. Note that the characteristic function of
≡N is computable. Let h : G→ G be the function such that for a ∈ G, h(a) is
the least b ∈ G such that b ≡N a. This computable function selects an element
from each equivalence class of G/≡N (see Proposition 1.2.9).

We can use h to create a computable group isomorphic to G/N . Let H =
h(G); this set is recursive, because b ∈ H ⇐⇒ b ∈ G ∧ h(b) = b. Define a
multiplication function ·H on H by letting c1 ·H c2 = h(c1 · c2). This multiplica-
tion function is also computable. It can be verified that 〈H, ·H〉 is a computable
group isomorphic to G/N .

The previous construction is a special case of:

Proposition 1.2.9. Let X be a computable set and let ≡ be a computable
equivalence relation on X . Then there is computable selector for X/≡ whose
range is a computable subset of X . That is, there is a computable function h
such that for all a, b ∈ X , a ≡ h(a) and a ≡ b ⇐⇒ h(a) = h(b).

Proof. Define h(a) to be the least element of X which is ≡-equivalent to a. It
can be seen that n ∈ h(X) ⇐⇒ n ∈ X ∧ h(n) = n.

Remark 1.2.10. Let G1 and G2 be two computable groups, and let φ be a
computable homomorphism fromG1 toG2. Then the kernel of φ is a computable
normal subgroup of G1. This group has as its domain the set N = {a ∈ G1 |
φ(a) = 1G2} and inherits the multiplication operation from G1. The image of φ
is clearly an r.e. subgroup of G2. This image may not, however, be computable.
See Exercise 1.2.11.

Exercise 1.2.11. Construct computable groupsG1, G2 and a computable monomor-
phism φ : G1 → G2 such that the image φ(G1) is not computable.

Exercise 1.2.12. Let 〈G, ·〉 be an r.e. group. That is, let G be an r.e. subset of
ω and let · : G×G→ G be a partial recursive function whose domain is G×G
and which makes G a group. Show that there is a computable group H which
is isomorphic to G via a computable isomorphism φ : H → G with range G.

1.2.2 Computable fields

Definition 1.2.13. A computable field (computable ring) is a field (ring) whose
elements form a recursive subset of ω and whose addition and multiplication
functions are computable.

Remark 1.2.14. For any computable ring, the additive inverse function a 7→
−a is computable. For any computable field, the multiplicative inverse function
a 7→ 1/a is computable.
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Proposition 1.2.15. If F is a computable field, then the polynomial ring F [x]
is (canonically isomorphic to) a computable ring.

Again, many field constructions preserve computability.
For example, suppose that F is a field and p(x) is a polynomial in F [x].

There is an equivalence relation ≡p(x) on F [x] such that q(x) ≡p(x) r(x) iff
p(x) divides q(x)− r(x). The equivalence classes form a commutative ring with
operations [q(x)] + [r(x)] = [q(x) + r(x)] and [q(x)] · [r(x)] = [q(x)r(x)]. If p(x)
is irreducible in F [x], then the equivalence classes form a field.

Lemma 1.2.16. Let F be a computable field. The set

{〈p(x), q(x)〉 ∈ F [x] × F [x] | p(x) divides q(x)}

is computable.

Proof. To decide whether a pair 〈p(x), q(x)〉 is in the set, apply the standard long
division algorithm for polynomials, and test whether the remainder is zero.

Theorem 1.2.17. Let 〈F,+, ·〉 be a computable field, and let p(x) be a polyno-
mial in F [x]. Then the quotient ring F [x]/(p(x)) is (isomorphic to) a computable
ring. If p(x) is irreducible, we have a computable field.

Proof. By Lemma 1.2.16, the equivalence relation ≡p(x) is computable. There-
fore, it has a computable selector function h whose range R is a recursive set.
For a, b ∈ R, define two computable function from H×H to H : a+Rb = h(a+b)
and a ·R b = h(a · b). It can be shown that 〈R,+R, ·R〉 is a computable ring
isomorphic to F [x]/(p(x)).

1.3 Finitely presented groups and semigroups

1.3.1 Free groups

Let A = {a1, . . . , an} be a finite set of symbols, and let A−1 = {a−1
1 , . . . , a−1

n }
be a second set of symbols, disjoint from A.

Definition 1.3.1. A word is a finite sequence w = x1x2 · · ·xk, where xi ∈
A ∪A−1 for all i ≤ k. The empty sequence is a word, denoted 1.

Let Vn be the set of all words on A ∪ A−1. We can define a multiplication
on words by concatenation, i.e., juxtaposition. That is, if u and v are two words
on A, then the uv is a word on A when we simply concatenate the symbols of
u followed by the symbols of v.

A word w on A is said to be reduced if ai and a−1
i are never adjacent within

w. By canceling adjacent inverses, every word u can be transformed to a unique
reduced word w = r(u). We call this reduced word the canonical form of u.
Clearly the function r is recursive, since we can easily compute the unique
canonical form of any word. Using r, we may define a multiplication on reduced
words. If w and w′ are reduced words, we define w ·w′ = r(ww′). Let ≡ be the
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equivalence relation on Wn with u ≡ v if and only if r(u) = r(v). Then we have
the following easy theorem, whose proof can be found in [12, Theorem 11.1]:

Theorem 1.3.2. The set Vn/≡ with the operation · is a group.

Definition 1.3.3. The free group on n generators (also called the free group of
rank n) is the group Fn = (Vn/≡, ·).

Proposition 1.3.4. The free group Fn is computable.

Proof. It is easy to see that Fn is a computable group, by coding the generators
of Fn and using these codes to form codes for words. It is then trivial to check
whether a given code for a word is reduced. We simply check whether or not
two inverses are adjacent in the word.

1.3.2 Group presentations and word problems

A group G is said to be finitely generated if it contains a finite set X =
{g1, . . . , gn} of generators. Then it is easy to see that there is a homomorphism
φ from Fn to G via φ(ai) = gi, since G is generated by the gi. If K = ker(φ),
then we have an isomorphism from Fn/K onto G. The normal subgroup K is
called the set of relations on the generators g1, . . . , gn.

Suppose R is a subset of Fn. Then the normal subgroup generated by R is
the smallest normal subgroup of Fn containing R. If K is the normal subgroup
generated by R, then we say that G is defined by the relations in R, since we
have G ∼= Fn/K. If R is finite, we say that G is a finitely presented group.

Remark 1.3.5. Note that though K may be the normal subgroup generated
by a finite set R, it does not follow that K is a finitely generated group. Instead,
K is generated by the set of conjugates of elements of R, which may be infinite.

In general, finitely presented groups are written as a pair 〈A;R〉, where A is
the set of generators of the group and R is a finite set of words generating the
kernel of the homomorphism φ (as a normal subgroup); i.e., the words that can
be canceled to 1.

Example 1.3.6. We will show that the group of isometries of a square, D4, is a
finitely presented group. Let ρ be a 90◦ counter-clockwise rotation of the points
of the square and let φ be a flip of a square along one of its lines of symmetry as
shown in Figure 1.3. Then the group of symmetries of the square is the finitely
presented group:

〈ρ, φ; ρ4 = φ2 = φρφρ = 1〉.
We can see that four ninety degree rotations will return a square to its starting
position. Likewise, two flips will return a square to its starting position. Finally,
a rotation followed by a flip followed by another rotation and another flip will
also return a square to its original position.

11



φ1

ρ

Figure 1.3: The symmetries of a square.

Definition 1.3.7. A finitely presented group G is said to have a solvable word
problem if there exists a computable normal groupN of Fn such that G ∼= Fn/N .
In general, the word problem for G ∼= Fn/N is the problem of deciding whether
a given word in Fn belongs to N or not.

Remark 1.3.8. Let G be finitely presented group. An equivalent problem to
the word problem for G is the set {(w1, w2) ∈ Fn × Fn | φ(w1) = φ(w2)}. Thus
G has a solvable word problem if and only if we can decide, given two words w1

and w2 over the generators of G and their inverses, whether or not w1 = w2 in
G.

Example 1.3.9. The finitely presented group

G = 〈a, b; a2 = b3 = aba−1b−1 = 1〉

has solvable word problem. To see this, note that any word consisting of a’s
and b’s can be transformed into a word having a’s raised only to the power 1,
since we have the relation a2 = 1. Along the same line, we can transform any
word into an equivalent word having only b’s raised to powers 1 and 2. Finally,
the relation aba−1b−1 = 1 shows us that a’s and b’s commute. Therefore, we
may transform all our words into words of the form ae1be2 , where e1 = 0, 1 and
e2 = 0, 1, 2. The form ae1be2 is called the normal form of the group elements.
For example, consider the word: a3babba4. This word can be written as abab2,
since a3 = a2a = a and bb = b2 and a4 = a2a2 = 1. Commuting the a’s and b’s
we have aabb2, which is a2b3 = 1, so this word is in the image of the kernel of
the homomorphism taking the free group F2 to G.

Proposition 1.3.10. The solvability of the word problem for a finitely pre-
sented group G does not depend on the choice of generators.

Proof. Suppose that a group G is generated by the set A = {a1, . . . , an} and
also by the set B = {b1, . . . , bm}. Then we can express each element of A as a
product of elements of B; i.e., let ai = wi where wi is a product of elements of
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B. Then a word v =
∏k
j=1 a

ej

ij
is 1 if and only if

∏k
j=1 w

ej

ij
= 1. Thus it follows

that the word problem for G generated by A is reducible to the word problem of
G generated by B. A similar argument shows the the word problem for G when
generated by B can be reduced to the word problem for G when generated by A.
Therefore, the two problems are equivalent and hence the choice of generators
does not matter.

Exercise 1.3.11. Show that a finitely generated group G has a solvable word
problem if and only if G is isomorphic to a recursive group.

Theorem 1.3.12 (Boone/Novikov). There is a finitely presented group with
an unsolvable word problem.

Proof. The proof of this theorem is complex and involves group theory beyond
the scope of these notes. Rotman [12] gives a complete proof in his book, using
Turing machines as the system of computation.

Corollary 1.3.13. There is a countable group which is not isomorphic to any
computable group.

Proof. Apply Exercise 1.3.11 to a countable group G with an unsolvable word
problem. If G were isomorphic to a recursive group, then G would have a
solvable word problem.

Exercise 1.3.14. Show that the group

〈a, b, c; a2 = aba−1b−1 = b5 = c7〉

has a solvable word problem.

1.3.3 Finitely presented semigroups

Definition 1.3.15. A semigroup consists of a set S with an associative binary
operation. A semigroup 〈S, ·S〉 is a computable semigroup if S ⊆ ω is a recursive
set and ·S : S × S → S is a partial recursive function.

Definition 1.3.16. The free semigroup on n generators a1, . . . , an consists of
the set Wn of all words (finite sequences) on a1, . . . , an with the operation of
concatenation.

Definition 1.3.17. Let R be a subset of Wn ×Wn. We define an equivalence
relation ≡R on Wn. For w,w′ ∈ Wn, let w ≡R w′ if and only if there exists a
finite sequence 〈wi | i ≤ n〉 such that w = w0, wn = w′, and for each i < n we
have wi = urv and wi+1 = ur′v for some (r, r′) or (r′, r) ∈ R. The semigroup
Wn/R is the set of equivalence classes Wn/≡R with the operation · given by
[u]R · [v]R = [uv]R.

Definition 1.3.18. A finitely presented semigroup is a semigroup of the form
Wn/R, where Wn is a free semigroup on a finite number of generators, and R
is a finite subset of Wn ×Wn.

13



1.3.4 Unsolvability of the word problem for semigroups

The word problem for a finitely generated semigroup S = Wn/R is the set

{(w,w′) ∈Wn ×Wn | w ≡R w′}.

Just as for finitely generated groups, we can show that the degree of unsolvability
of a finitely generated semigroup does not depend on the choice of generators.

Theorem 1.3.19. There is a finitely presented semigroup with unsolvable word
problem.

Proof. We follow the exposition of the first few sections of Chapter 12 of Rot-
man’s group theory textbook [12], with the difference that Rotman uses Turing
machines while we use register machines.

Our construction is based on the following fact. There is a register machine

program P which computes the partial recursive function 2x 7→ 0 · ϕ(1)
x (x), and

such that P uses only two registers, R1 and R2. This follows easily from Exercise
5.9 in Simpson’s lecture notes [18].

Note that {x | P(x) halts} is nonrecursive. In other words, given x, the
problem of deciding whether P halts if started with x in R1 and with R2 empty,
is unsolvable. Furthermore, we may safely assume that if P(x) halts then it
halts with both registers empty.

The idea of our construction is to encode the action of P into the word
problem of a semigroup S.

Let I1, . . . , Il be the instructions of P . As usual, I1 is the first instruction
executed, and I0 is the halt instruction. Our semigroup S will have l + 3
generators a, b, q0, q1, . . . , ql. If R1 and R2 contain x and y respectively, and
if Im is about to be executed, then we represent this state as a word baxqma

yb.
Thus a serves as a counting token, and b serves as an end-of-count marker. For
each m = 1, . . . , l, if Im says “increment R1 and go to In0”, we represent this
as a production qm → aqn0 or as a relation qm = aqn0 . If Im says “increment
R2 and go to In0”, we represent this as a production qm → qn0a or as a relation
qm = qn0a. If Im says “if R1 is empty go to In0 otherwise decrement R1 and
go to In1”, we represent this as a pair of productions bqm → bqn0 , aqm → qn1 ,
or as a pair of relations bqm = bqn0 , aqm = qn1 . If Im says “if R2 is empty
go to In0 otherwise decrement R2 and go to In1”, we represent this as a pair
of productions qmb → qn0b, qma → qn1 , or as a pair of relations qmb = qn0b,
qma = qn1 . Thus the total number of productions or relations is l+ +2l−, where
l = l+ + l− and l+ is the number of increment instructions and l− is the number
of decrement instructions. Let S be the semigroup described by these generators
and relations.

We claim that for all x, baxq1b = bq0b in S if and only if P(x) halts. The
“if” part is clear. For the “only if” part, assume that baxq1b = bq0b in S. This
implies that there is a sequence of words baxq1b = w0 = · · · = wn = bq0b where
each wi+1 is obtained from wi by a forward or backward production. We claim
that the backward productions can be eliminated. In other words, if there are
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any backward productions, we can replace the sequence w0, · · · , wn by a shorter
sequence. This is actually obvious, because if there is a backward production
then there must be one which is immediately followed by a forward production,
and these two must be inverses of each other, because P is deterministic. Thus
we see that baxq1b = bq0b via a sequence of forward productions. This implies
that P(x) halts. Our claim is proved.

This completes the proof of the theorem.

1.4 More on computable algebra

1.4.1 Splitting algorithms

We continue our discussion of computable fields. We give an example of a
recursive embedding of a computable field into its algebraic closure whose range
is not computable.

Corollary 1.4.1. If F is a computable field, then all simple extensions of F
are computable.

Proof. If F (α) is a simple extension of F , then F (α) is either an algebraic or
transcendental extension. If it is algebraic, then Theorem 1.2.17 applies. If it
is transcendental, then F (α) ∼= F (x), the field of 1-place rational functions over
F , with α 7→ x. Thus the field operations of F (α) are computable in terms of
those on F .

Recall that an algebraic closure of a field F is an algebraic extension of F ,
denoted F̃ , such that every polynomial in F [x] splits into a product of linear

factors in F̃ [x].

Theorem 1.4.2 (Rabin [10]). If F is a computable field, then F̃ , the algebraic

closure of F , is computable and there is a computable embedding, ι : F → F̃ ,
of F into its algebraic closure.

Remark 1.4.3. A non-trivial problem in algebra is to determine whether a
given polynomial is irreducible or not (cf. Eisenstein’s irreducibility criterion).
If the set of irreducible polynomials over a computable field is recursive, then the
field is said to have a splitting algorithm. The following theorem characterizes
those fields with splitting algorithms.

Theorem 1.4.4. A computable field has a splitting algorithm if and only if it
is recursively isomorphic to a computable subfield of its algebraic closure.

Proof. Let F be a computable field and let ι : F → F̃ be a recursive isomorphism
of F into its algebraic closure and p(x) ∈ F [x] nonconstant. By Rabin’s theorem,

F̃ , the algebraic closure of F , is computable. Thus the finite set of linear factors
of ι(p) is recursive. Test whether any product of a proper subset of these linear
factors is in F [x]. If so, p is reducible, otherwise p is irreducible. Thus F has a
splitting algorithm.

15



For the converse, assume F has a splitting algorithm and let ι : F → F̃ be a
recursive isomorphism of F into its algebraic closure. Let y ∈ F̃ . To determine
whether y ∈ ι(F ), find the least polynomial p ∈ {f ∈ F [x] | f irreducible} such
that y is a root of ι(p). If ι(p) is linear, then y ∈ ι(F ), otherwise not. Thus the
image of F under ι is computable.

Remark 1.4.5. Many common computable fields have splitting algorithms:
Q,Q(α), . . . , Q̃. The splitting algorithm for Q is given in van der Wearden’s
book [20]. However, not all fields have splitting algorithms as the next example
illustrates.

Example 1.4.6. We construct a computable field which does not have a split-
ting algorithm. Let A ⊆ ω which is recursively enumerable but not recursive.
Let pn, for n = 0, 1, 2, . . ., be the enumeration of prime numbers in increas-
ing order. The field Q(

√
pn | n ∈ A) is recursively enumerable, and therefore

recursively isomorphic to a computable field by a previous exercise. But

{f(x) = x2 − pn | f(x) irreducible in F [x]}

is not recursive, otherwise A would be recursive. Hence, Q(
√
pn | n ∈ A) does

not have a splitting algorithm, and by the previous theorem this field is not
computable.

1.4.2 Computable vector spaces

Definition 1.4.7. If V is a vector space over F where V is a computable abelian
group, F is a computable field, and scalar multiplication is recursive, then V is
a computable vector space over F .

Remark 1.4.8. There is an infinite dimensional computable vector space over
Q with neither a recursive basis nor even a recursive infinite linearly independent
subset.

1.5 Computable analysis and geometry

1.5.1 Computable real numbers

The class of computable reals consists of those real numbers for which there
exists an algorithm for approximating them to any degree of accuracy. So not
only must there be a recursive way of generating these approximations, but also
the degree of accuracy must be a recursive function of the approximation as well.
Thus the computable reals are those numbers such that the function giving the
nth digit of the decimal expansion is recursive. The following definition makes
these statements precise.

Definition 1.5.1. A real number x ∈ R is computable is there exists a recursive
sequence 〈qn | n ∈ ω〉 of rational numbers such that x = lim qn and there exists
a total recursive function f such that ∀n ∀m (m > f(n) ⇒ |x− qm| < 1/2n).
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Remark 1.5.2. Equivalently, x ∈ R is computable if and only if there is a
recursive sequence of rationals 〈q′n | n ∈ ω〉 such that ∀n |x − q′n| < 1/2n. We
can see this by taking q′n = qf(n)+1.

Remark 1.5.3. If x and y are computable real numbers, then so are x +
y, xy, x/y, xy, ex, log x, sinx,

√
x, etc. In particular, the class of computable real

numbers forms a real closed subfield of R. Clearly, the class of computable reals
is a proper subset of the reals numbers, since there are only countably many
recursive functions and so there are only countably many computable reals. The
next example gives a specific non-computable real number.

Example 1.5.4. There is a recursive bounded increasing sequence of rationals
whose limit is a non-recursive real. Let A ⊆ ω which is recursively enumerable
but not recursive. Let f : ω → ω be a one-to-one recursive function whose range
is A. Consider the sequence 〈qn | n ∈ ω〉 where

qn =

n∑

i=0

1

2f(i)
< 2.

This is a bounded increasing sequence of real numbers so it converges. But
the limit x = lim qn =

∑
n∈A 1/2n is a real number which is not computable,

otherwise χA would be recursive.

Recall that under the usual metric an open ball in Rn with center a =
〈a1, . . . , an〉 and radius r is the set

B(a, r) = {x ∈ Rn |
√

(x1 − a1)2 + · · · + (xn − an)2 < r}.

Definition 1.5.5. A set U ⊆ Rn is effectively open if

U =
∞⋃

i=0

B(ai, ri)

where 〈ai | i ∈ ω〉 is a recursive sequence of points in Qn and 〈ri | i ∈ ω〉 is a
recursive sequence of rational numbers.

Remark 1.5.6. The rational open balls (i.e., open balls with center in Qn and
rational radius) form a countable basis for the usual topology on Rn. That is,
every open set in Rn is a union of rational open balls.

Definition 1.5.7. A set C ⊆ Rn is effectively closed if its complement Rn \ C
is effectively open.

1.5.2 Computable sequences of real numbers

Definition 1.5.8 (computable sequences). A sequence of real numbers
〈xn〉n∈ω is said to be computable if there exists a computable double sequence
of rational numbers 〈qnk〉n,k∈ω such that ∀n ∀k |xn − qnk| ≤ 1/2k.
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Remark 1.5.9. If 〈xn〉n∈ω and 〈yn〉n∈ω are computable sequences of reals, then
so is 〈xn + yn〉, etc.

Exercises 1.5.10. The following may help to explain why we do not choose to
represent computable reals as recursive Dedekind cuts in Q.

1. Show that x ∈ R is computable if and only if {q ∈ Q | q < x} is com-
putable.

2. Give an example of a sequence of reals 〈xn〉n∈ω such that {(q, n) | q < xn}
is computable but {(q, n) | q < xn +

√
2} is not computable.

1.5.3 Effective Polish spaces

Definition 1.5.11 (pseudometric and metric spaces). A pseudometric
space is a pair (X, d), where d : X × X → R such that d(x, y) = d(y, x) ≥ 0
and d(x, y) + d(y, z) ≥ d(x, z). A metric space is a pseudometric space with the
added property that d(x, y) = 0 ⇐⇒ x = y.

Remark 1.5.12. If (X, d) is a pseudometric space, then we can convert X to
a metric space (X, d), where X = {[x] | x ∈ X}, [x] = {y | d(x, y) = 0}, and
d([x], [y]) = d(x, y).

Definition 1.5.13 (completeness). A metric space (X, d) is complete if,
whenever 〈xn〉n∈ω, xn ∈ X , is a Cauchy sequence, i.e.,

∀ǫ > 0 ∃m ∀n > md(xm, xn) < ǫ,

then 〈xn〉n∈ω is convergent, i.e., ∃x ∈ X ∀ǫ > 0 ∃m ∀n > md(xn, x) < ǫ.

Definition 1.5.14 (completion of a pseudometric space). If (X, d) is a
pseudometric space, its completion is defined as follows. Let C = {Cauchy
sequences in X}. For 〈xn〉n, 〈yn〉n in C, we say 〈xn〉n ≈ 〈yn〉n if

∀ǫ > 0 ∃m ∀n > md(xn, yn) < ǫ.

We define X̂ = C/≈ and d̂([〈xn〉n], [〈yn〉n]) = limn d(xn, yn) which gives us the

complete metric space (X̂, d̂).

Note that there is a natural isometry of X onto a dense subset of X̂ . If X
is a metric space, then this isometry is an isometric embedding.

Definition 1.5.15 (Polish spaces). A metric space is said to be separable if
it has a countable dense subset. A Polish space is a complete separable metric
space, i.e., a metric space which is isometric to (Â, d̂) where (A, d) is a countable
metric space, or more generally a countable pseudometric space.

Definition 1.5.16 (effective Polish spaces). A computable pseudometric
space is a countable pseudometric space of the form (A, d) where A ⊆ ω and
d : A × A → R are computable. An effective Polish space, or equivalently a
effectively given complete separable metric space, is a Polish space of the form
(Â, d̂) where (A, d) is a computable pseudometric space.
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Examples 1.5.17. The following are examples of effective Polish spaces.

1. Rn with the Euclidean metric.

2. C[0, 1] = {f : [0, 1] → R | f is continuous} with the metric d(f, g) =

sup0≤x≤1 |f(x) − g(x)|. In this case C[0, 1] = Â where A = Q[x], the set
of all polynomials in one variable with rational coefficients.

3. R2 = R×R with the metric d((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2.

In this case R2 = Q̂2.

Definition 1.5.18. Let X = Â be an effective Polish space. A point x ∈ X is
said to be computable or recursive if there exists a recursive sequence an ∈ A,
n ∈ ω, such that x = limn→∞ an and for all n, d(x, an) ≤ 1/2n.

For example, a function f ∈ C[0, 1] is computable if and only if it is uniformly
effectively approximable by a sequence of polynomials with rational coefficients.

1.5.4 Examples of effective Polish spaces

Many of the basic examples and constructions in geometry and analysis can be
recast in terms of effective Polish spaces.

Example 1.5.19. The set of real numbers R is an effective Polish space under

the Euclidean distance metric, as Q̂ = R. Similarly, Rn = Q̂n and so Rn is also
an effective Polish space.

Example 1.5.20. For each p ∈ [1,∞] there is a metric on Rn known as the lp
metric. The lp distance between two elements of Rn is

d(〈a1, . . . , an〉, 〈b1, . . . , bn〉) =

(
n∑

i=1

|ai − bi|p
)1/p

.

For p = ∞ this becomes max1≤i≤n |ai − bi|. In particular the l2-metric is the
ordinary the Euclidean metric on Rn. Then Rn is an effective Polish space under
the lp-metric.

Theorem 1.5.21 (Weierstrass Polynomial Approximation Theorem).
For any f(x) ∈ C[0, 1] and any ǫ > 0, there exists a polynomial p(x) ∈ Q[x]
such that sup0≤x≤1 |f(x) − p(x)| < ǫ.

Example 1.5.22. The continuous real-valued functions on [0, 1] can be made
into an effective Polish space with the appropriate metric. By Weierstrass,

C[0, 1] = Q̂[x]. The metric that we use is the sup norm:

d(f, g) = sup0≤x≤1 |f(x) − g(x)|.
Example 1.5.23. For 1 ≤ p <∞, Lp[0, 1] is an effective Polish space Lp[0, 1] =

Q̂[x], where d(f, g) =
(∫ 1

0 |f(x) − g(x)|pdx
)1/p

. This is because Q[x] is dense

in Lp[0, 1] and the Lp metric is computable on Q[x].
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Example 1.5.24. For 1 ≤ p < ∞, lp = Q̂∞ = V̂∞(Q), where Q∞ is the
countable infinite dimensional vector space over Q. Since a countably infinite
vector space need not be computable, we let

V∞(Q) = {〈an〉n∈ω | an ∈ Q ∧ ∃m ∀n > m (an = 0)}.

The metric on V∞ is the lp metric:

d(〈an〉n∈ω, 〈bn〉n∈ω) =

(
∞∑

n=0

|an − bn|p
)1/p

.

Example 1.5.25. The previous three examples are actually effective separable
Banach spaces. For every effective separable Banach space, the unit ball of the
dual space with the weak star topology can also be made into an effectively
compact effective Polish space.

Example 1.5.26. All the familiar topological constructions such as manifolds,
simplicial complexes, CW-complexes, etc., can be made into effective Polish
spaces with appropriate natural metrics.

Example 1.5.27. If X is a Polish space, let K(X) = {C ⊆ X | C is nonempty
and compact}. Then K(X) is a Polish space with the Hausdorff metric. If X is
an effective Polish space, then so is K(X).

Example 1.5.28. The space of all isometry types of compact metric spaces
with the Gromov-Hausdorff metric is an effective Polish space. The Gromov-
Hausdorff metric gives a “distance” between any two compact Hausdorff spaces.

Remark 1.5.29. As the above examples suggest, almost all Polish spaces which
arise in practice are effective Polish spaces.

1.5.5 Effective topology and effective continuity

Definition 1.5.30. Let X = Â be an effective Polish space. A set U ⊆ X is
said to be effectively open if there exists a recursive sequence (an, rn) ∈ A×Q+,
n ∈ ω, such that

U =

∞⋃

n=0

B(an, rn).

Here B(a, r) = {x ∈ X | d(a, x) < r}, the open ball of radius r centered at a. A
set C ⊆ X is effectively closed if X \ C is effectively open.

Definition 1.5.31. S ⊆ X is an effective Gδ if there exists a recursive double
sequence (amn, rmn)m,n∈ω ⊂ A× Q+ such that

S =
⋂

m∈ω

⋃

n∈ω

B(amn, rmn).

S is an effective Fσ if its complement X \ S is an effective Gδ. Etc.
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Definition 1.5.32. A point x ∈ X is said to be computable or recursive if there
exists a recursive sequence an ∈ A, n ∈ ω, such that x = limn→∞ an and for all
n, d(x, an) ≤ 1/2n.

Exercise 1.5.33. Prove this computable analogue of the Baire Category The-
orem: If X is an effective Polish space and S ⊆ X is an effective Gδ which is
dense in X , then {x ∈ S | x is recursive} is dense in X .

Definition 1.5.34 (good Cauchy sequences). Let X = Â be an effective
Polish space. A good Cauchy sequence is a sequence 〈an〉n∈ω, an ∈ A, such that

∀m ∀n (m > n⇒ d(am, an) ≤ 1/2n) .

The set of all good Cauchy sequences is denoted GC(X). Note that GC(X) ⊆
Aω ⊆ ωω.

Remark 1.5.35. Every point x ∈ X is of the form x = limn an where 〈an〉n ∈
GC(X). Note that this good Cauchy sequence representing x is not necessarily
unique.

We now define the computable analogue of continuous functions between
two metric spaces X and Y . The definition uses the notion of partial recursive
functional, defined below in Section 2.1 in terms of oracle computations.

Definition 1.5.36 (effective continuity). Let X and Y be effective Polish
spaces. A function f : X → Y is said to be computable or effectively continuous
if there exists a partial recursive functional F : GC(X) → GC(Y ) such that for
all 〈an〉n∈ω ∈ GC(X), f(limn an) = limn bn where F (〈an〉n) = 〈bn〉n.

Remark 1.5.37. The continuous functions that arise in practice are almost
always computable. Some examples are sinx, ex, and so on.

In the following exercises, we refer to the arithmetical hierarchy for subsets
of ωω. This will be defined formally in Section 2.3 below.

Exercise 1.5.38. For S ⊆ ωω prove the following:

1. S is effectively open if and only if S is Σ0
1.

2. S is effectively closed if and only if S is Π0
1.

3. S is an effective Gδ if and only if S is Π0
2.

4. S is an effective Fσ if and only if S is Σ0
2.

Exercise 1.5.39. Let X = Â be an effective Polish space. For S ⊆ X put
GC(S) = {〈an〉n ∈ GC(X) | limn an ∈ S}. Prove the following:

1. S is effectively open if and only if GC(S) is Σ0
1 on GC(X), i.e., GC(S) is

the intersection with GC(X) of a Σ0
1 subset of ωω.

2. S is effectively closed if and only if GC(S) is Π0
1 on GC(X).

3. S is an effective Gδ if and only if GC(S) is Π0
2 on GC(X).

4. S is an effective Fσ if and only if GC(S) is Σ0
2 on GC(X).
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Chapter 2

Degrees of unsolvability

2.1 Oracle computations

Intuitively, a Turing oracle is a “black box” which, given a natural number as
input, immediately produces a natural number as output. Thus an oracle may
be viewed as a function f : ω → ω. Recall that ωω = {f : ω → ω} is the space
of total functions from ω to ω. Equivalently, this space consists of all infinite
sequences of natural numbers.

We want to allow our register machines to perform oracle queries. Recall
that the definition of a register machine had four types of instructions: start,
stop, increment, and decrement. We add a new type of instruction R0

i signifying
an oracle query. A fixed function f ∈ ωω serves as the oracle. If n is in Ri, then
after the execution of the instruction R0

i , f(n) will be in Ri. In general, f is
not a recursive function. If f is recursive, then R0

i can be replaced by a register
machine program for f , so we obtain nothing new. In general, the oracle f
is nonrecursive. See Figure 2.1 for an example of a register machine program
which uses an oracle.

If P is an oracle program, Pf(x1, . . . , xk) denotes the run of P with oracle f
starting with x1, . . . , xk in R1, . . . , Rk and all other registers empty. If e is the

Gödel number of P , we write ϕ
(k),f
e (x1, . . . , xk) ≃ the content of Rk+1 if and

when Pf(x1, . . . , xk) halts.

Definition 2.1.1 (partial recursive functionals).

1. A partial functional Ψ : ωω × ωk
P→ ω is said to be partial recursive

if there exists e ∈ ω such that for all f ∈ ωω and all x1, . . . , xk ∈ ω,

Ψ(f, x1, . . . , xk) ≃ ϕ
(k),f
e (x1, . . . , xk).

2. A partial functional F : ωω
P→ ωω is said to be partial recursive if there

exists e such that dom(F ) = {f ∈ ωω | ∀xϕ(1),f
e (x) ↓} and, for all f ∈

dom(F ) and x ∈ ω, F (f)(x) = ϕ
(1),f
e (x).
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Figure 2.1: This program computes the partial recursive functional Ψ(f, x) ≃
least y such that y ≥ x and f(y) > 0.

2.2 Relativization

Many of the basic theorems of recursion theory can be generalized to allow oracle
computations. For example, the Parametrization Theorem or S-m-n Theorem
can be relativized to an arbitrary oracle f ∈ ωω.

Theorem 2.2.1 (S-m-n Theorem). For eachm,n ≥ 1 there is a fixed (m+1)-
ary primitive recursive function Smn such that

ϕ(m+n),f
e (x1, . . . , xm, y1, . . . , yn) ≃ ϕ

(n),f
Sm

n (x1,...,xm)(y1, . . . , yn)

for all indices e ∈ ω, inputs x1, . . . , xm, y1, . . . , yn ∈ ω, and oracles f ∈ ωω.

The proof of this theorem is a straightforward adaptation of the proof of
usual proof of the S-m-n Theorem or the Parametrization Theorem.

We can also relativize the arithmetical hierarchy. A predicate P ⊆ ω is said
to be Σ0,f

1 if there is a predicate Rf that is primitive recursive relative to f and
∀x (x ∈ P ⇐⇒ ∃y Rf (x, y)). A predicate Rf is said to be primitive recursive
relative to f if it can be built up from the initial functions and f . The classes
Π0,f
n and Σ0,f

n are defined inductively in the way we would expect from the Σ0,f
1

class of predicates. For details, see Section 2.3 below.
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2.3 The arithmetical hierarchy

The arithemetical hierarchy is a method of classifying sets by the complexity of
their descriptions. The complexity of a set is determined by the number of quan-
tifiers that are required to describe it. Here we briefly review the arithmetical
hierarchy. See also Rogers [11, Chapters 14 and 15].

Definition 2.3.1 (the arithmetical hierarchy). Let R ⊆ ωk be a k-ary
relation on ω. We will define classes Σ0

n, Π0
n, ∆0

n which R may or may not
belong to.

1. R is in the class Σ0
0 if and only if R a primitive recursive relation. For

histroical reasons, a primitive recursive R is also said to be in the classes
Π0

0 and ∆0
0.

2. For n > 0, R is in the class Σ0
n if and only if there exists a primitive

recursive (k + n)-place predicate P such that

R(x1, . . . , xk) ≡ ∃y1 ∀y2 · · · Qnyn P (x1, . . . , xk, y1, y2, . . . , yn)

where there are n alternating quantifiers beginning with an existential
quantifier. Here Qn = ∀ if n is even, otherwise Qn = ∃.

3. For n > 0, R is in the class Π0
n if and only if there exists a recursive

(k + n)-place predicate P such that

R(x1, . . . , xk) ≡ ∀y1 ∃y2 · · · Qnyn P (x1, . . . , xk, y1, . . . yn)

where there are n alternating quantifiers beginning with an universal quan-
tifier. Here Qn = ∃ if n is even, otherwise Qn = ∀.

4. R is in the class ∆0
n if and only if R is in both Σ0

n and Π0
n.

5. R is said to be arithmetical if R is in Σ0
n for some n ∈ ω. (This is equivalent

to R being in Π0
n or ∆0

n for some n).

A number of basic facts quickly follow from the definition of the arithmetical
hierarchy.

Theorem 2.3.2. The following hold for all n ≥ 1.

1. Σ0
n is closed under ∧, ∨, ∃x, ∃x < y, ∀x < y, and substitution of recursive

functions.

2. Π0
n is closed under ∧, ∨, ∀x, ∃x < y, ∀x < y, and substitution of recursive

functions.

3. Π0
n = ¬Σ0

n

4. A ⊆ ω is Σ0
1 if and only if A is recursively enumerable.

5. R ⊆ ωk is ∆0
1 if and only if R is recursive.
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Theorem 2.3.3. For every n ≥ 1 there exists an A ⊆ ω such that A ∈ Σ0
n \Π0

n.
Furthermore, ¬A ∈ Π0

n \ Σ0
n, and A⊕ ¬A is in ∆0

n+1 \ (Σ0
n ∪ Π0

n).

Example 2.3.4. The halting problem H = {e | ϕ(1)
e (0) ↓} is an example of a

Σ0
1 set that is not Π0

1. In fact, every set in Σ0
1 is many-one reducible to H .

Example 2.3.5. Define T = {e | ∀nϕ1
e(n) ↓}, the set of indices of all total

functions. T is then a Π0
2 set that is not Σ0

2.

Using the idea of oracle computation, we can extend the arithmetical hier-
archy from ω to the Baire space ωω.

Definition 2.3.6. A set R ⊆ ωω × ωk is defined to be recursive if and only
if χR : ωω × ωk → {0, 1} is a recursive functional. For n ≥ 1, we say that
P ⊆ ωω × ωk is Σ0

n if there is a recursive predicate R ⊆ ωω × ωk+n such that
for all f and all x1, . . . , xk,

P (f, x1, . . . , xk) ⇐⇒ ∃y1 ∀y2 · · · ynR(f, x1, . . . , xk, y1, y2, . . . , yn)

where there are n alternating quantifiers beginning with an existential quantifier.
The last quantifier is ∀yn if n is even, ∃yn if n is odd. P is Π0

n if and only if its
complement ¬P is Σ0

n.

Remark 2.3.7 (topological analogies). The arithmetical hierarchy of sub-
sets of ωω provides computable analogs of familiar topological notions. For
S ⊆ ωω we have that S is Σ0

1 if and only if S is effectively open, i.e., the union
of a recursive sequence of basic open sets. S is Π0

1 if and only if S is effectively
closed, i.e., the complement of an effectively open set. S is Σ0

2 if and only if S is
effectively Fσ. S is Π0

2 if and only if S is effectively Gδ. Et cetera. Furthermore,
all of this generalizes to effective Polish spaces. See Exercises 1.5.38 and 1.5.39.

Exercise 2.3.8. Prove the following reduction principle for Σ0
n subsets of the

Baire space. (It also holds for Σ0
n predicates on ω.) If P,Q ⊆ ωω are Σ0

n, then
there exist P ∗, Q∗ such that P ∗ ∪Q∗ = P ∪Q, P ∗∩Q∗ = ∅, and P ∗, Q∗ are Σ0

n.

Definition 2.3.9. Everything relativizes to an arbitrary oracle, as follows. Re-
call that for f, g ∈ ωω we have f ⊕ g ∈ ωω given by

(f ⊕ g)(2n) = f(n),

(f ⊕ g)(2n+ 1) = g(n).

Given f , a partial functional Ψ : ωω × ωk
P→ ω is said to be partial f -recursive,

or partial recursive relative to f , if

∃e ∀g ∀x1 · · · ∀xk
(
Ψ(g, x1, . . . , xk) ≃ ϕ(k),f⊕g

e (x1, . . . , xk)
)
.

Morover, for all n ≥ 1 and all f , we say that P ⊆ ωω × ωk is Σ0,f
n if there is

a recursive predicate R such that for all g and all x1, . . . , xk, P (g, x1, . . . , xk) if
and only if ∃y1 ∀y2 · · · ynR(f ⊕ g, x1, . . . , xk, y1, y2, . . . , yn).
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Remark 2.3.10 (topological equivalences). When we relativize to arbitrary
oracles, the topological analogies of Remark 2.3.7 become topological equiva-
lences. For S ⊆ ωω we have that S is open if and only if S is Σ0,f

1 for some

f . S is closed if and only if S is Π0,f
1 for some f . S is Fσ (i.e., the union of

countably many closed sets) if and only if S is Σ0,f
2 for some f . S is Gδ (i.e.,

the intersection of countably many open sets) if and only if S is Π0,f
2 for some

f . Also, F : ωω → ωω is continuous if and only if F is f -recursive for some f .

More generally, F : ωω
P→ ωω is continuous with Gδ domain if and only if F is

partial f -recursive for some f . Furthermore, all of this generalizes to effective
Polish spaces, using good Cauchy sequences, in the style of Exercise 1.5.39.

2.4 Turing degrees

Notation 2.4.1. We write {e}f(x1, . . . , xk) ≃ ϕ
(k),f
e (x1, . . . , xk).

Definition 2.4.2 (Turing reducibility). Let f and g be two functions in ωω.
Then f ≤T g if there exists an oracle program with Gödel number e such that
{e}g(x) ≃ f(x) for all x ∈ ω. In other words, f can be computed using an oracle
for g. In this case, f is said to be Turing reducible to g.

The following proposition follows easily from the definition of Turing re-
ducibility.

Proposition 2.4.3. The relation ≤T is reflexive and transitive.

Proof. Let f , g and h be elements of ωω. Clearly, f can be computed using
an oracle for f , so f ≤T f . Now, suppose that f ≤T g and g ≤T h. Then
f(n) = {e1}g(n) for all n, and g(n) = {e2}h(n) for all n, for some fixed e1, e2 ∈
ω. Whenever g is called in computing f , substitute the program calling h to
compute g. Thus we see that there is an e3 ∈ ω such that f(n) = {e3}h(n) for
all n, hence f ≤T h.

Definition 2.4.4. Two functions f and g in ωω are said to be Turing equivalent
if f ≤T g and g ≤T f . In this case we write f ≡T g.
Proposition 2.4.5. Turing equivalence is an equivalence relation.

Proof. This is clear from Proposition 2.4.3 and the definition of Turing equiva-
lence.

Definition 2.4.6 (degrees of unsolvability). The Turing degrees are the set
of equivalence classes of ≡T :

DT = ωω/≡T .

If f ∈ ωω, then we have degT (f) = {g ∈ ωω | f ≡T g}. This is the Turing
degree of f . The Turing degrees are partially ordered by Turing reducibility:

degT (f) ≤ degT (g) ⇐⇒ f ≤T g.
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Turing degrees are also known as degrees of unsolvability.

There is a least Turing degree 0 = degT (λn.0). Note that degT (f) = 0 if
and only if f is recursive.

Proposition 2.4.7. Any two Turing degrees have a least upper bound.

Proof. The least upper bound of a = degT (f) and b = degT (g) is a ∨ b =
degT (h), where h = f ⊕ g is given by h(2n) = f(n), h(2n + 1) = g(n) for all
n.

Remark 2.4.8. It can be shown that there exist two Turing degrees which do
not have a greatest lower bound.

If A ⊆ ω we write degT (A) to mean degT (χA), where χA is the characteristic
function of A. In some textbooks the Turing degrees are defined in terms of
sets, not functions. This does not matter, because as we shall now show, all
Turing degrees are Turing degrees of sets.

Proposition 2.4.9. For each f ∈ ωω there is a set A ⊆ ω such that degT (A) =
degT (f).

Proof. Let A = Gf = {2x3f(x) | x ∈ ω}, the “graph” of f . It suffices to
show that degT (f) = degT (A). We have f(x) = µy (2x3y ∈ Gf ), so f can be
computed using an oracle for A. Conversely, n ∈ A if and only if n = 2(n)03(n)1

and f((n)0) = (n)1. Thus, χA can be computed using an oracle for f .

2.5 The jump operator

Given f ∈ ωω, suppose we wish to find a Turing degree which is strictly greater
than degT (f). The most obvious way to do so is to relativize Turing’s result
on the Halting Problem to oracle programs using f as the oracle. Let Hf =
{e | {e}f(0) ↓}, the Halting Problem relativized to f . By relativizing Turing’s
argument, we shall show thatHf 6≤T f . Furthermore, using the S-m-n Theorem,
we shall show that f ≤T Hf . Thus we will have degT (Hf ) > degT (f).

Definition 2.5.1. For Γ ⊆ P(ω), a set C ⊆ ω is said to be Γ complete if

1. C ∈ Γ, and

2. for all A ∈ Γ, A ≤m C.

Theorem 2.5.2. The set Hf is Σ0,f
1 complete. In fact, for all A ⊆ ω, A ∈ Σ0,f

1

if and only if A ≤m Hf .

Proof. This is just the relativization to f of the fact that the Halting Problem,
H , is Σ0

1 complete.

Note first that Hf is Σ0,f
1 since

e ∈ Hf ⇐⇒ ∃n ((Statef (e, 0, n))0 = 0).
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Here, n is the stopping time of the program e started with inputs 0 and oracle
f .

Now suppose A ∈ Σ0,f
1 , say A = {x | ∃y Rf (x, y)}, where Rf is primitive

recursive relative to f . Consider the function ψf (x) ≃ µy Rf(x, y). This is a
partial recursive function relative to f . Hence there is a Gödel number e such
that

ψf (x) ≃ ϕ(2),f
e (x, z),

where z is a dummy variable. By the S-m-n Theorem we have

ϕ
(1),f

S1
1(e,x)

(z) ≃ ϕ(2),f
e (x, z)

where S1
1 is primitive recursive. Setting z = 0 we see that x ∈ A if and only if

S1
1(e, x) ∈ Hf . Thus A ≤m Hf via λx.S1

1(e, x).

Corollary 2.5.3. Suppose f and g are elements of the Baire space. Then:

1. if f ≤T g, then Hf ≤m Hg;

2. f ≤T Hf ; and

3. Hf 6≤T f .

Proof. If f ≤T g, then Σ0,f
1 ⊂ Σ0,g

1 , so Hf ≤m Hg. We showed above that

Gf ≡T f and hence Gf is in Σ0,f
1 . It follows that Gf ≤m Hf , so Gf ≤T Hf .

Thus, it follows that f ≤T Hf . Finally, let Kf = {e | ϕ(1),f
e (e) ↓} (the diagonal

halting problem). Then Kf 6≤T f by the usual diagonalization argument. We

can show that Kf is Σ0,f
1 so Kf ≤m Hf and therefore Hf 6≤T f .

Exercise 2.5.4. Show that f ≤T g if and only if Hf ≤m Hg.

Definition 2.5.5. The function

J : DT → DT

defined by J(degT (f)) = degT (Hf ) is called the Turing jump operator.

Note that if f ≡T g, then Hf ≡T Hg, so the Turing jump does not depend
on the choice of Turing degree representative.

Notation 2.5.6. If a is any Turing degree, we often denote J(a) by a′. We
denote the nth Turing jump of a as a(n). Thus a(0) = a, and a(n+1) = (a(n))′

for all n. Thus we have

a < a′ < a′′ < · · · < a(n) < a(n+1) < · · · .

Proposition 2.5.7. If a and b are Turing degrees, we have:

1. a < a′.

2. a ≤ b implies a′ ≤ b′.
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3. In particular a′ ≥ 0′ for all a.

Note also that 0′ is the Turing degree of the Halting Problem, 0′ = degT (H).

The following two theorems express nice properties of the jump operator.
We state them now without proof. We shall prove them later, after developing
some machinery.

Theorem 2.5.8 (Friedberg’s Jump Theorem). For all Turing degrees c ≥
0′ there exists a Turing degree a such that a′ = c. In other words, the range of
the Turing jump operator J : DT → DT is {c ∈ DT | c ≥ 0′}.

Theorem 2.5.9 (Post’s Theorem). The Turing degree 0(n) is degT (Cn),
where Cn is a complete Σ0

n set.

2.6 Finite approximations

Intuitively, if an oracle computation {e}f(x) halts, it can only use a finite
amount of information from f , because it only performs a finite number of
steps before halting. In this section, we formalize this intuition into Proposition
2.6.3. Then we use this idea to prove that incomparable Turing degrees exist
(Theorem 2.6.4) and to prove Friedberg’s theorem characterizing the range of
the Turing jump operator (Theorem 2.6.7).

Definition 2.6.1 (finite sequences). We define Seq = ω<ω to be the set
of finite sequences of elements of ω. Also, Seq2 = 2<ω consists of the finite
sequences from the set {0, 1}. We sometimes identify sequences σ ∈ Seq with
their Gödel numbers. The length of σ is denoted lh(σ). For n < lh(σ), σ(n) is
the nth element of σ. The first element of σ is σ(0). Let f ∈ ωω and σ, τ ∈ Seq.
We write σ ⊆ τ if and only if lh(σ) ≤ lh(τ) and ∀n < lh(σ)[σ(n) = τ(n)]. We
write σ ⊂ f if and only if ∀n < lh(σ) [σ(n) = f(n)]. For n ∈ ω, f [n] denotes the
sequence consisting of the first n elements of f :

f [n] = 〈f(0), f(1), . . . , f(n− 1)〉.

Definition 2.6.2. For e, s, x, y ∈ ω and σ ∈ Seq, we write {e}σs (x) ≃ y if and
only if the following conditions hold:

1. x, y, and e are all less than s.

2. For some (equivalently, all) f ∈ ωω extending σ, {e}f(x) halts in fewer
than s steps with output y, and during this computation, no oracle infor-
mation from f is used except the part of f which is in σ.

We write {e}σ(x) ≃ y if and only if {e}σlh(σ)(x) ≃ y.

A basic tool in the study of Turing degrees is the following proposition.

Proposition 2.6.3. We have:
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1. {e}f(x) ≃ y if and only if ∃n ∃s {e}f [n]
s (x) ≃ y.

2. {e}f(x) ≃ y if and only if ∃n {e}f [n](x) ≃ y.

3. If s ≤ t and σ ⊆ τ , then {e}σs (x) ≃ y implies {e}τt (x) ≃ y.

4. The 5-place relation {e}σs (x) ≃ y is primitive recursive.

5. The 4-place relation {e}σs (x) ↓ is primitive recursive.

6. The 4-place relation {e}σ(x) ≃ y is primitive recursive.

7. The 3-place relation {e}σ(x) ↓ is primitive recursive.

We now use this technique to prove the existence of incomparable Turing
degrees.

Theorem 2.6.4 (Kleene/Post). There are incomparable Turing degrees be-
low 0′. That is, there are a,b ≤ 0′ such that a 6≤ b and b 6≤ a.

Proof. We shall have a = degT (A), b = degT (B) where A,B ⊆ ω. We will
build f = χA and g = χB by finite approximation. That is, we will construct
two sequences 〈σn〉∞n=0 and 〈τn〉∞n=0 of elements of Seq2 such that, for all n ∈ ω,
σn ⊆ σn+1 and τn ⊆ τn+1. Then we will let f =

⋃∞
n=0 σn and g =

⋃∞
n=0 τn.

Thus f, g ∈ 2ω. In the end, the Turing degrees of f and g will satisfy the
conclusions of the theorem. The construction will proceed by stages. At stage
n, we will create σn and τn.

Informally, the construction proceeds as follows. At stage 2e, we ensure
that once f and g are constructed, f 6= {e}g. At stage 2e+ 1, we ensure that
g 6= {e}f . After f and g are constructed, we will see that they are recursive in
the Halting Problem, H = 0′.

We begin the construction at stage 0 by letting σ0 = τ0 = 〈〉, the empty
sequence.

At stage 2e+1, if there exists σ ∈ Seq2 extending σ2e such that {e}σ(lh(τ2e)) ≃
1, we let σ2e+1 = σ and τ2e+1 = τ2e

a〈0〉. Otherwise, we let σ2e+1 = σ2e and
τ2e+1 = τ2e

a〈1〉.
At stage 2e+2, if there exists τ extending τ2e+1 such that {e}τ(lh(σ2e+1)) ≃

1, then we let τ2e+2 = τ and σ2e+2 = σ2e+1
a〈0〉. Otherwise, we let τ2e+2 = τ2e+1

and σ2e+2 = σ2e+1
a〈1〉.

Define f =
⋃
n σn and g =

⋃
n τn. We claim that f and g have incom-

parable Turing degrees. Suppose that f = {e}g. This is impossible, be-
cause f(lh(σ2e+1)) = 1 if and only if {e}τ2e+1(lh(σ2e+1)) 6≃ 1, if and only if
{e}g(lh(σ2e+1)) 6≃ 1. Similarly, it can be shown that g 6= {e}f .

We next claim that the functions n 7→ σn and n 7→ τn are recursive in 0′.
We prove this by induction on n. Suppose we know how to compute σn and
τn and we want to compute σn+1 and τn+1. We mimic the construction above.
The only nonrecursive decision which must be made during this construction
is whether a certain unbounded search will terminate. We can decide whether
this search will terminate by using an oracle for the Halting Problem. Hence
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σn+1 and τn+1 are recursive in 0′ as claimed. Hence f and g are recursive in 0′

as well.

The Kleene/Post method yields many other properties of the Turing degrees,
as illustrated by the following exercises.

Exercise 2.6.5. Show that in Theorem 2.6.4 we can also require that a and b
form a minimal pair, i.e., for all c, if c ≤ a and c ≤ b then c = 0.

Exercise 2.6.6. An ideal in the Turing degrees is a set I ⊆ DT such that
0 ∈ I, and c1 ∨ c2 ∈ I if and only if c1, c2 ∈ I. Show that for any countable
ideal I there exist a,b such that I = {c | c ≤ a ∧ c ≤ b}. Conclude from this
that no strictly ascending sequence of Turing degrees has a least upper bound.
Conclude also that DT is not a lattice.

Next we prove the Freidberg Jump Theorem.

Theorem 2.6.7 (Friedberg). Given a Turing degree c ≥ 0′, we can find a
Turing degree a such that a′ = a ∨ 0′ = c.

Proof. Fix C ⊆ ω such that c = degT (C). As before we construct a = degT (A)
where χA ∈ 2ω is the limit of an increasing sequence σn ∈ Seq2 of finite approxi-
mations. Then we will show that A has the desired properties. The construction
will proceed by stages. At stages of the form 2e+ 1, we will exert some control
over the Turing jump of A. At stages of the form 2e + 2 we will ensure that
C ≤T A⊕ 0′.

At stage 0, let σ0 = 〈〉.
At stage 2e + 1, we ask whether there exists σ ∈ Seq2 extending σ2e such

that {e}σ(0) ↓. If so, we choose the unique σ of least Gödel number among
all elements of Seq2 with this property, and let σ2e+1 = σ. Otherwise, we let
σ2e+1 = σ2e.

At stage 2e+ 2, we let σ2e+2 = σ2e+1
a〈χC(e)〉.

To end the construction, let χA =
⋃
n σn. It is clear that the length of σn

becomes arbitrarily large as n goes to infinity, so A is well defined.
First, we claim that the function n 7→ σn is recursive in C. The construction

at stages of the form 2e+2 is clearly recursive in C. The construction at stages
of the form 2e+1 is recursive in 0′, which in turn is recursive in C by hypothesis.
This proves the claim.

Next, we claim that C is recursive in A⊕ 0′. It is enough to show that the
function n 7→ σn is recursive in A ⊕ 0′, because C is clearly recursive in this
sequence. The construction of σn+1 given σn at a stage of the form 2e + 2 is
recursive in A; at a stage of the form 2e+ 1 the construction is recursive in 0′.
This implies that C ≤T A⊕ 0′.

Combining this with the previous claim, we see that c = a ∨ 0′.
Finally, we claim that a′ = a ∨ 0′. A straightforward argument shows that

a∨ 0′ ≤ a′. We will show that the converse inequality holds. We showed above
that the sequence 〈σn〉 is recursive in a ∨ 0′. By construction, {e}A(0) ↓ if and
only if {e}σ2e+1(0) ↓. Since the latter computation must halt in no more than
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lh(σ2e+1) steps, we can recusively decide whether {e}A(0) halts by running it
for lh(σ2e+1) steps. As lh(σ2e+1) can be computed from a ∨ 0′, this shows that
a′ ≤ a ∨ 0′.

Remark 2.6.8. A Turing degree a is said to be low if a′ ≤ 0′, and generalized
low if a′ ≤ a∨0′. (The opposite inequalities hold automatically for all a.) Using
this language, we can say that the Turing degree a constructed in Theorem 2.6.7
is generalized low.

Exercise 2.6.9. Show that for all c ≥ 0′ there exist a,b such that a′ = a∨0′ =
b′ = b ∨ 0′ = a ∨ b = c and a 6≤ b and b 6≤ a. In addition we can require that
a and b form a minimal pair.

2.7 Post’s Theorem and its corollaries

Theorem 2.7.1 (Post). Let R ⊆ ωk be a k-place predicate on ω. Then R is

Σ0,B
n+1 if and only if R is Σ0,B(n)

1 . Here B(n) denotes the nth Turing jump of B.

Proof. The proof is by induction on n. The base case when n = 0 is trivial,
since B(0) = B. Let n ≥ 1 and suppose R is Σ0,B

n+1. Then we have

R(x1, . . . , xn) ≡ ∃y S(x1, . . . , xn, y)

for a Π0,B
n predicate S. It follows that the complement of S is Σ0,B

n and hence

by the induction hypothesis, the complement of S is Σ0,B(n−1)

1 . From this we

deduce that S is Π0,B(n−1)

1 . Then S is recursive in B(n), hence R is Σ0,B(n)

1 .

To prove the converse, assume that R is Σ0,B(n)

1 . Letting e be an index of
R, we can write

R(x1, . . . , xn) ≡ {e}χB(n) (x1, . . . , xk) ↓ ≡ ∃s {e}χB(n) [s]
s (x1, . . . , xk) ↓ .

This is equivalent to

∃σ (χB(n) [lh(σ)] = σ ∧ {e}σ(x1, . . . , xk) ↓).

To show that this is Σ0,B
n+1, it suffices to show that the predicate χB(n) [lh(σ)] = σ

is ∆0,B
n+1, since the predicate

{e}σ(x1, . . . , xk) ↓

is primitive recursive.
Note that the predicate x ∈ B(n) is Σ0,B

n . To see this we first note that B(n)

is Σ0,B(n−1)

1 by definition. Applying the induction hypothesis, we see that B(n)

is Σ0,B
n .
Now, observe that χB(n) [lh(σ)] = σ if and only if

∀i < lh(σ) [i ∈ B(n) ⇐⇒ σ(i) = 1].
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Because i ∈ B(n) is Σ0,B
n , we see that i ∈ B(n) ⇐⇒ σ(i) = 1 is ∆0,B

n+1, being
the conjunction of a Σ0,B

n statement and a Π0,B
n statement. Since the quantifier

∀i < lh(σ) is bounded, it follows that the whole formula is ∆0,B
n+1. Hence, as

noted above, R is Σ0,B
n+1. This completes the proof.

Corollary 2.7.2. Let A,B ⊆ ω. Then A is Σ0,B
n+1 if and only if A is r.e. in B(n).

Proof. This follows from Post’s Theorem plus the relativization to B(n) of the
fact that A is Σ0

1 if and only if A is r.e.

Corollary 2.7.3. A is Σ0,B
n+1 if and only if A ≤m B(n+1). In particular, B(n+1)

is a complete Σ0,B
n+1 set.

Proof. This follows from Corollary 2.7.2 plus the relativization to B(n) of the
fact that A is Σ0

1 if and only if A ≤m H .

Corollary 2.7.4. A is ∆0,B
n+1 if and only if A ≤T B(n).

Proof. This follows from Corollary 2.7.2 plus the relativization to B(n) of the
fact that A is r.e. and co-r.e. if and only if A is recursive.

Corollary 2.7.5. degT (B(n)) = max{degT (A) | A ∈ ∆0,B
n+1}.

Proof. This is immediate from the previous corollary.

Combining these corollaries and setting B = 0, we have the following unrel-
ativized results.

Corollary 2.7.6. Let A be a subset of ω.

1. A is Σ0
n+1 if and only if A is r.e. in 0(n).

2. A is Σ0
n+1 if and only if A ≤m 0(n+1).

3. A is ∆0
n+1 if and only if A ≤T 0(n).

4. A ∈ Σ0
∞ =

⋃∞
n=0 Σ0

n if and only if A ≤T 0(n) for some n.

Remark 2.7.7. Note that, according to Post’s Theorem, Σ0
n predicates on ω

behave very much like Σ0
1 predicates, for all n ≥ 1. Thus, to understand the

structure of Σ0
n subsets of ω, n ≥ 1, it suffices to understand the structure of

r.e. sets.
To illustrate, we briefly explore a well known property of Σ0

1 predicates which
easily generalizes to Σ0,B

n , n ≥ 1, using Post’s Theorem.
Consider the following statement:

If S ⊆ ωk+1 is Σ0
1 and ∀x1 · · · ∀xk ∃y S(x1, . . . , xk, y) holds, then we

can find a recursive Skolem function f : ωk → ω such that
∀x1 · · · ∀xk S(x1, . . . , xk, f(x1, . . . , xk)).
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This is well known as a special case of the so-called uniformization principle for
Σ0

1 predicates. Relativizing to an arbitrary oracle B, we obtain:

If S ⊆ ωk+1 is Σ0,B
1 and ∀x1 · · · ∀xk ∃y S(x1, . . . , xk, y) holds, then

we can find f : ωk → ω such that f ≤T B and
∀x1 · · · ∀xk S(x1, . . . , xk, f(x1, . . . , xk)).

In particular, if we let B = 0(n), then by Post’s Theorem we obtain:

If S ⊆ ωk+1 is Σ0
n+1 and ∀x1 · · · ∀xk ∃y S(x1, . . . , xk, y) holds, then

we can find a ∆0
n+1 function f : ωk → ω such that

∀x1 · · · ∀xk S(x1, . . . , xk, f(x1, . . . , xk)).

This is an interesting property of Σ0
n+1 predicates which is not obvious from the

definitions.

Remark 2.7.8. It is worth noting that Post’s Theorem applies to predicates
on ω, but does not apply to predicates on the Baire space, ωω. For example,
consider the set of constant functions, C = {f | ∀n f(n) = f(0)} ⊆ ωω. Clearly

C is Π0
1, hence Σ0

2, but C is not Σ0,0′

1 . In fact, C is not Σ0,f
1 for any oracle f .

One way to see this is to note that a set S ⊆ ωω is Σ0,f
1 for some f if and only if

S is open (with respect to the usual topology on ωω). See Remark 2.3.10. Our
set C is certainly not open.

2.8 A minimal Turing degree

In this section, we prove the existence of a minimal Turing degree. We follow
the method, due to Sacks [13], of forcing with recursive perfect trees.

We begin with a discussion of trees in general.

Definition 2.8.1 (trees). A tree is a nonempty subset of Seq which is closed
under initial segments. Thus if T is a tree, σ ∈ T , and τ ⊆ σ, then τ ∈ T . A
tree is said to be recursive if the characterstic function of the tree as a subset
of Seq is recursive.

Definition 2.8.2. A path through a tree T is a function f ∈ ωω such that every
initial segment of f is in T . The set of paths through T is denoted [T ]. Thus
we have

[T ] = {f ∈ ωω | ∀n (f [n] ∈ T )}.

Proposition 2.8.3. A nonempty set C ⊆ ωω is closed if and only if there exists
a tree T ⊆ Seq such that C = [T ].

Proof. Suppose that T ⊆ Seq is a tree. Let f be a function in ωω such that
f 6∈ [T ]. Then there is an n ∈ ω such that f [n] 6∈ T . Hence f has an open
neighborhood Uσ = {g | σ ⊂ g} disjoint from [T ], where σ = f [n]. Therefore
[T ] is closed.

Conversely, let C be a closed set. Then the set
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TC = {σ ∈ Seq | σ ⊂ f for some f ∈ C}
is a tree. Suppose f ∈ [TC ], that is, f [n] ∈ TC for all n ∈ ω. This implies that
for each n there is a g ∈ C such that g[n] = f [n] Since C is closed, it follows
that f ∈ C. Therefore C = [TC ].

Definition 2.8.4 (tidy trees). A tree T is tidy if for all σ ∈ T there is a τ in
T such that σ $ τ . Note that a tidy tree has no “dead ends.”

Definition 2.8.5 (perfect trees). A tree T is perfect if for any σ ∈ T there
exist τ1, τ2 ∈ T such that τ1 | τ2, σ ⊂ τ1, and σ ⊂ τ2. A node σ ∈ T is called a
branching node if σa〈i〉 ∈ T and σa〈j〉 ∈ T for some i, j ∈ ω, i 6= j.

Remark 2.8.6. Every perfect tree is tidy, but not every tidy tree is perfect.
Every recursive tidy tree T ⊆ ωω has a recursive path, e.g., the leftmost path,
defined by f(n) = the least i such that f [n]a〈i〉 ∈ T , for all n ∈ ω.

Remark 2.8.7. The construction in the proof of Proposition 2.8.3 gives a one-
to-one correspondence C 7→ TC between nonempty closed sets in ωω and tidy
trees in Seq. Under this correspondence, nonempty perfect closed subsets of ωω

correspond to perfect trees in Seq.

We now return to degrees of unsolvability.

Definition 2.8.8. A Turing degree a is said to be minimal if a > 0 and for all
b ≤ a either b = 0 or b = a.

Definition 2.8.9. A Turing degree a is said to be almost recursive if every
total function recursive in a is bounded pointwise by a total recursive function.
For historical reasons such Turing degrees are also known as hyperimmune-free,
but we will not use this terminology.

Theorem 2.8.10. There is a Turing degree a such that a is minimal. In
addition, a is almost recursive.

Proof. The proof uses Sacks trees, which are defined as follows.

Definition 2.8.11 (Sacks trees). A Sacks tree is a recursive, perfect subtree
of Seq2.

Remark 2.8.12. Clearly Seq2 is itself a Sacks tree. Moreover, every Sacks
tree “looks like” Seq2, i.e., if T ⊆ Seq2 is a Sacks tree then [T ] is recursively
homeomorphic to 2ω = [Seq2].

Definition 2.8.13. If T is a Sacks tree and σ ∈ T , put

T σ = {τ ∈ T | σ ⊆ τ ∨ τ ⊆ σ}.

Note that T σ is again a Sacks tree.
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We will construct a sequence of Sacks trees Tn ⊆ Seq2, n ∈ ω, which is
descending, i.e., for all n, Tn+1 ⊆ Tn. The intersection

⋂
n[Tn] will consist of a

single function f ∈ 2ω. The set A for which f = χA will have the desired Turing
degree. The construction will proceed by stages.

Stage 0. Let T0 = Seq2.
Stage 3e+1. At this stage, we will ensure that {e} 6= χA. Let σ be a

branching node in T3e and let n = lh(σ). If {e}(n) ↑, let T3e+1 = T3e. Otherwise,
let τ be an immediate extension of σ such that τ(n) 6= {e}(n) and let T3e+1 =
T τ3e. For any f ∈ [T3e+1], it is clear that f 6= {e}.

Stage 3e+2. At this stage, we ensure that for any path f through T3e+1, if
{e}f is a total function then {e}f is bounded by a recursive function. We split
this stage of the construction into two complementary cases.

Case 1: There is some n ∈ ω and some τ ∈ T3e+1 such that for all σ ∈ T3e+1

extending τ , {e}σ(n) ↓. In this case, let T2e+2 = T σ3e+1.
Case 2: Case 1 is false. In this case, for all n and for all τ ∈ T3e+1, there is

some σ ∈ T3e+1 for which {e}σ(n) ↓. We next construct a monotone function
ψ : Seq2 → T3e+1; we will define ψ(σ) by induction on the length of σ. Let
ψ(∅) be the element τ ∈ T3e+1 with least Gödel number such that {e}τ(0) ↓
and τ is a branching node. Let ψ(σa〈0〉) be the element τ ∈ T3e+1 with least
Gödel number such that τ is a branching node, ψ(σ)a〈0〉 ⊆ τ , and {e}τ(n) ↓.
Let ψ(σa〈1〉) be the element τ ∈ T3e+1 with least Gödel number such that τ
is a branching node, ψ(σ)a〈1〉 ⊆ τ , and {e}τ(n) ↓. It is clear that ψ(σ) is a
recursive function defined for all σ ∈ Seq2.

Let T3e+2 be the downward closure of the range of ψ, that is, T3e+2 = {τ ∈
T3e+1 | ∃σ ∈ Seq2 (τ ⊆ ψ(σ))}. This is a recursive set, because if there is any σ
such that τ ⊆ ψ(σ) then there some such σ of length less than or equal to lh(τ)
with this property, so the quantifier is bounded. Hence T3e+2 is a Sacks tree.

This completes the construction at stage 3e + 2. Now suppose that f ∈
[T3e+2] and {e}f is a total function recursive in f . If this occurs, the construction
must have followed case 2. Let g(n) = max{{e}ψ(σ)(n) | σ ∈ 2n. Then f(n) ≤T
g(n), because {e}f(n) = {e}f [lh(ψ(f [n]))].

Stage 3e+3. At this stage, we will ensure that if f ∈ [T3e+3] and g = {e}f
is a total recursive function then either g is recursive or f ≤T g.

Case 1: For some σ ∈ T3e+2 and for some n, {e}σ(n) ↑. In this case, let
T3e+3 = T σ3e+2.

In the remaining two cases, we assume case 1 was false. This implies that
for every σ ∈ T3e+2 and for every n, {e}σ(n) ↓.

Case 2: Case 1 fails, and the following condition holds: For every σ ∈ T3e+2

there is some n and a pair of incompatible elements τ1, τ2 ∈ (T3e+2)σ such that
{e}τ1(n) 6= {e}τ2(n).

We construct a monotone function ψ : Seq2 → T3e+2, defining ψ(σ) by
induction on the length of σ. Let ψ(〈〉) = 〈〉. Let ψ(σa〈0〉) and ψ(σa〈1〉) be
the least pair of elements of Seq2 witnessing that the defining condition of Case
2 holds for σ. For any σ, these elements of T3e+2 can be found by searching, so
ψ is recursive and defined for all σ ∈ Seq2.
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To finish the construction, let T3e+2 = {τ | ∃σ (τ ⊆ ψ(σ))}. It can be seen
that this is a Sacks tree.

Case 3: Neither case 1 nor case 2 holds. Hence there is some σ ∈ T3e+2 such
that for all n and for all τ1, τ2 ∈ (T3e+2)σ, {e}τ1(n) ↓≃ {e}τ2(n). In this case,
let T3e+3 = T σ3e+2.

This completes the construction for stage 3e + 3. Choose f ∈ [T3e+3] such
that {e}f is a total function. Since {e}f is a total function, the construction
above followed case 2 or 3. These constructions were chosen to control the
functional Ψ : [T3e+3] ∋ f 7→ {e}f ∈ 2ω. If the construction followed case
2, then Ψ is injective. This implies that we can compute f(n) from {e}f , by
computing {e}σ ∈ Seq2 for longer and longer σ until we have found a σ of
some length m ≥ n such that {e}σ ⊆ {e}f . If the construction followed case 3,
then Ψ is constant. This implies {e}f is recursive; for any recursive g ∈ T3e+3,
{e}f = {e}g.

We have completed the description of the three stages of the construction.
It is clear that ∩[Tn] contains a single path f . Let A ⊆ ω be the set such that
f = χA. We claim that A satisfies the conclusions of the theorem. The set A
cannot be recursive; for any e, χA 6= {e} because of the construction at stage
3e. Suppose that g = {e}A is a total recursive function. By the construction
at stage 3e + 1, g is bounded by a total recursive function. Therefore A is
almost recursive. Finally, because of the construction at stage 3e+ 3, either g
is recursive, or f ≤T g. Therefore degT (A) is minimal.

2.9 Sacks forcing

In this section, we will introduce the idea of forcing by using Sacks trees. We
begin by defining the relevant structures.

Definition 2.9.1. Let P denote the partial order of Sacks trees ordered by
inclusion.

Remark 2.9.2. It is common for a partial order to be referred to as a notion
of forcing, and its elements to be referred to as conditions.

Definition 2.9.3 (dense sets). A set D ⊆ P is said to be dense if for all
P ∈ P there exists Q ∈ D such that Q ⊆ P . We say f ∈ ωω meets D if and
only if there exists P ∈ D such that f ∈ [P ].

Definition 2.9.4 (genericity). D ⊆ P is said to be arithmetical if {e | {e} =
χP for some P ∈ D} is arithmetical. We say g ∈ 2ω is Sacks generic if g meets
every dense arithmetical set D ⊆ P .

Lemma 2.9.5. For every P ∈ P , there exists a Sacks generic g ∈ [P ].

Proof. Let 〈Dn〉n∈ω be an enumeration of the arithmetical dense subsets of P .
We define a sequence 〈Pn〉n of Sacks trees by letting P0 = P and letting Pn+1

be a tree such that Pn+1 ⊆ Pn and Pn+1 ∈ Dn. Finally, let g be the unique
element of

⋂
n∈ω[Pn].
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Theorem 2.9.6. For every Sacks generic g ∈ 2ω, we have

1. degT (g) is minimal, and

2. degT (g) is almost recursive.

Proof. We will only prove that degT (g) is almost recursive. To do this, we will
show how the proof of Theorem 2.8.10 can be recast in terms of forcing. The
proof that degT (g) is minimal follows similarly.

For P ∈ P , Let Br(P ) denote the set of branching nodes of P ,

Br(P ) = {σ ∈ P | σa〈0〉 ∈ P ∧ σa〈1〉 ∈ P}.

Let Brn(P ) be the set of nth-level branching nodes of P . That is, σ ∈ Brn(P )
if and only if σ ∈ Br(P ) and there are exactly n proper initial segments of σ in
Br(P ).

For each e ∈ ω we define De ⊆ P by

De = {P ∈ P | ∃n ∀σ ∈ P {e}σ(n) ↑ ∨∀n ∀σ ∈ Brn(P ) {e}σ(n) ↓}.

We first show that for each e, De is dense. Given Q ∈ P we have the following
two cases:

Case 1: There is an n and a σ ∈ Q such that for every τ ∈ Q extending σ,
{e}τ(n) ↑. In this case we let P = Qσ. It follows by construction that P ∈ De
and P ⊆ Q.

Case 2: Case 1 fails. Then for all n and all σ ∈ Q, there exists τ ∈ Q
extending σ such that {e}τ(n) ↓. In this case we define a recursive h : 2<ω → Q,
where {e}h(σ)(n) ↓ for all σ ∈ 2<ω and lh(σ) = n. It follows from this definition
that σ1 ⊆ σ2 ⇐⇒ h(σ1) ⊆ h(σ2). So we can define

P = {τ ∈ Q | ∃σ ∈ 2<ω τ ⊆ h(σ)}.
Then P ∈ De and P ⊆ Q. This proves our claim. Therefore De is dense.

Let g be Sacks generic. We will show that g is almost recursive. Let f
be a total function recursive in g, so f = {e}g for some e. Since De is dense,
g meets De. The construction of De allows us to compute a total recursive
function h which bounds every such f , so g is almost recursive. Let P be a
Sacks tree in De such that g is a path through P . To compute h(n) we do
the following: First, find the finite set Brn(P ) of nth level branching nodes.
This can be done recursively since P is a recursive tree in Seq2. Call this set
Brn(P ) = {σj | 1 ≤ j ≤ 2n}. Let h(n) = maxj{e}σj(n). It follows from the
constriction of De that all the computations involved in computing h(n) will
halt. So h is a total recursive function. Moreover, h(n) bounds f(n) because
f(n) = {e}g(n) = {e}σ(n) where σ is the nth level branching node in P which
g extends.

We now introduce forcing and state its key properties.
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Definition 2.9.7 (the forcing language). The forcing language is L =
{+, ·, 0, 1, <,=, g}, i.e., the language of arithmetic with an added 1-place func-
tion symbol g. If g ∈ 2ω and if ϕ is an L-sentence, we say that g satisfies ϕ,
written g |= ϕ, if ϕ is true in the L-structure (ω,+, 0, 1, ·,=, <, g).

Definition 2.9.8 (forcing). Let P ∈ P . Let ϕ be a sentence of the forcing
language. We say P forces ϕ, written P  ϕ, if every generic g in [P ] satisfies
ϕ.

Theorem 2.9.9 (definability of forcing). For each formula ϕ(x1, . . . , xk)
the set {〈P, n1, . . . , nk〉 | P  ϕ(n1, . . . , nk)} is arithmetical.

Theorem 2.9.10 (forcing equals truth). If g is generic, then 〈ω,+, ·, 0, 1, <
,=, g〉 |= ϕ if and only if there is some P ∈ P such that g ∈ [P ] and P  ϕ.

To prove Theorems 2.9.9 and 2.9.10, we introduce a relation s known as
the strong forcing relation. We will restate the theorems replacing forcing by
strong forcing, and prove these new theorems. Then we will show that the
forcing relation is definable in terms of the strong forcing relation, which will
allow us to prove Theorems 2.9.9 and 2.9.10.

Remark 2.9.11. Forcing is preserved under logical equivalence. I.e., if ϕ1 ≡ ϕ2

then P  ϕ1 ⇐⇒ P  ϕ2. We shall see that strong forcing is not preserved
under logical equivalence.

Definition 2.9.12 (strong forcing). Let P ∈ P and let ϕ be an L-sentence.
We define the relation P s ϕ by induction on formulas as follows:

P s (m1 +m2 = m3) ≡ m1 +m2 = m3

P s (m1 ·m2 = m3) ≡ m1 ·m2 = m3

P s f(m) = n ≡ f(m) = n for all f ∈ [P ]

P s m < n ≡ m < n

P s m = n ≡ m = n

P s ϕ1 ∨ ϕ2 ≡ P s ϕ1 or P s ϕ2

P s ¬ϕ ≡ ¬∃Q ⊆ P (Q s ϕ)

P s ∃nϕ(n) ≡ P s ϕ(n) for some n.

Lemma 2.9.13. If P s ϕ and Q ⊆ P then Q s ϕ

Proof. The proof follows from a straightforward induction on ϕ.

Lemma 2.9.14 (definability of strong forcing). Let ϕ(n1, . . . , nk) be an
L-formula. The set of all tuples 〈P, n1, . . . , nk〉 such that P s ϕ(n1, . . . , nk) is
arithmetical.

Proof. The proof follows from a straightforward induction on ϕ.
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Lemma 2.9.15. If P,Q ∈ P and g is a generic element of [P ] ∩ [Q] then there
exists R ∈ P such that R ⊆ P ∩Q and g ∈ [R].

Proof. Let P,Q, g be as in the hypotheses of the lemma. Define DP and DQ as
follows:

DP = {R ∈ P | R ⊆ P or Br0(R) ∩ P = ∅},
DQ = {R ∈ P | R ⊆ Q ∨RP (R) ∩Q = ∅}.

It can be seen that DP ∩ DQ is dense and arithmetical. Therefore g meets
DP ∩DQ, which establishes the result.

Lemma 2.9.16 (strong forcing equals truth). Let g ∈ 2ω be generic and
let ϕ be a sentence of the forcing language. Then g |= ϕ if and only if there
exists P ∈ P such that g ∈ [P ] and P s ϕ.

Proof. The proof proceeds by induction on sentences of the forcing language. If
ϕ is atomic, the result follows immediately from the definition of strong forcing.

Suppose ϕ = ψ0 ∨ ψ1. Since g satisfies ϕ, g satisfies either ψ0 or ψ1. There-
fore, by induction, there is a P such that g ∈ [P ] and P s ψ0 or P s ψ1.
Therefore there is a P with g ∈ [P ] such that P s ϕ.

Suppose the ϕ = ¬ψ. Assume that P s ¬ψ; we want to show that g |= ¬ψ.
Towards a contradiction, suppose g |= ψ. By induction it follows that g is in
some Sacks tree Q such that Q s ψ. By Lemma 2.9.15, there is an R extending
P and Q. By Lemma 2.9.13, R s ψ. This contradicts the assumption that
P  ¬ψ.

For the other direction, suppose g |= ¬ψ. We want to show that g is a path
through some tree P such that P s ¬ψ. Let D = {P | P s ψ ∨ P s ¬ψ}.
Since D is dense and arithmetical, g meets D. This finishes the induction in the
case that ϕ = ¬ψ.

Finally, suppose that ϕ = ∃nψ(n). We want to show g |= ∃nψ(n) iff there
is some P ∈ P such that g ∈ [P ] and P s ∃nψ(n). First, assume that g
satisfies ∃nψ(n). Fix an n such that g satisfies ψ(n). Using induction on P ,
it follows that there is a P such that X ∈ [P ] and P s ψ(n). Therefore
P s ∃nψ(n). For the reverse implication, assume that P s ∃nψ(n) and
X ∈ [P ]. Then P s ψ(n) for some fixed n. By induction by P , g |= ψ(n).
Therefore g |= ∃nψ(n).

Lemma 2.9.17. Let P be a Sacks tree and ϕ be a sentence of the forcing
language. Then P  ϕ if and only if {R ⊆ P | R s ϕ} is dense below P . That
is, P  ϕ if and only if P s ¬¬ϕ.

Proof. First, assume that D = {R ⊆ P | R s ϕ} is dense below P . We want
to show P  ϕ. Let g ∈ [P ] be generic. Then g ∈ [R], R ⊆ P and R s ϕ.
Therefore g |= ϕ. Thus P  ϕ. Next, assume that P  ϕ. We want to show
that D is dense below P . Given Q ⊆ P , let g ∈ [Q] be generic. Now g |= ϕ
because g ∈ P and P  ϕ. Therefore there is an R such that g ∈ [R] and
R s ϕ. By Lemma 2.9.15, there is an R′ ⊆ R ∩ Q such that X ∈ [R′]. It
follows that R′ ⊆ Q, R′ s ϕ and R′ ∈ D. We have shown that D is dense
below P .
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We have now proved the basic properties of forcing. Next we present an
application of forcing to the study of definability over the standard model of
arithmetic, (ω,+, ·, 0, 1, <,=).

Definition 2.9.18 (implicit arithmeticity). A set A ⊆ ω is said to be im-
plicitly arithmetical if it is implicitly definable over (ω,+, ·, 0, 1, <,=). In other
words, there is a sentence ϕ in the language L = {+, ·, 0, 1, <,=, f} such that
A is the unique subset of ω such that (ω,+, ·, 0, 1, <,=, χA) satisfies ϕ.

Lemma 2.9.19. No generic real is implicitly arithmetical.

Proof. Suppose g were Sacks generic and implicitly arithmetical. Let ϕ be an
L-sentence such that g is the unique member of 2ω satisfying ϕ. By the forcing-
equals-truth theorem, there exists P such that g ∈ [P ] and P  ϕ. Let h ∈ [P ]
be a generic element not equal to g. Then h satisfies ϕ. This contradicts the
assumption that only g satisfies ϕ.

Remark 2.9.20. Lemma 2.9.19 can be strengthened slightly. A variant of the
proof shows that no countable arithmetically definable set of reals contains a
generic real. Tanaka [19] has shown that every countable arithmetical set of
reals contains an implicitly arithmetical real. Harrington [4] has constructed a
countable arithmetical set of reals which contains a real which is not implicitly
arithmetical.

Lemma 2.9.21. The set 0(ω) = {2m3n | m ∈ 0(n)} is implicitly arithmetical.
Note that 0(ω) is essentially just the truth set for first order arithmetic.

Proof. We prove this by exhibiting a sentence ϕ which defines 0(ω). For any
A ⊆ ω let (A)n denote the set {m | 2m3n ∈ A}. We define ϕ as follows:

ϕ ≡ ∀nn /∈ (A)0 ∧ ∀n (A)n+1 = (A)′n ∧ ∀j ∈ A∃m ∃n j = 2m3n.

The first conjunct says that (A)0 is empty, the second that (A)n+1 is the Turing
jump of (A)n, and the third that A = {2m3n | m ∈ (A)n}.

Lemma 2.9.22. There is a Sacks generic real g ≤T 0(ω).

Proof. This is just a more precise version of Lemma 2.9.5 stating the existence
of a Sacks generic real. The key point is that 0(ω) can decide if an arithmetical
subset of P is dense.

Theorem 2.9.23. There exist f, g ∈ 2ω such that g ≤T f , f is implicitly
arithmetical, and g is not implicitly arithmetical.

Proof. Let g be a Sacks generic real recursive in 0(ω). Then g is not implicitly
arithmetical, but g is Turing reducible to the implicitly arithmetical set 0(ω).
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2.10 Homogeneity of Sacks forcing

Sacks forcing has the following homogeneity property.

Lemma 2.10.1 (homogeneity). Let P,Q ∈ P be Sacks trees, i.e., recursive
perfect subtrees of 2<ω. Then there is a recursive homeomorphism F : [P ] ∼= [Q].
Moreover, for all g ∈ [P ], g is Sacks generic if and only if F (g) is Sacks generic.

Proof. Note that Br(P ) and Br(Q) are recursive, because σ ∈ Br(P ) if and
only if both σa〈0〉 and σa〈1〉 both belong to P . There is an obvious re-
cursive one-to-one correspondence between Br(P ) and Br(Q). Namely, let
Brn(P ) = {σ1, . . . , σ2n} and Brn(Q) = {τ1, . . . , τ2n}, both listed in lexico-
graphic order. Then we can map σi to τi for 1 ≤ i ≤ 2n. This induces a
one-to-one correspondence between paths in [P ] and paths in [Q]. Furthermore,
this induces a one-to-one correspondence between {P ′ ∈ P | P ′ ⊆ P} and
{Q′ ∈ P | Q′ ⊆ Q}.

From the above homogeneity property, we obtain the following theorem.

Theorem 2.10.2. Let S ⊆ 2ω be arithmetical and closed under ≡T . Then the
set of Sacks generic reals is either included in S or disjoint from S.

Proof. We have

S = {f ∈ 2ω | (ω,+, ·, 0, 1,=, <, f) |= ϕ}

for some sentence ϕ. We will first prove the following claim: For all P and
Q, P  ϕ if and only if Q  ϕ. To prove this, let F : P ∼= Q be a recursive
homeomorphism as in Lemma 2.10.1. Then {g ∈ [P ] | g is Sacks generic} is
recursively homeomorphic to {F (g) ∈ [Q] | g is Sacks generic} = {h ∈ [Q] | h
is Sacks generic}. Moreover, F (g) ≡T g because F : [P ] → [Q] and F−1 :
[Q] → [P ] are recursive functionals. Our claim now follows from the definition
of forcing.

Now suppose g and h are Sacks generic. By the forcing-equals-truth lemma,
let g ∈ P such that P  ϕ or P  ¬ϕ, and let h ∈ [Q] such that Q  ϕ or
Q  ¬ϕ. Since P  ϕ ⇐⇒ Q  ϕ, g satisfies ϕ if and only if h satisfies ϕ.
Thus, g ∈ S if and only if h ∈ S.

Remark 2.10.3. The previous theorem implies that {S | S contains every
generic real} is an ultrafilter on the Boolean algebra of arithmetical subsets of
2ω which are closed under Turing equivalence. Furthermore, we could weaken
Turing equivalence to truth-table equivalence, because F (g) is actually truth-
table equivalent to g.

Example 2.10.4. As a typical consequence of Theorem 2.10.2, either all or no
Sacks generic Turing degrees satisfy a′ = a ∨ 0′. Which is it?
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2.11 Cohen genericity

Definition 2.11.1. A Cohen forcing condition is an element of Seq2. We define
a partial order ≤ on these conditions by letting σ ≤ τ if and only if τ ⊆ σ. We
say that D ⊆ 2<ω is dense if for all σ ∈ 2<ω there exists τ ∈ D such that τ ⊇ σ.
We say that f meets D if f ⊃ σ for some σ ∈ D. We say that g ∈ 2ω is Cohen
generic if g meets D for all dense arithmetical D ⊆ 2ω.

Compare this to the Kleene/Post construction of f by finite approximations.
Forcing with Cohen conditions is defined exactly as for Sacks forcing; i.e.,

σ  ϕ if and only if for all Cohen generic g ∈ 2ω such that g ⊃ σ, g satisfies
ϕ. The definability-of-forcing and the forcing-equals-truth lemmas follow for
Cohen forcing just as they did for Sacks forcing.

Lemma 2.11.2 (homogeneity). For all σ, τ ∈ 2<ω there is a recursive one-
to-one correspondence between {g ∈ 2ω | g ⊃ σ, g Cohen generic} and {h ∈ 2ω |
h ⊃ τ, h Cohen generic}.

Proof. Simply map the set of all paths above σ to the set of paths above τ using
the lexicographic ordering.

Theorem 2.11.3. If S ⊆ 2ω is arithmetical and closed under Turing equiva-
lence, then {g ∈ 2ω | g Cohen generic} is either included in S or disjoint from
S.

Proof. The proof follows as in the case of Sacks forcing, using homogeneity.

Remark 2.11.4. Instead of assuming that S is closed under ≡T , it would suffice
to assume that S is closed under the equivalence relation f ≡ g ⇐⇒ ∃m ∀n >
mf(n) = g(n).

Remark 2.11.5. There are many kinds of forcing in recursion theory. Sacks
forcing and Cohen forcing are only two examples.
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Chapter 3

Models of set theory

3.1 Countable transitive models

Remark 3.1.1. We will be concerned only with pure, well founded sets. A set
x is said to be pure if all of the elements of x, elements of elements of x, etc., are
sets. A set x is said to be well founded if it is not the beginning of an infinite
descending ∈-sequence, i.e., there is no infinite sequence x = x0 ∋ x1 ∋ · · · ∋
xn ∋ xn+1 ∋ · · ·.

Definition 3.1.2. A set M is said to be transitive if, for all x ∈ M , x ⊆ M .
That is, for any element x of M , the elements of x are also elements of M .
Equivalently we could say that, for all x ∈M and y ∈ x, y ∈M .

Definition 3.1.3. Let L = {∈,=} be the language of set theory. A nonempty
transitive set M may be identified with the L-structure

(M,∈|M,=|M)

where ∈|M = {〈a, b〉 | a ∈ b ∈ M} and =|M = {〈a, a〉 | a ∈ M}. Thus, for any
L-sentence ϕ with parameters from M , we have either M |= ϕ or M |= ¬ϕ.

Definition 3.1.4. ZF is the L-theory consisting of the Zermelo/Fraenkel axioms
of set theory. ZFC is the L-theory consisting of ZF plus the Axiom of Choice.

Remark 3.1.5. In what follows, we shall assume the existence of a countable
transitive model of ZFC, i.e., a countable transitive set M such that M |= ZFC.

3.2 Models constructed by forcing

Let M be a countable transitive model of ZFC. Let (P,≤) ∈ M be a partial
ordering which is an element of M . The elements of P will be called forcing
conditions, or simply conditions. P will be called a notion of forcing.
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Definition 3.2.1 (generic filter). A set D ⊆ P is said to be dense if for all
p ∈ P there exists q ∈ D such that q ≤ p. A filter is a set G ⊆ P such that

1. ∀p ∈ G ∀q ∈ P (p ≤ q ⇒ q ∈ G).

2. ∀p, q ∈ G ∃r ∈ G (r ≤ p ∧ r ≤ q).

A filter G is said to be generic, or M -generic, if G∩D 6= ∅ for all dense D ∈M .

Lemma 3.2.2. Given p ∈ P , there exists a generic filter G such that p ∈ G.

Proof. Since M is countable, let 〈Dn | n ∈ ω〉 be an enumeration of the dense
sets which belong to M . Given p ∈ P , construct a sequence

p = p0 ≥ p1 ≥ · · · ≥ pn ≥ pn+1 ≥ · · ·

where p0 = p and pn+1 is chosen recursively to be any q ≤ pn such that q ∈ Dn.
Put G = {q | ∃n (pn ≤ q)}. Clearly p ∈ G, and it is easy to check that G is a
generic filter.

Remark 3.2.3. If P is linear, then clearly G = P , hence G ∈M . The typical
situation will be that P is a partial ordering which is not linear, and G 6∈ M .
For example, see Section 3.3 below.

Definition 3.2.4. We use a generic filter G to define a transitive model M [G]
as follows:

M [G] = {aG | a ∈M}

where

aG = {bG | (p, b) ∈ a for some p ∈ G}.

Thus the elements of M are regarded as “terms” denoting elements of M [G].
Namely, a ∈M denotes aG ∈M [G].

Remark 3.2.5. Note that the definition of aG is carried out by transfinite
recursion on the rank of a. The rank has a few basic properties that make it
ideal for transfinite recursion:

1. Every set has a rank.

2. The rank of the elements of a set are lower than the rank of the set itself.

Formally, the rank of a set is defined by transfinite recursion as

rank(a) = sup{rank(b) + 1 | b ∈ a}.

Theorem 3.2.6. M [G] is a countable transitive model of ZFC. Moreover, it is
the smallest transitive model of ZFC containing M ∪ {G}.

We omit the proof of this theorem. For details of the proof, see Shoenfield’s
classic expository paper [15].
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Remark 3.2.7. We refer to M [G] as a model of ZFC which is constructed
by forcing over M . We shall see that, by cleverly choosing the partial order-
ing P , we can control M [G] and cause it to satisfy various properties such as
the Continuum Hypothesis (2ℵ0 = ℵ1) or its negation. This is an important
methodology for independence results in set theory.

Remark 3.2.8. Even though M [G] is a proper extension of M , the “person
living in M” has a very good understanding of M [G]. This is because of the
definability of forcing, as we shall now explain.

Definition 3.2.9 (the forcing language). The forcing language is LM =
L∪M , that is the language of set theory plus a constant symbol for each element
of M . Thus we have LM = {∈,=, a, b, . . .} as the forcing language, where
a, b, . . . ∈M . A typical sentence of LM is ϕ(a1, . . . , an), where ϕ(x1, . . . , xn) is
a formula in L with free variables x1, . . . , xn, and a1, . . . , an ∈ M . Recall that
a ∈M denotes aG ∈M [G].

Definition 3.2.10 (forcing). If p ∈ P , we say that p  ϕ(a1, . . . , an) if
M [G] |= ϕ((a1)G, . . . , (an)G) for all generic G such that p ∈ G.

Theorem 3.2.11 (definability of forcing). If ϕ(x1, . . . , xn) is an L-formula
with free variables x1, . . . , xn, then

{〈p, a1, . . . , an〉 | p  ϕ(a1, . . . , an)} ⊆ P ×Mn

is a definable class over M (using P as a parameter).

Theorem 3.2.12 (forcing equals truth). If ϕ is a sentence of the forcing
language and G is a generic filter, then M [G] |= ϕ if and only if there exists
p ∈ G such that p  ϕ.

Remark 3.2.13. The proofs of Theorems 3.2.11 and 3.2.12 are similar in out-
line and concept to the proofs already given for Sacks forcing in the recursion-
theoretic context. New difficulties arise because we are dealing with set theory
rather than arithmetic. Theorems 3.2.11 and 3.2.12 are used in proving Theorem
3.2.6, that M [G] is a model of ZFC.

3.3 An example: Cohen forcing

Let M be a countable transitive model of ZFC. Let P = Seq2 = 2<ω, partially
ordered by σ ≤ τ if and only if σ ⊇ τ . Note that the partial ordering (P,≤)
is an element of M . Thus (P,≤) may be viewed as a notion of forcing. This
particular partial ordering is known as Cohen forcing.

Let G ⊆ P = Seq2 be a generic filter. In particular, for all σ, τ ∈ G there
exists ρ ∈ G such that ρ ⊇ σ and ρ ⊇ τ . It follows that either σ ⊆ τ or τ ⊆ σ.
Thus G is linearly ordered under ⊆.

Note that for each n ∈ ω the set Dn = {σ ∈ P | lh(σ) ≥ n} is dense. Since
G meets Dn for all n, we see that G is infinite. Since G is linearly ordered under
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⊆, it follows that g =
⋃
G is a path through Seq2, i.e., a function in 2ω. Note

also that G = {g[n] | n ∈ ω}. Thus G ⊆ P and g ∈ 2ω contain essentially the
same information. We describe g as being Cohen generic over M .

We claim that g /∈ M . To see this, suppose g ∈ M . Put Dg = {σ ∈
Seq2 | σ 6⊂ g}. Clearly Dg is dense. Moreover Dg ∈ M , since g ∈ M . Hence
G ∩Dg 6= ∅, i.e., g[n] 6= G for some n, a contradiction.

Since g /∈M , it follows that G /∈M , hence M [G] % M .
Thus we have the following theorem, which does not mention forcing. We

do not know how to prove this theorem, except by means of forcing or some
closely related technique.

Theorem 3.3.1. Let M be a countable transitive model of ZFC. Then there
existsM ′ % M such thatM ′ is a sideways extension ofM , andM ′ is a countable
transitive model of ZFC.

3.4 Properties of generic extensions

Let M be a countable transitive model of ZFC, (P,≤) a partial order belonging
to M , and G a generic filter on P . As discussed above we can create a new
model of ZFC, M [G] by adjoining G to the ground model M . We now discuss
some basic, general properties of M [G].

The following theorem states that M [G] is a “sideways” extension of M : it
includes M ∪ {G} but is of the same rank as M .

Theorem 3.4.1. LetM be a countable model of ZFC, P ∈M a partial ordering,
and G a generic filter on P . Then M [G] has the following properties:

1. M ⊆M [G].

2. G ∈M [G].

3. For all a ∈M , rank(aG) ≤ rank(a).

Thus rank(M) = rank(M [G]).

Proof. 1. For each a ∈ M we construct a term ǎ ∈ M such that ǎG = a, by
transfinite recursion on the rank of a. Namely,

ǎ = {(p, b̌) | p ∈ P, b ∈ a}

so that ǎG = {b̌G | (p, b̌) ∈ ǎ, p ∈ G} = {b | b ∈ a} = a.

2. We construct a term Ġ ∈M such that ĠG = G. Namely,

Ġ = {(p, p̌) | p ∈ P}

so that ĠG = {p̌G | (p, p̌) ∈ Ġ, p ∈ G} = {p | p ∈ G} = G.
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3. Finally, we verify that rank(aG) ≤ rank(a) for all a ∈ M . By transfinite
induction on rank(a), we have

rank(aG) = sup{rank(bG) + 1 | bG ∈ aG}
≤ sup{rank(b) + 1 | (b, p) ∈ a for some p ∈ P}
≤ rank(a).

Next we note that the sideways extension M [G] is usually a proper extension
of M .

Definition 3.4.2. If p1, p2 ∈ P and there is no q ∈ P such that q ≤ p1 and
q ≤ p2, we say p1 and p2 are incompatible, abbreviated p1 ⊥ p2.

Theorem 3.4.3. Suppose P is such that for all p ∈ P there exist p1, p2 ≤ p
such that p1 ⊥ p2. Then G /∈M , hence M [G] % M .

Proof. This is proved just as for the special case of Cohen forcing, in Section
3.3. If G ∈ M , then the complement P \ G ∈ M , and our assumption implies
that P \ G is dense in P . (Given p ∈ P , let p1, p2 ≤ p with p1 ⊥ p2. At most
one of p1, p2 belongs to G, hence at least one of p1, p2 belongs to P \ G.) But
then G ∩ (P \G) 6= ∅, a contradiction.

3.5 Blowing up the continuum

The Continuum Hypothesis states that 2ℵ0 = ℵ1. We use the symbol CH to
represent this logical statement. Using the technique of forcing we can construct
models of ZFC + CH and ZFC + ¬CH, by choosing the appropriate forcing
conditions.

We first construct a model of ZFC in which the Continuum Hypothesis fails.

Theorem 3.5.1. Let M be a countable transitive model of ZFC. Then there
exists a countable transitive model M ′ ⊇ M which is a sideways extension of
M and satisfies ZFC + ¬CH.

Proof. In M , let A be a set of cardinality κ, where κ > ℵ1. Let P be the set
of finite partial functions p from A× ω to {0, 1}. We order P by putting p ≤ q
if and only if p ⊇ q, i.e., p extends q. Let G be a generic filter on P . Clearly
g =

⋃
G is a function.

We claim that g is a total function from A×ω to {0, 1}. To see this, consider
the sets Dα,n = {p ∈ P | (α, n) ∈ dom(p)}. Each Dα,n is dense in P , and so G
must meet each of them and so (α, n) ∈ dom(g) for all (α, n) ∈ A×ω. Thus we
have g : A× ω → {0, 1}.

Next, for each α ∈ A define gα(n) = g((α, n)). We have gα : ω → {0, 1},
i.e., gα ∈ 2ω, and gα ∈ M [G]. We claim that α 6= β ⇒ gα 6= gβ . To see this,
consider

D′
α,β = {p ∈ P | ∃n ((α, n), (β, n) ∈ dom(p), p((α, n)) 6= p((β, n)))}.
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Each D′
α,β belongs to M and is dense in P . Thus G meets D′

α,β, and this gives
our claim.

Since gα ∈ 2ω ∩M [G] for all α ∈ A, we see that M [G] satisfies 2ℵ0 = |2ω| ≥
|A|. It remains to show that, in M [G], the cardinality of A is still greater than
ℵ1. In fact, we shall show that the cardinals of M [G] are the same as the
cardinals of M . This follows from the results in Section 3.6 below.

3.6 Preservation of cardinals and the c.c.c.

To finish the proof of Theorem 3.5.1, it suffices to prove that M and M [G] have
the same cardinals. This result depends on properties of the specific forcing
extension used there.

Definition 3.6.1. A partial ordering P ∈ M is said to be cardinal preserving
if, for every M -generic filter G ⊆ P , the cardinals of M [G] are the same as the
cardinals of M .

In general, if M [G] is an arbitrary forcing extension of M , then uncount-
able cardinals need not be preserved. This is because M [G], being a sideways
extension of the ground model M , may contain bijections whereby sets of dif-
fering cardinalities in M are placed into one-to-one correspondence in M [G].
This phenomenon is known as cardinal collapsing. For examples of how this can
happen, see Theorem 3.7.6 and Example 3.8.3 below.

Now consider the following family of partial orderings.

Notation 3.6.2. If X and Y are sets, let F (X,Y ) be the set of finite partial
functions from X into Y , partially ordered by putting p ≤ q if and only if p ⊇ q.

In particular, the partial ordering used in the proof of Theorem 3.5.1 is of
the form F (X, {0, 1}) where X is an uncountable set. (Namely, X = A × ω
where A is of cardinality > ℵ1 in M .) We shall show that partial orderings of
this form preserve cardinals. In more detail, we shall show that F (X, {0, 1})
has a certain property called the c.c.c., and all c.c.c. partial orderings preserve
cardinals.

Definition 3.6.3. Let P be a partial ordering. An antichain of P is a set
W ⊆ P such that, for all p, q ∈ W , if p 6= q then p ⊥ q, i.e., p is incompatible
with q. A partial ordering P is said to have the countable chain condition,
abbreviated c.c.c., if every antichain of P is countable.

Lemma 3.6.4. If P has the countable chain condition, then P preserves car-
dinals.

Proof. Suppose P does not preserve cardinals. Then there are X,Y ∈ M such
that M � |X | < |Y |, but M [G] � |X | = |Y |. Let f : X → Y be a bijection of
X onto Y in M [G]. We have f = (ḟ)G for some ḟ ∈M . Because forcing equals
truth, there is p ∈ G such that p forces ḟ : X̌ → Y̌ to be a bijection. Fix such
a p.
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For i ∈ X, j ∈ Y , say that j is a possible value of f(i) if there exists q ≤ p
such that q  ḟ (̌i) = ǰ. Say that j is a possible value of f if j is a possible value
of f(i) for some i ∈ X . Let Zi be the set of possible values of f(i), and let Z
be the set of possible values of f . These sets belong to M , by definability of
forcing. Now suppose q1, q2 ≤ p are such that q1  ḟ (̌i) = ǰ1 and q2  ḟ (̌i) = ǰ2
for some i, j1, j2 with ǰ1 6= ǰ2. Then clearly q1 is incompatible with q2. Thus,
since P has c.c.c., the set Zi of possible values of f(i) is countable in M . Hence
Z =

⋃
i∈I Zi, the set of possible values of f , is of cardinality ≤ |X | · ℵ0 = |X |

in M . Hence Z $ Y , yet clearly p  rng(ḟ) ⊆ Ž. This contradiction completes
the proof.

For example, we have:

Corollary 3.6.5. The Cohen poset 2<ω preserves cardinals. In other words, if
G ⊆ 2<ω is Cohen generic over M , then M [G] has the same cardinals as M .

Proof. Being countable, the Cohen poset 2<ω has the c.c.c. Therefore it pre-
serves cardinals.

More generally, we have the following result.

Definition 3.6.6. For any cardinal κ, a partial ordering P has the κ-chain
condition, abbreviated κ-c.c., if every antichain in P is of cardinality < κ.
Under this definition, the countable chain condition is the ℵ1-chain condition.

Lemma 3.6.7. If a partial ordering P ∈M has the κ-c.c., then forcing over M
with P preserves all cardinals ≥ κ.

Proof. Similar to the proof of Lemma 3.6.4.

We now return to the proof of Theorem 3.5.1.

Lemma 3.6.8. Let X be an uncountable set. Then F (X, {0, 1}) has the c.c.c.

Proof. We assume some familiarity with basic measure theory. Consider the
“fair coin” measure space {0, 1}X with measure µ given by

µ({f ∈ {0, 1}X | f(a) = i}) = 1/2

for all a ∈ X and i ∈ {0, 1}. Given p ∈ F (X, {0, 1}), put

Up = {f ∈ {0, 1}X | f ⊃ p}.
Then µ(Up) = 2−|dom(p)| > 0.

Let W be an antichain in F (X, {0, 1}). The elements of W are pairwise
incompatible, so for all p, q ∈ W with p 6= q we have Up ∩ Uq = ∅. Hence

∑
p∈W µ(Up) = µ

(⋃
p∈W Up

)
≤ µ(U∅) = 1.

A basic fact about unordered summation is that a convergent unordered sum
can have only countably many non-zero summands. Because µ(Up) is non-zero
for all p ∈W , we see thatW must be countable. Thus F (X, {0, 1}) has c.c.c.
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Theorem 3.6.9. The poset F (X, {0, 1}) of finite partial functions from X into
{0, 1} partially ordered by inclusion preserves all cardinals.

Proof. This follows by combining Lemmas 3.6.4 and 3.6.8.

Note also that this completes the proof of Theorem 3.5.1, giving a model of
ZFC + ¬CH.

Remark 3.6.10. The proof of Lemma 3.6.8 given above may be criticized for
its dependence on measure theory. There is a more elementary proof which we
briefly sketch here.

The proof uses a combinatorial result known as the ∆-lemma. We define a
∆-system to be a set S of sets such that, for some fixed set D, A ∩ B = D for
all A,B ∈ S, A 6= B. The ∆-lemma asserts that any uncountable collection of
finite sets contains an uncountable ∆-system. The proof of the ∆-lemma is not
difficult.

To prove Lemma 3.6.8, let W be an uncountable subset of F (X, {0, 1}).
Applying the ∆-lemma to {dom(p) | p ∈ W}, we obtain an uncountable set
Z ⊆W and a fixed finite set D included in X such that dom(p) ∩ dom(q) = D
for all p, q ∈ Z, p 6= q. Since {p↾D | p ∈ Z} is finite, there exists an uncountable
set Z ′ ⊆ Z such that p↾D = q↾D for all p, q ∈ Z ′. It follows that, for all
p, q ∈ Z ′, p and q are compatible. Thus W is not an antichain. We conclude
that all antichains in F (X, {0, 1}) are countable.

3.7 Forcing the Continuum Hypothesis

Recall that CH is the statement 2ℵ0 = ℵ1. We have seen that, ifM is a countable
transitive model of ZFC, there is a forcing extension of M in which CH fails. In
this section we shall see that there is a different forcing extension of M in which
CH holds.

Let Ω denote the set of countable ordinals. A basic fact about Ω is that
|Ω| = ℵ1 and every proper initial segment of Ω is countable.

Definition 3.7.1. Let PΩ be the set of one-to-one functions from a proper
initial segment of Ω into 2ω. We partially order PΩ by putting p ≤ q if and only
if p ⊇ q.

Definition 3.7.2. A partial ordering P is said to be countably closed if every
countable descending sequence of elements of P has a lower bound in P .

Example 3.7.3. The Cohen forcing poset 2ω is not countably closed.

Lemma 3.7.4. PΩ is countably closed.

Proof. If p0 ≥ p1 ≥ · · · ≥ pn ≥ pn+1 ≥ · · · in PΩ, then clearly p =
⋃
n pn ∈ PΩ,

because the union of countably many proper initial segments of Ω is a proper
initial segment of Ω. Thus p is a lower bound for the sequence 〈pn | n ∈ ω〉.
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Lemma 3.7.5. Suppose P ∈ M and M � “P is countably closed”. Let G be
an M -generic filter on P . Then 2ω ∩M = 2ω ∩M [G].

Proof. Clearly 2ω ∩M ⊆ 2ω ∩M [G]. We need to prove the reverse inclusion.
Given f ∈ 2ω ∩M [G], let ḟ ∈M be such that f = (ḟ)G, and let p ∈ G be such
that p  ḟ ∈ 2ω. Put

D = {q ≤ p | ∀n ∈ ω (q  ḟ(ň) = 0̌ ∨ q  ḟ(ň) = 1̌)}.

We claim that D is dense below p. To see this, given q ≤ p, construct within
M a sequence 〈qn | n ∈ ω〉 of elements of P with q0 = q and, for all n, qn+1 =
some q ≤ qn such that either q  ḟ(ň) = 0̌ or q  ḟ(ň) = 1̌. Finally, let r be a
lower bound for qn, n ∈ ω. Clearly r ∈ D. Thus D is dense below p.

Because D is dense below p and p ∈ G, let q ∈ G be such that q ∈ D. Then
clearly f(n) = m if and only if q  ḟ(ň) = m̌. By definability of forcing, it
follows that f ∈M . This completes the proof.

Theorem 3.7.6. Let M be a countable transitive model of ZFC, and let G be
a M -generic filter on PΩ in M . Then M [G] |= ZFC + CH.

Proof. We know from earlier results that M [G] |= ZFC. Let g =
⋃
G be the

unique function extending every condition in G. A straightforward dense set
argument shows that g maps ℵM1 one-to-one onto (2ω)M . On the other hand,
by Lemma 3.7.5, (2ω)M = (2ω)M [G]. It follows also that ℵM1 is uncountable in

M [G], hence ℵM1 = ℵM [G]
1 . Thus M [G] contains a function from ℵM [G]

1 one-to-
one onto (2ω)M [G]. We conclude that M [G] |= CH.

Remark 3.7.7. We can generalize Lemma 3.7.5 as follows. Let κ be an infinite
cardinal. A poset P is said to be κ-closed if every linearly ordered subset of
P of cardinality < κ has a lower bound in P . (Note that countably closed is
equivalent to ℵ1-closed.) We can show that κ-closed forcing over M creates no
new functions f : λ→M , λ < κ, hence preserves all cardinals ≤ κ.

3.8 Additional models obtained by forcing

A great many different models of ZFC can be obtained by forcing. We give a
few more examples. Let M be a countable transitive model of ZFC.

Example 3.8.1 (Sacks forcing). Let P be the set of perfect subtrees of 2<ω

belonging to M , ordered by inclusion. Clearly P is a partial ordering which
belongs to M . If G is an M -generic filter, we have M [G] = M [g] where g ∈ 2ω.
Namely, g is the unique member of

⋂
T∈G[T ]. We have g /∈M . It can be shown

that g is minimal, in the sense that for all f ∈ 2ω ∩ M [g] either f ∈ M or
g ∈ M [f ]. Compare this with the analogous construction of a minimal Turing
degree in Theorem 2.8.10.
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Example 3.8.2 (product forcing). Let P1, P2 be partial orderings in M .
Then the product ordering P1 × P2 is a partial ordering in M . It can be shown
that G is an M -generic filter on P1 ×P2 if and only if G = G1 ×G2 where G1 is
an M -generic filter on P1 and G2 is an M [G1]-generic filter on P2. In this case
we have M [G] = M [G1][G2].

Example 3.8.3 (cardinal collapsing). Let κ be an uncountable cardinal of
M . Let P = F (ω, κ) = {p | p is a finite partial function from ω to κ}, ordered
by p ≤ q ⇐⇒ p ⊇ q. Then P is a partial ordering in M . If G is an M -generic
filter on P , then g =

⋃
G is a total function from ω onto κ. Thus κ is countable

in M [G]. We describe this by saying that P collapses κ to ℵ0. On the other
hand, we have in M that |P | = κ, hence P has the κ+-chain condition, so P

preserves all cardinals ≥ κ+. It follows that (κ+)M = ℵM [G]
1 , (κ++)M = ℵM [G]

2 ,
etc.

Example 3.8.4 (the Solovay model). Another important model of ZFC ob-
tained by forcing is the so-called Solovay model. See Remark 6.4.10 below.

Example 3.8.5 (models where AC fails). Forcing may also be used to
obtain models of ZF where the Axiom of Choice fails. We describe two such
models.

Let DC be the Axiom of Dependent Choice: if R ⊆ A×A and for all a ∈ A
there exists b ∈ A such that aRb, then for all a ∈ A there exists an ω-sequence
〈an〉n∈ω such that a0 = a and anRan+1 for all n. Let BPI be the Boolean Prime
Ideal Theorem: every Boolean algebra carries an ultrafilter. Both DC and BPI
are well known consequences or special cases of the Axiom of Choice. DC is
important in analysis, while BPI is important in algebra and general topology.

Let G be an M -generic filter on P where P = F (ω × ω, {0, 1}). This is
essentially just Cohen forcing. Put g =

⋃
G : ω × ω → {0, 1}. For each n ∈ ω

define gn : ω → {0, 1} by gn(m) = g((m,n)). Thus gn ∈ 2ω, and we have

M [G] = M [g] = M [〈gn | n ∈ ω〉].

We consider the following submodels of M [G].

1. M1 = M [gn | n ∈ ω] = the model of ZF generated by M ∪ {gn | n ∈ ω}.

2. M2 = M [{gn | n ∈ ω}] = the model of ZF generated byM∪{{gn | n ∈ ω}}.

We have M1 ⊂M2 ⊂M [G]. It can be shown that M1 |= ZF+ DC +¬BPI, and
M2 |= ZF + BPI + ¬DC. For details see Felgner [3] and Jech [6].
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Chapter 4

Absoluteness and

constructibility

4.1 Absoluteness

Definition 4.1.1. Let M be a transitive model of ZFC. A sideways extension of
M is a transitive modelM ′ of ZFC such thatM ′ ⊇M and rank(M ′) = rank(M).

Example 4.1.2. Let M ′ = M [G], where G is an M -generic filter on a poset
P ∈M . We have seen in Section 3.4 that M [G] is a sideways extension of M .

Definition 4.1.3 (absoluteness). A formula ϕ(x1, . . . , xk) in the language of
set theory is said to be absolute if, whenever M is a transitive model of ZFC and
M ′ is a sideways extension of M and a1, . . . , ak ∈M , we haveM � ϕ(a1, . . . , ak)
if and only if M ′ � ϕ(a1, . . . , ak).

Examples 4.1.4. The formula “x is the empty set” is clearly absolute, because
we are only considering transitive models.

The formula “x is countable” is not absolute, because any uncountable set
x ∈M can be made countable in a generic extension of M by forcing with finite
partial functions from ω to x.

Definition 4.1.5. A formula in the language of set theory {∈,=} is said to be
∆0 if it is built up from atomic formulas using propositional connectives and
bounded quantifiers ∀x ∈ y and ∃x ∈ y, defined as follows:

(∀x ∈ y)ϕ ≡ ∀x (x ∈ y ⇒ ϕ),

(∃x ∈ y)ϕ ≡ ∃x (x ∈ y ∧ ϕ).

Example 4.1.6. There is a ∆0 formula θ(x, y) defining x =
⋃
y, namely

θ(x, y) ≡ ((∀u ∈ x) (∃z ∈ y) (u ∈ z)) ∧ ((∀z ∈ y) (∀u ∈ z) (u ∈ x)).

Similarly there are ∆0 formulas equivalent to x = y×z, etc. On the other hand,
there is no ∆0 formula equivalent to “y = the powerset of x”, etc.
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Lemma 4.1.7. Any ∆0 formula is absolute.

Proof. In fact, ∆0 formulas are absolute to transitive sets, not only to mod-
els of ZFC containing all the ordinals. In other words, for any ∆0 forumla
ϕ(x1, . . . , xn) and transitive setA and a1, . . . , an ∈ A, we have that ϕ(a1, . . . , an)
holds if and only if A |= ϕ(a1, . . . , an). The proof is straightforward by induction
on the complexity of ϕ.

Example 4.1.8. Let ω denote the set of all finite ordinals. The formula “x = ω”
is absolute, because we can write it as the conjunction of the following ∆0

formulas:

x is transitive: (∀y ∈ x) (∀z ∈ y) (z ∈ x).
x is linearly ordered by ∈: (∀y ∈ x) (∀z ∈ x) (y = z ∨ y ∈ z ∨ z ∈ y).
x is a limit ordinal: ∅ ∈ x ∧ (∀y ∈ x) (y ∪ {y} ∈ x).
x contains no limit ordinal: (∀z ∈ x) (z = ∅ ∨ (∃y ∈ z) (y ∪ {y} = z)).

Remark 4.1.9. From the absoluteness of ω, it follows that arithmetical sen-
tences and predicates are absolute. In other words, if M ′ is a sideways extension
of M , then for all arithmetical propositions θ we have M |= θ if and only if
M ′ |= θ. Thus the method of forcing cannot by itself suffice to show that an
arithmetical statement (e.g., the Riemann hypothesis) is independent of ZFC

set theory.

Remark 4.1.10. The property of being an uncountable cardinal is clearly not
upward absolute, because of cardinal collapsing. However, it is downward ab-
solute, as are many large cardinal properties. For example, if M ′ is a sideways
extension of M and M ′ |= κ is an inaccessible cardinal, then M |= κ is an
inaccessible cardinal. This is the content of the following theorem.

Theorem 4.1.11. The property of being an inaccessible cardinal is downward
absolute.

Proof. Recall that a κ is inaccessible if κ > ω, κ is regular, and 2λ < κ for all
λ < κ. Regularity means that for all λ < κ and f : λ → κ, rng(f) is bounded.
By writing these definitions in the language of set theory, it can be seen that
there is a ∆0 formula ϕ(κ, x) such that ZFC ⊢ κ inaccessible ⇐⇒ ∀xϕ(κ, x).
Hence by Lemma 4.1.7 inaccessibility is downward absolute.

Remark 4.1.12. Similarly, some other large cardinal properties such as hyper-
inacessibility, the Mahlo property, etc., are downward absolute. However, we
shall see later that the properties of being a measurable cardinal or a Ramsey
cardinal are not downward absolute.

4.2 Trees and well foundedness

We now go beyond first order arithmetical definability, by considering the light-
face projective hierarchy.
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Recall the arithmetical hierarchy, Section 2.3. Just as the arithmetical hi-
erarchy was defined by counting quantifiers over ω, so the lightface projective
hierarchy is now defined by counting quantifiers over ωω. For another introduc-
tion to the lightface projective hierarchy, see Rogers1 [11, Chapter 17].

Definition 4.2.1 (the lightface projective hierarchy). The language of sec-
ond order arithmetic consists of number variables i, j, k,m, n, . . . ranging over ω;
function variables f, g, h, . . . ranging over ωω; first order functions and relations
+, ·, 0, 1, <,= (for the number variables), and a function application symbol
App(f, n) which we abbreviate f(n). Both number variables and function vari-
ables are quantified.

A formula of the language of second order arithmetic is arithmetical if it has
no function quantifiers. Thus arithmetical predicates are those which are in the
arithmetical hierarchy, i.e., Σ0

n or Π0
n for some n ∈ ω.

The lightface projective hierarchy is a hierarchy of formulas in the language
of second order arithmetic. A formula is Σ1

1 if it is of the form ∃f ϕ where ϕ is
arithmetical. A formula is Π1

n if it is the negation of a Σ1
n formula. A formula

is Σ1
n+1 if it is of the form ∃f ϕ, where ϕ is Π1

n.

Example 4.2.2. For example, a Π1
2 predicate is one of the form P (f) ≡

∀g ∃hA(f, g, h), where A(f, g, h) is arithmetical. And, a Σ1
2 predicate is one

of the form S(f) ≡ ∃g ∀hA(f, g, h), where A(f, g, h) is arithmetical.

Remark 4.2.3. Our ultimate goal is to prove the Shoenfield Absoluteness The-
orem: Σ1

2 and Π1
2 predicates are absolute. We begin by proving in this section

that Σ1
1 and Π1

1 predicates are absolute.

Theorem 4.2.4 (Kleene Normal Form Theorem). Given a Σ1
1 predicate

S(f), we can find a primitive recursive predicate R such that

S(f) ≡ ∃g ∀nR(f [n], g[n]).

Proof. Let S(f) be Σ1
1. Thus S(f) ≡ ∃g A(f, g), where A is arithmetical.

Putting A(f, g) in prenex form, we obtain a quantifier-free formula Q such that

S(f) ≡ ∃g ∀m1 ∃n1 · · · ∀mk ∃nkQ(f, g,m1, . . . ,mk, n1, . . . , nk).

We now replace the existential number quantifiers ∃ni, 1 ≤ i ≤ k, by Skolem
functions hi, 1 ≤ i ≤ k. Thus S(f) is equivalent to the formula

∃g ∃h1 · · · ∃hk ∀m1 · · · ∀mkQ(f, g,m1, . . . ,mk, h1(m1), . . . , hk(m1, . . . ,mk))

Using a primitive recursive bijection ωk+1 → ω, we can replace the sequence of
functions g, h1, . . . , hk by a single function h. Thus we have a primitive recursive
predicate P such that S(f) ≡ ∃h ∀mP (f, h,m). Since primitive recursive pred-
icates are computable, we can find an index e such that S(f) ≡ ∃h {e}f⊕h(0) ↑.
Now by Proposition 2.6.3 we obtain a primitive recursive predicate R such that
S(f) ≡ ∃h ∀nR(f [n], h[n]).

1Note however that Rogers [11] refers to the lightface projective hierarchy as “the ana-
lytical hierarchy.” We dislike this terminology, because it conflicts with the use of the term
“analytical” in classical descriptive set theory, where it means boldface Σ1

1
.
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Definition 4.2.5 (well founded trees). A tree is a nonempty subset of Seq =
ω<ω which is closed under taking initial segments. A path through a tree T is
a function g : ω → ω such that g[n] ∈ T for all n ∈ ω. A tree is said to be well
founded if it has no path.

By the Kleene Normal Form Theorem, we have:

Proposition 4.2.6. Let P (f) ≡ ∀g ∃nR(f [n], g[n]) be a Π1
1 predicate. Let

Tf = {τ ∈ ω<ω | ¬ ∃n ≤ lh(τ)R(f [n], τ [n])}.

Then Tf is a tree, and P (f) holds if and only if Tf is well founded.

Proof. Clearly Tf is a tree. By the construction of Tf , a path through Tf is just
a function g : ω → ω such that ¬∃nR(f [n], g[n]). Thus Tf has no path if and
only if ∀g ∃nR(f [n], g[n]), i.e., P (f).

We now show that well foundedness of trees is absolute. From this it will
follow that Π1

1 predicates are absolute.

Definition 4.2.7. Let T be a tree, and let Ord denote the ordinal numbers.
A function F : T → Ord is said to be order preserving, abbreviated o.p., if
∀σ, τ ∈ T (σ ⊂ τ ⇒ F (σ) > F (τ)).

Let Ω denote the set of countable ordinal numbers.

Lemma 4.2.8. Let T ⊆ Seq = ω<ω be a tree. Then T is well founded if and
only if there exists an order preserving map F : T → Ord, if and only if there
exists an order preserving map F : T → Ω.

Proof. If T has a path g, then an order preserving map F from T to the ordinals
would give a descending sequence of ordinals

F (g[0]) > F (g[1]) > · · · > F (g[n]) > F (g[n+ 1]) > · · ·.
This is impossible. Conversely, if T is well founded, we define the map RT :
Seq → Ω, where

RT (τ) =

{
0 if τ 6∈ T,

sup{RT (τa〈n〉) + 1 | n ∈ ω} otherwise.

Then the restriction of RT to T is an order preserving map from T to the
ordinals.

Lemma 4.2.9. If T ⊆ ω<ω is a tree, then “T is well founded” is absolute.

Proof. Let M ′ be a sideways extension of M , and let T ∈M be a tree. We first
show that “T is well founded” is downward absolute. Suppose that T is not well
founded in M , so that M |= ∃g ∈ ωω (g is a path through T ). Since “g is a path
through T ” is arithmetical and thus absolute, M ′ |= “g is a path through T ”.
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Therefore“T is not well founded” is upward absolute, so “T is well founded” is
downward absolute.

We next show that “T is well founded” is upward absolute. Suppose M
satiesfies “T is well founded.” Since Lemma 4.2.8 is provable in ZFC, it is true
in M . Therefore M contains an order preserving map F from T to the ordinals.
Since “x is an order preserving map from T to the ordinals” is definable by a
∆0 formula, it is absolute. Hence M ′ satisfies that F is an order preserving map
from T to the ordinals. By applying Lemma 4.2.8 inside M ′, we see that T is
well founded in M ′.

Combining Proposition 4.2.6 and Lemma 4.2.9, we have:

Theorem 4.2.10. Σ1
1 and Π1

1 predicates are absolute.

Proof. Let P (f) be a Π1
1 predicate. Note that the construction of the tree Tf in

Proposition 4.2.6 is uniformly recursive in f , hence arithmetical, hence absolute.
We have P (f) ≡ (Tf is well founded), and by Lemma 4.2.9 this is absolute. We
have now shown that Π1

1 predicates are absolute. It follows immediately that
Σ1

1 predicates are absolute.

Remark 4.2.11. More generally, we can consider trees T ⊆ A<ω , where A
is an arbitrary set. For such trees, the predicate “T is well founded” is again
absolute, by essentially the same argument as for Lemma 4.2.9.

The previous remark will be used in the next section to prove Shoenfield’s
Absoluteness Theorem.

4.3 The Shoenfield Absoluteness Theorem

Theorem 4.3.1 (Shoenfield). Σ1
2 and Π1

2 predicates are absolute.

Proof. Let S(f) be a Σ1
2 predicate. Let I be an initial segment of the ordinals

such that I ⊇ Ω. We shall construct an uncountable tree T I
f such that S(f)

holds if and only if T I
f is not well founded.

Since S(f) is Σ1
2, we have S(f) ≡ ∃g P (f, g) where P (f, g) is Π1

1. Apply
the Kleene Normal Form Theorem to P (f, g) to obtain a primitive recursive
predicate R such that

S(f) ≡ ∃g ∀h ∃nR(f [n], g[n], h[n]).

Letting Tf,g = {τ ∈ ω<ω | ¬ ∃n ≤ lh(τ)R(f [n], g[n], τ [n])}, we see as before
that S(f) holds if and only if there exists g ∈ ωω such that Tf,g is well founded.
Therefore, by Lemma 4.2.8, S(f) holds if and only if there exist g ∈ ωω and
F : Tf,g → I such that F is order preserving. Our tree T I

f will be a tree of finite
approximations to such a pair (g, F ).

For each σ ∈ ω<ω define a finite tree T ∗
f,σ ⊆ ω<ω by

T ∗
f,σ = {τ | lh(τ) ≤ lh(σ),#(τ) ≤ #(σ),¬∃n ≤ lh(τ)R(f [n], σ[n], τ [n])}.
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Here # is a one-to-one Gödel numbering # : ω<ω → ω which is assumed to
have the property that τ1 ⊆ τ2 ⇒ #(τ1) ≤ #(τ2). It follows that T ∗

f,σ is a finite
tree. Moreover Tf,g =

⋃
n T

∗
f,g[n], and T ∗

f,g[n] ⊆ T ∗
f,g[n+1] for all n. Thus Tf,g is

well founded if and only if there exists a sequence 〈Fn | n ∈ ω〉 of finite maps

such that for all n, Fn ⊆ Fn+1 and Fn : Tf,g[n]
o.p.→ I.

Notation 4.3.2. Recall that, for any set Z, Z<ω =
⋃
n Z

n. Applying this to
Z = ω ×A where A is any set, we have (ω ×A)<ω =

⋃
n(ω ×A)n. We identify

this with
⋃
n ω

n×An in the obvious way. Thus each s ∈ (ω×A)<ω is identified
with an ordered pair s = (σ, t) ∈ ω<ω ×A<ω.

In particular, let A be the set of finite, order preserving, partial functions
from ω<ω to I. Our “supertree” T I

f is defined by putting s = (σ, t) into T I
f

if and only if, for all n < lh(t), t(n) ⊆ t(n + 1) and t(n + 1) ∈ A is an order
preserving map from the finite tree T ∗

f,σ[n+1] into I. In view of the notation

given in 4.3.2, we see that T I
f is a subtree of (ω × A)<ω . Note also that the

construction of T I
f is absolute, given f and I.

Lemma 4.3.3. S(f) holds if and only if T I
f is not well founded.

Proof. S(f) holds if and only if ∃g P (f, g), if and only if ∃g (Tf,g is well founded),

if and only if ∃g ∃F : Tf,g
o.p.→ I, if and only if ∃ path through T I

f .

We now complete the proof of the Shoenfield Absoluteness Theorem. Let M
and M ′ be transitive models of ZFC such that M ′ is a sideways extension of M .
Let I be the set of countable ordinals of M ′. Note that I is an initial segment of
the ordinals of M and includes the countable ordinals of M . Applying Lemma
4.3.3 in both M and M ′, and using the absoluteness of well foundedness, we
have

M |= S(f) ⇐⇒ M |= T If is not well founded

⇐⇒ M ′ |= T If is not well founded

⇐⇒ M ′ |= S(f).

Thus S(f) is absolute.
We have shown that Σ1

2 predicates are absolute. It follows immediately that
Π1

2 predicates are absolute. This completes the proof.

Corollary 4.3.4. Σ1
3 predicates are upward absolute, and Π1

3 predicates are
downward absolute.

Proof. Let S(f) be the Σ1
3 predicate ∃g P (f, g), where S(f, g) is Π1

2. Let M ′ be
a sideways extension of M . Suppose that M satisfies S(f). Then there exists
g ∈ ωω ∩ M such that M satisfies P (f, g). By the Shoenfield Absoluteness
Theorem, M ′ also satisfies P (f, g). Therefore M ′ satisfies S(f). This shows
that Σ1

3 predicates are upward absolute. It follows dually that Π1
3 predicates

are downward absolute.
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4.4 Some examples

In this section we present some relatively easy examples illustrating the Shoen-
field absoluteness phenomenon and its limitations. More complicated and re-
vealing examples are in Corollary 4.6.2 and Remark 5.9.15 below.

Example 4.4.1. Consider the Σ1
2 sentence θ which says “there exists a count-

able transitive model of ZFC.” (For the precise construction of the sentence θ,
see Remark 4.4.8 below.) Then, by the Shoenfield Absoluteness Theorem, θ is
absolute. In other words, if M and M ′ are transitive models of ZFC and M ′ is
a sideways extension of M , then M |= θ if and only if M ′ |= θ.

Example 4.4.2. In the Shoenfield Absoluteness Theorem, it is required that
M ′ be a sideways extension of M . This requirement cannot be eliminated. For
example, let M be the smallest countable transitive model of ZFC, and let M ′

be a countable transitive model of ZFC such that M ∈M ′. Note that M ′ is not
a sideways extension of M , because rank(M) < rank(M ′). As above, let θ be
the Σ1

2 sentence asserting the existence of a countable transitive model of ZFC.
Then M satisfies ¬ θ but M ′ satisfies θ.

We consider stuctures for the predicate calculus with equality and one binary
predicate symbol ∈. We will always interpret equality naturally; therefore, a
structure for this language consists of a nonempty set A (the universe) and a
binary relation E ⊆ A×A. We consider a class of structures for which there is
a certain relationship between equality and the interpretation of the ∈ relation;
these are the extensional structures.

Definition 4.4.3. A structure (A,E) is extensional if (A,E) satisfies the Axiom
of Extensionality:

∀a, b ∈ A (a = b ⇐⇒ ∀c ∈ A (cEa ⇐⇒ cEb)).

Lemma 4.4.4 (Mostowski). If (A,E) is well founded and extensional, then
there is a transitive set T such that (A,E) ∼= (T,∈|T ). Furthermore, both T and
the isomorphism f : A ∼= T are uniquely determined by (A,E). The transitive
set T is called the Mostowski collapse of (A,E).

Proof. This is well known.

Corollary 4.4.5. Up to isomorphism, the countably infinite transitive sets are
the same as the structures (ω,E), E ⊆ ω × ω, which are well founded and
extensional.

Remark 4.4.6. For structures of the form (ω,E) where E ⊆ ω × ω, the satis-
faction relation {(E,#(ϕ)) | (ω,E) |= ϕ} is ∆1

1. In fact, the satisfaction relation
for (ω,E) is uniformly implicitly definable over the structure (ω,+, ·,=, E).

Remark 4.4.7. Well foundedness is a Π1
1 property.
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Remark 4.4.8. The sentence “there exists a countable transitive model of ZFC”
is a Σ1

2 sentence. To see this, observe that our sentence is equivalent to the Σ1
2

sentence

∃E ⊆ ω × ω ((ω,E) is well founded and (ω,E) |= ZFC).

More generally we have:

Theorem 4.4.9. Let S be a recursively axiomatized theory in the language
{∈,=}. The sentence “there exists a transitive model of S” is Σ1

2, hence absolute.

Proof. By the Löwnheim-Skolem Theorem and the Collapsing Lemma, “there
exists a transitive model of S” is equivalent to

∃E ⊆ ω × ω ((ω,E) is well founded ∧ (ω,E) |= S).

The statement “(ω,E) is well founded” is Π1
1, while “(ω,E) |= S” is ∆1

1. There-
fore our sentence is Σ1

2, hence absolute.

Example 4.4.10. The sentence “there exists a transitive model of ZFC+ there
exists an inaccessible cardinal” is Σ1

2, hence absolute.

4.5 Constructible sets

In this section we review Gödel’s work on the constructible sets.

Definition 4.5.1. Let T be a transitive set. We define Def(T ), the collection
of all definable subsets of T , as follows: Def(T ) = {X ⊆ T | X is definable over
the structure (T,∈|T ) allowing parameters from T }.
Remark 4.5.2. Let T be a transitive set. Then T ⊆ Def(T ), because each
a ∈ T is defined by the formula x ∈ a, using a as a parameter. Moreover Def(T )
is transitive, and T ∈ Def(T ) \ T . Note that if T is finite then Def(T ) = P (T )
is finite, while T infinite implies |Def(T )| = |T |.
Definition 4.5.3 (constructible sets). We define transitive sets Lα, α ∈ Ord,
by transfinite recursion.

L0 = ∅,
Lα+1 = Def(Lα),

Lδ =
⋃
α<δ Lα for δ a limit ordinal.

Remark 4.5.4. The following statements hold:

1. For all α, Lα is a transitive set.

2. α < β ⇒ Lα $ Lβ

3. For n ∈ ω, Ln is finite. The set Lω =
⋃
n∈ω Ln (also denoted HF) is the

set of hereditarily finite sets.
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4. For α ≥ ω, |Lα| = |α|.
5. For all α, α = Ord ∩ Lα, thus α ∈ Lα+1. Therefore all ordinal numbers

are constructible.

Definition 4.5.5. A set x is constructible if x ∈ Lα for some α. We define the
class of constructible sets L by L =

⋃
α∈Ord Lα.

The class of constructible sets is an inner model of V , the class of all pure
well founded sets. The following theorem states some properties of L.

Theorem 4.5.6 (Gödel). L is a transitive model of ZFC+GCH which includes
Ord. In fact, L is the smallest transitive model of ZFC which includes Ord.

In Theorem 4.5.8 below, we will show that L |= CH. A key technical lemma
needed for the proof is the following.

Lemma 4.5.7. There is a sentence ϕ of {∈,=} such that for all transitive sets
T , the structure (T,∈|T ) |= ϕ ⇐⇒ T = Lδ for some limit ordinal δ. We write
the sentence ϕ as “V=L”.

Proof. We omit the proof. Basically, “V=L” states that every set is con-
structible. It follows from Gödel’s work that if M |= ZFC + V=L then M |=
GCH.

Theorem 4.5.8. L |= CH, i.e., (2ℵ0)L = (ℵ1)
L.

Proof. Given X ∈ 2ω ∩ L, let λ be a limit ordinal such that X ∈ Lλ. By
the Löwenheim-Skolem Theorem, there exists a countable set A such that A ⊆
Lλ, X ∈ A and (A,∈|A) is an elementary submodel of (Lλ,∈|Lλ). Note that
(A,∈|A) is a countable, well founded, extensional, and satisfies V=L. Hence
(A,∈|A) is isomorphic to (Lδ,∈|Lδ) for some countable limit ordinal δ. We can
easily see that X ∈ Lδ. Thus we have shown that, for anyX ∈ P (ω)∩L, X ∈ Lδ
for some δ < ω1. Therefore P (ω) ⊆ ⋃

δ<ω1
Lδ = Lω1 . Since |Lω1 |L = ℵL1 ,

|P (ω)|L ≤ ℵL1 .
Because L is a model of ZFC, Cantor’s Theorem holds in L. Therefore

L |= |P (ω)| > ℵ0. We conclude that (2ℵ0)L = ℵL1 .

4.6 Constructible reals

Theorem 4.6.1. The set of constructible members of the Baire space, ωω ∩L,
is a Σ1

2 set.

Proof. Let f ∈ ωω. By Gödel’s proof of CH in L, the assertion “f ∈ L” is
equivalent to “there exists a countable limit ordinal δ such that f ∈ Lδ”. And
by Sections 4.4 and 4.5 this is equivalent to “there exists a countable transitive
set T satisfying V=L with f ∈ T ”. This in turn is equivalent to “there exists
an E ⊆ ω×ω such that (ω,E) is well founded, (ω,E) |= V=L, and there exists
k ∈ ω such that ∀m ∀n (f(m) = n ⇐⇒ (ω,E) |= k(m) = n). Here m is the
term representing the number m. This final assertion consists of an existential
quantifier in front of a Π1

1 formula, so the entire assertion is Σ1
2.
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Corollary 4.6.2. The sentence “every real is constructible” is Π1
3 and not

absolute.

Proof. Let ϕ be the sentence ∀f ∈ ωω (f ∈ L). By the above theorem, this
sentence is Π1

3. Let M be a countable transitive model of ZFC + V=L, and let
G be a generic filter for some notion of forcing which adds new reals. Then
M |= ϕ but M [G] |= ¬ϕ.

Corollary 4.6.3. The Shoenfield Absoluteness Theorem, which states that Σ1
2

and Π1
2 sentences are absolute, is best possible.

For later use we note the following result.

Theorem 4.6.4. There is a Σ1
2 well ordering of ωω ∩L, the set of constructible

reals.

Proof. Note first that, by Gödel’s work, the transitive sets Lδ for δ a limit ordinal
are uniformly definably well ordered. This means that there is a formula ψ(x, y)
in the language {∈,=} such that, for all limit ordinals δ,

{(a, b) ∈ Lδ × Lδ | Lδ |= ψ(a, b)}
is a well ordering of Lδ. (This fact is the basis of Gödel’s proof that L satisfies
the Axiom of Choice.)

For a ∈ L, the constructible rank of a is rL(a) = the least ordinal α such
that a ∈ Lα+1. Put r′L(a) = rL(a) + ω = the least limit ordinal δ such that
a ∈ Lδ. For a, b ∈ L put a ≺ b if either r′L(a) < r′L(b), or r′L(a) = r′L(b) = δ
and Lδ |= ψ(a, b). Clearly ≺ is an L-definable well ordering of L. Furthermore,
for f, g ∈ ωω ∩ L, we have that f ≺ g if and only if there exists a well founded
E ⊆ ω×ω such that (ω,E) |= V=L and there exist i, j ∈ ω such that (ω,E) |=
i, j : ω → ω and ∀m ∀n (f(m) = n ⇐⇒ (ω,E) |= i(m) = n) and ∀m ∀n (g(m) =
n ⇐⇒ (ω,E) |= j(m) = n) and (ω,E) |= i ≺ j. Thus the restriction of ≺ to
ωω ∩ L is Σ1

2. This completes the proof.

Corollary 4.6.5. If ∀f (f ∈ L) holds, then ≺ is a ∆1
2 well ordering of ωω, and

the order type of ωω under ≺ is ω1.

4.7 Relative constructibility

Historically, forcing was developed with L as the ground model. Only later was
the theory extended to work with arbitrary models of set theory. In this section,
we note that models of set theory obtained by forcing may be viewed as being
obtained by relative constructibility.

We can generalize the notion of constructibility either by relativizing to an
extra predicate X , or by starting from an initial transitive set T , or both. The
following definition encompasses both of these extensions.
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Definition 4.7.1 (relative constructibility). Give a transitive set T and
a class X , we define the class LT [X ], read as “L relative to X over T ”, by
transfinite recursion as follows:

LT0 [X ] = T,

LTα+1[X ] = Def(LTα [X ], X ∩ LTα [X ],∈|LTα [X ]),

LTδ [X ] =
⋃
α<δ L

T
α [X ], if δ is a limit ordinal.

The notation Def(LTα [X ], X ∩ LTα [X ],∈|LTα [X ]) should be read as “the subsets
of LTα [X ] definable using parameters from LTα [X ] and the extra predicate X ∩
LTα [X ].” We define LT [X ] =

⋃{LTα [X ] | α ∈ Ord}, the sets constructible
relative to X starting with T .

Remark 4.7.2. LT [X ] is a model of ZF + V=LT [X ]. In fact, LT [X ] is the
smallest transitive model of ZF(X) containing all of the ordinals and {T }. Cau-
tion: LT [X ] may or may not satisfy the Axiom of Choice. In fact, LT [X ] |= AC
if and only if LT [X ] contains a well ordering of T . In particular, with T = ∅,
L[X ] satisfies the Axiom of Choice. However, L[X ] need not satisfy the GCH.

Remark 4.7.3. If P ∈ L is a partial ordering and G ⊆ P is L-generic, then
the sideways extension L[G] is given by relative constructibility, with G as the
extra predicate.

Remark 4.7.4. More generally, if M is a transitive model of ZFC, P is a partial
ordering in M , and G is an M -generic filter on P , then we have

M [G] =
⋃{LTα [G] | T ∈M,α ∈ Ord ∩M}.

Contrast this with the definition of M [G] already given in Section 3.2 above.
However, the two definitions are equivalent.
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Chapter 5

Measurable cardinals

In this chapter we introduce the study of large cardinals. We focus on measur-
able cardinals, this being one of the most typical large cardinal properties.

5.1 Filters

Definition 5.1.1 (filters). Let I be a nonempty set. A filter on I is a set
F ⊆ P(I) such that:

1. I ∈ F and ∅ /∈ F ,

2. if X ∈ F and X ⊆ Y , then Y ∈ F ,

3. if X,Y ∈ F , then X ∩ Y ∈ F .

Example 5.1.2. Let I be the closed unit interval [0, 1]. Let

F = {X ⊆ [0, 1] | µ(X) = 1},

where µ denotes Lebesgue measure. Clearly I ∈ F and ∅ /∈ F . Furthermore,
it is obvious that if µ(X) = 1 and Y ⊇ X then µ(Y ) = 1. Finally, if µ(X) =
µ(Y ) = 1, then µ(X ∩ Y ) = 1. Thus F is a filter.

Definition 5.1.3. A filter F is countably additive (a.k.a., σ-additive) if for all
sequences 〈Xn〉n∈ω with Xn ∈ F for all n < ω, we have

⋂
n∈ωXn ∈ F .

Example 5.1.4. The filter in Example 5.1.2 is countably additive. This follows
from countable additivity of Lebesgue measure.

Example 5.1.5. Let I = ω. Clearly F = {X ⊆ ω | ω \X is finite} is a filter
on ω. It is called the Frechet filter. It is not countably additive.

Example 5.1.6. Let I be a topological space for which the Baire Category
Theorem holds, e.g., any complete metric space, or any compact Hausdorff
space. Then the comeager sets form a countably additive filter on I.
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Definition 5.1.7 (κ-additivity). Let κ be an uncountable cardinal. A filter
F is said to be κ-additive if the intersection of any < κ sets in F is in F . I.e.,
for all families of sets Xα ∈ F , α < λ, with λ < κ, we have

⋂
α<λXα ∈ F .

Remark 5.1.8. Every filter is ℵ0-additive. Countable additivity is the same as
ℵ1-additivity.

Example 5.1.9. Let I be a set of cardinality ≥ κ. The filter

F = {X ⊆ I | |I \X | < κ}

is κ-additive. When κ = ℵ0, this is just the Frechet filter on I.

5.2 The closed unbounded filter

In this section we present another interesting example of a filter, namely the
closed unbounded filter (a.k.a., the club filter) on a regular uncountable cardinal.

Notation 5.2.1. Throughout this section, let κ be a regular uncountable car-
dinal. By definition this means that κ is an ordinal > ω and every unbounded
subset of κ is of order type κ. Recall that, by von Neumann, every cardinal is
an ordinal, and every ordinal is an initial segment of the ordinals.

Definition 5.2.2. A set X ⊆ κ is bounded if supX < κ. A set C ⊆ κ is
unbounded if supC = κ, and closed if supX ∈ C for all nonempty bounded sets
X ⊆ C. A club is a closed unbounded set, i.e., a set C ⊆ κ which is closed and
unbounded.

Lemma 5.2.3. Let F = {X ⊆ κ | X includes a club}. Then F is a filter on κ.

Proof. If suffices to show that the intersection of two clubs is a club. Suppose
that C1, C2 ⊆ κ are club. Clearly C1 ∩ C2 is closed. We show that C1 ∩ C2 is
unbounded. Given α < κ, to find γ > α such that γ ∈ C1 ∩ C2. Pick α0 ∈ C1

such that α0 > α. Pick β0 ∈ C2 such that β0 > α0. Pick α1 ∈ C1 such that
α1 > β0. Pick β1 ∈ C2 such that β1 > α1. Continuing for ω steps, we obtain
two sequences αn ∈ C1, βn ∈ C2, n < ω, with

α < α0 < β0 < · · · < αn < βn < · · ·.
Finally put

γ = supn αn = supn βn.

Since κ is regular and > ω, we have γ < κ. Since C1 and C2 are closed, we have
γ ∈ C1 ∩ C2. Thus C1 ∩C2 is unbounded.

Remark 5.2.4. The filter that we have just defined is called the club filter on
κ. The argument used to show that C1∩C2 is unbounded is called a hand-over-
hand argument. We can use a multiple hand-over-hand argument to show that
the club filter is κ-additive, i.e., the intersection of fewer than κ clubs is a club.
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More generally, we have the following.

Definition 5.2.5. The diagonal intersection of a κ-sequence of sets Xα ⊆ κ,
α < κ, is defined by

△α<κXα = {α < κ | α ∈ ⋂β<αXβ}.

Remark 5.2.6. A hand-over-hand argument shows that the diagonal intersec-
tion of clubs is a club. From this it follows that the club filter is closed under
diagonal intersection.

Definition 5.2.7. A set S ⊆ κ is said to be stationary if S∩C 6= ∅ for all clubs
C ⊆ κ. Clearly S is unbounded. In fact, S ∩ C is unbounded, for any club C.

Lemma 5.2.8 (Fodor). Let S ⊆ κ be stationary, and let f : S → κ be such
that f(α) < α for all α ∈ S. Then f is constant on a stationary set. I.e., there
exists β < κ such that {α ∈ S | f(α) = β} is stationary.

Proof. Suppose not. Then for all β < κ we can choose a club Cβ such that
f(α) 6= β for all α ∈ S∩Cβ . Put C = △β<κCβ , the diagonal intersection. Then
C is a club, and for all α ∈ S ∩ C we have that f(α) 6= β for all β < α. This is
a contradiction.

Theorem 5.2.9. There exist κ pairwise disjoint stationary sets.

Proof. Let S = {α < κ | cf(α) = ω}, the set of limit ordinals < κ of cofinality ω.
(Or, instead of ω, we could use any regular uncountable cardinal λ < κ.) Clearly
S is stationary. For each α ∈ S let α = supn fn(α) where fn(α) < α for all
n < ω. We claim: there exists n such that {α ∈ S | fn(α) ≥ γ} is stationary for
all γ < κ. Otherwise, for each n let γn < κ be such that {α ∈ S | fn(α) ≥ γn}
is not stationary, and let Cn be a club such that fn(α) < γn for all α ∈ S ∩Cn.
Then γ = supn γn < κ, and C =

⋂
n Cn is a club, and for all α ∈ S ∩ C we

have that fn(α) ≤ γ for all n, hence α ≤ γ. This is absurd, so our claim
is proved. Fixing n as in the claim, we have by Fodor’s Lemma 5.2.8 that
Sβ = {α ∈ S | fn(α) = β} is stationary, for unboundedly many β < κ. Since κ
is regular, this gives us κ pairwise disjoint stationary sets.

Remark 5.2.10. The above line of argument shows that any stationary subset
of {α < κ | cf(α) < α} is decomposable into κ pairwise disjoint stationary sets.
Solovay has improved this by showing that any stationary set is decomposable
into κ pairwise disjoint stationary sets. For a proof of this stronger result, see
Jech [5, pp. 433–434].

5.3 Ultrafilters

Definition 5.3.1. An ultrafilter on a set I is a filter U such that for all X ⊆ I
either X ∈ U or I \X ∈ U . Alternatively, we can say that U is a maximal filter
on I, in the sense of Zorn’s Lemma.
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Remark 5.3.2. The examples of filters presented in Section 5.1 are clearly not
ultrafilters. Also, by Theorem 5.2.9, the club filter on a regular uncountable
cardinal κ is not an ultrafilter.

Definition 5.3.3. For any fixed i0 ∈ I, we have an ultrafilter

U = {X ⊆ I | i0 ∈ X}.

Such ultrafilters are called principal ultrafilters.

Remark 5.3.4. Principal ultrafilters are considered uninteresting, because they
are completely determined by a single element of I. Note that every ultrafilter
on a finite set is principal. We have the following lemma and theorem giving
the existence of nonprincipal ultrafilters.

Lemma 5.3.5. For each filter F on I, there is an ultrafilter U such that F ⊆ U .

Proof. Consider the set of filters on I which include F , ordered by inclusion.
By Zorn’s Lemma, this partial ordering has a maximal element, U . It is easy
to check that U is an ultrafilter.

Theorem 5.3.6. For any infinite set I, there exists a nonprincipal ultrafilter
on I.

Proof. Let F be the Frechet filter on I, i.e., F = {X ⊆ I | I \X finite}. Apply
Lemma 5.3.5 to get an ultrafilter U extending F . Clearly U is nonprincipal.

Remark 5.3.7. It is difficult to find specific, natural examples of nonprincipal
ultrafilters. In fact, it is consistent with ZFC that there is no definable nonprin-
cipal ultrafilter on ω. To see this, note that the fair coin measure µ on 2ω is
invariant under the mapping X 7→ ω \X , hence no nonprincipal ultrafilter on
ω is µ-measurable, but in the Solovay model (see Remark 6.4.10) all definable
subsets of 2ω are µ-measurable.

5.4 Ultraproducts and ultrapowers

Definition 5.4.1 (ultraproducts). Let (Ai, Ei), i ∈ I, be an indexed family
of relational structures. Thus for all i ∈ I we have Ai 6= ∅ and Ei ⊆ Ai × Ai.
Consider the product

∏
i∈I Ai = {〈ai〉i∈I | ∀i ∈ I (ai ∈ Ai)}.

Given an ultrafilter U on I, define an equivalence relation ≈ on
∏
i∈I Ai by

〈ai〉i∈I ≈ 〈bi〉i∈I ⇐⇒ {i ∈ I | ai = bi} ∈ U .

Let A∗ be the set of equivalence classes,

A∗ =
∏
i∈I Ai /≈.

Define a binary relation E∗ ⊆ A∗ ×A∗ by
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[〈ai〉i∈I ]E∗[〈bi〉i∈I ] ⇐⇒ {i ∈ I | aiEibi} ∈ U ,

where [〈ai〉i∈I ] is the equivalence class of 〈ai〉i∈I . The relational structure
(A∗, E∗) is called an ultraproduct. We write

(A∗, E∗) =
∏
i∈I(Ai, Ei)/U .

Remark 5.4.2. The idea behind ultraproducts is that (A∗, E∗) is in some
sense the “average” of the structures (Ai, Ei), i ∈ I, where the average is taken
with respect to the 0, 1-valued measure U on I. This idea is confirmed by the
following theorem.

Theorem 5.4.3 (Los). For all L-formulas ϕ(x1, . . . , xn), L = {∈,=}, and for
all a∗1, . . . , a

∗
n ∈ A∗, we have

(A∗, E∗) |= ϕ(a∗1, . . . , a
∗
n) ⇐⇒ {i ∈ I | (Ai, Ei) |= ϕ(a1i, . . . , ani)} ∈ U,

where a∗1 = [〈a1i〉i∈I ], . . . , a∗n = [〈ani〉i∈I ].

Proof. The proof is by induction on L-sentences with parameters from A∗. For
atomic sentences the statement is true by definition of (A∗, E∗). Suppose ϕ =
¬ψ. Then (A∗, E∗) |= ¬ψ ⇐⇒ (A∗, E∗) 6|= ψ. By the induction hypothesis,
this holds if and only if {i ∈ I | (Ai, Ei) |= ψ} /∈ U . Since U is an ultrafilter,
this holds if and only if {i ∈ I | (Ai, Ei) |= ¬ψ} ∈ U .

Now suppose ϕ = ψ1 ∧ψ2. Since (A∗, E∗) |= ϕ if and only if (A∗, E∗) |= ψ1

and (A∗, E∗) |= ψ2, we have by the induction hypothesis that (A∗, E∗) |= ϕ if
and only if

{i ∈ I | (Ai, Ei) |= ψ1} ∈ U and {i ∈ I | (Ai, Ei) |= ψ2} ∈ U .

Since ultrafilters are closed under intersection, this holds if and only if

{i ∈ I | (Ai, Ei) |= ψ1 ∧ ψ2} ∈ U ,

i.e., {i ∈ I | (Ai, Ei) |= ϕ} ∈ U .
Finally, suppose ϕ = ∃xψ(x). If (A∗, E∗) |= ∃xψ(x), let a∗ ∈ A∗ be such

that (A∗, E∗) |= ψ(a∗). Then by induction hypothesis

{i ∈ I | (Ai, Ei) |= ψ(ai)} ∈ U ,

where a∗ = [〈ai〉i∈I ]. Hence {i ∈ I | (Ai, Ei) |= ∃xψ(x)} ∈ U . Conversely,
assume {i ∈ I | (Ai, Ei) |= ∃xψ(x)} ∈ U . For each i ∈ I use the Axiom of
Choice to pick ai ∈ Ai such that (Ai, Ei) |= ψ(ai) if possible, otherwise let
ai ∈ Ai be arbitrary. Then {i ∈ I | (Ai, Ei) |= ψ(ai)} ∈ U . Hence by inductive
hypothesis (A∗, E∗) |= ψ(a∗), where a∗ = [〈ai〉i∈I ]. Hence (A∗, E∗) |= ∃xψ(x).
This completes the proof.

As an application of Los’s Theorem, we now give an elegant proof of the
Compactness Theorem.
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Theorem 5.4.4. Let S be a set of sentences in the language with equality and
one binary relation symbol. If every finite subset of S is satisfiable, then S is
satisfiable.

Proof. Let I be the set of finite subsets of S. By hypothesis, for each s ∈ I there
is a structure (As, Es) satisfying all the sentences in s. Let F be the filter on I
generated by {Xϕ | ϕ ∈ S} where Xϕ = {s ∈ I | ϕ ∈ s}. Let U be an ultrafilter
extending F . Finally, let (A∗, E∗) be the ultraproduct

∏
s∈I(As, Es)/U . For

each ϕ ∈ S we have Xϕ ∈ U , hence {s ∈ I | (As, Es) |= ϕ} ∈ U , hence by Los’s
Theorem (A∗, E∗) |= ϕ. Thus (A∗, E∗) satisfies S.

Remark 5.4.5. In our discussion of ultraproducts, we have dealt only with the
language {∈,=} with one binary predicate plus equality. However, it is routine
to generalize to arbitrary languages for the predicate calculus. Thus we really
do have a proof of the full Compactness Theorem.

We now consider the special case of ultraproducts where all of the structures
(Ai, Ei) are the same.

Definition 5.4.6 (ultrapowers). An ultrapower is an ultraproduct

(A∗, E∗) =
∏
i∈I(Ai, Ei)/U

where each Ai is some fixed set A and each Ei is some fixed relation E ⊆ A×A,
for all i ∈ I. In this case we write

(A∗, E∗) =
∏

(A,E)/U

and refer to (A∗, E∗) as the ultrapower of (A,E) by U . Note that A∗ = AI/U .

Remark 5.4.7. For any ultrapower (A∗, E∗) of (A,E), there is a canonical
elementary embedding of (A,E) into (A∗, E∗) given by a 7→ [ca] where ca =
〈a〉i∈I . In trivial cases, e.g., when A is finite or U is principal, our elementary
embedding is onto A∗, so we get nothing new. In general, A∗ contains new
elements, so (A∗, E∗) is a proper elementary extension of (A,E).

Exercise 5.4.8. Show that the canonical embedding of (A,E) into (A∗, E∗) is
onto if and only if U is |A|+-additive.

5.5 An elementary embedding of V

Definition 5.5.1 (measurable cardinals). A measurable cardinal is an un-
countable cardinal κ such that there exists a nonprincipal κ-additive ultrafilter
on (any set of cardinality) κ.

Remark 5.5.2. Following Von Neumann, we identify cardinals with initial
ordinals, and we identify ordinals with transitive sets well ordered by ∈. Thus
for any ordinal α we have α = {β | β < α}. In particular, κ is itself a set of
cardinality κ. Since the existence of a nonprincipal κ-additive ultrafilter on one
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set of size κ implies the existence of a similar ultrafilter on any other set of size
κ, we may define a measurable cardinal to be an uncountable cardinal κ such
that there exists a κ-additive nonprincipal ultrafilter on κ itself.

Theorem 5.5.3. If κ is measurable, then κ is strongly inaccessible. That is, κ
is regular, and 2λ < κ for all λ < κ.

Proof. Let U be a κ-additive nonprincipal ultrafilter on κ. Since U is nonprin-
cipal, {β} /∈ U for all β < κ. Hence by κ-additivity, for all α < κ we have
α =

⋃
β<α{β} /∈ κ. Hence by κ-additivity again, for any X ⊆ κ with |X | < κ

we have
⋃
X =

⋃
α∈X α $ κ, i.e., supX < κ. Thus κ is regular.

We next show that λ < κ implies 2λ < κ. Fix λ < κ and assume toward a
contradiction that f : κ→ P (λ) is one-to-one. For each β < λ let Xβ be either
{α < κ | β ∈ f(α)} or {α < κ | β /∈ f(α)}, whichever is in U . This is a valid
definition of Xβ, because U is an ultrafilter. Since λ < κ and U is κ-additive,
we have X =

⋂
β<λXβ ∈ U . Since U is nonprincipal, there are two distinct

elements α1 6= α2 in X . By construction of X we have β ∈ f(α1) ⇐⇒ β ∈
f(α2) for all β < λ. Hence f(α1) = f(α2), contradicting our assumption that f
is one-to-one. We conclude that 2λ < κ.

Corollary 5.5.4. The existence of a measurable cardinal is not provable in
ZFC.

Proof. In light of Theorem 5.5.3 and the fact that ZFC proves that “‘there exists
an inaccessible cardinal” implies Con(ZFC), we see that ZFC proves that “there
exists a measurable cardinal” implies Con(ZFC). By Gödel’s theorem, ZFC does
not prove Con(ZFC). Hence ZFC does not prove that a measurable cardinal
exists.

Next we shall use a measurable cardinal to construct an elementary embed-
ding of the universe V into an inner model M . In the next section we shall use
this technique to show that measurable cardinals are very large – larger than
inaccessible cardinals, Mahlo cardinals, etc.

Definition 5.5.5. Let κ be a measurable cardinal. Let U be a κ-additive,
nonprincipal ultrafilter on κ. Let V denote the universe of set theory. We
define V ∗ to be the ultrapower V κ/U .

Remark 5.5.6. Instead of the universe of set theory, we could use a countable
transitive model of ZFC which satisifes “there exists a measurable cardinal.”

Remark 5.5.7. Los’s Theorem implies that V ∗ is a model of ZFC. We next
show that V ∗ is isomorphic to a transitive model of ZFC.

Lemma 5.5.8. The ultrapower (V ∗,∈∗) is well founded.

Proof. Suppose that V ∗ is not well founded. Let 〈a∗n〉n∈ω be a descending
sequence with respect to ∈∗. For each n ∈ ω choose 〈anα〉α<κ such that a∗n is
the equivalence class [〈anα〉α<κ]. Let Yn = {α < κ | an+1,α ∈ anα}. By Los’s
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Theorem, Yn ∈ U . Put Y =
⋂
n Yn. Then Y ∈ U , because U is κ-additive.

Hence Y 6= ∅. Fix α ∈ Y . Then an+1,α ∈ an,α for each n, contradicting the well
foundedness of V . We conclude that V ∗ is well founded.

Theorem 5.5.9. Let κ be a measurable cardinal. Then there is an inner model
M of V and an elementary embedding j : V →M .

Proof. Let U be a nonprincipal κ-additive ultrafilter on κ and let V ∗ be the
ultrapower V κ/U . Let i : V → V ∗ be the canonical elementary embedding. By
Lemma 5.5.8, V ∗ is well founded, so let M be the Mostowski collapse of V ∗. A
general property of the collapse is that M is a definable class. Therefore M is
an inner model of V . Define j = π ◦ i, where π : V ∗ → M is the collapsing map.
It is clear that j is an elementary embedding of V into M .

Lemma 5.5.10. Let j : V → M be the elementary embedding constructed in
Theorem 5.5.9. Then j(α) = α for every ordinal α < κ, but j(κ) > κ.

Proof. To show that j is the identity on ordinals less than κ, it suffices to show
that for all [〈αγ〉γ<κ] ∈ V ∗, if [〈aγ〉γ<κ] < [cα] = i(α) for some α < κ, then
[〈aγ〉γ<κ] = [cβ] for some β < α. Note that {γ < κ | aγ < α} ∈ U . By κ-
additivity, there exists β < α such that {γ < κ | aγ = β} ∈ U . Thus in V ∗

we see that the ordinals < [cα] are just {[cβ] | β < α}, which has order type α.
Hence, j(α) = π([cα]) = α.

Since j is order preserving, we have j(κ) > j(α) = α for all α < κ. Thus
j(κ) ≥ κ. Put d = 〈γ〉γ<κ. For all α < κ we have i(κ) = [cκ] > [d] > [cα] = i(α).
Applying π, we obtain j(κ) > π([d]) > α for all α < κ, hence j(κ) > κ.

We have proved the following result.

Theorem 5.5.11. If κ is a measurable cardinal, then there exist a transitive
inner model M of V such that Ord ⊆ M ⊆ V and an elementary embedding
j : V →M such that j(α) = α for all α < κ, and j(κ) > κ.

Remark 5.5.12. The converse of Theorem 5.5.11 also holds. See Theorem 5.6.5
below.

5.6 Largeness and normality

We now show that measurable cardinals are very large. There are many types of
large cardinals. We define Mahlo cardinals and show that measurable cardinals
are “larger” than inaccessible and Mahlo cardinals, in the sense that a mea-
surable cardinal necessarily has many inaccessible and Mahlo cardinals below
it.

Theorem 5.6.1. If κ is a measurable cardinal, then κ is greater than the least
inaccessible cardinal.
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Proof. By Theorem 5.5.3, κ is inaccessible in V . Let j : V → M be an ele-
mentary embedding as in Theorem 5.5.11. Thus κ is inaccessible in M , because
M ⊆ V and inaccessibility is downward absolute. Now j(κ) is also inaccessible
in M , because j is an elementary embedding. Because j(κ) > κ, there is an
inaccessible cardinal in M which is strictly less than j(κ). This pulls back to
V , so V contains an inaccessible cardinal strictly less than κ.

Corollary 5.6.2. If κ is a measurable cardinal, then κ is the limit of inaccessible
cardinals, hyper-inaccessible cardinals, etc.

Proof. Fix α < κ and repeat the previous argument. We have that M |= j(κ) >
κ > α, where κ is inaccessible. Thus M |= ∃λ (j(κ) > λ > α∧λ is inaccessible).
Pulling back to V , we see that V |= ∃λ (κ > λ > α ∧ λ is inaccessible).

Definition 5.6.3. A Mahlo cardinal is an inaccessible cardinal κ such that
every club in κ contains an inaccessible cardinal less than κ. I.e., the set of
inaccessible cardinals < κ is stationary in κ.

Theorem 5.6.4. If κ is a measurable cardinal, then κ is Mahlo, hyper-Mahlo,
etc.

Proof. Let C ⊆ κ be a club. Then j(C) is club in j(κ), since j is an elementary
embedding. However, for any α < κ we have α ∈ C ⇐⇒ α = j(α) ∈ j(C)).
Thus j(C) ∩ κ = C, so M |= j(C) ∩ κ is unbounded in κ. Reasoning in M ,
κ = sup(j(C) ∩ κ) ∈ j(C) and κ is inaccessible. Thus in M there is a λ < j(κ)
such that λ is inaccessible and λ ∈ j(C) so V |= ∃λ < κ (λ ∈ C).

We now prove the converse of Theorem 5.5.11.

Theorem 5.6.5. Let M be an inner model of V such that j : V → M is an
elementary embedding. Let κ be the first ordinal moved by j, i.e., j(α) = α for
all α < κ, and j(κ) > κ. Then κ is a measurable cardinal in V .

Proof. Define

U = {X ⊆ κ | κ ∈ j(X)}.
We claim that U is a nonprincipal κ-additive ultrafilter on κ. It is straightfor-
ward to verify that U is a filter. Moreover, U is nonprincipal: for any α < κ,
j({α}) = {α} /∈ U . It remains to verify that U is κ-additive. Fix λ < κ and let
Xβ, β < λ, be subsets of κ. Since j(λ) = λ, we have j(

⋂
β<λXβ) =

⋂
β<λ j(Xβ).

Hence κ ∈ j(
⋂
β<λXβ) if and only if κ ∈ j(Xβ) for all β < λ. Thus

⋂
β<λXβ ∈

U if and only if j(Xβ) ∈ U for all β < λ. Thus U is κ-additive.

Theorem 5.6.6. If κ is measurable, then {λ < κ | λ is inaccessible, Mahlo,
hyper-Mahlo, etc.} is stationary in κ.

Proof. Let U be the ultrafilter constructed in the proof of Theorem 5.6.5. The
proof of Theorem 5.6.4 shows that {λ < κ | λ is inaccessible, Mahlo, hyper-
Mahlo, etc.} belongs to U . The same proof also shows that every club set C ⊆ κ
belongs to U , and from this it follows that every member of U is stationary.

73



We end this section by noting that the ultrafilter constructed in the proof
of Theorem 5.6.5 has an additional interesting property.

Definition 5.6.7 (normal ultrafilters). An ultrafilter U on κ is said to be
normal if it is closed under diagonal intersection. That is, if Xγ ∈ U for all
γ < κ, then △γ<κXγ ∈ U , where

△γ<κXγ = {α < κ | ∀γ < α (α ∈ Xγ)}.

Lemma 5.6.8. The ultrafilter U constructed in the proof of Theorem 5.6.5 is
normal.

Proof. Given Xγ ∈ U for all γ < κ, we want to show that △γXγ ∈ U . Straight-
forward computation shows that

j(△γ<κXγ) = △γ<j(κ)j(Xγ) = {α < j(κ) | α ∈ ⋂γ<α j(Xγ)}.
But κ ∈ j(Xγ) for all γ < κ. Hence κ ∈ j(△γ<κXγ), i.e., △γ<κXγ ∈ U .

Combining previous results, we have:

Theorem 5.6.9. Let κ be a measurable cardinal. Then there exists a normal,
κ-additive, nonprincipal ultrafilter on κ.

Proof. By Theorem 5.5.11 there is an elementary embedding j : V →M , where
M is an inner model of V and κ is the least ordinal moved by j. Apply Theo-
rem 5.6.5 and Lemma 5.6.8 to obtain a normal ultrafilter on κ.

Remark 5.6.10. Instead of using an elementary embedding, it is possible to
give a combinatorial proof of Theorem 5.6.9 which directly constructs the normal
ultrafilter.

5.7 Ramsey’s Theorem

In this section we digress to prove a combinatorial theorem known as Ramsey’s
Theorem. Let X be any set. For k ∈ ω, let [X ]k denote the set of k-element
subsets of X :

[X ]k = {s ⊆ X | |s| = k}.
We consider colorings of [X ]k with finitely many colors C1, . . . , Cl.

Theorem 5.7.1 (Ramsey). Let X be an infinite set, and let k, l ≥ 1. If
[X ]k = C1 ∪· · · ∪Cl then there exists an infinite set Y ⊆ X such that [Y ]k ⊆ Ci
for some i.

Proof. Without loss of generality, assume X = ω. The proof will proceed by
induction on k, which we call the exponent. The base case, k = 1, amounts to
what is called the Pigeonhole Principle: if an infinite set is broken into finitely
many pieces, then one of the pieces must be infinite.
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We now assume Ramsey’s Theorem for exponent k and prove it for exponent
k + 1. Let [ω]k+1 = C1 ∪ · · · ∪ Cl. For each a ∈ ω and 1 ≤ i ≤ l define

Cai = {s ∈ [ω \ {0, . . . , a} ]k | {a} ∪ s ∈ Ci}.

We construct a strictly increasing sequence 〈an〉 of natural numbers. At the
same time we construct a nested sequence of infinite sets 〈Xn〉. The construction
proceeds by induction on n. To begin, let X0 = ω and a0 = 0. At stage n+ 1
we have that Xn is an infinite subset of ω. Let an be the least element of Xn.
We have [Xn \ {an}]k ⊆ Can

i ∪ · · · ∪Can

l , so by Ramsey’s Theorem for exponent
k let Xn+1 be an infinite subset of Xn \ {an} such that [Xn+1]

k ⊆ Can

i for
some i. Note that an < an+1 = the least element of Xn+1. This finishes the
construction.

Define A = {an | n ∈ ω}. By construction, for any t and t′ in [A]k+1, if t
and t′ have the same least element, then t and t′ both belong to Ci for some i.
Define

Ai = {a ∈ A | ∀t ∈ [A]k+1 (a = min(t) ⇒ t ∈ Ci)}.
By construction, A = A1 ∪ · · · ∪ Al. By the Pigeonhole Principle, let i be such
that Ai is infinite. Then [Ai]

k+1 ⊆ Ci. This completes the proof.

Example 5.7.2. We illustrate one consequence of Ramsey’s theorem in the
case k = 2. Let Kω be the complete graph on ω vertices. Suppose that the
edges of Kω are colored with finitely many colors. Then there is an infinite
subgraph G of Kω such that G is a complete graph and the edges between the
vertices of G are all the same color.

5.8 Indiscernibles and EM-sets

A classic application of Ramsey’s Theorem is the construction of models with
indiscernibles. Two elements in a structure are said to be indiscernible if they
satisfy exactly the same formulas (without parameters) with one free variable.
We generalize this to infinite sets of indiscernibles.

Definition 5.8.1 (indiscernibles). Let (A,E) be a relational structure for
the language L with one binary predicate symbol and equality. Let I be a
subset of A, and let < be a linear ordering of I. We say that (I,<) is a set
of indiscernibles in (A,E) if for all L-formulas ϕ(x1, . . . , xk) with free variables
x1, . . . , xk, k ≥ 1, and all sequences a1 < · · · < ak and b1 < · · · < bk of elements
of I,

(A,E) |= ϕ(a1, . . . , ak) ⇐⇒ (A,E) |= ϕ(b1, . . . , bk).

Theorem 5.8.2. Let (A,E) be a relational structure with A an infinite set,
and let (I,<) be any linearly ordered set. Then there is a relational structure
(A′, E′) elementary equivalent to (A,E) such that (A′, E′) contains (I,<) as a
set of indiscernibles.
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Proof. We work with the language L′ = L ∪ I consisting of L plus constant
symbols for the elements of I. We will show that a certain L′-theory T is
consistent. T consists of:

1. all L-sentences true in (A,E),

2. the sentence a 6= b for all distinct a, b ∈ I,

3. all sentences of the form ϕ(a1, . . . , ak) ⇐⇒ ϕ(b1, . . . , bk), where ϕ(x1, . . . , xk)
is an L-formula with the free variables shown, and a1 < · · · < ak ∈ I,
b1 < · · · < bk ∈ I.

Clearly any structure (A′, E′) satisfying T has (I,<) as a set of indiscernibles.
To show that T is satisfiable, we will use the Compactness Theorem and Ram-
sey’s Theorem.

Let T0 be a finite subset of T . We show that T0 is satisfiable. Let ϕ1, . . . , ϕn
be the finitely many L-formulas ϕ as in part 3 of the definition of T which
occur in T0. By adding dummy variables as needed, we may assume that all of
ϕ1, . . . , ϕn have the same free variables, say x1, . . . , xk for some fixed k.

Fix a linear ordering < of A. We partition [A]k into 2n subsets. For each
s ⊆ {1, . . . , n} define Cs ⊆ [A]k by

{a1 < · · · < ak} ∈ Cs ⇐⇒ s = {i | (A,E) |= ϕi(a1, . . . , ak)}.

Then [A]k =
⋃
sCs. By Ramsey’s Theorem we obtain an infinite set X ⊆ A

such that [X ]k ⊆ Cs for some s. We then use elements of X to interpret the
finitely many constants from I which occur in T0. Thus T0 is satisfiable in
(A,E).

Given an infinite set of indiscernibles, it is natural to make the following
definition.

Definition 5.8.3 (EM-sets). Let (I,<) be an infinite set of indiscernibles in a
structure (A,E). The EM-set (Ehrenfeucht/Mostowski set) of (I,<) in (A,E)
is the set of L-formulas ϕ(x1, . . . , xn), n < ω, such that (A,E) |= ϕ(a1, . . . , an)
for all a1 < . . . < an ∈ I.

Remark 5.8.4. Abstractly, a set of L-formulas is an EM-set if and only if

{ϕ(ci1 , . . . , cin) | i1 < . . . < in ∈ ω, ϕ(x1, . . . , xn) ∈ S, n ∈ ω}
is a maximal consistent set of sentences in the language L′ = L ∪ {ci | i < ω}.
Theorem 5.8.5 (stretching indiscernibles). Let S be an EM-set and let
(J,<) be an infinite linear ordering. Then there is an L-structure containing
(J,<) as a set of indiscernibles with S as its EM-set.

Proof. Put SJ = {ϕ(a1, . . . , an) | ϕ(x1, . . . , xn) ∈ S, n < ω, a1 < . . . < an ∈ J}.
Thus SJ is a set of L′-sentences, where L′ = L∪ J . Since S is an EM-set, SJ is
finitely satisfiable. Hence SJ is satisfiable. By construction of SJ , any model of
SJ contains a set of indiscernibles which is a copy of (J,<).
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We now consider a special model-theoretic situation where the stretching of
indiscernibles is functorial.

Definition 5.8.6 (definable Skolem functions). A structure (A,E) is said
to have definable Skolem functions if for each L-formula ϕ(x1, . . . , xn, y) there
exists an L-formula ϕ̂(x1, . . . , xn, y) such that (A,E) satisfies

∀x1 . . . ∀xn ∀y [ ϕ̂(x1, . . . , xn, y) ⇒ ϕ(x1, . . . , xn, y) ]

and

∀x1 . . . ∀xn [ (∃y ϕ(x1, . . . , xn, y)) ⇒ ∃ ! y ϕ̂(x1, . . . , xn, y) ].

Here ∃ ! y is an abbreviation for “there exists a unique y”.

Examples 5.8.7. Many common structures have definable Skolem functions.

1. (N,+, ·, <) has definable Skolem functions, because if there is a number
satisfying a formula then we can pick the least one. Thus

ϕ̂(x1, . . . , xn, y) ≡ ϕ(x1, . . . , xn, y) ∧ ¬∃z (z < y ∧ ϕ(x1, . . . , xn, z)).

2. The real number system (R,+, ·) has definable Skolem functions. This is
an easy consequence of quantifier elimination for (R,+, ·, 0, 1, <,=).

3. Any structure can be expanded to a structure for a larger language with
definable Skolem functions, by adding extra functions, using the Axiom of
Choice.

Theorem 5.8.8 (the definable hull). If (A,E) has definable Skolem func-
tions, then for all X ⊆ A there is a smallest elementary submodel of (A,E)
containing X . This model, denoted Hull(X), consists of those elements a ∈ A
which are definable over (A,E) allowing parameters from X .

Proof. The proof is a straightforward application of the Tarski criterion for
elementary submodels.

Definition 5.8.9. An EM -set S is said to have definable Skolem functions if
it is the EM -set of an infinite set of indiscernibles (I,<) in a structure (A,E)
which has definable Skolem functions.

Proposition 5.8.10. Let S be an EM -set with definable Skolem functions.
To any linear ordering (J,<) we can associate a unique L-structure HullS(J) =
Hull(J) within (A,E) where (A,E) is any L-structure with (J,<) as a set of
indiscernibles with S as its EM -set. The construction of HullS(J) does not
depend on the choice of (A,E).

Proof. The existence of HullS(J) is given by Theorems 5.8.5 and 5.8.8. Thus
HullS(J) is a structure with (J,<) as a set of indiscernibles and S as its EM-
set. To prove uniqueness, assume that both (A,E) and (A′, E′) have (J,<) as
a set of indiscernibles with EM-set S. Because Sis an EM-set, (A,E, j)j∈J is
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elementarily equivalent to (A′, E′, j)j∈J . Hence there is a natural isomorphism
f of Hull(J, (A,E)) onto Hull(J, (A′, E′)). Namely, if a ∈ Hull(J, (A,E)), let
f(a) = the unique a′ ∈ Hull(J, (A′, E′)) such that (A,E, a, j)j∈J is elementarily
equivalent to (A′, E′, a′, j)j∈J .

Remark 5.8.11. Note that HullS is functorial. I.e., if (I,<) is a subordering
of (J,<), then HullS(I) is canonically an elementary submodel of HullS(J).

Definition 5.8.12 (definable well ordering). A structure (A,E) is said to
be definably well ordered if there exists a binary relation ≺ on A such that

1. ≺ is a linear ordering of A.

2. ≺ is definable over (A,E) without parameters.

3. (A,E) satisfies “every definable set has a ≺-least element”. That is, for
each L-formula ϕ(y) whose free variables include y, (A,E) satisfies the
universal closure of

(∃y ϕ(y)) ⇒ ∃y (ϕ(y) ∧ ¬∃z (z ≺ y ∧ ϕ(z))).

Thus ≺ is something like a well ordering of A with respect to sets in Def((A,E)).

Remark 5.8.13. If (A,E) is definably well ordered, then (A,E) has definable
Skolem functions. Namely, put

ϕ̂(x1, . . . , xn, y) ≡ ϕ(x1, . . . , xn, y) ∧ ¬∃z (z ≺ y ∧ ϕ(x1, . . . , xn, z)).

5.9 Measurable cardinals and L

Recall that L, the class of constructible sets, is the smallest inner model of V .
For several reasons, V=L has been proposed as an axiom of set theory. Some
advantages of this proposal are:

1. It settles many set theoretic questions, such as the GCH, Souslin’s Hy-
pothesis, etc.

2. It is a simplifying assumption, restricting our attention to constructible
sets.

3. It is known to be consistent with ZFC. In fact, by the Shoenfield Abso-
luteness Theorem, the theory ZFC+V=L is conservative over ZFC for Π1

3

sentences.

The main disadvantage of V=L is that it restricts our notion of set. For
example, V=L implies that measurable cardinals do not exist, as we now prove.

Theorem 5.9.1 (Scott). If a measurable cardinal exists, then V 6= L.
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Proof. Let κ be the smallest measurable cardinal. Let U be a κ-additive non-
principal ultrafilter on κ. Let i : V → V ∗ = V κ/U be the canonical elementary
embedding. Let π : V ∗ ∼= M be the transitive collapse of V ∗. Let j : V → M
be given by j = π ◦ i. Then M is an inner model, j : V → M an elementary
embedding, and j(κ) > κ. Since V � κ is the smallest measurable cardinal,
M � j(κ) is the smallest measurable cardinal. Thus M � κ is not a measurable
cardinal. Therefore U /∈ M . Hence V % M . Since L ⊆ M , we conclude that
V % L.

We now go on to show that the existence of a measurable cardinal implies
that P (ω) ∩ L is countable. Moreover, we shall show that every uncountable
successor cardinal of L is collapsed in V , and this implies that V is not a forcing
extension of L. Our tools for these proofs will be indiscernibles and EM-sets.

We begin with the following Ramsey-type theorem. Recall from Theorem
5.6.9 that every measurable cardinal carries a normal ultrafilter.

Theorem 5.9.2. Let κ be a measurable cardinal, and let U be a normal ultra-
filter on κ. Then for all colorings [κ]n = C1 ∪ · · · ∪ Cl there exists X ∈ U such
that [X ]n ⊆ Ci for some i.

Proof. The proof is similar to the proof of Ramsey’s Theorem. We proceed by
induction on n. The base case n = 1 is clear. For the induction step, we are
given [κ]n+1 = C1 ∪ · · · ∪Cl. For each α < κ put

Cαi = {s ∈ [κ]n | α < min(s) and {α} ∪ s ∈ Ci}.
By inductive hypothesis there exists Xα ∈ U such that [Xα]n ⊆ Cαi for some
i = iα, 1 ≤ i ≤ l. Note that κ = Y1 ∪ · · · ∪ Yl where Yi = {α < κ | iα = i}. Let
i be such that Yi ∈ U . Put X = Yi ∩ △α<κXα. We claim that [X ]n+1 ⊆ Ci.
Given t ∈ [X ]n+1 we have t = {α} ∪ s, where α < min(s) and α ∈ Yi, hence
s ∈ [Xα]n ⊆ Cαi , hence t ∈ Ci.

Corollary 5.9.3. There exists X ⊆ κ such that X ∈ U and X is a set of
indiscernibles in (Lκ,∈|Lκ) ordered by < in κ.

Proof. For each {∈,=}-formula ϕ(x1, . . . , xn) we have [κ]n = Cϕ ∪ C¬ϕ, where
Cϕ = {{α1 < · · · < αn} | Lκ � ϕ(α1, . . . , αn)}. Therefore we can find Xϕ ∈ U
such that [Xϕ]n ⊆ Cϕ or [Xϕ]n ⊆ C¬ϕ. Set X =

⋂
ϕXϕ.

Definition 5.9.4 (definition of 0#). We let 0# denote the EM-set of a set of
indiscernibles X ∈ U for Lκ.

Remark 5.9.5. Our definition of 0# appears to depend on the choice of a
measurable cardinal κ and a normal ultrafilter U . However, it can be shown
that 0# is independent of κ and U .

Remark 5.9.6. For any limit ordinal δ, the structure (Lδ,∈|Lδ) has a definable
well ordering, and hence also has definable Skolem functions. (The existence
of a definable well ordering of Lδ is a basic property of the constructible sets,
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used in proving that L satisfies the Axiom of Choice.) It follows that 0# is an
EM-set with definable Skolem functions. Let κ and X be as in the definition of
0#. Since Hull(X) is an elementary submodel of Lκ, Hull(X) is well founded
and satisfies V=L. Hence, by Lemmas 4.4.4 and 4.5.7, Hull(X) is isomorphic
to Lκ.

Definition 5.9.7 (nice EM-sets). Let S be an EM-set with definable Skolem
functions. We say that S is nice if, for all well orderings (I,<), HullS((I,<)) is
well founded. Note that niceness for countable well orderings implies niceness
for arbitrary well orderings. Thus niceness is a Π1

2 property.

Lemma 5.9.8. 0# is a nice EM-set for V=L.

Proof. It follows from the definition that 0# is an EM-set for V=L. Suppose 0#

is not nice. Let (I,<) be a well ordering such that Hull0#(I) is not well founded.
Let {an}n∈ω be a descending sequence in Hull0#(I). Let J ⊆ I be countable so
that {an | n ∈ ω} ⊆ Hull0#(J). Thus Hull0#(J) is not well founded. On the
other hand, since J is a countable well ordering, it is isomorphic to a subordering
of X , where X is as in the definition of 0#. Hence Hull0#(J) embeds into
Hull0#(X), which is well founded, a contradiction.

Theorem 5.9.9 (Rowbottom). The existence of a measurable cardinal im-
plies that P (ω) ∩ L is countable.

Proof. Look at Hull(X) ∼= Lκ as in the definition of 0#. By Gödel we have
P (ω) ∩ L ⊆ Lκ. Hence for each A ∈ P (ω) ∩ L we have

A = {k ∈ ω | Lκ � ϕ(k, a1, . . . , an)}
for some formula ϕ and a1 < · · · < an ∈ X . Since X is a set of indiscernibles,
the truth value of ϕ(k, a1, . . . , an) does not depend on the choice of a1 < · · · <
an ∈ X . Hence there are only countably many possibilities for A. Thus P (ω)∩L
is countable.

We also have the following more general result.

Theorem 5.9.10 (Rowbottom). Assume there exists a measurable cardinal.
Then for any infinite cardinal λ of L we have |P (λ) ∩ L| = |λ|. Hence (λ+)L is
not a cardinal of V .

Proof. Let λ+ be the next cardinal after λ in V . Using 0# as the EM-set, form
Hull(λ+). We know that Hull(λ+) is well founded and satisfies V=L, hence is
∼= Lδ for some limit ordinal δ ≥ λ+. (Actually one can show that δ = λ+.) It
follows that Lδ = Hull(X) where X ⊆ δ is a set of indiscernibles of order type
λ+. Let Y be an initial segment of X of cardinality |λ| such that λ ⊆ Hull(Y ).
For each a < λ let ψa(x) be a formula with parameters from Y such that a is
unique a ∈ Lδ such that Lδ � ψa(a). By Gödel, each A ∈ P (λ) ∩ L belongs to
Lλ+ ⊆ Lδ = Hull(X), so

A = {a < λ | Lδ � ∃x (ψa(x) ∧ ϕ(x, b1, . . . , bn))}
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for some formula ϕ(x, b1, · · · , bn) with parameters b1 < · · · < bn ∈ X . Since
X \ Y is a set of indiscernibles over Y in Lδ, there are only |Y | = λ many
possibilities for A. Hence |P (λ)∩L| = |λ|. It follows that (λ+)L = (2λ)L is not
a cardinal of V .

Corollary 5.9.11. Assume there exists a measurable cardinal. Then every
uncountable cardinal of V is a strong limit cardinal in L. Hence, every regular
uncountable cardinal of V is inaccessible in L.

Proof. Let κ be an uncountable cardinal. For all λ < κ we have |P (λ)∩L| < κ,
hence (λ+)L = (2λ)L < κ. This shows that κ is a strong limit cardinal in L. If
κ is regular, it is regular in L, hence inaccessible in L by what we have already
proved.

Remark 5.9.12. One can actually prove that, if there exists a measurable
cardinal, then every uncountable cardinal of V is inaccessible in L.

Corollary 5.9.13. If there exists a measurable cardinal, or even if 0# exists,
then V is not a forcing extension of L.

Proof. Let G be L-generic with respect to a poset P ∈ L. Since P has the |P |+-
chain condition, P preserves all cardinals of L which are ≥ (|P |+)L. But we
have seen that 0# collapses arbitrarily large cardinals of L. Thus ∃ 0# implies
V 6= L[G].

Remark 5.9.14. In proving Rowbottom’s Theorem and its corollaries, we did
not use the measurable cardinal, but only the existence of 0#. Furthermore, the
only property of 0# that we used is that it is a nice EM-set for V=L.

Remark 5.9.15. Let ∃ 0# denote the assertion that there exists a nice EM-set
for V=L. Clearly ∃ 0# is a Σ1

3 sentence. Thus we have another example of a
Σ1

3 sentence which is not absolute. (Compare Corollary 4.6.2.) Namely, ∃ 0#

is true if a measurable cardinal exists, and false if V = L or if V = a forcing
extension of L.

5.10 The # operator

In this section we note some additional facts about 0#, and we relativize to
consider f# for all f ∈ ωω.

Remark 5.10.1. Recall that 0# is by definition an EM-set for the language
of set theory, {∈,=}. In particular, 0# is a set of {∈,=}-formulas. Identifying
formulas with their Gödel numbers, we have 0# ⊆ ω. Clearly 0# /∈ L. In fact,
the proof of Theorem 5.9.9 shows that f ≤T 0# for all f ∈ ωω ∩ L.

Silver has proved the following additional properties of 0#.

1. For any limit ordinal δ, Hull0#(δ) ∼= Lλ where λ is an inaccessible cardinal
of L.
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2. For any regular uncountable cardinal κ of V , we have Lκ = Hull0#(C)
where C ⊆ κ is a club of indiscernibles in Lκ.

3. The singleton set {0#} is Π1
2. Namely, 0# can be defined as the unique

EM-set for V=L which is nice and has some additional defining prop-
erties. The additional properties are simple syntactic conditions, hence
arithmetical.

We now introduce a set-theoretic analog of Turing degrees.

Definition 5.10.2 (L-degrees). For f, g ∈ ωω we say f is constructible from
g, abbreviated f ≤L g, if f ∈ L[g]. Note that f ≤L f , and

f ≤L g, g ≤L h⇒ f ≤L h.
Thus we have a reducibility notion, analogous to Turing reducibility. The L-
degree or degree of constructibility of f ∈ ωω is

degL(f) = {g | f ≡L g}.
Clearly the L-degrees are partially ordered by ≤L, and degL(f ⊕ g) is the least
upper bound of degL(f) and degL(g).

Example 5.10.3. By forcing over L with perfect subtrees of 2<ω, we obtain
g ∈ 2ω of minimal L-degree, i.e., g /∈ L and for all f ≤L g either f ∈ L
or f ≡L g. See Example 3.8.1 (Sacks). Similarly, many other problems and
methods for Turing degrees can be lifted up to L-degrees.

Remark 5.10.4 (the L-jump). For any f ∈ ωω we can relativize the definition
of 0# to f . Namely, define f# to be the EM-set for a club of indiscernibles
in (Lκ[f ],∈|Lκ[f ], f) where κ is any regular uncountable cardinal. The sharp
operator f 7→ f# behaves as a jump operator for L-degrees. We have f <L f

#,
and moreover f ≤L g ⇒ f# ≤L g#, so the sharp operator is well defined on
L-degrees. In order to have a theory of L-degrees analogous to Turing degrees,
it is convenient to assume ∀f ∃g (f# = g), abbreviated ∀f ∃f#.

Remark 5.10.5. Relativizing the fact that 0# is a Π1
2 singleton, we see that the

2-place predicate f# = g is Π1
2. Hence the sentence ∀f ∃f# is Π1

4. Because this
sentence is lightface projective, it cannot literally imply the existence of large
cardinals. For example, if ∀f ∃f# is true in V , then it is true in Rκ where κ is
the first inaccessible cardinal, and clearly Rκ � ZFC +¬∃ inaccessible cardinal.
On the other hand, ∀f ∃f# implies that every uncountable cardinal of V is
inaccessible in L[f ] for all f , etc. Thus ∀f ∃f# may be viewed as a kind of large
cardinal axiom in some vague sense.

Remark 5.10.6. Instead of assuming the existence of a measurable cardinal,
one can derive ∀f ∃ f# under the weaker assumption that there exists a Ramsey
cardinal.

Definition 5.10.7 (Ramsey cardinals). A Ramsey cardinal is an uncount-
able cardinal κ such that for all F : [κ]<ω → {0, 1} there exists X ⊆ κ of
cardinality κ such that
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∀n |rng(F ↾ [X ]n)| = 1.

Here we are writing [κ]<ω =
⋃
n<ω[κ]n = {finite subsets of κ}.

Remark 5.10.8. It follows from Theorem 5.9.2 that every measurable cardinal
is Ramsey.

Moreover, every measurable cardinal is a limit of Ramsey cardinals, etc. (To
see this, let j : V →M be an elementary embedding with j(κ) > κ and j(α) = α
for all α < κ. Then V � κ is measurable, hence V � κ is Ramsey. Therefore
M � κ is Ramsey, because P (κ) ⊆ M . Hence M � ∃λ < j(κ) such that λ is
Ramsey, hence V � ∃λ < κ such that λ is Ramsey. Etc.)

It can also be shown that every Ramsey cardinal is inaccessible, Mahlo,
etc. Also, the existence of a Ramsey cardinal implies (but is not equivalent to)
∀f ∃f#.
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Chapter 6

Determinacy

Under construction . . . . FIXME

6.1 Games and determinacy

Definition 6.1.1. To each set S ⊆ ωω we associate an infinite game with perfect
information, G(S), a.k.a., the Gale/Stewart game. There are two players, I and
II. A play of the game consists of a series of moves where initially I picks
n0 ∈ ω, then II picks n1 ∈ ω, then I picks n2 ∈ ω, and so on. At stage 2i
player I picks n2i, and at stage 2i+ 1 player II picks n2i+1. This game is said
to have perfect information, because at stage j in the play of the game, both I
and II are aware of n0, n1, . . . , nj−1. At the end of the game, a function h ∈ ωω

is defined by h(i) = ni for all i. We declare that I wins if h ∈ S, and II wins if
h /∈ S.

Remark 6.1.2. The motivating question throughout this chapter will be, for
which S is it possible for I or II to always win. In order to explain this, we
first define precisely how the function h is formed, and what it means for player
I or player II to have a winning strategy.

Definition 6.1.3. Define SeqI and SeqII as follows:

SeqI = {σ ∈ Seq | lh(σ) is even},
SeqII = {σ ∈ Seq | lh(σ) is odd}.

A strategy for I is a function fI : SeqI → ω. A strategy for II is a function
fII : SeqII → ω. Thus a strategy is a function that takes the current history of
the game and produces the next move, for either I or II.

Definition 6.1.4. Given strategies fI and fII for I and II respectively, define
a function h = fI ⊗ fII as follows:

h(2i) = fI(h[2i]) , h(2i+ 1) = fII(h[2i+ 1]).
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Recall that h[k] = 〈h(0), . . . , h(k − 1)〉. Thus fI ⊗ fII is the play of the game
where I and II play according to their strategies fI and fII respectively.

Definition 6.1.5. The strategy fI is a winning strategy for I in G(S) provided
fI ⊗ fII ∈ S for all fII . Similarly, fII is a winning strategy for II in G(S)
provided fI ⊗ fII /∈ S for all fI .

Obviously players I and II cannot both have a winning strategy inG(S). We
are interested in games which admit a winning strategy for one of the players.
Such games are said to be determined.

Definition 6.1.6. The game G(S) is determined if either I or II has a winning
strategy for G(S).

Definition 6.1.7 (the Axiom of Determinacy). The Axiom of Determinacy,
abbreviated AD, is the statement that G(S) is determined for all S ⊆ ωω.

Remark 6.1.8. There is a plausibility argument for AD, which runs as follows.
A sentence A in first order logic can be written in prenex form as

A ≡ ∃n0 ∀n1 ∃n2 ∀n3 · · · nk S(n0, n1, n2, n3, . . . , nk).

Then A can be read as asserting the existence of a winning strategy for I.
Namely, I can choose n0 such that for all n1 that II choses, I can choose n2,
and so on. Similarly, we can read ¬A as asserting the existence of a winning
strategy for II in a similar way:

¬A ≡ ∀n0 ∃n1 ∀n2 ∃n3 · · · nk ¬S(n0, n1, n2, n3, . . . , nk).

Thus the Law of the Excluded Middle, A ∨ ¬A, asserts determinacy for finite
games. The Axiom of Determinacy extends this to infinite games, i.e., we have

∃n0 ∀n1 · · · ∃n2i ∀n2i+1 · · · S(n0, n1, . . . , n2i, n2i+1, . . .)

∨ ∀n0 ∃n1 · · · ∀n2i ∃n2i+1 · · · ¬S(n0, n1, . . . , n2i, n2i+1, . . .)

where S(n0, n1, . . . , n2i, n2i+1, . . .) is an ω-ary predicate on ω.

Remark 6.1.9. We shall prove that AD is false. However, the proof uses the
Axiom of Choice, and it is known that ZFC proves determinacy for some specific
classes of sets, e.g., Borel sets. Furthermore, it is believed that ZF (without the
Axiom of Choice) is consistent with AD, and that ZFC is consistent with the
assumption of determinacy for a wide class of sets, known as the projective sets.
See below.

We now exhibit a set S ⊆ ωω for which the game G(S) is not determined.

Theorem 6.1.10. There exists S ⊆ ωω such that G(S) is not determined.
Hence AD is false.
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Proof. For each f : SeqI → ω put Af = {f ⊗ g | g : SeqII → ω}. Thus Af is the
set of plays where I follows the strategy f . Similarly, for each g : SeqII → ω
put Bg = {f ⊗ g | f : SeqI → ω}, the set of plays where II follows the strategy
g. Put κ = 2ℵ0 . Clearly each Af and each Bg is of cardinality κ. Therefore,
by transfinite induction along a well ordering of ωω of order type κ, we can
construct (the characteristic function of) a set S ⊆ ωω such that Af \ S 6= ∅ for
all f , and Bg ∩ S 6= ∅ for all g. Clearly G(S) is not determined.

6.2 Open and Borel determinacy

While ZFC refutes full determinacy, it can be shown that ZFC proves deter-
minacy for certain classes of sets. Below we shall show that open games are
determined. We first need some definitions and lemmas.

Definition 6.2.1. Given σ ∈ Seq and fI and fII , define fI ⊗σ fII = h by

h(k) =





σ(k) if k < lh(σ),

fI(h[k]) if k ≥ lh(σ) and k is even,

fII(h[k]) if k ≥ lh(σ) and k is odd.

Thus fI ⊗σ fII is the play in which I and II follow strategies fI and fII
respectively, starting from position σ.

Definition 6.2.2. In the game G(S), σ ∈ Seq is a winning position for I if
there exists fI such that for all fII , fI ⊗σ fII ∈ S. Similarly, σ is a winning
position for II in G(S) if there exists fII such that for all fI , fI ⊗σ fII /∈ S.

Lemma 6.2.3. We have that σ is a winning position for I if and only if lh(σ) is
even and ∃n (σa〈n〉 is a winning position for I), or lh(σ) is odd and ∀n (σa〈n〉 is
a winning position for I). A similar lemma holds for σ being a winning position
for II.

Proof. Suppose for instance that lh(σ) is odd and ∀n (σa〈n〉 is a winning po-
sition for I). Then for each n, by the Countable Axiom of Choice, pick fn a
winning strategy for I starting at σa〈n〉. Define a winning strategy fI for I
starting at σ by fI(σ

a〈n〉aτ) = fn(σ
a〈n〉aτ) for all n ∈ ω and all τ ∈ Seq of

even length.

Theorem 6.2.4. If S ⊆ ωω is open or closed, then G(S) is determined.

Proof. Assume that S is open. (The proof for S closed is similar.)
Assume I does not have a winning strategy for G(S). We shall define a

winning strategy fII for II. The idea behind fII will be that II plays so as to
avoid winning positions for I. For all σ of odd length, if there exists n such that
σa〈n〉 is not a winning position for I, define fII(σ) to be such an n. Otherwise,
define fII(σ) = 0.
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We claim that, for all fI and k, (fI ⊗ fII)[k] is not a winning position for
I. This is proved by induction on k, using Lemma 6.2.3. Put h = fI ⊗ fII . For
k = 0, since I does not have a winning strategy for G(S), the empty sequence
〈〉 = h[0] is not a winning position for I. Now assume inductively that h[k] is
not a winning position for I. If k is even, then by Lemma 6.2.3 h[k]a〈n〉 is not a
winning position for I for any n, in particular h[k+ 1] is not a winning position
for I. If k is odd, then by Lemma 6.2.3 there exists n such that h[k]a〈n〉
is not a winning position for I, hence h(k) = fII(h[k]) is such an n. Thus
h[k + 1] = h[k]a〈h(k)〉 is not a winning positon for I.

Next we claim that fII is a winning strategy for II. To see this, recall that
S is open, hence S = ωω \ [T ] where T ⊆ Seq is a tree. Clearly any σ /∈ T is a
winning position for I. Hence by our previous claim we have that, for all fI and
all k, (fI ⊗ fII)[k] ∈ T . Hence fI ⊗ fII ∈ [T ], i.e., fI ⊗ fII /∈ S. This completes
the proof.

Remark 6.2.5. If A is an arbitrary set and S ⊆ Aω , we can define the game
G(S) analogously to the above. Instead of playing elements of ω, elements of A
are played. The same proof as above shows that if S ⊆ Aω is open or closed,
then G(S) is determined. Note that, for S ⊆ Aω , S being closed is equivalent
to S = [T ], the paths through a tree T ⊆ A<ω.

Remark 6.2.6. Historically, the determinacy of open and closed sets was
proved simultaneously with the introduction of Gale/Stewart games. As time
went on, determinacy of Fσ sets, Gδ sets, Fσδ sets, Gδσ sets, etc., was proved,
via more and more difficult proofs. Eventually Martin proved the ultimate
generalization of these results: all Borel sets are determined.

Definition 6.2.7 (Borel sets). The Borel sets in a topological space are the
smallest class of sets containing the open and closed sets and closed under
complementation, countable union, and countable intersection. The rank of a
Borel set is the number of times these operations are applied to obtain the set.

Remark 6.2.8. Note that the rank of a Borel set is a countable ordinal. It is
known that there exist Borel sets in ωω of all ranks α ∈ Ω. Here Ω denotes the
set of countable ordinals.

Theorem 6.2.9 (Martin). For all Borel sets S ⊆ ωω, G(S) is determined.

Proof. We omit the details of the proof, but see Remark 6.2.10 below. The
details are presented in Martin [8] and in Kechris [7].

Remark 6.2.10. The proof of Borel determinacy proceeds by induction on
Borel rank. A key ingredient in the proof is the consideration of games on Aω

where A is an arbitrary set. Borel games S ⊆ ωω are reduced to open games
in Aω, where A is an appropriately large set. If S is Borel of rank α, then A is
of cardinality iα. As a byproduct, one obtains determinacy of Borel games on
Aω for arbitrary A, and the proof of this uses open games on Rα(A), the αth
iterated powerset of A, where α ∈ Ω. Note that |Rα(A)| = iα(|A|).
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Remark 6.2.11. In the rest of this chapter we consider determinacy for a wider
class of sets S ⊆ ωω, known as the projective sets.

6.3 Projective sets

The projective hierarchy is a classification of sets similar to the arithmetical
hierarchy. Sets in the projective hierarchy can be thought of as sets of reals
that have a simple description.

Definition 6.3.1 (the projective hierarchy). S ⊆ ωω is said to be Σ1
n if

and only if S is Σ1,f
n for some f ∈ ωω. Thus we have

Σ1
n =

⋃

f∈ωω

Σ1,f
n .

The definitions for Π1
n, ∆1

n, Σ0
n, Π0

n, ∆0
n are similar. Note the use of boldface

letters. We extend these notions to arbitrary Polish spaces in the obvious way.
For any Polish space X , a set S ⊆ X is said to be projective if S ∈ ⋃∞

n=0 Σ1
n,

i.e., S is (boldface) Σ1
n for some n < ω.

Remark 6.3.2. The (boldface) projective hierarchy is a variant of the light-
face projective hierarchy which was introduced in Definition 4.2.1. Our use of
boldface letters Σ,Π,∆ rather than lightface letters Σ,Π,∆ denotes the fact
that we are allowing arbitrary parameters from ωω. Compare Remark 2.3.10.
In particular Σ0

1 = open, Π0
1 = closed, Σ0

2 = Fσ, Π0
2 = Gδ, etc., and this may

be called the boldface arithmetical hierarchy. See also Rogers [11, Chapters 15
and 16].

Remark 6.3.3. Projective sets are usually viewed as sets which can be de-
scribed in a relatively simple way. Indeed, S ⊆ ωω is projective if and only if
S is definable with parameters over the standard model of second order arith-
metic, (P (ω), ω,+, ·,=,∈). More dramatically, the projective sets in Euclidean
space Rk are just the sets which are definable with parameters over the real
number system with the integers as an extra predicate, i.e., over the structure
(R,Z,+, ·,=).

Remark 6.3.4 (descriptive set theory). The boldface arithmetical and pro-
jective hierarchies are studied in the subject known as descriptive set theory,
going back to Borel, Lebesgue, Hausdorff, Souslin et al. From the axiomatic
viewpoint, it is known that the study of higher levels of the projective hierar-
chy, ∆1

2 and beyond, is delicate, in that basic properties of these sets are known
to be independent of ZFC. See Jech [5, Chapter 7].

Remark 6.3.5 (classical descriptive set theory). On the other hand, the
lowest levels of the projective hierarchy, ∆1

1 and Σ1
1, are very well understood,

and their basic properties can be proved in ZFC. For example, the next two
theorems go back to Souslin and provide alternative characterizations of the ∆1

1

and Σ1
1 sets. We omit the proofs of these theorems, but see the textbook of

Kechris [7].
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Definition 6.3.6 (Borel sets). Let X be a Polish space. The Borel sets in
X are the smallest family of sets in X including the open sets and closed under
complementation and countable union and intersection. Thus the Borel sets
include the boldface arithmetical hierarchy, i.e., Σ0

n and Π0
n for all n < ω, and

extends this into the transfinite. See also Definition 6.2.7.

Theorem 6.3.7. S is Borel if and only if S is ∆1
1.

Definition 6.3.8 (analytic sets). Let X be a Polish space. S ⊆ X is analytic
if S = range(F ) for some continuous function F : ωω → X .

Theorem 6.3.9. S is analytic if and only if S is Σ1
1. Hence, S is coanalytic

(the complement of an analytic set) if and only if S is Π1
1.

6.4 Consequences of projective determinacy

We consider the statement that all projective Gale/Stewart games are deter-
mined.

Definition 6.4.1 (projective determinacy). We define projective determi-
nacy, abbreviated PD, to be the statement that the game G(S) is determined
for all projective sets S ⊆ ωω. Also, Σ1

n determinacy, abbreviated Σ1
n-AD, is

the statement that G(S) is determined for all Σ1
n sets S, etc. Thus we have

PD ≡ ∀n (Σ1
n-AD).

We begin by noting that PD is not a theorem of ZFC.

Theorem 6.4.2. If V=L holds, then PD fails. In fact, ∆1
2 determinacy fails.

Proof. Assume V=L. By Corollary 4.6.5 there is a ∆1
2 well ordering ≺ of ωω.

Using this well ordering in the proof of Theorem 6.1.10, we obtain a ∆1
2 set

S ⊆ ωω such that Af \ S 6= ∅ for all f and Bg ∩ S 6= ∅ for all g. Hence G(S) is
not determined.

Remark 6.4.3. We shall see later that even Σ1
1 determinacy is not provable in

ZFC. In fact, Σ1
1 determinacy fails in L and all forcing extensions of L. Moreover,

Harrington has shown that Σ1
1 determinacy is equivalent to the existence of 0#,

and Σ1
1 determinacy is equivalent to ∀f ∃f#. It is also known that ZFC plus

the existence of measurable cardinals is not sufficient to prove ∆1
2 determinacy.

Remark 6.4.4. On the other hand, Martin’s Theorem 6.2.9 gives us ∆1
1 de-

terminacy, in ZFC. In addition, Martin has shown that Σ1
1 determinacy holds

provided a measurable cardinal exists (see Theorem 6.6.1 below). Furthermore,
Woodin has shown that PD holds provided a supercompact cardinal exists. Now
of course measurable cardinals are known to be very large, and supercompact
cardinals are known to be even much larger. Nevertheless, it is believed that
the existence of a supercompact cardinal is consistent with ZFC. If this is so,
then it would follow that PD is consistent with ZFC.
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Remark 6.4.5. An important reason for considering PD is that it answers
many questions about the structure of projective sets. Because of this, PD has
been proposed as a reasonable psuedo-axiom to add to ZFC.

For example, it is well known and provable in ZFC that Σ1
1 sets (1) are

Lebesgue measurable, (2) have the property of Baire, and (3) have the perfect
set property, i.e., they are countable or contain a perfect set. The generalization
of these regularity properties to higher projective classes is problematic, but
assuming PD one has the following results.

Theorem 6.4.6. Assume PD. Then:

1. (PLM) In 2ω, [0, 1], Rn etc., every projective set is Lebesgue measurable.

2. (PBC) In any Polish space, every projective set has the property of Baire.

3. (PPS) In any Polish space, every projective set either is countable or
contains a perfect set.

Proof. In order to prove PD ⇒ PLM, we first note the following lemma.

Lemma 6.4.7. PLM is equivalent to the following statement, PLM(0):

If S is projective and µ(Z) = 0 for all for all measurable Z ⊆ S,
then µ(S) = 0.

Here µ denotes Lebesgue measure.

Proof. Trivially PLM implies PLM(0). Conversely, assume PLM(0), and sup-
pose A is projective. Let µ∗(A) be the outer measure of A. For each n < ω
choose an open set Un ⊇ A such that µ(Un) ≤ µ∗(A) + 1/2n. Put B =

⋂
n Un.

Since B is a Gδ set, B is measurable and projective. In particular B \ A is
projective. Also, it is clear that if Z ⊆ B \ A is measurable then µ(Z) = 0.
Hence by PLM(0) we have µ(B \A) = 0. It follows that A is measurable, with
µ(A) = µ∗(A) = µ(B).

Proof of PD ⇒ PLM. Assume PD. We shall prove PLM(0). Assume S ⊆ [0, 1]
is projective such that µ(Z) = 0 for all measurable Z ⊆ S. Fix ǫ > 0. We shall
show that µ∗(S) ≤ ǫ. Since this holds for all ǫ > 0, we will have µ(S) = 0.

Consider the following game, called a covering game. I plays a sequence of
0’s and 1’s 〈an〉n defining a real number x =

∑∞
n=0 an/2

n+1 in [0, 1]. II plays
a sequence of (Gödel numbers of) finite unions of rational open intervals Un
in [0, 1] such that µ(Un) ≤ ǫ/22n+1 for all n. I wins if and only if x ∈ S and
x /∈ ⋃n<ω Un. Thus II is trying to cover S. Clearly this game is projective.

We claim that I does not have a winning strategy. Suppose fI is a winning
strategy for I. Let Z be the set of reals played by I according to fI , i.e.,
Z = {x ∈ [0, 1] | ∃〈Un〉n (I plays x using fI in response to II playing 〈Un〉n)}.
By construction Z ⊆ S, and clearly Z is Σ1

1, using h as a parameter. Hence Z
is measurable, so by our assumption on S we have µ(Z) = 0. In particular there
exists 〈Un〉n such that Z ⊆ ⋃n Un and µ(Un) < ǫ/22n+1 for all n. Then II can
win against fI by playing 〈Un〉n, a contradiction. This proves our claim.
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Since I does not have a winning strategy, PD implies that II has a winning
strategy, call it fII . We shall use fII to show that µ∗(S) ≤ ǫ. For each σ ∈ 2<ω

let Vσ be the Un played by II using fII at stage n = lh(σ) in response to I
playing σ. Note that µ(Vσ) ≤ ǫ/22n+1. Put V =

⋃
σ∈2<ω Vσ. Note that, since

fII is a winning strategy for II, S ⊆ V . We have

µ(V ) ≤
∑

σ∈2<ω

µ(Vσ) ≤
∞∑

n=0

∑

lh(σ)=n

ǫ

22n+1
=

∞∑

n=0

2n
ǫ

22n+1
=

∞∑

n=0

ǫ

2n+1
= ǫ.

Hence µ∗(S) ≤ ǫ. This completes the proof.

Proof of PD ⇒ PBC. Assume PD. Let S ⊆ ωω be projective. We shall show
that S has the property of Baire, i.e., there exists an open set U such that
(S \ U) ∪ (U \ S) is meager. Consider the game G∗∗(S) played as follows.
Players I and II take turns choosing finite sequences σ0, τ0, . . . , σn, τn, . . . with

σ0 ⊂ τ0 ⊂ · · · ⊂ σn ⊂ τn ⊂ · · · .

Put f =
⋃
n σn =

⋃
n τn ∈ ωω. I wins if f ∈ S, and II wins if f /∈ S. Clearly

this game is projective.
Claim 1. II has a winning strategy if and only if S is meager. FIXME
Claim 2. FIXME
Let X = {σ ∈ ωω | FIXME}, and put U = {f ∈ ωω | ∃σ ∈ X (σ ⊂ f)}.

Then U is open and (S \ U)∪ (U \ S) is meager. This completes the proof.

Proof of PD ⇒ PPS. Assume PD. Let S ⊆ 2ω be projective. We shall show
that S is countable or contains a perfect set. Consider the following gameG∗(S),
known as a star game. I chooses σ0 ∈ ω<ω, then II chooses i0 ∈ {0, 1}, then I
chooses σ1 ⊇ σ0

a〈i0〉, then II chooses i1 ∈ {0, 1}, then I chooses σ2 ⊇ σ1
a〈i1〉,

. . . . Put f =
⋃
n σn ∈ 2ω. I wins if f ∈ S, and II wins if f /∈ S. Clearly this

game is projective.
Claim 1. If I has a winning strategy, then S includes a perfect set. FIXME
Claim 2. If II has a winning strategy, then S is countable. FIXME
By PD either I or II has a winning strategy, so the proof is complete.

This completes the proof of Theorem 6.4.6.

Remark 6.4.8. The proof of Theorem 6.4.6 generalizes to the setting of AD,
the full Axiom of Determinacy. Namely, in ZF + AD + DC we can prove that
arbitrary sets are Lebesgue measurable and have the property of Baire and the
perfect set property. Of course, each of these three statements is easily refutable
using the Axiom of Choice.

Remark 6.4.9. None of the above regularity properties of projective sets are
provable in ZFC. For example, assume V=L, and let ≺ be a ∆1

2 well ordering
of ωω as in Corollary 4.6.5. Using ≺ as in the proof of Theorem 6.4.2, we can
construct a ∆1

2 set S ⊆ 2ω such that neither S nor 2ω \ S contains a perfect
set. It follows that S is not Lebesgue measurable, does not have the property of
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Baire, and does not have the perfect set property. Thus PLM, PBC, and PPS
fail for S. More generally, if ωω ⊆ L[f ] for some f ∈ ωω, then we can construct

a ∆1,f
2 set for which PLM, PBC, and PPS fail. In addition, it is known that

PLM, PBC, and PPS fail in many other models of ZFC.

Remark 6.4.10 (the Solovay model). Solovay has constructed an interesting
model of ZFC in which PLM, PBC, and PPS all hold. Furthermore, this model
can even be a forcing extension of L.

Specifically, let M be any countable transitive model of ZFC + GCH + ∃
an inaccessible cardinal, κ. Consider a forcing extension M [G] which collapses
all cardinals < κ to ℵ0 but leaves κ uncountable. Here G is an M -generic
filter on the partial ordering P ∈ M defined by P = {p | p is a finite partial
function from κ× ω into κ such that p((α, n)) ≤ α for all (α, n) ∈ dom(p)}. As
usual, p ≤ q ⇐⇒ p ⊇ q. We know that M [G] � ZFC, and it is not difficult

to show that ℵM [G]
1 = κ. The model M [G] is known as the Solovay model.

Solovay has shown that M [G] � PLM + PBC + PPS. Thus, the consistency of
ZFC+PLM+PBC+PPS follows from the consistency of ZFC+∃ an inaccessible
cardinal.

Moreover, since M can satisfy V=L, and M [G] is a forcing extension of M ,
we see that ZFC + PLM + PBC + PPS is consistent with V being a forcing
extension of L. This is interesting, because we shall see later that PD (in fact
Σ1

1-AD) fails in all forcing extensions of L.

Remark 6.4.11. It is known that Solovay’s assumption of an inaccessible car-
dinal in the ground model cannot be omitted. Namely, the following statements
are pairwise equivalent:

1. The perfect set property for Π1
1 sets.

2. The perfect set property for Σ1
2 sets.

3. ∀f ∈ ωω (ωω ∩ L[f ] is countable).

4. ∀f ∈ ωω (ℵ1 is inaccessible in L[f ]).

In particular, PPS imples that ℵ1 is inaccessible in L.
It is also known that PLM implies that ℵ1 is inaccessible in L, but PBC

does not imply this. These results and much more on set-theoretic aspects of
the continuum may be found in Bartoszynski/Judah [1].

Remark 6.4.12 (the Ramsey property). In addition to Lebesgue measura-
bility, the property of Baire, and the perfect set property, there are many other
regularity properties which have been considered. One of the most interesting
is the Ramsey property. For X ⊆ ω we write [X ]ω = the set of infinite subsets
of X . A set S ⊆ [ω]ω is said to be Ramsey if there exists X ∈ [ω]ω such that
[X ]ω ⊆ S or [X ]ω ∩ S = ∅. It is known that Σ1

1 sets are Ramsey, and V=L im-
plies the existence of a ∆1

2 set which is not Ramsey. Let PRP be the statement
that all projective sets are Ramsey. It is known that the Solovay model satisfies
PRP. It seems reasonable to conjecture that PD implies PRP, but this appears
to be an open question.
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Another aspect of projective sets is the question of uniformization:

Definition 6.4.13 (uniformization). Let Γ be a class of sets, e.g., Γ = Π1
1.

By Γ uniformization we mean the statement that, for all R ⊆ ωω × ωω in Γ,
there exists R̂ ⊆ R in Γ such that

∀f [ (∃g R(f, g)) ⇐⇒ (∃unique g) R̂(f, g) ].

Remark 6.4.14. Note that uniformization for a lightface projective class Γ
easily implies uniformization for the corresponding relativized or boldface class
Γ, where

Γ =
⋃

f∈ωω

Γf .

For example, Π1
1 uniformization easily implies Π1

1 uniformization.

Remark 6.4.15 (Kondo’s Theorem). Π1
1 uniformization is provable in ZFC.

It follows that Π1
1 uniformization is provable in ZFC. This is a famous, classical

result known as Kondo’s Theorem. See Kechris [7].

Theorem 6.4.16. PD implies Π1
n uniformization, for n = 3, 5, 7, . . ..

Proof. See Kechris [7].

Remark 6.4.17. Π1
n uniformization easily implies Σ1

n+1 uniformization. In par-
ticular, ZFC proves Σ1

2 uniformization, and ZFC+PD proves Σ1
n uniformization

for n = 4, 6, 8, . . .. On the other hand, using a ∆1
2 well ordering as in Corollary

4.6.5, it can be shown that ZFC + V=L proves Σ1
n uniformization for all n ≥ 3.

Thus the behavior of the projective classes with respect to uniformization is
quite different under the contrasting assumptions PD and V=L.

Remark 6.4.18. We do not know whether it is possible for Π1
3 uniformization,

or even Π1
3 uniformization, to hold in a forcing extension of L.

6.5 Turing degree determinacy

Determinacy is of importance in mathematical logic beyond descriptive set the-
ory. In particular, determinacy has striking consequences for the structure of
the Turing degrees, as we shall now see.

Lemma 6.5.1. Let S ⊆ ωω, and consider the game G(S). If fI is a winning
strategy for I, then every Turing degree ≥ degT (fI) contains a member of S. If
fII is a winning strategy for II, then every Turing degree ≥ degT (fII) contains
a member of ωω \ S.

Proof. Let fI be a winning strategy for I in G(S). Given g ≥T fI , let h be
the result of playing g against fI , i.e., h = fI ⊗ fII where fII(σ) = g(n) for
all σ ∈ SeqII of length 2n + 1, for all n. By construction we have fII ≡T g,
hence h ≤T fI ⊕ g ≡T g. Also, h ∈ S, since fI is a winning strategy for I.
Furthermore, g ≤T h, in fact h = f ⊕ g for a certain f . Thus h ≡T g, and this
gives the first part of the lemma. The second part is similar.
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Theorem 6.5.2 (Martin). Let S ⊆ ωω be closed under Turing equivalence.
I has a winning strategy in G(S) if and only if ∃f (∀g ≥T f) (g ∈ S). II has a
winning strategy in G(S) if and only if ∃f (∀g ≥T f) (g /∈ S).

Proof. This follows easily from the previous lemma.

Corollary 6.5.3. Let S ⊆ ωω be Borel and closed under Turing equivalence.
Then there exists f such that (∀g ≥T f) (g ∈ S) or (∀g ≥T f) (g /∈ S).

Proof. Immediate from Theorems 6.2.9 and 6.5.2.

Corollary 6.5.4. Assume PD. Let S ⊆ ωω be projective and closed under
Turing equivalence. Then there exists f such that (∀g ≥T f) (g ∈ S) or (∀g ≥T
f) (g /∈ S).

Corollary 6.5.5. The following is provable in ZF + AD. Let S ⊆ ωω be closed
under Turing equivalence. Then there exists f such that (∀g ≥T f) (g ∈ S) or
(∀g ≥T f) (g /∈ S).

Remark 6.5.6 (the Martin filter). Recall that DT is the set of all Turing
degrees. By a cone of Turing degrees we mean the set of all Turing degrees
≥ some fixed Turing degree. Clearly the cones generate a countably additive
filter on DT . This filter is called the Martin filter. Corollaries 6.5.3, 6.5.4, 6.5.5
assert that the Martin filter is an ultrafilter with respect to certain sets of Tur-
ing degrees, under certain assumptions. This phenomenon is known as Turing
degree determinacy. If we assume full AD, then the Martin filter is actually an
ultrafilter on all sets of Turing degrees, the so-called Martin ultrafilter on DT .
Of course, this conclusion is easily refutable using the Axiom of Choice.

Example 6.5.7 (a cone of minimal covers). Here is an example of Turing
degree determinacy. A Turing degree b is said to be a minimal cover if there
exists a < b such that b is minimal over a, i.e., there is no c such that a < c < b.
Clearly the set of minimal covers is Borel (in fact Σ0

5). Relativizing Theorem
2.8.10, we see that for all a there exists b > a such that b is minimal over a,
hence in particular b is a minimal cover. It follows by Corollary 6.5.3 that there
exists a cone of minimal covers, i.e., there exists a Turing degree b0 such that
every b ≥ b0 is a minimal cover. Without determinacy, this result would be
highly non-obvious.

6.6 Σ1
1 determinacy

Theorem 6.6.1 (Martin). If there exists a measurable cardinal, then Σ1
1

determinacy holds.

Proof. We use the fact that the existence of a measuarable cardinal implies the
existence of a set of indiscernable ordinals.

We will use the Kleene-Brouwer ordering ≤KB of ω<ω. The relevant prop-
erties of this ordering are that it is a definable linear order of Seq and the for
any tree T ⊂ Seq, T has a path iff T contains a ≤KB-descending sequence.
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I f(0) f(1) f(2) . . .

II 〈g(0), t(0)〉 〈g(1), t(1)〉 〈g(n), t(n)〉 . . .

Figure 6.1: The game G′(S)

Let S be a Σ1
1-set. Our goal is to show that the game GS is determined. We

use Kleene normal form to find a primitive recursive relation Θ(a, b, c, d) such
that f ⊕ g ∈ S ⇐⇒ ∃h∀nΘ(f [n], g[n], h[n], n). Hence for each f ⊕ g there is a
tree Tf⊕g such that f⊕g ∈ S iff Tf⊕G is not well founded. We decompose Tf⊕g
into a countable increasing union of finite trees, Tf⊕g = ∪nT ∗

f [n],g[n], where

T ∗
f [n],g[n] = {σ ∈ Seq | |σ| < n ∧ #(σ) < n ∧ Θ(f [n], g[n], σ, |σ|}

We define an auxiliary game G′(S). In this game I and II alternate playing
elements of f ⊕ g, but II also plays at each stage a tn : T ∗

f [n],g[n] → Ord. Each

t(n) is order-preserving: σ ≤ KBτ iff f(σ) < f(τ). For each n, t(n + 1) must
extends t(n). Player II wins if the function t = ∪t(n) is an order-preservig map
from Tf⊕g to the ordinals.

It can be seen that G′(S) is an open game for player I, soG′(S) is determined.
Now a winning strategy for II in G′(S) gives a winning strategy for II in GS ;
player II can just play the functions tn in secret.

It remains to show that a winning strategy for I in G′(S) yields a winning
strategy for I in GS . The difficulty is that the winning strategy for I in G′(S)
requires a map of the form t(n) in order to predict the next move, but II does
not give these functions when playing GS . So I must guess a suitable map. We
omit the proof that if I chooses the maps t(n) so that their ranges are contained
in a set of indiscernibles then the strategy for I in G′(S) gives a winning strategy
in GS .

Remark 6.6.2. The above proof can be refined to show that Σ1
1 determinacy

is a consequence of the assumption that sharps exist, i.e., ∀f ∃ f#. Harrington
has proved that Σ1

1 determinacy is in fact equivalent to ∀f ∃ f#. Moreover, Σ1
1

determinacy is equivalent to the existence of 0#. Below we prove the weaker
result that Σ1

1 determinacy fails in all forcing extensions of L. Compare Section
5.10. See also Simpson [16].

6.7 Hyperarithmetic theory

Before proving that Σ1
1 determinacy fails in every forcing extension of L, we

briefly cover some basic aspects of hyperarithmetic theory. Roughly speaking,
hyperarithmetic theory is a generalization of recursion theory obtained by re-
placing the recursive sets with the ∆1

1 sets.

Definition 6.7.1. The code of E ⊆ ω × ω is the characteristic function of
{2m3n | mEn}. For f ∈ ωω we define
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Of = {e ∈ ω | {e}f is the code of a well ordering of ω}.

For each e ∈ Of , let |e|f be the order type of the well ordering encoded by {e}f .
Let ωf1 = sup{|e|f | e ∈ O}. Thus ωf1 is the least ordinal not recursive in f .

We are already familiar with iterating the Turing jump operator finitely
many times as a, a′, a′′, . . . , a(n), . . . . It is also possible to iterate the Turing
jump operator transfinitely through the ordinals. For details, see for instance
Simpson [17].

Definition 6.7.2. For e ∈ Of we define Hf
e to be the result of iterating the

Turing jump operator along the well ordering encoded by {e}f starting with
f . At limit stages we take the recursive join. A theorem of Spector asserts
that the Turing degree of Hf

e depends only on the ordinal |e|f and the Turing
degree of f . Namely, if e1 ∈ Of1 , e2 ∈ Of2 , |e1|f1 = |e2|f2 , f1 ≡T f2, then
Hf1
e1 ≡T Hf2

e2 . Thus we may define the αth Turing jump of a Turing degree a as

a(α) = degT (Hf
e ), where degT (f) = a and |e|f = α.

Definition 6.7.3. A function f ∈ ωω is hyperarithmetical in g if f ≤T Hg
e for

some e ∈ Og. We abbreviate this as f ≤HYP g.

The following theorem of Kleene describes the relationship between relative
hyperarithmeticity and the projective hierarchy.

Theorem 6.7.4 (Kleene). f ≤HYP g ⇐⇒ f ∈ ∆1,g
1 .

If we take g to be recursive, then we have the following result.

Corollary 6.7.5. Each f ∈ ωω is hyperarithmetical if and only if f ∈ ∆1
1

Remark 6.7.6. The relation ≤HYP is reflexive and transitive; that is f ≤HYP f
and if f ≤HYP g and g ≤HYP h, then f ≤HYP h.

As in the case of Turing equivalence and Turing degrees, we use ≤HYP to
define an equivalence relation and a corresponding degree notion.

Definition 6.7.7. f ≡HYP g if and only if f ≤HYP g and g ≤HYP f . The
equivalence classes of ≡HYP are called hyperdegrees.

Before defining the hyperarithmetical analog of the Turing jump operator,
we note the following lemma.

Lemma 6.7.8. Of is a complete Π1,f
1 . That is, for all A ⊆ ω, A ∈ Π1,f

1 ⇐⇒
A ≤m Of .

Proof. The proof uses the Kleene Normal Form Theorem, plus the Kleene/Brouwer
ordering. We omit the details, but see Rogers [11].

This justifies the following definition.

Definition 6.7.9 (hyperjump). The hyperjump of g is Og.
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Just as the Turing jump is an operator sending each Turing degrees to a
higher Turing degree, the hyperjump is an operator sending each hyperdegree
to a higher hyperdegree.

Lemma 6.7.10. Og is a complete Π1,g
1 set. I.e., for all A ⊆ ω, A ∈ Π1,g

1 ⇐⇒
A ≤m Og.

Therefore, g is hyperarithmetical in Og, and so g <HYP Og. We also have
g ≤HYP h ⇒ Og ≤HYP Oh; in fact, g ≤HYP h ⇐⇒ Og ≤m Oh. These
properties are similar to the properties of the Turing jump.

Lemma 6.7.11. The relation {(f, g) | f ≤HYP g} is Π1
1.

Proof. f ≤HYP g ⇐⇒ ∃e (e ∈ Og and ∀x x = Hg
e ⇒ f ≤T x). The quantifier

∃e e ∈ Og is Π1
1 while the statement ∀x x = Hg

e ⇒ f ≤T x is arithmetical:
recall that the Turing jumps and Turing degree were arithmetically definable.
Therefore the entire sentence is Π1

1.

Lemma 6.7.12. Suppose f ≤HYP g. Then Of ≤HYP g ⇐⇒ wf1 < ωg1 .

Proof. Suppose Of ≤HYP g. Then Σe∈O{ is a well-ordering of ω with order

type α ≤HYP. Then α < withωg1 and so ωf1 < ω1
g as required.

Conversely, let ωf1 ≤ ωg1 . Then ωf1 is the order type of (ω,R) for some well-
ordering R. So Of = {e | {e}f is a well-ordering of ω} = {e | ∃f f : {e}f →o.p

(ω,R)}. This is a Σ1,f
1 sentence and therefore Σ1,f

1 and since f ≤HYP g, Of is

then Σ1,g
1 . Since Of is Π1,f

1 (and so Π1,g
1 ), Of is ∆1,g

1 , and so by a previous
theorem, Of ≤HYP g, as required.

Remark 6.7.13. The previous lemma implies that the hyperdegrees have a
nicer structure and are better behaved than the Turing degrees. For example,
it is known that there exists an infinite descending sequence of Turing degrees
separated by Turing jumps, i.e. a′

n+1 < an for all n < ω. This cannot happen in
the hyperdegrees, because it would imply the existence of an infinite descending
sequence of ordinals.

Surprisingly, the ordinals hyperarithmetic in g are precisely the ordinals
computable in g.

Lemma 6.7.14. For g ∈ ωω, ω1
g = sup{α | α ≤T g} = sup{α | α ≤HYP g}.

Proof. Suppose (ω,R) is a well-ordering of ω with R being Σ1,g
1 . The order type

of (ω,R) is an ordinal α with α < ωg1 . If not, then we have

Og = {e | {e}g is a code for a well-ordering of ω}
= {e | ∃f f is an order-preserving map from {e}g → (ω,R)}

Therefore Og is Σ1,g
1 , contradicting g <HYP Og.

Lemma 6.7.15 (Kleene Basis Theorem). Let S ⊆ ωω be Σ1,g
1 . If S 6= ∅

then there exists f ∈ S such that f ≤T Og.
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Proof. Use the Kleene normal form to write S = {f | ∃h∀n R(f [n], g[n], h[n])},
where R is recursive. We write (ω × ω)<ω for

⋃
ωn × ωn. Define a tree TS :

TS = {(σ, τ) ∈ (ω × ω)<ω | ∀n ≤ lh(σ) = lh(τ)R(σ[n], g[n], τ [n])}
Then S is nonempty iff T is not well-founded. Define T̂ to be the tree of all
finite subsequences of [T ]. So (σ, τ) ∈ T̂ iff there is a path through T starting
with (σ, τ). Note that T̂ is a pruning of T such that T̂ is tidy; every node in T̂
has an infinite path through it. Also, [T̂ ] = [T ]. The statement that T̂ is not
well-founded is Σ1,g

1 , so T ≤T Og. As T̂ is tidy, there is a recursive path through

T̂ ; namely, the left-most. That path through T̂ is recursive in Og. Since a path
through T̂ is a path through T , there is then an f ∈ S with f ≤ Og.

Theorem 6.7.16. If S is Σ1,g
1 and S 6= ∅, then there exists f ∈ S such that

f ≤ Og and ωf1 ≤ ωg1 .

Proof. Define S′ = {f1 ⊗ f2 | f1 ∈ S ∧ f2 ≤HYP f1 ⊕ g}. Since the statement
f1 ∈ S is Σ1,g

1 and the statement f2 ≤HYP f1 ⊕ g is Σ1,g
1 , S′ is Σ1,g

1 . Note that
S′ is non-empty: if f2 is the hyperjump of f1 ⊕ g, then f1 ⊕ f2 is in S′.

By the Kleene Basis Theorem, there exists f1 ⊕ f2 ∈ S′ such that f1 ⊕ f2 ≤
Og. Note that f1 ∈ S, f1 ≤ Og, and g ≤T f1 ⊕ g <HYP f1 ⊕ f2 ⊕ g ≤T Og.
Therefore ωf1⊕g1 ≤ ωg1 (otherwise, Og is hyperarithmetical in f). Thus, ωf1 ≤
ωg1 .

Corollary 6.7.17. If S is Σ1,g
1 and nonempty, then there exists f ∈ S with

ωf1 ≤ ωg1 .

Corollary 6.7.18. For all g there exists f such that g <HYP f <HYP Og.

Proof. Define S = {f ⊕ g | f 6≤HYP g}. Then as S is Σ1,g
1 and non-empty,

we can find an f ⊕ g ∈ S such that f ⊕ g ≤T Og and ωf⊕g1 ≤ ωg1 . Therefore
g <HYP f ⊕ g ⊕Og.

Remark 6.7.19. As the previous results imply, many results that are true in
the Turing degrees relativize to the hyperdegrees. The hyperjump is analogous
to the Turing jump, the hyperdegrees are analogous to the Turing degrees, and
so on. For example, it is possible to use Sacks forcing to construct a minimal
hyperdegree.

6.8 Admissible sets

The study of admissible sets links set theory with hyperarithmetic theory. We
define Kripke-Platek set theory, a fragment of ZF, and explore some properties
of its models.

Definition 6.8.1. Kripke-Platek set theory (KP) is a first-order theory in the
language L = {=,∈}. This fragment contains the axioms of extensionality,
pairing, union, infinity (in the form which says that ω exists), and empty set
from ZF. In addition, KP contains the following axiom schemes:
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1. ∆0-comprehension, which contains the universal closure of each formula
of the form

∃y∀z[z ∈ y ⇐⇒ z ∈ x ∧ φ(z)]

where φ is a ∆0 formula which does not mention y.

2. ∆0-bounding, which contains the universal closure of each formula of the
form

[∀z ∈ y∃vφ(v, z)] ⇒ ∃u∀z ∈ y∃v ∈ uφ(v, z)

3. The foundation scheme, which contains the universal closure of each for-
mula of the form

[∃zφ(z)] ⇒ ∃z[φ(z) ∧ ¬∃y ∈ zφ(y)]

where φ is an arbitrary L-formula.

Definition 6.8.2. Let (A,R) be a relational structure. We define the well-
founded part (A0, R0) of (A,R). Let

A0 = {a ∈ A | no infinite strictly R-decreasing sequence begins with a}

and let R0 = R ∩A0 ×A0.

The well-founded part of a model of KP behaves nicely, as we shall see. First,
we show that ∆0 formulas are absolute to the well-founded part of a model.

Lemma 6.8.3. Let (A,R) be a relational structure and let (A0, R0) be its well-
founded part. Take any ∆0 formula φ(x0, . . . , xk) with the free variables shown.
For any a0, . . . , ak ∈ A0,

(A,R) |= φ(a0, . . . , ak) ⇐⇒ (A0, R0) |= φ(a0, . . . , ak).

Proof. The proof follows immediately from the fact that the quantifiers in a ∆0

formula are bounded and R0 is a restriction of R.

Theorem 6.8.4. Let (A,R) be a model of KP, and let (A0, R0) be the well-
founded part. Then (A0, R0) is a model of KP.

Proof. It is straightforward to show that (A0, R0) satisfies the axioms of exten-
sionality, pairing, unions, empty set, and infinity, and that (A0, R0) satisfies the
foundation scheme. If a, b ∈ (A,R) with a ⊂ b and b ∈ A0, then a ∈ A0. This
implies that (A0, R0) is closed under ∆0-comprehension.

It remains to show that (A0, R0) satisfies ∆0 bounding. Suppose that there
is a y ∈ A0 such that

(A0, R0) |= ∀z ∈ y∃vφ(v, z)

for a ∆1 formula φ. We need to show that there is a u ∈ A0 such that (A0, R0) |=
∀z ∈ y∃v ∈ uφ(v, z). From outside A0, we see that there is an ordinal β ∈ A
such that

∀z ∈ y∃v ∈ A0[rank(v) < β ∧ φ(v, z)
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Hence there is some u ∈ A of rank less than β such that

(A,R) |= ∀z ∈ y∃v ∈ uφ(v, z). (6.1)

Because the formula in (6.1) is absolute, it holds in (A0, R0).

Definition 6.8.5. A set A is admissible if (A,∈↾A) is a model of KP. An
ordinal α is admissible if Lα is a model of KP. If M is an admissible set, we let
height(M) = Ord ∩M ; so height(M) is the limit of the ordinals contained in
M .

Remark 6.8.6. Let M be admissible and let α = height(M). Then Lα is
contained in the well-founded part of M , so α is admissible.

Remark 6.8.7. We can use the method of forcing to extend models of KP,
because this theory proves the basic forcing lemmas. In proving these theorems,
because models of KP are not closed under relative definability, we must change
the notion of dense set slightly. For M a countable admissible set and P a
partial order in M , we say that a filter G on P is M -generic if G meets every
dense subset of P which is definable over M . In this case, M [G] will be a model
of KP of the same height as M .

One sharp result which can be obtained: if φ(x0, . . . , xk) is a ∆0 formula
with the free variables shown, then the set of tuples 〈p, a0, . . . , ak〉 such that
p ∈ P and p  φ(a0, . . . , ak) is definable in M .

Remark 6.8.8. For each g ∈ ωω, Lωg
1

is an admissible set of height ωg1 . In fact,
Lωg

1
(g) is the smallest admissible set containing g. This implies that LωCK

1
is

the smallest admissible set. Moreover, f ≤HYP g iff f ∈ Lωg
1
(g).

Remark 6.8.9. Let M be an admissible set and (A,R) a well ordering in M .
Then there is an ordinal α ∈ M ∩ Ord such that α is the order type of (A,R).
However, KP does not prove that for every well ordering (A,R) there is an ordi-
nal which is the order type of (A,R). This is because of the existence of pseudo
well orderings, linear orderings which have no hyperarithmetic descending se-
quences but are not well orderings.

6.9 Admissibility and cardinal collapsing

In this section, we will show that Σ1
1 determinacy fails in all forcing extensions of

L. We will use the method of forcing over admissible sets to obtain this result.
We next introduce, by way of example, the concept of a semigeneric collapse.

Let β be an uncountable ordinal, and let α be the first admissible ordinal greater
than β. Let P be the notion of forcing which collapses β to ω, and let G be a
Lα+1-generic filter on P (the requirement that G be Lα+1-generic is exactly the
requirement that G meets every dense set definable over Lα). As usual, we let
g = ∪G be the generic surjection ω → β. Define X = {2m3n | g(m) < g(n)}.
The set X is a semigeneric collapse, and every semigeneric collapse is of this
form..
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Definition 6.9.1. A set X ⊂ ω is a semigeneric collapse if X is a code for a
well ordering of ω of order type β obtained from an Lα+1-generic collapse of β,
where α is the least admissible ordinal larger than β.

It can be seen that the set {X | X is a semigeneric collapse} is ∆1
2. If X is

a semigeneric collapse of β and α is the least admissible greater than β, then
ωX1 = α. In fact, every admissible ordinal is obtained this way:

Theorem 6.9.2 (Sacks). Every admissible ordinal α is of the form ωX1 for
some semigeneric collapse X .

We next prove a lemma which will be important for following results. The
lemma says that in forcing extensions of L, there are semigeneric collapses of
arbitrarily high hyperdegree.

Lemma 6.9.3. Let f ∈ ωω be an element of a forcing extension L[G]. Then
f ≤HYP X for a semigeneric collapse X .

Proof. FIXME

Definition 6.9.4. We define two axioms of determinacy for projective sets:

• Σ1
n Projective Determinacy (Σ1

n−PD) is the axiom which states that every
Σ1

1 set is determined.

• Σ1
n Projective Turing Degree Determinacy (Σ1

n − PTD) is the statement
that for every Σ1

1 set S closed under Turing equivalence there is a cone of
Turing degrees C such that C ⊆ S or C ∩ S = ∅.

Projective determinacy (PD) is Σ1
1 − PD; projective Turing degree determi-

nacy (PTD) is Σ1
n − PTD. The boldface versions of these concepts are defined

analogously.

Lemma 6.9.5. The following statements hold:

1. PD ⇒ PTD

2. For each n ∈ ω, Σ1
n − PD ⇒ Σ1

n − PTD.

3. For each n ∈ ω, Σ1
n − PD ⇒ Σ1

n − PTD.

Our next goal is to prove that Σ1
1 − PD is not consistent with V = L.

Theorem 6.9.6. Projective Turing degree determinacy implies that V is not
a forcing extension of L.

We delay the proof of this theorem until later.

Remark 6.9.7. Although it may appear that Σ1
1 − PD is stronger than Σ1

1 −
PTD, Harrington has shown the equivalence

Σ1
n − PD ⇐⇒ Σ1

n − PTD ⇐⇒ 0# exists.
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The boldface version of this result also holds:

Σ1
n − PD ⇐⇒ Σ1

n − PTD ⇐⇒ ∀f [f# exists].

We will not prove Harrington’s theorem.

Towards a proof of Theorem 6.9.6, we define a crucial set C ⊂ ωω:

C = {f ∈ ωω | ∃E ⊂ ωω[E ≤T f ∧ (ω,E) |= KP

∧ωf1 is isomorphic to an initial segment of (ω,E)}.

Proposition 6.9.8. The set C is Σ1
1 and closed under Turing equivalence.

Lemma 6.9.9. For each g ∈ ωω there is some f ∈ ωω such that f ≥T g and
f ∈ C.

Proof. Let g ∈ ωω be given. Consider the set Sg given by

Sg = {E ∈ ωω | (ω,E) |= KP

∧ωg1 is isomorphic to an initial segment of (ω,E)}

It is straightforward to show that Sg is Σ1
1. To see that Sg is nonempty, let E

be a code for the admissible set Lωg
1
(g). We apply the Low Basis Theorem to

find E ∈ Sg such that ωX⊕g
1 = ωg1 . The set g⊕E satisfies the conclusion of the

lemma.

Proof of Theorem 6.9.6. Let Θ be the sentence

Θ ≡ ∀f∃X [X is a semigeneric collape ∧ f ≤HYP X ].

Recall that Lemma 6.9.3 says that V = L⇒ Θ. We will show that Σ1
1 −PD ⇒

¬Θ.
We assume PTD, which along with Lemma 6.9.9 implies that C contains a

cone of Turing degrees. Let f0 be the base of this cone. We will show that
f0 6∈ L[G].

Suppose that f0 ∈ LωX
1

[X ], where X is a semigeneric collapse. Let α = ωX1 ,
and let β be the order type of X . So α > β and X codes an Lα+1-generic filter
G of the collapse of β to ω.

We note that LωX
1

[X ] = Lα[X ] = Lα[G].

If f0 ∈ Lα[G], then there is an E ≤T f0 such that E |= KP and α is
isomorphic to an initial segment of (ω,E).

This implies that Lα is a subset of the collapse of the well founded part of
(ω,E). Let π be the canonical collapsing map. Choose γ such that β < γ < α
and Lγ [X ] contains G, π−1↾P , π−1(ω) and E.

Let h be hyperarithmetic in X but not in Lγ+1[X ], and let t = {〈p,m, n〉 |
p  ḣ(m) = n}. Then h(m) = n ⇐⇒ ∃p ∈ G[(ω,E) |= π−1(〈p, n,m〉) ∈
π−1(t). So h ∈ Lγ+1, a contradiction.
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