
Copyright c©1998–2013 by Stephen G. Simpson

Mathematical Logic

Stephen G. Simpson

October 17, 2013

Department of Mathematics

The Pennsylvania State University

University Park, State College PA 16802

http://www.math.psu.edu/simpson/

This is a set of lecture notes for introductory courses in mathematical logic
offered at the Pennsylvania State University.

Contents

Contents 1

1 Propositional Calculus 3

1.1 Formulas . 3
1.2 Assignments and Satisfiability . 6
1.3 Logical Equivalence . 10
1.4 The Tableau Method . 12
1.5 The Completeness Theorem . 18
1.6 Trees and König’s Lemma . 20
1.7 The Compactness Theorem . 21
1.8 Combinatorial Applications . 22

2 Predicate Calculus 24

2.1 Formulas and Sentences . 24
2.2 Structures and Satisfiability . 26
2.3 The Tableau Method . 31
2.4 Logical Equivalence . 37
2.5 The Completeness Theorem . 40
2.6 The Compactness Theorem . 46
2.7 Satisfiability in a Domain . 47

3 Proof Systems for Predicate Calculus 50

3.1 Introduction to Proof Systems . 50
3.2 The Companion Theorem . 51
3.3 Hilbert-Style Proof Systems . 56
3.4 Gentzen-Style Proof Systems . 61
3.5 The Interpolation Theorem . 67

4 Extensions of Predicate Calculus 72

4.1 Predicate Calculus with Identity 72
4.2 The Spectrum Problem . 76
4.3 Predicate Calculus With Operations 79
4.4 Predicate Calculus with Identity and Operations 83
4.5 Many-Sorted Predicate Calculus 85

1

5 Theories, Models, Definability 88

5.1 Theories and Models . 88
5.2 Mathematical Theories . 90
5.3 Definability over a Model . 98
5.4 Definitional Extensions of Theories 101
5.5 Foundational Theories . 104
5.6 Axiomatic Set Theory . 107
5.7 Interpretability . 112
5.8 Beth’s Definability Theorem . 113

6 Arithmetization of Predicate Calculus 115

6.1 Primitive Recursive Arithmetic 115
6.2 Interpretability of PRA in Z1 . 115
6.3 Gödel Numbers . 115
6.4 Undefinability of Truth . 118
6.5 The Provability Predicate . 119
6.6 The Incompleteness Theorems . 120
6.7 Proof of Lemma 6.5.3 . 122

Bibliography 123

Index 124

2

Chapter 1

Propositional Calculus

1.1 Formulas

Definition 1.1.1. The propositional connectives are negation (¬), conjunction
(∧), disjunction (∨), implication (⇒), biimplication (⇔). They are read as
“not”, “and”, “or”, “if-then”, “if and only if” respectively. The connectives ∧ ,
∨ , ⇒ , ⇔ are designated as binary, while ¬ is designated as unary.

Definition 1.1.2. A propositional language L is a set of propositional atoms
p, q, r, An atomic L-formula is an atom of L.

Definition 1.1.3. The set of L-formulas is generated inductively according to
the following rules:

1. If p is an atomic L-formula, then p is an L-formula.

2. If A is an L-formula, then (¬A) is an L-formula.

3. If A and B are L-formulas, then (A∧B), (A∨B), (A⇒B), and (A⇔B)
are L-formulas.

Note that rule 3 can be written as follows:

3′. If A and B are L-formulas and b is a binary connective, then (AbB) is an
L-formula.

Example 1.1.4. Assume that L contains propositional atoms p, q, r, s. Then

(((p⇒ q)∧ (q ∨ r))⇒ (p∨ r))⇒¬ (q ∨ s)

is an L-formula.

Definition 1.1.5. If A is a formula, the degree of A is the number of occurrences
of propositional connectives in A. This is the same as the number of times rules
2 and 3 had to be applied in order to generate A.

3

Example 1.1.6. The degree of the formula of Example 1.1.4 is 8.

Remark 1.1.7 (omitting parentheses). As in the above example, we omit
parentheses when this can be done without ambiguity. In particular, outermost
parentheses can always be omitted, so instead of ((¬A)⇒B) we may write
(¬A)⇒B. But we may not write ¬A⇒B, because this would not distinguish
the intended formula from ¬ (A⇒B).

Definition 1.1.8. Let L be a propositional language. A formation sequence is
finite sequence A1, A2, . . . , An such that each term of the sequence is obtained
from previous terms by application of one of the rules in Definition 1.1.3. A
formation sequence for A is a formation sequence whose last term is A. Note
that A is an L-formula if and only if there exists a formation sequence for A.

Example 1.1.9. A formation sequence for the L-formula of Example 1.1.4 is

p, q, p⇒ q, r, q∨ r, (p⇒ q)∧ (q ∨ r), p∨ r, ((p⇒ q)∧ (q ∨ r))⇒ (p∨ r),

s, q ∨ s, ¬ (q ∨ s), (((p⇒ q)∧ (q ∨ r))⇒ (p∨ r))⇒¬ (q ∨ s) .

Remark 1.1.10. In contexts where the language L does not need to be speci-
fied, an L-formula may be called a formula.

Definition 1.1.11. A formation tree is a finite rooted dyadic tree where each
node carries a formula and each non-atomic formula branches to its immediate
subformulas (see the example below). If A is a formula, the formation tree for
A is the unique formation tree which carries A at its root.

Example 1.1.12. The formation tree for the formula of Example 1.1.4 is

(((p⇒ q)∧ (q ∨ r))⇒ (p∨ r))⇒¬ (q ∨ s)
/ \

((p⇒ q)∧ (q ∨ r))⇒ (p∨ r)
/ \

(p⇒ q)∧ (q ∨ r)
/ \

p⇒ q q ∨ r
/ \ / \
p q q r

p∨ r
/ \
p r

¬ (q ∨ s)
|

q ∨ s
/ \
q s

or, in an abbreviated style,

⇒/ ∖

⇒
/ \

∧ ∨
/ \ / \

⇒ ∨ p r
/ \ / \
p q q r

¬
|
∨
/ \
q s

4

Remark 1.1.13. Note that, if we identify formulas with formation trees in the
abbreviated style, then there is no need for parentheses.

Remark 1.1.14. Another way to avoid parentheses is to use Polish notation.
In this case the set of L-formulas is generated as follows:

1. If p is an atomic L-formula, then p is an L-formula.

2. If A is an L-formula, then ¬A is an L-formula.

3. If A and B are L-formulas and b is a binary connective, then bAB is an
L-formula.

For example, (¬ p)⇒ q becomes ⇒¬ p q, and ¬ (p⇒ q) becomes ¬ ⇒ p q. The
formula of Example 1.1.4 becomes

⇒ ⇒ ∧ ⇒ p q ∨ q r ∨ p r ¬ ∨ q s

and a formation sequence for this is

p, q, ⇒ p q, r, ∨ q r, ∧ ⇒ p q ∨ q r, ∨ p r, ⇒ ∧ ⇒ p q ∨ q r∨ p r,

s, ∨ q s, ¬ ∨ q s, ⇒ ⇒ ∧ ⇒ p q ∨ q r∨ p r¬ ∨ q s .

Obviously Polish notation is difficult to read, but it has the advantages of being
linear and of not using parentheses.

Remark 1.1.15. In our study of formulas, we shall be indifferent to the ques-
tion of which system of notation is actually used. The only point of interest for
us is that each non-atomic formula is uniquely of the form ¬A or AbB, where
A and B are formulas and b is a binary connective.

Exercises 1.1.16. Let C be the formula (p∧¬ q)⇒¬ (p∨ r).

1. Restore all the omitted parentheses to C. (See Remark 1.1.7.)

2. Exhibit a formation sequence for C.

3. List the immediate subformulas of C, their immediate subformulas, etc.,
i.e., all subformulas of C.

4. Calculate the degrees of C and its subformulas.

5. Display the formation tree of C.

6. Write C according to various notation systems:

(a) The rules 1–3 of Definition 1.1.3:

1. Each atom is a formula.

2. If A is a formula then (¬A) is a formula.

3. If A and B are formulas and b is a binary connective, then (AbB)
is a formula.

5

(b) The following alternative set of rules:

1. Each atom is a formula.

2. If A is a formula then ¬ (A) is a formula.

3. If A and B are formulas and b is a binary connective, then
(A)b(B) is a formula.

(c) Polish notation.

(d) Reverse Polish notation.

1.2 Assignments and Satisfiability

Definition 1.2.1. There are two truth values, T and F, denoting truth and
falsity.

Definition 1.2.2. Let L be a propositional language. An L-assignment is a
mapping

M : {p | p is an atomic L-formula} → {T,F} .

Note that if L has exactly n atoms then there are exactly 2n different L-
assignments.

Lemma 1.2.3. Given an L-assignment M , there is a unique L-valuation

vM : {A | A is an L-formula} → {T,F}

given by the following clauses:

1. vM (¬A) =

{
T if vM (A) = F ,

F if vM (A) = T .

2. vM (A∧B) =

{
T if vM (A) = vM (B) = T ,

F if at least one of vM (A), vM (B) = F .

3. vM (A∨B) =

{
T if at least one of vM (A), vM (B) = T ,

F if vM (A) = vM (B) = F .

4. vM (A⇒B) = vM (¬ (A∧¬B)) .

5. vM (A⇔B) =

{
T if vM (A) = vM (B) ,

F if vM (A) 6= vM (B) .

Proof. The truth value vM (A) is defined by recursion on L-formulas, i.e., by
induction on the degree of A where A is an arbitrary L-formula. �

Remark 1.2.4. Note that each clause of Lemma 1.2.3 corresponds to the fa-
miliar truth table for the corresponding propositional connective. Thus clause
3 corresponds to the truth table

6

A B A∨B

T T T
T F T
F T T
F F F

for ∨ , and clause 4 corresponds to the truth table

A B A⇒B

T T T
T F F
F T T
F F T

for ⇒ .

Remark 1.2.5. Lemma 1.2.3 may be visualized in terms of formation trees.
To define vM (A) for a formula A, one begins with an assignment of truth values
to the atoms, i.e., the end nodes of the formation tree for A, and then proceeds
upward to the root, assigning truth values to the nodes, each step being given
by the appropriate clause.

Example 1.2.6. Consider the formula (p⇒ q)⇒ (q⇒ r) under an assignment
M with M(p) = T, M(q) = F, M(r) = T. In terms of the formation tree, this
looks like

(p⇒ q)⇒ (q⇒ r)
/ \

p⇒ q q⇒ r
/ \ / \
p q q r
T F F T

and by applying clause 4 three times we get

(p⇒ q)⇒ (q⇒ r)
T/ ∖

p⇒ q q⇒ r
F T

/ \ / \
p q q r
T F F T

and from this we see that vM ((p⇒ q)⇒ (q⇒ r)) = T.

Remark 1.2.7. The above formation tree with truth values can be compressed
and written linearly as

(p⇒ q)⇒ (q⇒ r)
T F F T F T T .

7

This illustrates a convenient method for calculating vM (A), where M is an
arbitrary L-assignment.

Remark 1.2.8. Lemma 1.2.3 implies that there is an obvious one-to-one cor-
respondence between L-assignments and L-valuations. If the language L is
understood from context, we may speak simply of assignments and valuations.

We now present some key definitions. Fix a propositional language L.

Definition 1.2.9. Let M be an assignment. A formula A is said to be true
under M if vM (A) = T, and false under M if vM (A) = F.

Definition 1.2.10. A set of formulas S is said to be satisfiable if there exists
an assignment M which satisfies S, i.e., vM (A) = T for all A ∈ S.

Definition 1.2.11. Let S be a set of formulas. A formula B is said to be a
logical consequence of S if it is true under all assignments which satisfy S.

Definition 1.2.12. A formula B is said to be logically valid (or a tautology) if
B is true under all assignments. Equivalently, B is a logical consequence of the
empty set.

Remark 1.2.13. B is a logical consequence of A1, . . . , An if and only if

(A1 ∧ · · · ∧An)⇒B

is logically valid. B is logically valid if and only if ¬B is not satisfiable.

Exercises 1.2.14.

1. Use truth tables to show that ((A⇒B)⇒A)⇒A is logically valid.

2. Use truth tables to show that (A∧B)⇒C is logically equivalent to
A⇒ (B⇒C).

Exercises 1.2.15. Prove the following. (See Remarks 1.2.13 and 1.3.2.)

1. B is logically valid if and only if ¬B is not satisfiable.

2. B is satisfiable if and only if ¬B is not logically valid.

3. B is a logical consequence of A1, . . . , An if and only if
(A1 ∧ · · · ∧An)⇒B is logically valid.

4. A is logically equivalent to B if and only if A⇔B is logically valid.

Exercise 1.2.16. Brown, Jones, and Smith are suspected of a crime. They
testify as follows:

Brown: Jones is guilty and Smith is innocent.

Jones: If Brown is guilty then so is Smith.

8

Smith: I’m innocent, but at least one of the others is guilty.

Let b, j, and s be the statements “Brown is innocent,” “Jones is innocent,”
“Smith is innocent”.

1. Express the testimony of each suspect as a propositional formula. Write
a truth table for the three testimonies.

2. Use the above truth table to answer the following questions:

(a) Are the three testimonies consistent?

(b) The testimony of one of the suspects follows from that of another.
Which from which?

(c) Assuming everybody is innocent, who committed perjury?

(d) Assuming all testimony is true, who is innocent and who is guilty?

(e) Assuming that the innocent told the truth and the guilty told lies,
who is innocent and who is guilty?

Solution.

1. The testimonies are:

B : (¬ j)∧ s
J : (¬ b)⇒ (¬ s)
S : s∧ ((¬ b)∨ (¬ j))

The truth table is:

b j s B J S

1 T T T F T F
2 T T F F T F
3 T F T T T T
4 T F F F T F
5 F T T F F T
6 F T F F T F
7 F F T T F T
8 F F F F T F

2. (a) Yes, by line 3 of the table.

(b) The table shows that S is a logical consequence of B. In other words,
Smith’s testimony follows from Brown’s.

(c) If everybody is innocent, we are in line 1 of the table. Hence B and
S are false, i.e., Brown and Smith lied.

(d) If all the testimony is true, we are in line 3 of the table. Thus Brown
and Smith are innocent, while Jones is guilty.

(e) Our assumption is vM (b) = vM (B), vM (j) = vM (J), vM (s) = vM (S).
Hence we are in line 6 of the table. Thus Jones is innocent, and Brown
and Smith are guilty.

9

1.3 Logical Equivalence

Definition 1.3.1. Two formulas A and B are said to be logically equivalent,
written A ≡ B, if each is a logical consequence of the other.

Remark 1.3.2. A ≡ B holds if and only if A⇔B is logically valid.

Exercise 1.3.3. Assume A1 ≡ A2. Show that

1. ¬A1 ≡ ¬A2;

2. A1 ∧B ≡ A2 ∧B;

3. B ∧A1 ≡ B ∧A2;

4. A1 ∨B ≡ A2 ∨B;

5. B ∨A1 ≡ B ∨A2;

6. A1 ⇒B ≡ A2 ⇒B;

7. B⇒A1 ≡ B⇒A2;

8. A1 ⇔B ≡ A2 ⇔B;

9. B⇔A1 ≡ B⇔A2.

Exercise 1.3.4. Assume A1 ≡ A2. Show that for any formula C containing
A1 as a part, if we replace one or more occurrences of the part A1 by A2, then
the resulting formula is logically equivalent to C. (Hint: Use the results of the
previous exercise, plus induction on the degree of C.)

Remark 1.3.5. Some useful logical equivalences are:

1. commutative laws:

(a) A∧B ≡ B ∧A

(b) A∨B ≡ B ∨A

(c) A⇔B ≡ B⇔A

Note however that A⇒B 6≡ B⇒A.

2. associative laws:

(a) A∧ (B ∧C) ≡ (A∧B)∧C

(b) A∨ (B ∨C) ≡ (A∨B)∨C

(c) A⇔ (B⇔C) ≡ (A⇔B)⇔C

Note however that A⇒ (B⇒C) 6≡ (A⇒B)⇒C.

3. distributive laws:

10

(a) A∧ (B ∨C) ≡ (A∧B)∨ (A∧C)

(b) A∨ (B ∧C) ≡ (A∨B)∧ (A∨C)

(c) A⇒ (B ∧C) ≡ (A⇒B)∧ (A⇒C)

(d) A⇒ (B ∨C) ≡ (A⇒B)∨ (A⇒C)

(e) (A∧B)⇒C ≡ (A⇒C)∨ (B⇒C)

(f) (A∨B)⇒C ≡ (A⇒C)∧ (B⇒C)

Note however that (A∧B)⇒C 6≡ (A⇒C)∧ (B⇒C), and (A∨B)⇒C 6≡
(A⇒C)∨ (B⇒C).

4. negation laws:

(a) ¬ (A∧B) ≡ (¬A)∨ (¬B)

(b) ¬ (A∨B) ≡ (¬A)∧ (¬B)

(c) ¬¬A ≡ A

(d) ¬ (A⇒B) ≡ A∧¬B

(e) ¬ (A⇔B) ≡ (¬A)⇔B

(f) ¬ (A⇔B) ≡ A⇔ (¬B)

5. implication laws:

(a) A⇒B ≡ ¬ (A∧¬B)

(b) A⇒B ≡ (¬A)∨B

(c) A⇒B ≡ (¬B)⇒ (¬A)

(d) A⇔B ≡ (A⇒B)∧ (B⇒A)

(e) A⇔B ≡ (¬A)⇔ (¬B)

Definition 1.3.6. A formula is said to be in disjunctive normal form if it is
of the form A1 ∨ · · · ∨Am, where each clause Ai, i = 1, . . . ,m, is of the form
B1 ∧ · · · ∧Bn, and each Bj , j = 1, . . . , n is either an atom or the negation of
an atom.

Example 1.3.7. Writing p as an abbreviation for ¬ p, the formula

(p1 ∧ p2 ∧ p3)∨ (p1 ∧ p2 ∧ p3)∨ (p1 ∧ p2 ∧ p3)

is in disjunctive normal form.

Exercise 1.3.8. Show that every propositional formula C is logically equivalent
to a formula in disjunctive normal form.

Remark 1.3.9. There are two ways to do Exercise 1.3.8.

1. One way is to apply the equivalences of Remark 1.3.5 to subformulas of C
via Exercise 1.3.4, much as one applies the commutative and distributive
laws in algebra to reduce every algebraic expression to a polynomial.

11

2. The other way is to use a truth table for C. The disjunctive normal form
of C has a clause for each assignment making C true. The clause specifies
the assignment.

Example 1.3.10. Consider the formula (p⇒ q)⇒ r. We wish to put this in
disjunctive normal form.

Method 1. Applying the equivalences of Remark 1.3.5, we obtain

(p⇒ q)⇒ r ≡ r∨¬ (p⇒ q)

≡ r∨¬¬ (p∧¬ q)

≡ r∨ (p∧¬ q)

and this is in disjunctive normal form.

Method 2. Consider the truth table

p q r p⇒ q (p⇒ q)⇒ r

1 T T T T T
2 T T F T F
3 T F T F T
4 T F F F T
5 F T T T T
6 F T F T F
7 F F T T T
8 F F F T F

Each line of this table corresponds to a different assignment. From lines 1, 3,
4, 5, 7 we read off the following formula equivalent to (p⇒ q)⇒ r in disjunctive
normal form:

(p∧ q ∧ r)∨ (p∧ q ∧ r)∨ (p∧ q ∧ r)∨ (p∧ q ∧ r)∨ (p∧ q ∧ r) .

1.4 The Tableau Method

Remark 1.4.1. A more descriptive name for tableaux is satisfiability trees. We
follow the approach of Smullyan [4].

Definition 1.4.2. A signed formula is an expression of the form TA or FA,
where A is a formula. An unsigned formula is simply a formula.

Definition 1.4.3. A signed tableau is a rooted dyadic tree where each node
carries a signed formula. An unsigned tableau is a rooted dyadic tree where
each node carries an unsigned formula. The signed tableau rules are presented
in Table 1.1. The unsigned tableau rules are presented in Table 1.2. If τ is a
(signed or unsigned) tableau, an immediate extension of τ is a larger tableau τ ′

obtained by applying a tableau rule to a finite path of τ .

12

...
TA∧B

...
|

TA
TB

...
FA∧B

...
/ \

FA FB

...
TA∨B

...
/ \

TA TB

...
FA∨B

...
|

FA
FB

...
TA⇒B

...
/ \

FA TB

...
FA⇒B

...
|

TA
FB

...
TA⇔B

...
/ \

TA FA
TB FB

...
FA⇔B

...
/ \

TA FA
FB TB

...
T¬A

...
|

FA

...
F¬A

...
|

TA

Table 1.1: Signed tableau rules for propositional connectives.

13

...
A∧B

...
|
A
B

...
¬ (A∧B)

...
/ \

¬A ¬B

...
A∨B

...
/ \
A B

...
¬ (A∨B)

...
|

¬A
¬B

...
A⇒B

...
/ \

¬A B

...
¬ (A⇒B)

...
|
A
¬B

...
A⇔B

...
/ \

A ¬A
B ¬B

...
¬ (A⇔B)

...
/ \

A ¬A
¬B B

...
¬¬A

...
|
A

Table 1.2: Unsigned tableau rules for propositional connectives.

14

Definition 1.4.4. Let X1, . . . , Xk be a finite set of signed or unsigned formulas.
A tableau starting with X1, . . . , Xk is a tableau obtained from

X1

...
Xk

by repeatedly applying tableau rules.

Definition 1.4.5. A path of a tableau is said to be closed if it contains a
conjugate pair of signed or unsigned formulas, i.e., a pair such as TA, FA in
the signed case, or A, ¬A in the unsigned case. A path of a tableau is said to
be open if it is not closed. A tableau is said to be closed if each of its paths is
closed.

The tableau method:

1. To test a formula A for validity, form a signed tableau starting with FA, or
equivalently an unsigned tableau starting with ¬A. If the tableau closes
off, then A is logically valid.

2. To test whether B is a logical consequence of A1, . . . , Ak, form a signed
tableau starting with TA1, . . . , TAk, FB, or equivalently an unsigned
tableau starting with A1, . . . , Ak,¬B. If the tableau closes off, then B is
indeed a logical consequence of A1, . . . , Ak.

3. To test A1, . . . , Ak for satisfiability, form a signed tableau starting with
TA1, . . . , TAk, or equivalently an unsigned tableau starting with A1, . . . , Ak.
If the tableau closes off, then A1, . . . , Ak is not satisfiable. If the tableau
does not close off, then A1, . . . , Ak is satisfiable, and from any open path
we can read off an assignment satisfying A1, . . . , Ak.

The correctness of these tests will be proved in Section 1.5. See Corollaries
1.5.9, 1.5.10, 1.5.11 below.

Example 1.4.6. Using the signed tableau method to test (p∧ q)⇒ (q ∧ p) for
logical validity, we have

F (p∧ q)⇒ (q ∧ p)
T p∧ q
F q ∧ p
T p
T q
/ \

F q F p

Since (every path of) the tableau is closed, (p∧ q)⇒ (q ∧ p) is logically valid.

Exercises 1.4.7.

15

1. Use a signed tableau to show that (A⇒B)⇒ (A⇒C) is a logical conse-
quence of A⇒ (B⇒C).

Solution.
TA⇒ (B⇒C)

F (A⇒B)⇒ (A⇒C)
TA⇒B
FA⇒C

TA
FC
/ \

FA TB⇒C
/ \

FB TC
/ \

FA TB

2. Use a signed tableau to show that A⇒B is logically equivalent to
(¬B)⇒ (¬A).

Solution.
F (A⇒B)⇔ ((¬B)⇒ (¬A))

/
TA⇒B

F (¬B)⇒ (¬A)
T¬B
F¬A
FB
TA
/ \

FA TB

\
FA⇒B

T (¬B)⇒ (¬A)
TA
FB
/ \

F¬B T¬A
TB FA

3. Use an unsigned tableau to show that A⇒ (B⇒C) is logically equivalent
to (A∧B)⇒C.

Solution.
¬ ((A⇒ (B⇒C))⇔ ((A∧B)⇒C))

/ \
A⇒ (B⇒C)

¬ ((A∧B)⇒C)
A∧B
¬C
A
B

/ \
¬A B⇒C

/ \
¬B C

¬ (A⇒ (B⇒C))
(A∧B)⇒C

A
¬ (B⇒C)

B
¬C
/ \

¬ (A∧B) C
/ \

¬A ¬B

16

4. Use an unsigned tableau to test (p∨ q)⇒ (p∧ q) for logical validity. If this
formula is not logically valid, use the tableau to find all assignments which
falsify it.

Solution.
¬ ((p∨ q)⇒ (p∧ q))

p∨ q
¬ (p∧ q)
/ \
p q

/ \ / \
¬ p ¬ q ¬ p ¬ q

1 2 3 4

The open paths 2 and 3 provide the assignments M2 and M3 which falsify
our formula. M2(p) = T, M2(q) = F, M3(p) = F, M3(q) = T.

5. Redo the previous problem using a signed tableau.

Solution.
F (p∨ q)⇒ (p∧ q)

T p∨ q
F p∧ q

/ \
T p T q
/ \ / \

F p F q F p F q

1 2 3 4

The open paths 2 and 3 provide the assignments M2 and M3 which falsify
our formula. M2(p) = T, M2(q) = F, M3(p) = F, M3(q) = T.

Exercise 1.4.8.

1. Formulate the following argument as a propositional formula.

If it has snowed, it will be poor driving. If it is poor driving, I
will be late unless I start early. Indeed, it has snowed. Therefore,
I must start early to avoid being late.

Solution. Use the following atoms.

s: it has snowed
p: it is poor driving
l: I will be late
e: I start early

17

The argument can be translated as follows: s⇒ p, p⇒ (l∨ e), s, therefore
(¬ l)⇒ e. Written as a single propositional formula, this becomes:

((s⇒ p)∧ (p⇒ (l∨ e))∧ s)⇒ ((¬ l)⇒ e).

2. Use the tableau method to demonstrate that this formula is logically valid.

Solution.
F ((s⇒ p)∧ (p⇒ (l∨ e))∧ s)⇒ ((¬ l)⇒ e)

T (s⇒ p)∧ (p⇒ (l∨ e))∧ s
F (¬ l)⇒ e
T s⇒ p

T (p⇒ (l∨ e))∧ s
T p⇒ (l∨ e)

T s
T¬ l
F e
F l
/ \

F s T p
/ \

F p T l∨ e
/ \

T l T e

1.5 The Completeness Theorem

Let X1, . . . , Xk be a finite set of signed formulas, or a finite set of unsigned
formulas.

Lemma 1.5.1 (the Soundness Theorem). If τ is a finite closed tableau starting
with X1, . . . , Xk, then X1, . . . , Xk is not satisfiable.

Proof. Straightforward. �

Definition 1.5.2. A path of a tableau is said to be replete if, whenever it
contains the top formula of a tableau rule, it also contains at least one of the
branches. A replete tableau is a tableau in which every path is replete.

Lemma 1.5.3. Any finite tableau can be extended to a finite replete tableau.

Proof. Apply tableau rules until they cannot be applied any more. �

Definition 1.5.4. A tableau is said to be open if it is not closed, i.e., it has at
least one open path.

Lemma 1.5.5. Let τ be a replete tableau starting with X1, . . . , Xk. If τ is
open, then X1, . . . , Xk is satisfiable.

18

In order to prove Lemma 1.5.5, we introduce the following definition.

Definition 1.5.6. Let S be a set of signed or unsigned formulas. We say that
S is a Hintikka set if

1. S “obeys the tableau rules”, in the sense that if it contains the top formula
of a rule then it contains at least one of the branches;

2. S contains no pair of conjugate atomic formulas, i.e., Tp, Fp in the signed
case, or p,¬ p in the unsigned case.

Lemma 1.5.7 (Hintikka’s Lemma). If S is a Hintikka set, then S is satisfiable.

Proof. Define an assignment M by

M(p) =

{
T if Tp belongs to S
F otherwise

in the signed case, or

M(p) =

{
T if p belongs to S
F otherwise

in the unsigned case. It is not difficult to see that vM (X) = T for all X ∈ S. �

To prove Lemma 1.5.5, it suffices to note that a replete open path is a Hin-
tikka set. Thus, if a replete tableau starting with X1, . . . , Xk is open, Hintikka’s
Lemma implies that X1, . . . , Xk is satisfiable.

Combining Lemmas 1.5.1 and 1.5.3 and 1.5.5, we obtain:

Theorem 1.5.8 (the Completeness Theorem). X1, . . . , Xk is satisfiable if and
only if there is no finite closed tableau starting with X1, . . . , Xk.

Corollary 1.5.9. A1, . . . , Ak is not satisfiable if and only if there exists a finite
closed signed tableau starting with TA1, . . . , TAk, or equivalently a finite closed
unsigned tableau starting with A1, . . . , Ak.

Corollary 1.5.10. A is logically valid if and only if there exists a finite closed
signed tableau starting with FA, or equivalently a finite closed unsigned tableau
starting with ¬A.

Corollary 1.5.11. B is a logical consequence of A1, . . . , Ak if and only if there
exists a finite closed signed tableau starting with TA1, . . . , TAk, FB, or equiv-
alently a finite closed unsigned tableau starting with A1, . . . , Ak,¬B.

Exercise 1.5.12. Consider the following argument.

The attack will succeed only if the enemy is taken by surprise or the
position is weakly defended. The enemy will not be taken by surprise
unless he is overconfident. The enemy will not be overconfident if the
position is weakly defended. Therefore, the attack will not succeed.

1. Translate the argument into propositional calculus.

2. Use an unsigned tableau to determine whether the argument is logically
valid.

19

1.6 Trees and König’s Lemma

Up to this point, our discussion of trees has been informal. We now pause to
make our tree terminology precise.

Definition 1.6.1. A tree consists of

1. a set T

2. a function ℓ : T → N+,

3. a binary relation P on T .

The elements of T are called the nodes of the tree. For x ∈ T , ℓ(x) is the level
of x. The relation xPy is read as x immediately precedes y, or y immediately
succeeds x. We require that there is exactly one node x ∈ T such that ℓ(x) = 1,
called the root of the tree. We require that each node other than the root has
exactly one immediate predecessor. We require that ℓ(y) = ℓ(x) + 1 for all
x, y ∈ T such that xPy.

Definition 1.6.2. A subtree of T is a nonempty set T ′ ⊆ T such that for all
y ∈ T ′ and xPy, x ∈ T ′. Note that T ′ is itself a tree, under the restriction of ℓ
and P to T ′. Moreover, the root of T ′ is the same as the root of T .

Definition 1.6.3. An end node of T is a node with no (immediate) successors.
A path in T is a set S ⊆ T such that (1) the root of T belongs to S, (2) for each
x ∈ S, either x is an end node of T or there is exactly one y ∈ S such that xPy.

Definition 1.6.4. Let P ∗ be the transitive closure of P , i.e., the smallest re-
flexive and transitive relation on T containing P . For x, y ∈ T , we have xP ∗y
if and only if x precedes y, i.e., y succeeds x, i.e., there exists a finite sequence
x = x0Px1Px2 · · ·xn−1Pxn = y. Note that the relation P ∗ is reflexive (xP ∗x
for all x ∈ T), antisymmetric (xP ∗y and yP ∗x imply x = y), and transitive
(xP ∗y and yP ∗z imply xP ∗z). Thus P ∗ is a partial ordering of T .

Definition 1.6.5. T is finitely branching if each node of T has only finitely
many immediate successors in T . T is dyadic if each node of T has at most two
immediate successors in T . Note that a dyadic tree is finitely branching.

Theorem 1.6.6 (König’s Lemma). Let T be an infinite, finitely branching tree.
Then T has an infinite path.

Proof. Let T̂ be the set of all x ∈ T such that x has infinitely many successors
in T . Note that T̂ is a subtree of T . Since T is finitely branching, it follows by
the pigeonhole principle that each x ∈ T̂ has at least one immediate successor
y ∈ T̂ . Now define an infinite path S = {x1, x2, . . . , xn, . . .} in T̂ inductively by
putting x1 = the root of T , and xn+1 = one of the immediate successors of xn

in T̂ . Clearly S is an infinite path of T . �

20

1.7 The Compactness Theorem

Theorem 1.7.1 (the Compactness Theorem, countable case). Let S be a count-
able set of propositional formulas. If each finite subset of S is satisfiable, then
S is satisfiable.

Proof. In brief outline: Form an infinite tableau. Apply König’s Lemma to get
an infinite path. Apply Hintikka’s Lemma.

Details: Let S = {A1, A2, . . . , Ai, . . .}. Start with A1 and generate a finite
replete tableau, τ1. Since A1 is satisfiable, τ1 has at least one open path. Append
A2 to each of the open paths of τ1, and generate a finite replete tableau, τ2.
Since {A1, A2} is satisfiable, τ2 has at least one open path. Append A3 to each
of the open paths of τ2, and generate a finite replete tableau, τ3. Put
τ =

⋃
∞

i=1 τi. Thus τ is a replete tableau. Note also that τ is an infinite, finitely
branching tree. By König’s Lemma (Theorem 1.6.6), let S′ be an infinite path
in τ . Then S′ is a Hintikka set containing S. By Hintikka’s Lemma, S′ is
satisfiable. Hence S is satisfiable. �

Theorem 1.7.2 (the Compactness Theorem, uncountable case). Let S be an
uncountable set of propositional formulas. If each finite subset of S is satisfiable,
then S is satisfiable.

Proof. We present three proofs. The first uses Zorn’s Lemma. The second uses
transfinite induction. The third uses Tychonoff’s Theorem.

Let L be the (necessarily uncountable) propositional language consisting of
all atoms occurring in formulas of S. If S is a set of L-formulas, we say that
S is finitely satisfiable if each finite subset of S is satisfiable. We are trying to
prove that, if S is finitely satisfiable, then S is satisfiable.

First proof. Consider the partial ordering F of all finitely satisfiable sets of
L-formulas which include S, ordered by inclusion. It is easy to see that any
chain in F has a least upper bound in F. Hence, by Zorn’s Lemma, F has a
maximal element, S∗. Thus S∗ is a set of L-formulas, S∗ ⊇ S, S∗ is finitely
satisfiable, and for each L-formula A /∈ S∗, S∗ ∪ {A} is not finitely satisfiable.
From this it is straightforward to verify that S∗ is a Hintikka set. Hence, by
Hintikka’s Lemma, S∗ is satisfiable. Hence S is satisfiable.

Second proof. Let Aξ, ξ < α, be a transfinite enumeration of all L-formulas.
By transfinite recursion, put S0 = S, Sξ+1 = Sξ ∪ {Aξ} if Sξ ∪ {Aξ} is finitely
satisfiable, Sξ+1 = Sξ otherwise, and Sη =

⋃
ξ<η Sξ for limit ordinals η ≤ α.

Using transfinite induction, it is easy to verify that Sξ is finitely satisfiable for
each ξ ≤ α. In particular, Sα is finitely satisfiable. It is straightforward to
verify that Sα is a Hintikka set. Hence, by Hintikka’s Lemma, Sα is satisfiable.
Hence S is satisfiable.

Third proof. Let M = {T,F}L be the space of all L-assignments M : L →
{T,F}. Make M a topological space with the product topology where {T,F}
has the discrete topology. Since {T,F} is compact, it follows by Tychonoff’s
Theorem that M is compact. For each L-formula A, put MA = {M ∈ M |
vM (A) = T}. It is easy to check that each MA is a topologically closed set

21

in M. If S is finitely satisfiable, then the family of sets MA, A ∈ S has the
finite intersection property, i.e.,

⋂
A∈S0

MA 6= ∅ for each finite S0 ⊆ S. By
compactness of M it follows that

⋂
A∈S MA 6= ∅. Thus S is satisfiable. �

1.8 Combinatorial Applications

In this section we present some combinatorial applications of the Compactness
Theorem for propositional calculus.

Definition 1.8.1.

1. A graph consists of a set of vertices together with a specification of certain
pairs of vertices as being adjacent. We require that a vertex may not be
adjacent to itself, and that u is adjacent to v if and only if v is adjacent
to u.

2. Let G be a graph and let k be a positive integer. A k-coloring of G is a
function f : {vertices of G} → {c1, . . . , ck} such that f(u) 6= f(v) for all
adjacent pairs of vertices u, v.

3. G is said to be k-colorable if there exists a k-coloring of G. This notion is
much studied in graph theory.

Exercise 1.8.2. Let G be a graph and let k be a positive integer. For each
vertex v and each i = 1, . . . , k, let pvi be a propositional atom expressing that
vertex v receives color ci. Define Ck(G) to be the following set of propositional
formulas: pv1 ∨ · · · ∨ pvk for each vertex v; ¬ (pvi ∧ pvj) for each vertex v and
1 ≤ i < j ≤ k; ¬ (pui ∧ pvi) for each adjacent pair of vertices u, v and 1 ≤ i ≤ k.

1. Show that there is a one-to-one correspondence between k-colorings of G
and assignments satisfying Ck(G).

2. Show that G is k-colorable if and only if Ck(G) is satisfiable.

3. Show that G is k-colorable if and only if each finite subgraph of G is
k-colorable.

Definition 1.8.3. A partial ordering consists of a set P together with a binary
relation ≤P such that

1. a ≤P a for all a ∈ P (reflexivity);

2. a ≤P b, b ≤P c imply a ≤P c (transitivity);

3. a ≤P b, b ≤P a imply a = b (antisymmetry).

Example 1.8.4. Let P = N+ = {1, 2, 3, . . . , n, . . .} = the set of positive inte-
gers.

1. Let ≤P be the usual order relation on P , i.e., m ≤P n if and only if m ≤ n.

22

2. Let ≤P be the divisibility ordering of P , i.e., m ≤P n if and only if m is
a divisor of n.

Definition 1.8.5. Let P,≤P be a partial ordering.

1. Two elements a, b ∈ P are comparable if either a ≤P b or b ≤P a. Other-
wise they are incomparable.

2. A chain is a set X ⊆ P such that any two elements of X are comparable.

3. An antichain is a set X ⊆ P such that any two distinct elements of X are
incomparable.

Exercise 1.8.6. Let P,≤P be a partial ordering, and let k be a positive integer.

1. Use the Compactness Theorem to show that P is the union of k chains if
and only if each finite subset of P is the union of k chains.

2. Dilworth’s Theorem says that P is the union of k chains if and only if
every antichain is of size ≤ k. Show that Dilworth’s Theorem for arbi-
trary partial orderings follows from Dilworth’s Theorem for finite partial
orderings.

23

Chapter 2

Predicate Calculus

2.1 Formulas and Sentences

Definition 2.1.1 (languages). A language L is a set of predicates, each predi-
cate P of L being designated as n-ary for some nonnegative1 integer n.

Definition 2.1.2 (variables and quantifiers). We assume the existence of a
fixed, countably infinite set of symbols x, y, z, . . . known as variables . We intro-
duce two new symbols: the universal quantifier (∀) and the existential quantifier
(∃). They are read as “for all” and “there exists”, respectively.

Definition 2.1.3 (formulas). Let L be a language, and let U be a set. It is
understood that U is disjoint from the set of variables. The set of L-U -formulas
is generated as follows.

1. An atomic L-U -formula is an expression of the form Pe1 · · · en where P
is an n-ary predicate of L and each of e1, . . . , en is either a variable or an
element of U .

2. Each atomic L-U -formula is an L-U -formula.

3. If A is an L-U -formula, then ¬A is an L-U -formula.

4. If A and B are L-U -formulas, then A∧B, A∨B, A⇒B, A⇔B are L-
U -formulas.

5. If x is a variable and A is an L-U -formula, then ∀xA and ∃xA are L-U -
formulas.

Definition 2.1.4 (degree). The degree of a formula is the number of occurrences
of propositional connectives ¬ , ∧ , ∨ , ⇒ , ⇔ and quantifiers ∀, ∃ in it.

1It will be seen that 0-ary predicates behave as propositional atoms. Thus the predicate
calculus is an extension of the propositional calculus.

24

Definition 2.1.5. An L-formula is an L-∅-formula, i.e., an L-U -formula where
U = ∅, the empty set.

Remark 2.1.6. If U is a subset of U ′, then every L-U -formula is automati-
cally an L-U ′-formula. In particular, every L-formula is automatically an L-U -
formula, for any set U .

Definition 2.1.7. In situations where the language L is understood from con-
text, an L-U -formula may be called a U -formula, and an L-formula a formula.

Definition 2.1.8 (substitution). If A is an L-U -formula and x is a variable and
a ∈ U , we define an L-U -formula A[x/a] as follows.

1. If A is atomic, then A[x/a] = the result of replacing each occurrence of x
in A by a.

2. (¬A)[x/a] = ¬A[x/a].

3. (A∧B)[x/a] = A[x/a]∧B[x/a].

4. (A∨B)[x/a] = A[x/a]∨B[x/a].

5. (A⇒B)[x/a] = A[x/a]⇒B[x/a].

6. (A⇔B)[x/a] = A[x/a]⇔B[x/a].

7. (∀xA)[x/a] = ∀xA.

8. (∃xA)[x/a] = ∃xA.

9. If y is a variable other than x, then (∀y A)[x/a] = ∀y A[x/a].

10. If y is a variable other than x, then (∃y A)[x/a] = ∃y A[x/a].

Definition 2.1.9 (free variables). An occurrence of a variable x in an L-U -
formula A is said to be bound in A if it is within the scope of a quantifier ∀x or
∃x in A. An occurrence of a variable x in an L-U -formula A is said to be free
in A if it is not bound in A. A variable x is said to occur freely in A if there is
at least one occurrence of x in A which is free in A.

Exercise 2.1.10.

1. Show that A[x/a] is the result of substituting a for all free occurrences of
x in A.

2. Show that x occurs freely in A if and only if A[x/a] 6= A.

Definition 2.1.11 (sentences). An L-U -sentence is an L-U -formula in which no
variables occur freely. An L-sentence is an L-∅-sentence, i.e., an L-U -sentence
where U = ∅, the empty set.

25

Remark 2.1.12. If U is a subset of U ′, then every L-U -sentence is automat-
ically an L-U ′-sentence. In particular, every L-sentence is automatically an
L-U -sentence, for any set U .

Definition 2.1.13. In situations where the language L is understood from
context, an L-U -sentence may be called a U -sentence, and an L-sentence a
sentence.

2.2 Structures and Satisfiability

Definition 2.2.1. Let U be a nonempty set, and let n be a nonnegative2 integer.
Un is the set of all n-tuples of elements of U , i.e.,

Un = {〈a1, . . . , an〉 | a1, . . . , an ∈ U} .

An n-ary relation on U is a subset of Un.

Definition 2.2.2. Let L be a language. An L-structure M consists of a non-
empty set UM , called the domain or universe of M , together with an n-ary
relation PM on UM for each n-ary predicate P of L. An L-structure may be
called a structure, in situations where the language L is understood from context.

Definition 2.2.3. Two L-structures M and M ′ are said to be isomorphic if
there exists an isomorphism of M onto M ′, i.e., a one-to-one correspondence
φ : UM

∼= UM ′ such that for all n-ary predicates P of L and all n-tuples
〈a1, . . . , an〉 ∈ (UM)n, 〈a1, . . . , an〉 ∈ PM if and only if 〈φ(a1), . . . , φ(an)〉 ∈ PM ′ .

As usual in abstract mathematics, we are mainly interested in properties of
structures that are invariant under isomorphism.

Lemma 2.2.4. Given an L-structure M , there is a unique valuation or assign-
ment of truth values

vM : {A | A is an L-UM -sentence} → {T,F}

defined as follows:

1. vM (Pa1 · · · an) =

{
T if 〈a1, . . . , an〉 ∈ PM ,

F if 〈a1, . . . , an〉 /∈ PM .

2. vM (¬A) =

{
T if vM (A) = F ,

F if vM (A) = T .

3. vM (A∧B) =

{
T if vM (A) = vM (B) = T ,

F if at least one of vM (A), vM (B) = F .

2In the special case n = 0 we obtain the notion of a 0-ary relation, i.e., a subset of {〈〉}.
There are only two 0-ary relations, {〈〉} and {}, corresponding to T and F respectively. Thus
a 0-ary predicate behaves as a propositional atom.

26

4. vM (A∨B) =

{
T if at least one of vM (A), vM (B) = T ,

F if vM (A) = vM (B) = F .

5. vM (A⇒B) = vM (¬ (A∧¬B)) .

6. vM (A⇔B) =

{
T if vM (A) = vM (B) ,

F if vM (A) 6= vM (B) .

7. vM (∀xA) =

{
T if vM (A[x/a]) = T for all a ∈ UM ,

F if vM (A[x/a]) = F for at least one a ∈ UM .

8. vM (∃xA) =

{
T if vM (A[x/a]) = T for at least one a ∈ UM ,

F if vM (A[x/a]) = F for all a ∈ UM .

Proof. The truth value vM (A) is defined by recursion on L-UM -sentences, i.e.,
by induction on the degree of A where A is an arbitrary L-UM -sentence. �

Definition 2.2.5 (truth and satisfaction). Let M be an L-structure.

1. Let A be an L-UM -sentence. We say that A is true in M if vM (A) = T.
We say that A is false in M if vM (A) = F.

2. Let S be a set of L-UM -sentences. We say that M satisfies S, abbreviated
M |= S, if all of the sentences of S are true in M .

Theorem 2.2.6.

1. If M and M ′ are isomorphic L-structures and φ : M ∼= M ′ is an isomor-
phism of M onto M ′, then for all L-UM -sentences A we have vM (A) =
vM ′ (A′) where A′ = A[a1/φ(a1), . . . , ak/φ(ak)].

3 Here a1, . . . , ak are the
elements of UM which occur in A.

2. IfM andM ′ are isomorphic L-structures, then they are elementarily equiv-
alent, i.e., they satisfy the same L-sentences. We shall see later that the
converse does not hold in general.

Proof. We omit the proof of part 1. A more general result will be proved later
as Theorem 2.7.3. Part 2 follows immediately from part 1. �

Definition 2.2.7 (satisfiability). Let S be a set of L-sentences. S is said to be
satisfiable4 if there exists an L-structure M which satisfies S.

3We have extended the substitution notation 2.1.8 in an obvious way.
4Similarly, the notions of logical validity and logical consequence are defined for L-

sentences, in the obvious way, using L-structures. An L-sentence is said to be logically valid

if it is satisfied by all L-structures. An L-sentence is said to be a logical consequence of S if
it is satisfied by all L-structures satisfying S.

27

Remark 2.2.8. Satisfiability is one of the most important concepts of mathe-
matical logic. A key result known as the Compactness Theorem5 states that a
set S of L-sentences is satisfiable if and only every finite subset of S is satisfiable.

The following related notion is of technical importance.

Definition 2.2.9 (satisfiability in a domain). Let U be a nonempty set. A set
S of L-U -sentences is said to be satisfiable in the domain U if there exists an
L-structure M such that M |= S and UM = U .

Remark 2.2.10. Let S be a set of L-sentences. Then S is satisfiable (according
to Definition 2.2.7) if and only if S is satisfiable in some domain U .

Theorem 2.2.11. Let S be a set of L-sentences. If S is satisfiable in a domain
U , then S is satisfiable in any domain of the same cardinality as U .

Proof. Suppose S is satisfiable in a domain U . Let M be an L-structure M
satisfying S with UM = U . Let U ′ be any set of the same cardinality as U .
Then there exists a one-to-one correspondence φ : U → U ′. Let M ′ be the
L-structure with UM ′ = U ′, PM ′ = {〈φ(a1), . . . , φ(an)〉 | 〈a1, . . . , an〉 ∈ PM} for
all n-ary predicates P of L. Then M is isomorphic to M ′. Hence, by Theorem
2.2.6, M ′ |= S. Thus S is satisfiable in the domain U ′. �

Example 2.2.12. We exhibit a sentence A∞ which is satisfiable in an infinite
domain but not in any finite domain. Our sentence A∞ is (1)∧ (2)∧ (3) with

(1) ∀x∀y ∀z ((Rxy ∧Ryz)⇒Rxz)

(2) ∀x∀y (Rxy⇒¬Ryx)

(3) ∀x∃y Rxy

See also Example 2.5.9.

Exercise 2.2.13. Let L be the language consisting of one binary predicate, R.
Consider the following sentences:

(a) ∀xRxx

(b) ∀x¬Rxx

(c) ∀x∀y (Rxy⇒Ryx)

(d) ∀x∀y (Rxy⇒¬Ryx)

(e) ∀x∀y ∀z ((Rxy ∧Ryz)⇒Rxz)

(f) ∀x∃y Rxy

Which of subsets of this set of sentences are satisfiable? Verify your claims by
exhibiting appropriate structures. Use the simplest possible structures.

5See Theorems 2.6.1 and 2.6.2 below.

28

Solution.

(a,c,e,f) is satisfiable: U = {1}, R = {〈1, 1〉}.

(b,c,d,e) is satisfiable: U = {1}, R = { }.

(b,c,f) is satisfiable: U = {1, 2}, R = {〈1, 2〉, 〈2, 1〉}.

(b,d,e,f) is satisfiable: U = {1, 2, 3, . . .}, R = <.

These are the only maximal satisfiable sets, because:

(a,b) is not satisfiable.

(a,d) is not satisfiable.

(b,c,e,f) is not satisfiable.

(c,d,f) is not satisfiable.

Note: (d,e,f) is not satisfiable in any finite domain.

Exercise 2.2.14.

1. Assume the following predicates:

Hx: x is a human

Cx: x is a car

Tx: x is a truck

Dxy: x drives y

Write formulas representing the obvious assumptions: no human is a car,
no car is a truck, humans exist, cars exist, only humans drive, only cars
and trucks are driven, etc.

2. Write formulas representing the following statements:

(a) Everybody drives a car or a truck.

(b) Some people drive both.

(c) Some people don’t drive either.

(d) Nobody drives both.

3. Assume in addition the following predicate:

Ixy: x is identical to y

Write formulas representing the following statements:

(a) Every car has at most one driver.

(b) Every truck has exactly two drivers.

29

(c) Everybody drives exactly one vehicle (car or truck).

Solution.

1. No human is a car. ¬∃x (Hx∧Cx).

No car is a truck. ¬∃x (Cx∧ Tx).

Humans exist. ∃xHx.

Cars exist. ∃xCx.

Only humans drive. ∀x ((∃y Dxy)⇒Hx).

Only cars and trucks are driven. ∀x ((∃y Dyx)⇒ (Cx∨ Tx)).

Some humans drive. ∃x (Hx∧∃y Dxy).

Some humans do not drive. ∃x (Hx∧¬∃y Dxy).

Some cars are driven. ∃x (Cx∧∃y Dyx).

Some cars are not driven (e.g., old wrecks). ∃x (Cx∧¬∃y Dyx).

Etc, etc.

2. (a) ∀x (Hx⇒∃y (Dxy ∧ (Cy ∨Ty))).

(b) ∃x (Hx∧∃y ∃z (Dxy ∧Cy ∧Dxz ∧Tz)).

(c) ∃x (Hx∧¬∃y (Dxy ∧ (Cy ∨Ty))).

(d) ¬∃x (Hx∧∃y ∃z (Dxy ∧Dxz ∧Cy ∧Tz)).

3. (a) ∀x (Cx⇒∀y ∀z ((Dyx∧Dzx)⇒ Iyz)).

(b) ∀x (Tx⇒∃y ∃z ((¬ Iyz)∧Dyx∧Dzx∧∀w (Dwx⇒ (Iwy ∨ Iwz)))).

(c) ∀x (Hx⇒∃y (Dxy ∧ (Cy ∨Ty)∧∀z ((Dxz ∧ (Cz ∨Tz))⇒ Iyz))).

Exercise 2.2.15. Assume the following predicates:

Ixy: x = y

Pxyz: x · y = z

Write formulas representing the axioms for a group: axioms for equality, ex-
istence and uniqueness of products, associative law, existence of an identity
element, existence of inverses.

Solution.

1. equality axioms:

(a) ∀x Ixx (reflexivity)

(b) ∀x∀y (Ixy⇔ Iyx) (symmetry)

(c) ∀x∀y ∀z ((Ixy ∧ Iyz)⇒ Ixz) (transitivity)

(d) ∀x∀x′ ∀y ∀y′ ∀z ∀z′ ((Ixx′ ∧ Iyy′ ∧ Izz′)⇒ (Pxyz⇔Px′y′z′))
(congruence with respect to P).

30

2. existence and uniqueness of products:

(a) ∀x∀y ∃z Pxyz (existence)

(b) ∀x∀y ∀z ∀w ((Pxyz ∧Pxyw)⇒ Izw) (uniqueness).

3. associative law:

∀x∀y ∀z ∃u ∃v ∃w (Pxyu∧Pyzv∧Puzw∧Pxvw).

4. existence of identity element:

∃u ∀x (Puxx∧Pxux).

5. existence of inverses:

∃u ∀x∃y (Puxx∧Pxux∧Pxyu∧Pyxu).

Exercise 2.2.16. Let G be a group. The order of an element a ∈ G is the
smallest positive integer n such that an = e. Here e denotes the identity element
of G, and

an = a · · · · · a︸ ︷︷ ︸
n times

.

Using only the predicates Pxyz (“x · y = z”) and Ixy (“x = y”), write a
predicate calculus sentence S such that, for any group G, G satisfies S if and
only if G has no elements of order 2 or 3.

Solution. ¬∃x∃y (Pxxx∧ (¬Pyyy)∧ (Pyyx∨∃z (Pyyz∧Pzyx))).

2.3 The Tableau Method

Definition 2.3.1. Fix a countably infinite set V = {a1, a2, . . . , an, . . .} =
{a, b, c, . . .}. The elements of V will be called parameters. If L is a language,
L-V -sentences will be called sentences with parameters.

Definition 2.3.2. A (signed or unsigned) tableau is a rooted dyadic tree where
each node carries a (signed or unsigned) L-V -sentence. The tableau rules for
the predicate calculus are the same as those for the propositional calculus, with
the following additional rules.

Signed:
...

T ∀xA
...
|

TA[x/a]

...
F ∃xA

...
|

FA[x/a]

where a is an arbitrary parameter

31

...
T ∃xA

...
|

TA[x/a]

...
F ∀xA

...
|

FA[x/a]

where a is a new parameter

Unsigned:
...

∀xA
...
|

A[x/a]

...
¬∃xA

...
|

¬A[x/a]

where a is an arbitrary parameter

...
∃xA
...
|

A[x/a]

...
¬∀xA

...
|

¬A[x/a]

where a is a new parameter

Remark 2.3.3. In the above tableau rules, “a is new” means that a does not
occur in the path that is being extended. Or, we can insist that a not occur in
the tableau that is being extended.

Remark 2.3.4. We are going to prove that the tableau method for predicate
calculus is sound (Theorem 2.3.13) and complete (Theorem 2.5.5). In particular,
a sentence A of the predicate calculus is logically valid if and only if there exists
a finite closed signed tableau starting with FA, or equivalently a finite closed
unsigned tableau starting with ¬A.

32

Example 2.3.5. The signed tableau

F (∃x∀y Rxy)⇒ (∀y ∃xRxy)
T ∃x∀y Rxy
F ∀y ∃xRxy
T ∀y Ray
F ∃xRxb
TRab
FRab

is closed. Therefore, by the Soundness Theorem, (∃x∀y Rxy)⇒ (∀y ∃xRxy) is
logically valid.

Example 2.3.6. The unsigned tableau

¬ ((∃x (Px∨Qx))⇔ ((∃xPx)∨ (∃xQx)))
/ \

∃x (Px∨Qx)
¬ ((∃xPx)∨ (∃xQx))

¬∃xPx
¬∃xQx
Pa∨Qa
/ \

Pa Qa
¬Pa ¬Qa

¬∃x (Px∨Qx)
(∃xPx)∨ (∃xQx)

/ \
∃xPx
Pb

¬ (Pb∨Qb)
¬Pb
¬Qb

∃xQx
Qc

¬ (Pc∨Qc)
¬Pc
¬Qc

is closed. Therefore, by the Soundness Theorem,

(∃x (Px∨Qx))⇔ ((∃xPx)∨ (∃xQx))

is logically valid.

Exercises 2.3.7. Use signed tableaux to show that the following are logically
valid.

1. (∀x (A⇒B))⇒ ((∀xA)⇒ (∀xB))

Solution.
F (∀x (A⇒B))⇒ ((∀xA)⇒ (∀xB))

T ∀x(A⇒B)
F (∀xA)⇒ (∀xB)

T ∀xA
F ∀xB
FB[x/a]
TA[x/a]

T (A⇒B)[x/a]
/ \

FA[x/a] TB[x/a]

33

2. (∃x (A∨B))⇔ ((∃xA)∨ (∃xB))

Solution.

F (∃x (A∨B))⇔ ((∃xA)∨ (∃xB))
/ \

T ∃x (A∨B)
F (∃xA)∨ (∃xB)
T (A∨B)[x/a]

F ∃xA
F ∃xB
FA[x/a]
FB[x/a]
/ \

TA[x/a] TB[x/a]

F ∃x (A∨B)
T (∃xA)∨ (∃xB)

/ \
T ∃xA T ∃xB
TA[x/a] TB[x/a]

F (A∨B)[x/a] F (A∨B)[x/a]
FA[x/a] FA[x/a]
FB[x/a] FB[x/a]

3. (∃xA)⇔ (¬∀x¬A)

Solution.
F (∃xA)⇔ (¬∀x¬A)

/ \
T ∃xA F ∃xA

F¬∀x¬A T¬∀x¬A
TA[x/a] F ∀x¬A
T ∀x¬A F (¬A)[x/a]

T (¬A)[x/a] TA[x/a]
FA[x/a] FA[x/a]

4. (∀x (A∨C))⇔ ((∀xA)∨C), provided x is not free in C

Solution.

F (∀x (A∨C))⇔ ((∀xA)∨C)
/ \

T ∀x (A∨C)
F (∀xA)∨C

F ∀xA
FC

FA[x/a]
T (A∨C)[x/a]

/ \
TA[x/a] TC

F ∀x (A∨C)
T (∀xA)∨C
F (A∨C)[x/a]

FA[x/a]
FC
/ \

T ∀xA TC
TA[x/a]

Exercise 2.3.8. Using the predicates Bx (“x is a barber in Podunk”), Cx
(“x is a citizen of Podunk”), and Sxy (“x shaves y”), translate the following
argument into a sentence of the predicate calculus.

34

There is a barber in Podunk who shaves exactly those citizens of
Podunk who do not shave themselves. Therefore, there is a barber
in Podunk who is not a citizen of Podunk.

Use an unsigned tableau to test this argument for logical validity.

Solution. (∃x (Bx∧∀y (Cy⇒ (Sxy⇔¬Syy))))⇒∃x (Bx∧¬Cx). A tableau
starting with the negation of this sentence (left to the reader) closes off to show
that the sentence is logically valid.

Exercise 2.3.9. Translate the following argument into the predicate calculus,
and use appropriate methods to establish its validity or invalidity.

Anyone who can solve all logic problems is a good student. No
student can solve every logic problem. Therefore, there are logic
problems that no student can solve.

Exercise 2.3.10. Use an unsigned tableau to show that ∃x (Px⇔∀y Py) is
logically valid.

The rest of this section is devoted to proving the Soundness Theorem 2.3.13.

Definition 2.3.11.

1. An L-V -structure consists of an L-structure M together with a mapping
φ : V → UM . If A is an L-V -sentence, we write

Aφ = A[a1/φ(a1), . . . , ak/φ(ak)]

where a1, . . . , ak are the parameters occurring in A. Note that Aφ is an
L-UM -sentence. Note also that, if A is an L-sentence, then Aφ = A.

2. Let S be a finite or countable set of (signed or unsigned) L-V -sentences.
An L-V -structure M,φ is said to satisfy S if vM (Aφ) = T for all A ∈ S.
S is said to be satisfiable6 if there exists an L-V -structure satisfying S.
Note that this definition is compatible with Definition 2.2.7.

3. Let τ be an L-tableau. We say that τ is satisfiable if at least one path of
τ is satisfiable.

Lemma 2.3.12. Let τ and τ ′ be tableaux such that τ ′ is an immediate extension
of τ , i.e., τ ′ is obtained from τ by applying a tableau rule to a path of τ . If τ
is satisfiable, then τ ′ is satisfiable.

Proof. The proof consists of one case for each tableau rule. We consider some
representative cases.

6Similarly, the notions of logical validity and logical consequence are extended to L-V -
sentences, in the obvious way, using L-V -structures. An L-V -sentence is said to be logically

valid if it satisfied by all L-V -structures. An L-V -sentence is said to be a logical consequence

of S if it is satisfied by all L-V -structures satisfying S.

35

Case 1. Suppose that τ ′ is obtained from τ by applying the rule

...
A∨B

...
/ \

A B

to the path θ in τ . Since τ is satisfiable, it has at least one satisfiable path, S. If
S 6= θ, then S is a path of τ ′, so τ ′ is satisfiable. If S = θ, then θ is satisfiable, so
let M and φ : V → UM satisfy θ. In particular vM ((A∨B)φ) = T, so we have
at least one of vM (Aφ) = T and vM (Bφ) = T. Thus M and φ satisfy at least
one of θ, A and θ,B. Since these are paths of τ ′, it follows that τ ′ is satisfiable.

Case 2. Suppose that τ ′ is obtained from τ by applying the rule

...
∀xA
...
|

A[x/a]

to the path θ in τ , where a is a parameter. Since τ is satisfiable, it has at least
one satisfiable path, S. If S 6= θ, then S is a path of τ ′, so τ ′ is satisfiable. If
S = θ, then θ is satisfiable, so let M and φ : V → UM satisfy θ. In particular
vM (∀x (Aφ)) = vM ((∀xA)φ) = T, so vM (Aφ[x/c]) = T for all c ∈ UM . In
particular

vM (A[x/a]φ) = vM (Aφ[x/φ(a)]) = T.

Thus M and φ satisfy θ, A[x/a]. Since this is a path of τ ′, it follows that τ ′ is
satisfiable.

Case 3. Suppose that τ ′ is obtained from τ by applying the rule

...
∃xA
...
|

A[x/a]

to the path θ in τ , where a is a new parameter. Since τ is satisfiable, it has at
least one satisfiable path, S. If S 6= θ, then S is a path of τ ′, so τ ′ is satisfiable.
If S = θ, then θ is satisfiable, so let M and φ : V → UM satisfy θ. In particular
vM (∃x (Aφ)) = vM ((∃xA)φ) = T, so vM (Aφ[x/c]) = T for at least one c ∈ UM .
Fix such a c and define φ′ : V → UM by putting φ′(a) = c, and φ′(b) = φ(b) for
all b 6= a, b ∈ V . Since a is new, we have Bφ′

= Bφ for all B ∈ θ, and Aφ′

= Aφ,

36

hence A[x/a]φ
′

= Aφ′

[x/φ′(a)] = Aφ[x/c]. Thus vM (Bφ′

) = vM (Bφ) = T for all
B ∈ θ, and vM (A[x/a]φ

′

) = vM (Aφ[x/c]) = T. Thus M and φ′ satisfy θ, A[x/a].
Since this is a path of τ ′, it follows that τ ′ is satisfiable. �

Theorem 2.3.13 (the Soundness Theorem). Let X1, . . . , Xk be a finite set of
(signed or unsigned) sentences with parameters. If there exists a finite closed
tableau starting with X1, . . . , Xk, then X1, . . . , Xk is not satisfiable.

Proof. Let τ be a closed tableau starting with X1, . . . , Xk. Thus there is a finite
sequence of tableaux τ0, τ1, . . . , τn = τ such that

τ0 =

X1

...
Xk

and each τi+1 is an immediate extension of τi. Suppose X1, . . . , Xk is satisfiable.
Then τ0 is satisfiable, and by induction on i using Lemma 2.3.12, it follows that
all of the τi are satisfiable. In particular τn = τ is satisfiable, but this is
impossible since τ is closed. �

2.4 Logical Equivalence

Definition 2.4.1. Given an L-V -formula A, let A′ = A[x1/a1, . . . , xk/ak],
where x1, . . . , xk are the variables which occur freely in A, and a1, . . . , ak are
parameters not occurring in A. Note that A′ has no free variables, i.e., it is an
L-V -sentence. We define A to be satisfiable if and only if A′ is satisfiable, in
the sense of Definition 2.3.11. We define A to be logically valid if and only if A′

is logically valid, in the sense of Definition 2.3.11.

Exercises 2.4.2. Let A be an L-V -formula.

1. Show that A is logically valid if and only if ¬A is not satisfiable. Show
that A is satisfiable if and only if ¬A is not logically valid.

2. Let x be a variable. Show that A is logically valid if and only if ∀xA is
logically valid. Show that A is satisfiable if and only if ∃xA is satisfiable.

3. Let x be a variable, and let a be a parameter not occurring in A. Show
that A is logically valid if and only if A[x/a] is logically valid. Show that
A is satisfiable if and only if A[x/a] is satisfiable.

Definition 2.4.3. Let A and B be L-V -formulas. A and B are said to be
logically equivalent, written A ≡ B, if A⇔B is logically valid.

Exercise 2.4.4. Assume A ≡ B. Show that for any variable x, ∀xA ≡ ∀xB
and ∃xA ≡ ∃xB. Show that for any variable x and parameter a, A[x/a] ≡
B[x/a].

37

Exercise 2.4.5. For an L-V -formula A, it is not in general true that A ≡ A′,
where A′ is as in Definition 2.4.1. Also, it is not in general true that A ≡ ∀xA,
or that A ≡ ∃xA, or that A ≡ A[x/a]. Give examples illustrating these remarks.

Solution. Let A be the formula Px where P is a unary predicate. It is straight-
forward to show that A 6≡ A′, A 6≡ ∀xA, A 6≡ ∃xA and A 6≡ A[x/a].

Exercise 2.4.6. Given L-V -formulas A and B, let A′ = A[x1/a1, . . . , xk/ak]
and B′ = B[x1/a1, . . . , xk/ak], where x1, . . . , xk are the variables occurring
freely in A and B, and a1, . . . , ak are parameters not occurring in A or in B.
Show that A ≡ B if only if A′ ≡ B′.

Remark 2.4.7. The results of Exercises 1.3.3 and 1.3.4 and Remark 1.3.5 for
formulas of the propositional calculus, also hold for formulas of the predicate
calculus. In particular, if A1 ≡ A2, then for any formula C containing A1 as
a part, if we replace one or more occurrences of the part A1 by A2, then the
resulting formula is logically equivalent to C.

Remark 2.4.8. Some useful logical equivalences are:

1. (a) ∀xA ≡ A, provided x does not occur freely in A

(b) ∃xA ≡ A, provided x does not occur freely in A

(c) ∀xA ≡ ∀y A[x/y], provided y does not occur in A

(d) ∃xA ≡ ∃y A[x/y], provided y does not occur in A

Note that the last two equivalences provide for “replacement of bound
variables”. In this way, we can convert any formula into a logically equiv-
alent formula with the following properties: no variable occurs both free
and bound, and each bound variable is bound by at most one quantifier.

2. (a) ∀x (A∧B) ≡ (∀xA)∧ (∀xB)

(b) ∃x (A∨B) ≡ (∃xA)∨ (∃xB)

(c) ∃x (A⇒B) ≡ (∀xA)⇒ (∃xB)

Note however that, in general, ∃x (A∧B) 6≡ (∃xA)∧ (∃xB), and
∀x (A∨B) 6≡ (∀xA)∨ (∀xB), and ∀x (A⇒B) 6≡ (∃xA)⇒ (∀xB).

On the other hand, we have:

3. (a) ∃x (A∧B) ≡ A∧ (∃xB), provided x does not occur freely in A

(b) ∃x (A∧B) ≡ (∃xA)∧B, provided x does not occur freely in B

(c) ∀x (A∨B) ≡ A∨ (∀xB), provided x does not occur freely in A

(d) ∀x (A∨B) ≡ (∀xA)∨B, provided x does not occur freely in B

(e) ∃x (A⇒B) ≡ A⇒ (∃xB), provided x does not occur freely in A

(f) ∀x (A⇒B) ≡ A⇒ (∀xB), provided x does not occur freely in A

(g) ∃x (A⇒B) ≡ (∀xA)⇒B, provided x does not occur freely in B

38

(h) ∀x (A⇒B) ≡ (∃xA)⇒B, provided x does not occur freely in B

4. (a) ∃x¬A ≡ ¬∀xA

(b) ∀x¬A ≡ ¬∃xA

(c) ∀xA ≡ ¬∃x¬A

(d) ∃xA ≡ ¬∀x¬A

Definition 2.4.9 (variants). Let A be an L-FV -formula. A variant of A is any

formula Â obtained from A by replacing some or all the bound variables of A
by distinct new variables. Note that Â has the same free variables as A and is
logically equivalent to A, in view of Remark 2.4.8, parts 1(c) and 1(d).

Example 2.4.10. Let A be ∀x∃y Rxyz, and let Â be ∀u ∃v Ruvz. Then Â is
a variant of A, hence Â ≡ A.

Definition 2.4.11 (prenex form). A formula is said to be quantifier-free if it
contains no quantifiers. A formula is said to be in prenex form if it is of the form
Q1x1 · · · Qnxn B, where each Qi is a quantifier (∀ or ∃), each xi is a variable,
and B is quantifier-free.

Example 2.4.12. The sentence

∀x∀y ∃z ∀w (Rxy⇒ (Rxz ∧Rzy∧¬ (Rzw∧Rwy)))

is in prenex form.

Exercise 2.4.13. Show that every L-V -formula is logically equivalent to an
L-V -formula in prenex form. (Hint: Use the equivalences of Remark 2.4.8.
First replace the given formula by a variant in which each bound variable is
quantified only once and does not occur freely. Then use parts 3 and 4 to move
all quantifiers to the front.)

Example 2.4.14. Consider the sentence (∃xPx)∧ (∃xQx). We wish to put
this into prenex form. Applying the equivalences of Remark 2.4.8, we have

(∃xPx)∧ (∃xQx) ≡ (∃xPx)∧ (∃y Qy)

≡ ∃x (Px∧ (∃y Qy))

≡ ∃x∃y (Px∧Qy)

and this is in prenex form.

Exercise 2.4.15. Find a sentence in prenex normal form which is logically
equivalent to (∀x∃y Rxy)⇒¬∃xPx.

Solution. ∃x∀y ∀z (Rxy⇒¬Pz).

Exercises 2.4.16. Let A and B be L-V -formulas. Put the following into prenex
form.

39

1. (∃xA)∧ (∃xB)

2. (∀xA)⇔ (∀xB)

3. (∀xA)⇔ (∃xB)

Definition 2.4.17 (universal closure). Let A be an L-V -formula. The universal
closure of A is the L-V -sentence A∗ = ∀x1 · · · ∀xk A, where x1, . . . , xk are the
variables which occur freely in A. Note that A∗∗ ≡ A∗.

Exercises 2.4.18. Let A be an L-V -formula.

1. Show that A is logically valid if and only if A∗, the universal closure of A,
is logically valid.

2. It is not true in general that A ≡ A∗. Give an example illustrating this.

3. It is not true in general that A is satisfiable if and only if A∗ is satisfiable.
Give an example illustrating this.

4. For L-V -formulas A and B, it is not true in general that A ≡ B if and
only if A∗ ≡ B∗. Give an example illustrating this.

For completeness we state the following definition.

Definition 2.4.19. Let A1, . . . , Ak, B be L-V -formulas. We say that B is a log-
ical consequence of A1, . . . , Ak if (A1 ∧ · · · ∧Ak)⇒B is logically valid. This is
equivalent to saying that the universal closure of (A1 ∧ · · · ∧Ak)⇒B is logically
valid.

Remark 2.4.20. A and B are logically equivalent if and only if each is a
logical consequence of the other. A is logically valid if and only if A is a logical
consequence of the empty set. ∃xA is a logical consequence of A[x/a], but the
converse does not hold in general. A[x/a] is a logical consequence of ∀xA, but
the converse does not hold in general.

2.5 The Completeness Theorem

Let U be a nonempty set, and let S be a set of (signed or unsigned) L-U -
sentences.

Definition 2.5.1. S is closed if S contains a conjugate pair of L-U -sentences.
In other words, for some L-U -sentence A, S contains TA, FA in the signed
case, A, ¬A in the unsigned case. S is open if it is not closed.

Definition 2.5.2. S is U -replete if S “obeys the tableau rules” with respect to
U . We list some representative clauses of the definition.

1. If S contains T¬A, then S contains FA. If S contains F¬A, then S
contains TA. If S contains ¬¬A, then S contains A.

40

2. If S contains TA∧B, then S contains both TA and TB. If S contains
FA∧B, then S contains at least one of FA and FB. If S contains A∧B,
then S contains both A and B. If S contains ¬ (A∧B), then S contains
at least one of ¬A and ¬B.

3. If S contains T ∃xA, then S contains TA[x/a] for at least one a ∈ U . If
S contains F ∃xA, then S contains FA[x/a] for all a ∈ U . If S contains
∃xA, then S contains A[x/a] for at least one a ∈ U . If S contains ¬∃xA,
then S contains ¬A[x/a] for all a ∈ U .

4. If S contains T ∀xA, then S contains TA[x/a] for all a ∈ U . If S contains
F ∀xA, then S contains FA[x/a] for at least one a ∈ U . If S contains
∀xA, then S contains A[x/a] for all a ∈ U . If S contains ¬∀xA, then S
contains ¬A[x/a] for at least one a ∈ U .

Lemma 2.5.3 (Hintikka’s Lemma). If S is U -replete and open7, then S is
satisfiable. In fact, S is satisfiable in the domain U .

Proof. Assume S is U -replete and open. We define an L-structure M by putting
UM = U and, for each n-ary predicate P of L,

PM = {〈a1, . . . , an〉 ∈ Un | TPa1 · · · an ∈ S}

in the signed case, and

PM = {〈a1, . . . , an〉 ∈ Un | Pa1 · · ·an ∈ S}

in the unsigned case.
We claim that for all L-U -sentences A,

(a) if S contains TA, then vM (A) = T

(b) if S contains FA, then vM (A) = F

in the signed case, and

(c) if S contains A, then vM (A) = T

(d) if S contains ¬A, then vM (A) = F

in the unsigned case.
In both cases, the claim is easily proved by induction on the degree of A.

We give the proof for some representative cases.

1. deg(A) = 0. In this case A is atomic, say A = Pa1 · · · an.

(a) If S contains TPa1 · · · an, then by definition ofM we have (a1, . . . , an) ∈
PM , so vM (Pa1 · · ·an) = T.

7See also Exercise 2.5.7.

41

(b) If S contains FPa1 · · ·an, then S does not contain TPa1 · · · an since
S is open. Thus by definition of M we have (a1, . . . , an) /∈ PM , so
vM (Pa1 · · · an) = F.

(c) If S contains Pa1 · · · an, then by definition ofM we have (a1, . . . , an) ∈
PM , so vM (Pa1 · · ·an) = T.

(d) If S contains ¬Pa1 · · · an, then S does not contain Pa1 · · · an since
S is open. Thus by definition of M we have (a1, . . . , an) /∈ PM , so
vM (Pa1 · · · an) = F.

2. deg(A) > 0 and A = ¬B. Note that deg(B) < deg(A) so the inductive
hypothesis applies to B.

3. deg(A) > 0 and A = B ∧C. Note that deg(B) and deg(C) are < deg(A)
so the inductive hypothesis applies to B and C.

(a) If S contains TB ∧C, then by repleteness of S we see that S contains
both TB and TC. Hence by inductive hypothesis we have vM (B) =
vM (C) = T. Hence vM (B ∧C) = T.

(b) If S contains FB ∧C, then by repleteness of S we see that S contains
at least one of FB and FC. Hence by inductive hypothesis we have
at least one of vM (B) = F and vM (C) = F. Hence vM (B ∧C) = F.

(c) If S contains B ∧C, then by repleteness of S we see that S contains
both B and C. Hence by inductive hypothesis we have vM (B) =
vM (C) = T. Hence vM (B ∧C) = T.

(d) If S contains ¬ (B ∧C), then by repleteness of S we see that S con-
tains at least one of ¬B and ¬C. Hence by inductive hypothe-
sis we have at least one of vM (B) = F and vM (C) = F. Hence
vM (B ∧C) = F.

4. deg(A) > 0 and A = ∃xB. Note that for all a ∈ U we have deg(B[x/a]) <
deg(A), so the inductive hypothesis applies to B[x/a].

5. deg(A) > 0 and A = ∀xB. Note that for all a ∈ U we have deg(B[x/a]) <
deg(A), so the inductive hypothesis applies to B[x/a].

�

We shall now use Hintikka’s Lemma to prove the completeness of the tableau
method. As in Section 2.3, Let V = {a1, . . . , an, . . .} be the set of parameters.
Recall that a tableau is a tree whose nodes carry L-V -sentences.

Lemma 2.5.4. Let τ0 be a finite tableau. By applying tableau rules, we can
extend τ0 to a (possibly infinite) tableau τ with the following properties: every
closed path of τ is finite, and every open path of τ is V -replete.

Proof. The idea is to start with τ0 and use tableau rules to construct a sequence
of finite extensions τ0, τ1, . . . , τi, If some τi is closed, then the construction

42

halts, i.e., τj = τi for all j ≥ i, and we set τ = τi. In any case, we set
τ = τ∞ =

⋃
∞

i=0 τi. In the course of the construction, we apply tableau rules
systematically to ensure that τ∞ will have the desired properties, using the fact
that V = {a1, a2, . . . , an, . . .} is countably infinite.

Here are the details of the construction. Call a node X of τi quasiuniversal
if it is of the form T ∀xA or F ∃xA or ∀xA or ¬∃xA. Our construction begins
with τ0. Suppose we have constructed τ2i. For each quasiuniversal node X of
τ2i and each n ≤ 2i, apply the appropriate tableau rule to extend each open
path of τ2i containing X by TA[x/an] or FA[x/an] or A[x/an] or ¬A[x/an] as
the case may be. Let τ2i+1 be the finite tableau so obtained. Next, for each
non-quasiuniversal node X of τ2i+1, extend each open path containing X by
applying the appropriate tableau rule. Again, let τ2i+2 be the finite tableau so
obtained.

In this construction, a closed path is never extended, so all closed paths of
τ∞ are finite. In addition, the construction ensures that each open path of τ∞
is V -replete. Thus τ∞ has the desired properties. This proves our lemma. �

Theorem 2.5.5 (the Completeness Theorem). Let X1, . . . , Xk be a finite set of
(signed or unsigned) sentences with parameters. If X1, . . . , Xk is not satisfiable,
then there exists a finite closed tableau starting with X1, . . . , Xk. If X1, . . . , Xk

is satisfiable, then X1, . . . , Xk is satisfiable in the domain V .

Proof. By Lemma 2.5.4 there exists a (possibly infinite) tableau τ starting with
X1, . . . , Xk such that every closed path of τ is finite, and every open path of τ
is V -replete. If τ is closed, then by König’s Lemma (Theorem 1.6.6), τ is finite.
If τ is open, let S be an open path of τ . Then S is V -replete. By Hintikka’s
Lemma 2.5.3, S is satisfiable in V . Hence X1, . . . , Xk is satisfiable in V . �

Definition 2.5.6. Let L, U , and S be as in Definition 2.5.1. S is said to
be atomically closed if S contains a conjugate pair of atomic L-U -sentences.
In other words, for some n-ary L-predicate P and a1, . . . , an ∈ U , S contains
TPa1 · · · an, FPa1 · · · an in the signed case, and Pa1 · · · an, ¬Pa1 · · · an in the
unsigned case. S is atomically open if it is not atomically closed.

Exercise 2.5.7. Show that Lemmas 2.5.3 and 2.5.4 and Theorem 2.5.5 continue
to hold with “closed” (“open”) replaced by “atomically closed” (“atomically
open”).

Remark 2.5.8. Corollaries 1.5.9, 1.5.10, 1.5.11 carry over from the proposi-
tional calculus to the predicate calculus. In particular, the tableau method
provides a test for logical validity of sentences of the predicate calculus.

Note however that the test is only partially effective. If a sentence A is
logically valid, we will certainly find a finite closed tableau starting with ¬A.
But if A is not logically valid, we will not necessarily find a finite tableau which
demonstrates this. See the following example.

Example 2.5.9. In 2.2.12 we have seen an example of a sentence A∞ which
is satisfiable in a countably infinite domain but not in any finite domain. It is

43

instructive to generate a tableau starting with A∞.

A∞

...
∀x∀y ∀z ((Rxy ∧Ryz)⇒Rxz)

∀x∀y (Rxy⇒¬Ryx)
∀x∃y Rxy
∃y Ra1y
Ra1a2

∀y (Ra1y⇒¬Rya1)
Ra1a2 ⇒¬Ra2a1

/ \
¬Ra1a2 ¬Ra2a1

∃y Ra2y
Ra2a3

...
¬Ra3a2

∀y ∀z ((Ra1y∧Ryz)⇒Ra1z)
∀z ((Ra1a2 ∧Ra2z)⇒Ra1z)
(Ra1a2 ∧Ra2a3)⇒Ra1a3)

/ \
¬ (Ra1a2 ∧Ra2a3) Ra1a3

/ \
...

¬Ra1a2 ¬Ra2a3 ¬Ra3a1
∃y Ra3y
Ra3a4

...

An infinite open path gives rise (via the proof of Hintikka’s Lemma) to an infinite
L-structure M with UM = {a1, a2, . . . , an, . . .}, RM = {〈am, an〉 | 1 ≤ m < n}.
Clearly M |= A∞.

Remark 2.5.10. In the course of applying a tableau test, we will sometimes find
a finite open path which is U -replete for some finite set of parameters U ⊆ V .
In this case, the proof of Hintikka’s Lemma provides a finite L-structure with
domain U .

Example 2.5.11. Let A be the sentence (∀x (Px∨Qx))⇒ ((∀xPx)∨ (∀xQx)).

44

Testing A for logical validity, we have:

¬A
∀x (Px∨Qx)

¬ ((∀xPx)∨ (∀xQx))
¬∀xPx
¬∀xQx
¬Pa
¬Qb

Pa∨Qa
Pb∨Qb
/ \

Pa Qa
/ \

Pb Qb

This tableau has a unique open path, which gives rise (via the proof of Hintikka’s
Lemma) to a finite L-structure M with UM = {a, b}, PM = {b}, QM = {a}.
Clearly M falsifies A.

Exercise 2.5.12. Using the predicate Rxy (“x is an ancestor of y”), translate
the following argument into a sentence of the predicate calculus.

Every ancestor of an ancestor of an individual is an ancestor of the
same individual. No individual is his own ancestor. Therefore, there
is an individual who has no ancestor.

Is this argument valid? Justify your answer by means of an appropriate structure
or tableau.

Solution. ((∀x∀y ((∃z (Rxz ∧Rzy))⇒Rxy))∧¬∃xRxx)⇒∃x¬∃y Ryx.
A tableau starting with the negation of this sentence (left to the reader) fails
to close off. The structure (N, >N) falsifies the sentence, thus showing that it is
not logically valid.

Exercise 2.5.13. Using the predicates Sx (“x is a set”) and Exy (“x is a
member of y”), translate the following into a sentence of the predicate calculus.

There exists a set whose members are exactly those sets which are
not members of themselves.

Use an unsigned tableau to test your sentence for consistency, i.e., satisfiability.

Exercise 2.5.14. Using the predicates Sx (“x is Socrates”),Hx (“x is a man”),
Mx (“x is mortal”), translate the following argument into a sentence of the
predicate calculus.

Socrates is a man. All men are mortal. Therefore, Socrates is mortal.

Use an unsigned tableau to test whether the argument is valid.

45

Exercises 2.5.15.

1. Using the predicates Sx (“x can solve this problem”), Mx (“x is a math-
ematician”), Jx (“x is Joe”), translate the following argument into a sen-
tence of the predicate calculus.

If anyone can solve this problem, some mathematician can solve
it. Joe is a mathematician and cannot solve it. Therefore, no-
body can solve it.

Use an unsigned tableau to test whether the argument is valid.

2. Using the same predicates as above, translate the following argument into
a sentence of the predicate calculus.

Any mathematician can solve this problem if anyone can. Joe
is a mathematician and cannot solve it. Therefore, nobody can
solve it.

Use an unsigned tableau to test whether the argument is valid.

2.6 The Compactness Theorem

Theorem 2.6.1 (the Compactness Theorem, countable case). Let S be a count-
ably infinite set of sentences of the predicate calculus. S is satisfiable if and only
if each finite subset of S is satisfiable.

Proof. We combine the ideas of the proofs of the Countable Compactness Theo-
rem for propositional calculus (Theorem 1.7.1) and the Completeness Theorem
for predicate calculus (Theorem 2.5.5).

Details: Let S = {A0, A1, . . . , Ai, . . .}. Start by letting τ0 be the empty
tableau. Suppose we have constructed τ2i. Extend τ2i to τ ′2i by appending Ai

to each open path of τ2i. Since {A0, A1, . . . , Ai} is satisfiable, τ ′2i has at least
one open path. Now extend τ ′2i to τ2i+1 and then to τ2i+2 as in the proof of
Lemma 2.5.4. Finally put τ = τ∞ =

⋃
∞

i=1 τi. As in Lemma 2.5.4 we have that
every closed path of τ is finite, and every open path of τ is V -replete. Note
also that τ is an infinite, finitely branching tree. By König’s Lemma (Theorem
1.6.6), let S′ be an infinite path in τ . Then S′ is a V -replete open set which
contains S. By Hintikka’s Lemma for the predicate calculus (Lemma 2.5.3), S′

is satisfiable. Hence S is satisfiable. �

Theorem 2.6.2 (the Compactness Theorem, uncountable case). Let S be an
uncountable set of sentences of the predicate calculus. S is satisfiable if and
only if each finite subset of S is satisfiable.

Proof. Assume that S is finitely satisfiable. For each sentence A ∈ S of the form
∃xB or ¬∀xB, introduce a new parameter cA. Let US be the set of parameters
so introduced. Let S′ be S together with the sentences B[x/cA] or ¬B[x/cA]

46

as the case may be, for all cA ∈ US . Then S′ is a set of L-US-sentences, and
it is easy to verify that S′ is finitely satisfiable. By Zorn’s Lemma, let S′′ be a
maximal finitely satisfiable set of L-US-sentences extending S′.

Now inductively define S0 = S, Sn+1 = S′′

n, S∞ =
⋃

∞

n=0 Sn, U =
⋃

∞

n=0 USn
.

It is straightforward to verify that S∞ is U -replete and open. Hence, by Hin-
tikka’s Lemma, S∞ is satisfiable in the domain U . Since S ⊆ S∞, it follows
that S is satisfiable in U . �

Exercise 2.6.3. Let L be a language consisting of a binary predicate R and
some additional predicates. Let M = (UM , RM , . . .) be an L-structure such
that (UM , RM) is isomorphic to (N, <N). Note that M contains no infinite
R-descending sequence. Show that there exists an L-structure M ′ such that:

1. M and M ′ satisfy the same L-sentences.

2. M ′ contains an infinite R-descending sequence. In other words, there
exist elements a′1, a

′

2, . . . , a
′

n, . . . ∈ UM ′ such that 〈a′n+1, a
′

n〉 ∈ RM ′ for all
n = 1, 2,

Hint: Use the Compactness Theorem.

Exercise 2.6.4. Generalize Exercise 2.6.3 replacing (N, <N) by an arbitrary
infinite linear ordering with no infinite descending sequence. Show that M ′ can
be obtained such that (UM ′ , RM ′) is a linear ordering which contains an infinite
descending sequence.

Exercise 2.6.5. Let L = {R, . . .} be a language which includes a binary pred-
icate R. Let S be a set of L-sentences. Assume that for each n ≥ 1 there exists
an L-structure (Un, Rn, . . .) satisfying S and containing elements an1, . . . , ann
such that 〈ani, anj〉 ∈ Rn for all i and j with 1 ≤ i < j ≤ n. Prove that there
there exists an L-structure (U∞, R∞, . . .) satisfying S and containing elements
a∞i, i = 1, 2, . . . such that 〈a∞i, a∞j〉 ∈ R∞ for all i and j with 1 ≤ i < j.

Solution. Let L∗ = L∪ {P1, P2, . . .} where P1, P2, . . . are new unary predicates.
Let S∗ be S plus ∃xPix plus ∀x∀y ((Pix∧Pjy)⇒Rxy), 1 ≤ i < j. Consider
the L∗-structures (Un, Rn, . . . , Pn1, . . . , Pnn, . . .), n ≥ 1, where Pni = {ani} for
1 ≤ i ≤ n, and Pni = {} for i > n. Clearly each finite subset of S∗ is satisfied
by all but finitely many of these structures. It follows by the Compactness The-
orem that S∗ is satisfiable. Let (U∞, R∞, . . . , P∞1, P∞2, . . .) be an L∗-structure
satisfying S∗. Clearly the L-structure (U∞, R∞, . . .) has the desired properties.

2.7 Satisfiability in a Domain

The notion of satisfiability in a domain was introduced in Definition 2.2.9.

Theorem 2.7.1. Let S be a set of L-sentences.

1. Assume that S is finite or countably infinite. If S is satisfiable, then S is
satisfiable in a countably infinite domain.

47

2. Assume that S is of cardinality κ ≥ ℵ0. If S is satisfiable, then S is
satisfiable in a domain of cardinality κ.

Proof. Parts 1 and 2 follow easily from the proofs of Compactness Theorems
2.6.1 and 2.6.2, respectively. In the countable case we have that S is satisfiable
in V , which is countably infinite. In the uncountable case we have that S is
satisfiable in U , where U is as in the proof of 2.6.2. By the arithmetic of infinite
cardinal numbers, the cardinality of U is κ · ℵ0 = κ. �

In Example 2.2.12 we have seen a sentence A∞ which is satisfiable in a
countably infinite domain but not in any finite domain. Regarding satisfiability
in finite domains, we have:

Example 2.7.2. Given a positive integer n, we exhibit a sentence An which
is satisfiable in a domain of cardinality n but not in any domain of smaller
cardinality. Our sentence An is (1)∧ (2)∧ (3) with

(1) ∀x∀y ∀z ((Rxy ∧Ryz)⇒Ryz)

(2) ∀x∀y (Rxy⇒¬Ryx)

(3) ∃x1 · · · ∃xn (Rx1x2 ∧Rx2x3 ∧ · · · ∧Rxn−1xn)

On the other hand, we have:

Theorem 2.7.3. Let M and M ′ be L-structures. Assume that there ex-
ists an onto mapping φ : UM → UM ′ such that for all n-ary predicates P
of L and all n-tuples 〈a1, . . . , an〉 ∈ (UM)n, 〈a1, . . . , an〉 ∈ PM if and only if
〈φ(a1), . . . , φ(an)〉 ∈ PM ′ . Then as in Theorem 2.2.6 we have vM (A) = vM ′ (A′)
for all L-UM -sentences A, where A′ = A[a1/φ(a1), . . . , ak/φ(ak)]. In particular,
M and M ′ satisfy the same L-sentences.

Proof. The proof is by induction on the degree of A. Suppose for example that
A = ∀xB. Then by definition of vM we have that vM (A) = T if and only if
vM (B[x/a]) = T for all a ∈ UM . By inductive hypothesis, this holds if and only
if vM ′ (B[x/a]′) = T for all a ∈ UM . But for all a ∈ UM we have B[x/a]′ =
B′[x/φ(a)]. Thus our condition is equivalent to vM ′ (B′[x/φ(a)]) = T for all
a ∈ UM . Since φ : UM → UM ′ is onto, this is equivalent to vM ′(B′[x/b]) = T
for all b ∈ UM ′ . By definition of vM ′ this is equivalent to vM ′(∀xB′) = T. But
∀xB′ = A′, so our condition is equivalent to vM ′(A′) = T. �

Corollary 2.7.4. Let S be a set of L-sentences. If S is satisfiable in a domain
U , then S is satisfiable in any domain of the same or larger cardinality.

Proof. Suppose S is satisfiable in domain U . Let U ′ be a set of cardinality
greater than or equal to that of U . Let φ : U ′ → U be onto. If M is any
L-structure with UM = U , we can define an L-structure M ′ with UM ′ = U ′

by putting PM ′ = {〈a1, . . . , an〉 | 〈φ(a1), . . . , φ(an)〉 ∈ PM} for all n-ary pred-
icates P of L. By Theorem 2.7.3, M and M ′ satisfy the same L-sentences. In
particular, if M |= S, then M ′ |= S. �

48

Remark 2.7.5. We shall see later8 that Theorem 2.7.3 and Corollary 2.7.4 fail
for normal satisfiability.

8See Section 4.1.

49

Chapter 3

Proof Systems for Predicate

Calculus

3.1 Introduction to Proof Systems

Definition 3.1.1. An abstract proof system consists of a set X together with a
relation R ⊆

⋃
∞

k=0 X
k+1. Elements of X are called objects. Elements of R are

called rules of inference. An object X ∈ X is said to be derivable, or provable,
if there exists a finite sequence of objects X1, . . . , Xn such that Xn = X and,
for each i ≤ n, there exist j1, . . . , jk < i such that 〈Xj1 , . . . , Xjk , Xi〉 ∈ R. The
sequence X1, . . . , Xn is called a derivation of X , or a proof of X .

Notation 3.1.2. For k ≥ 1 it is customary to write

X1 · · · Xk

Y

indicating that 〈X1, . . . , Xk, Y 〉 ∈ R. This is to be understood as “from the
premises X1, . . . , Xk we may immediately infer the conclusion Y ”. For k = 0
we may write

Y

or simply Y , indicating that 〈Y 〉 ∈ R. This is to be understood as “we may
immediately infer Y from no premises”, or “we may assume Y ”.

Definition 3.1.3. Let L be a language. Recall that V is the set of parameters.
A Hilbert-style proof system for L is a proof system with the following properties:

1. The objects are sentences with parameters. In other words,

X = {A | A is an L-V -sentence} .

2. For each rule of inference
A1 · · · Ak

B

50

(i.e., 〈A1, . . . , Ak, B〉 ∈ R), we have that B is a logical consequence of
A1, . . . , Ak. This property is known as soundness. It implies that every
L-V -sentence which is derivable is logically valid.

3. For all L-V -sentences A,B, we have a rule of inference 〈A,A⇒B,B〉 ∈ R,
i.e.,

A A⇒B

B
.

In other words, from A and A⇒B we immediately infer B. This collection
of inference rules is known as modus ponens.

4. An L-V -sentence A is logically valid if and only if A is derivable. This
property is known as completeness.

Remark 3.1.4. In Section 3.3 we shall exhibit a particular Hilbert-style proof
system, LH . The soundness of LH will be obvious. In order to verify the
completeness of LH , we shall first prove a result known as the Companion
Theorem, which is also of interest in its own right.

3.2 The Companion Theorem

In this section we shall comment on the notion of logical validity for sentences of
the predicate calculus. We shall analyze logical validity into two components: a
propositional component (quasitautologies), and a quantificational component
(companions).

Definition 3.2.1 (quasitautologies).

1. A tautology is a propositional formula which is logically valid.

2. A quasitautology is an L-V -sentence of the form F [p1/A1, . . . , pk/Ak],
where F is a tautology, p1, . . . , pk are the atoms occurring in F , and
A1, . . . , Ak are L-V -sentences.

For example, p⇒ (q⇒ p) is a tautology. This implies that, for all L-V -sentences
A and B, A⇒ (B⇒A) is a quasitautology.

Remarks 3.2.2.

1. Obviously, every quasitautology is logically valid.

2. There is a decision procedure1 for quasitautologies. One such decision
procedure is based on truth tables. Another is based on propositional
tableaux.

1In other words, there is a Turing algorithm which, given an L-V -sentence A as input, will
eventually halt with output 1 if A is a quasitautology, 0 if A is not a quasitautology.

51

3. It can be shown that there is no decision procedure for logical validity.
(This result is known as Church’s Theorem.) Therefore, in relation to the
problem of characterizing logical validity, we regard the quasitautologies
as trivial.

Let A be an L-V -sentence.

Definition 3.2.3 (companions). A companion of A is any L-V -sentence of one
of the forms

(1) (∀xB)⇒B[x/a]

(2) B[x/a]⇒ (∀xB)

(3) (∃xB)⇒B[x/a]

(4) B[x/a]⇒ (∃xB)

where, in (2) and (3), the parameter a may not occur in A or in B.

Lemma 3.2.4. Let C be a companion of A.

1. A is satisfiable if and only if C ∧A is satisfiable.

2. A is logically valid if and only if C⇒A is logically valid.

Proof. Let C be a companion of A.
For part 1, assume that A is satisfiable. In accordance with Definition 2.3.11,

let M,φ be an L-V -structure satisfying A. If C is of the form 3.2.3(1) or
3.2.3(4), then C is logically valid, hence M,φ satisfies C ∧A. Next, consider
the case when C is of the form 3.2.3(2). If M,φ satisfies ∀xB, then M,φ
satisfies C. Otherwise we have vM (∀xBφ) = F, so let c ∈ UM be such that
vM (Bφ[x/c]) = F. Define φ′ : V → UM by putting φ′(a) = c, φ′(b) = φ(b)
for b 6= a. Since a does not occur in A, we have that M,φ′ satisfies A. Also,
since a does not occur in B, we have B[x/a]φ

′

= Bφ′

[x/c] = Bφ[x/c], hence
vM (B[x/a]φ

′

) = vM (Bφ[x/c]) = F, i.e., M,φ′ satisfies ¬B[x/a]. Thus M,φ′

satisfies C ∧A. The case when C is of the form 3.2.3(3) is handled similarly.
For part 2 note that, since C is a companion of A, C is a companion of ¬A.

Thus we have that A is logically valid if and only if ¬A is not satisfiable, if
and only if C ∧¬A is not satisfiable (by part 1), if and only if ¬ (C ∧¬A) is
logically valid, i.e., C⇒A is logically valid. �

Definition 3.2.5 (companion sequences). A companion sequence of A is a finite
sequence C1, . . . , Cn such that, for each i < n, Ci+1 is a companion of

(C1 ∧ · · · ∧Ci)⇒A.

Lemma 3.2.6. If C1, . . . , Cn is a companion sequence of A, then A is logically
valid if and only if (C1 ∧ · · · ∧Cn)⇒A is logically valid.

Proof. Note that (C1 ∧ · · · ∧Cn)⇒A is quasitautologically equivalent to

Cn ⇒ (Cn−1 ⇒ · · · ⇒ (C1 ⇒A)).

52

Our lemma follows by n applications of part 2 of Lemma 3.2.4. �

Theorem 3.2.7 (the Companion Theorem). A is logically valid if and only if
there exists a companion sequence C1, . . . , Cn of A such that

(C1 ∧ · · · ∧Cn)⇒A

is a quasitautology.

Proof. The “if” part is immediate from Lemma 3.2.6. For the “only if” part,
assume that A is logically valid. By Theorem 2.5.5 let τ be a finite closed
unsigned tableau starting with ¬A. Thus we have a finite sequence of tableaux
τ0, τ1, . . . , τn where τ0 = ¬A, τn = τ , and each τi+1 is obtained by applying
a tableau rule Ri to τi. If Ri is a quantifier rule, let Ci be an appropriate
companion. Thus C1, . . . , Cn is a companion sequence for A, and we can easily
transform τ into a closed tableau τ ′ starting with

¬A
C1

...
Cn

in which only propositional tableau rules are applied. Thus (C1 ∧ · · · ∧Cn)⇒A
is a quasitautology. This proves our theorem.

For instance, if Ri is the tableau rule

(∗)

...
∀xB
...
|

B[x/a] ,

where a is an arbitrary parameter, let Ci be the companion (∀xB)⇒B[x/a],
and replace the application of (∗) by

...
(∀xB)⇒B[x/a]

...
∀xB
...

/ \
¬∀xB B[x/a]

noting that the left-hand path is closed.

53

Similarly, if Ri is the tableau rule

(∗∗)

...
¬∀xB

...
|

¬B[x/a]

where a is a new parameter, let Ci be the companion B[x/a]⇒ (∀xB), and
replace the application of (∗∗) by

...
B[x/a]⇒ (∀xB)

...
¬∀xB

...
/ \

¬B[x/a] ∀xB

noting that the right-hand path is closed. �

Example 3.2.8. As an example illustrating Theorem 3.2.7 and its proof, let
A be the sentence (∃x (Px∨Qx))⇒ ((∃xPx)∨ (∃xQx)). Let τ be the closed
tableau

¬A
∃x(Px∨Qx)

¬ ((∃xPx)∨ (∃xQx))
¬∃xPx
¬∃xQx
Pa∨Qa
¬Pa
¬Qa
/ \

Pa Qa

which shows that A is logically valid. Examining the applications of quantifier
rules in τ , we obtain the companion sequence C1, C2, C3 for A, where C1 is
(∃x (Px∨Qx))⇒ (Pa∨Qa), C2 is Pa⇒∃xPx, C3 is Qa⇒∃xQx. Clearly
(C1 ∧C2 ∧C3)⇒A is a quasitautology.

Exercise 3.2.9. Let A be the logically valid sentence ∃x (Px⇒∀y Py). Find
a companion sequence C1, . . . , Cn for A such that (C1 ∧ · · · ∧Cn)⇒A is a qu-
asitautology.

54

Solution. The unsigned tableau

¬∃x (Px⇒∀y Py)
¬ (Pa⇒∀y Py)

Pa
¬∀y Py
¬Pb

¬ (Pb⇒∀y Py)
Pb

is closed and shows that A is logically valid. From this tableau we read off the
companion sequence C1, C2, C3, where

C1 is (Pa⇒∀y Py)⇒∃x (Px⇒∀y Py),

C2 is Pb⇒∀y Py,

C3 is (Pb⇒∀y Py)⇒∃x (Px⇒∀y Py).

A simpler companion sequence for A is C′

1, C
′

2 where

C′

1 is Pa⇒∀y Py,

C′

2 is (Pa⇒∀y Py)⇒∃x (Px⇒∀y Py).

Exercise 3.2.10. Let A be the logically valid sentence ∃x (Px⇔∀y Py). Find
a companion sequence C1, . . . , Cn for A such that (C1 ∧ · · · ∧Cn)⇒A is a qu-
asitautology.

Solution. To find a companion sequence for A, we first construct a closed un-
signed tableau starting with ¬A.

¬∃x (Px⇔∀y Py)
¬ (Pa⇔∀y Py)
/ \
Pa

¬∀y Py
¬Pb

¬ (Pb⇔∀y Py)
/ \

Pb
¬∀y Py

¬Pb
∀y Py

¬Pa
∀y Py
Pa

From this tableau, we read off the companion sequence C1, C2, C3, C4 where

C1 is (Pa⇔∀y Py)⇒∃x (Px⇔∀y Py),

C2 is Pb⇒ (∀y Py),

C3 is (Pb⇔∀y Py)⇒∃x (Px⇔∀y Py),

C4 is (∀y Py)⇒Pa.

55

A simpler companion sequence for A is C′

1, C
′

2, C
′

3 where

C′

1 is Pa⇒∀y Py,

C′

2 is (∀y Py)⇒Pa,

C′

3 is (Pa⇔∀y Py)⇒∃x (Px⇔∀y Py).

3.3 Hilbert-Style Proof Systems

Let L be a language. Recall that V is the set of parameters.

Definition 3.3.1 (the system LH). Our Hilbert-style proof system LH for the
predicate calculus is as follows:

1. The objects are L-V -sentences.

2. For each quasitautology A, 〈A〉 is a rule of inference.

3. 〈(∀xB)⇒B[x/a]〉 and 〈B[x/a]⇒ (∃xB)〉 are rules of inference.

4. 〈A,A⇒B,B〉 is a rule of inference.

5. 〈A⇒B[x/a], A⇒ (∀xB)〉 and 〈B[x/a]⇒A, (∃xB)⇒A〉 are rules of in-
ference, provided the parameter a does not occur in A or in B.

Schematically, LH consists of:

1. A, where A is any quasitautology

2. (a) (∀xB)⇒B[x/a] (universal instantiation)

(b) B[x/a]⇒ (∃xB) (existential instantiation)

3.
A A⇒B

B
(modus ponens)

4. (a)
A⇒B[x/a]

A⇒ (∀xB)
(universal generalization)

(b)
B[x/a]⇒A

(∃xB)⇒A
(existential generalization),

where a does not occur in A,B.

Lemma 3.3.2 (soundness of LH). LH is sound. In other words, for all L-V -
sentences A, if A is derivable, then A is logically valid.

Proof. The proof is straightforward by induction on the length of a derivation.
The induction step is similar to the proof of Lemma 3.2.4. �

Example 3.3.3. In LH we have the following derivation:

1. (∀xA)⇒A[x/a] (by universal instantiation)

56

2. A[x/a]⇒ (∃xA) (by existential instantiation)

3. ((∀xA)⇒A[x/a])⇒ ((A[x/a]⇒ (∃xA))⇒ ((∀xA)⇒ (∃xA)))

(This is a quasitautology, obtained from the tautology
(p⇒ q)⇒ ((q⇒ r)⇒ (p⇒ r)).)

4. (A[x/a]⇒ (∃xA))⇒ ((∀xA)⇒ (∃xA)) (from 1, 3, and modus ponens)

5. (∀xA)⇒ (∃xA) (from 2, 4, and modus ponens)

Thus, by Lemma 3.3.2, (∀xA)⇒ (∃xA) is logically valid.

Example 3.3.4. In LH we have the following derivation:

1. B[x/a]⇒ (∃xB) (by existential instantiation)

2. (B[x/a]⇒ (∃xB))⇒ ((A∧B)[x/a]⇒ (∃xB)) (a quasitautology)

3. (A∧B)[x/a]⇒ (∃xB) (from 1, 2, and modus ponens)

4. (∃x (A∧B))⇒ (∃xB) (from 3 and existential generalization)

Thus, by Lemma 3.3.2, (∃x (A∧B))⇒ (∃xB) is logically valid.

We now turn to the proof that LH is complete.

Lemma 3.3.5. LH is closed under quasitautological consequence. In other
words, if A1, . . . , Ak are derivable, and if B is a quasitautological consequence
of A1, . . . , Ak, then B is derivable.

Proof. We are assuming that B is a quasitautological consequence of A1, . . . , Ak.
Thus A1 ⇒ (A2 ⇒ · · · ⇒ (Ak ⇒B)) is a quasitautology, hence derivable. We are
also assuming that A1, . . . , Ak are derivable. Thus we obtain B by k applications
of modus ponens. �

Lemma 3.3.6. If C is a companion of A, and if C⇒A is derivable in LH , then
A is derivable in LH .

Proof. First, suppose C is of the form 3.2.3(1), namely (∀xB)⇒B[x/a]. By
universal instantiation, C is derivable. In addition, we are assuming that C⇒A
is derivable. Hence, by modus ponens, A is derivable.

Next, suppose C is of the form 3.2.3(2), namely B[x/a]⇒ (∀xB), where
a does not occur in A,B. We are assuming that C⇒A is derivable, i.e.,
(B[x/a]⇒ (∀xB))⇒A is derivable. It follows by Lemma 3.3.5 that both (i)
(¬A)⇒B[x/a] and (ii) (¬A)⇒ (¬∀xB) are derivable. Applying universal gen-
eralization to (i), we see that (¬A)⇒ (∀xB) is derivable. From this plus (ii),
it follows by Lemma 3.3.5 that A is derivable.

The other cases, where C is of the form 3.2.3(3) or 3.2.3(4), are handled
similarly. �

57

Theorem 3.3.7 (completeness of LH). LH is sound and complete. In other
words, for all L-V -sentences A, A is derivable if and only if A is logically valid.

Proof. The “only if” part is Lemma 3.3.2. For the “if” part, assume that
A is logically valid. By Theorem 3.2.7, there exists a companion sequence
C1, . . . , Cn for A such that (C1 ∧ · · · ∧Cn)⇒A is a quasitautology. Hence
Cn ⇒ (Cn−1 ⇒ · · · ⇒ (C1 ⇒A)) is a quasitautology, hence derivable. From this
and n applications of Lemma 3.3.6, we obtain derivability of A. �

Remark 3.3.8. For convenience in writing proofs, we supplement the rules of
LH with

A1 · · · Ak

B

whenever B is a quasitautological consequence of A1, . . . , Ak. This is justified by
Lemma 3.3.5. We indicate applications of this rule by QT, for quasitautology.
Similarly we use UI, EI, UG, EG to indicate universal instantiation, existential
instantiation, universal generalization, existential generalization, respectively.

Exercise 3.3.9. Construct a Hilbert-style proof of the sentence

(∃x∀y Rxy)⇒ (∀y ∃xRxy).

Solution. A proof in LH is

1. (∀y Ray)⇒Rab UI
2. Rab⇒ (∃xRxb) EI
3. (∀y Ray)⇒ (∃xRxb) 1,2,QT
4. (∀y Ray)⇒ (∀y ∃xRxy) 3,UG
5. (∃x∀y Rxy)⇒ (∀y ∃xRxy) 4,EG

Exercise 3.3.10. Construct a Hilbert-style proof of the sentence

(∀x (Px∧Qx))⇔ ((∀xPx)∧ (∀xQx))

Solution. A proof in LH is

1. (∀x (Px∧Qx))⇒ (Pa∧Qa) UI
2. (∀x (Px∧Qx))⇒Pa 1,QT
3. (∀x (Px∧Qx))⇒∀xPx 2,UG
4. (∀x (Px∧Qx))⇒Qa 1,QT
5. (∀x (Px∧Qx))⇒∀xQx 4,UG
6. (∀xPx)⇒Pa UI
7. (∀xQx)⇒Qa UI
8. ((∀xPx)∧ (∀xQx))⇒ (Pa∧Qa) 6,7,QT
9. ((∀xPx)∧ (∀xQx))⇒∀x (Px∧Qx) 8,UG

10. (∀x (Px∧Qx))⇔ ((∀xPx)∧ (∀xQx)) 3,5,9,QT

Exercise 3.3.11. Construct a Hilbert-style proof of ¬∃x∀y (Eyx⇔¬Eyy).

58

Solution. A proof in LH is

1. ∀y (Eya⇔¬Eyy)⇒ (Eaa⇔¬Eaa) UI
2. ¬∀y (Eya⇔¬Eyy) 1,QT
3. (∀y (Eya⇔¬Eyy))⇒¬∃x∀y (Eyx⇔¬Eyy) 2,QT
4. (∃x∀y (Eyx⇔¬Eyy))⇒¬∃x∀y (Eyx⇔¬Eyy) 3,EG
5. ¬∃x∀y (Eyx⇔¬Eyy) 4,QT

Exercise 3.3.12. Construct a Hilbert-style proof of the sentence

¬∃x (Sx∧∀y (Eyx⇔ (Sy∧¬Eyy))).

Solution. A proof in LH is

1. (∀y (Eya⇔ (Sy∧¬Eyy)))⇒ (Eaa⇔ (Sa∧¬Eaa)) UI
2. (Sa∧ (∀y (Eya⇔ (Sy∧¬Eyy))))⇒ (Sb∧¬Sb) 1,QT
3. (∃x (Sx∧ (∀y (Eyx⇔ (Sy∧¬Eyy)))))⇒ (Sb∧¬Sb) 2,EG
4. ¬∃x (Sx∧ (∀y (Eyx⇔ (Sy ∧¬Eyy)))) 3,QT

Exercise 3.3.13. Construct a Hilbert-style proof of ∃x (Px⇒∀y Py).

Solution. A proof in LH is

1. (Pa⇒∀y Py)⇒∃x (Px⇒∀y Py) EI
2. (¬∃x (Px⇒∀y Py))⇒Pa 1,QT
3. (¬∃x (Px⇒∀y Py))⇒∀y Py 2,UG
4. ∃x (Px⇒∀y Py) 1,3,QT

Exercise 3.3.14. Construct a Hilbert-style proof of ∃x (Px⇔∀y Py).

Solution. A proof in LH is

1. (Pa⇔∀y Py)⇒∃x (Px⇔∀y Py) EI
2. (∀yPy)⇒Pa UI
3. (¬∃x (Px⇔∀y Py))⇒Pa 1,2,QT
4. (¬∃x (Px⇔∀y Py))⇒∀y Py 3,UG
5. ∃x (Px⇔∀y Py) 1,2,4,QT

Exercise 3.3.15. Consider the following proof system LH ′, which is a “stripped
down” version of LH . The objects of LH ′ are L-V -sentences containing only ∀,
⇒ , ¬ (i.e., not containing ∃, ⇔ , ∧ , ∨). The rules of LH ′ are:

(a) quasitautologies

(b) (∀xB)⇒B[x/a]

(c) (∀x (A⇒B))⇒ (A⇒∀xB)

59

(d)
A A⇒B

B
(modus ponens)

(e)
B[x/a]

∀xB
(generalization), where a does not occur in B.

Show that LH ′ is sound and complete.

Solution. Soundness is proved just as for LH .
Just as for the full tableau method, we can prove soundness and complete-

ness of the restricted tableau method with ∀, ⇒ , ¬ , and from this we obtain
the restricted Companion Theorem. There are now only two kinds of compan-
ions, the ones involving ∀. It remains to prove the following lemma: If C is a
companion of A, and if C⇒A is derivable in LH ′, then A is derivable in LH ′.

Consider a companion of the form B[x/a]⇒ (∀xB). Assume that

(B[x/a]⇒ (∀xB))⇒A

is derivable in LH ′, where a does not occur in A,B. It follows quasitautologically
that both (1) (¬A)⇒B[x/a] and (2) (¬A)⇒¬∀xB are derivable in LH ′. From
(1) and the generalization rule (e) of LH ′, we see that ∀x ((¬A)⇒B) is derivable
in LH ′. Also, by rule (c) of LH ′,

(∀x ((¬A)⇒B))⇒ ((¬A)⇒∀xB)

is derivable in LH ′. Hence, by modus ponens, (¬A)⇒∀xB is derivable in LH ′.
It follows quasitautologically from this and (2) that A is derivable in LH ′. This
completes the proof.

Exercise 3.3.16.

1. Let S be a set of L-sentences. Consider a proof system LH (S) consisting
of LH with additional rules of inference 〈A〉, A ∈ S. Show that an L-V -
sentence B is derivable in LH (S) if and only if B is a logical consequence
of S.

2. Indicate the modifications needed when S is a set of L-V -sentences.

Solution.

1. By induction on the length of derivations, it is straightforward to prove
that each sentence derivable in LH (S) is a logical consequence of S. The
assumption that S is a set of L-sentences (not L-V -sentences) is used in
the inductive steps corresponding to rules 4(a) and 4(b), universal and
existential generalization, because we need to know that the parameter a
does not occur in S.

Conversely, assume B is a logical consequence of S. By the Compactness
Theorem, it follows that B is a logical consequence of a finite subset of
S, say A1, . . . , An. Hence (A1 ∧ · · · ∧An)⇒B is logically valid. Hence,
by completeness of LH , (A1 ∧ · · · ∧An)⇒B is derivable in LH . Since
LH (S) includes LH , we have that

60

(A1 ∧ · · · ∧An)⇒B

is derivable in LH (S). But A1, . . . , An are derivable in LH (S). It follows
quasitautologically that B is derivable in LH (S). This completes the
proof.

2. If S is a set of L-V -sentences, we modify our system as follows. Let V ′

be a countably infinite set of new parameters, disjoint from V . Define
LH (S) as before, but allowing parameters from V ∪ V ′. The objects are
L-V ∪V ′-sentences. In rules 4(a) and 4(b), one must impose the restriction
that a does not occur in A,B, S. With this modification, everything goes
through as before.

Notation 3.3.17. We write S ⊢ B to indicate that B is derivable in LH (S).

Exercise 3.3.18. Let S be an infinite set of L-sentences, and let B be an L-
sentence. Prove that S |= B (i.e., B is true in all L-structures satisfying S)
if and only if there exists a finite set of L-sentences A1, . . . , Ak ∈ S such that
A1, . . . , Ak ⊢ B (i.e., B is provable from A1, . . . , Ak).

Solution. The “if” part follows from the soundness of our proof system. For the
“only if” part, assume that S |= B, i.e., S ∪ {¬B} is not satisfiable. It follows
by the Compactness Theorem that there exists a finite set {A1, . . . , Ak} ⊂ S
such that A1, . . . , Ak,¬B is not satisfiable. Thus B is a logical consequence of
A1, . . . , Ak. It follows by completeness of our proof system that A1, . . . , Ak ⊢ B.

3.4 Gentzen-Style Proof Systems

Throughout this section, let L be a language. As usual, V is the set of param-
eters.

Before presenting our Gentzen-style proof system for L, we first discuss the
block tableau method, a trivial variant of the signed tableau method.

Definition 3.4.1. A block is a finite set of signed L-V -sentences. A block is
said to be closed if it contains TA and FA for some L-V -sentence A.

Notation 3.4.2. If S is a block and X is a signed L-V -sentence, we write S,X
instead of S ∪ {X}, etc.

Definition 3.4.3. A block tableau is a rooted dyadic tree where each node car-
ries a block. A block tableau is said to be closed if each of its end nodes is closed.
Given a block S, a block tableau starting with S is a block tableau generated
from S by means of block tableau rules. The block tableau rules are obtained
from the signed tableau rules (pages 13 and 31) as follows. Corresponding to

61

signed tableau rules of the form

...
X
...
|
Y

...
X
...
|
Y1

Y2

...
X
...

/ \
Y Z

...
X
...

/ \
Y1 Z1

Y2 Z2

we have block tableau rules

S,X
|

S,X, Y

S,X
|

S,X, Y1, Y2

S,X
/ \

S,X, Y S,X,Z

S,X
/ \

S,X, Y1, Y2 S,X,Z1, Z2

respectively.

For example, we have the following block tableau rules:

S,TA∧B
|

S,TA∧B,TA,TB

S,FA∧B
/ \

S,FA∧B,FA S,FA∧B,FB

S,TA⇒B
/ \

S,TA⇒B,FA S,TA⇒B,TB

S,FA⇒B
|

S,FA⇒B,TA,FB

S,T ∀xA
|

S,T ∀xA,TA[x/a]

S,F ∀xA
|

S,F ∀xA,FA[x/a]

where a is new.

Example 3.4.4. We exhibit a closed block tableau demonstrating that ∃xA is
a logical consequence of ∀xA.

T ∀xA, F ∃xA
|

T ∀xA, F ∃xA, TA[x/a]
|

T ∀xA, F ∃xA, TA[x/a], FA[x/a]

This block tableau is of course similar to the signed tableau

T ∀xA
F ∃xA
TA[x/a]
FA[x/a]

62

which demonstrates the same thing.

We now define our Gentzen-style system, LG .

Definition 3.4.5. A sequent is an expression of the form Γ → ∆ where Γ and
∆ are finite sets of L-V -sentences. If S = TA1, . . . ,TAm,FB1, . . . ,FBn is a
block, let |S| be the sequent A1, . . . , Am → B1, . . . , Bn. This gives a one-to-one
correspondence between blocks and sequents.

Definition 3.4.6 (the system LG). Our Gentzen-style proof system LG for the
predicate calculus is as follows.

1. The objects of LG are sequents.2

2. For each closed block S, we have a rule of inference 〈|S|〉. In other words,
for all finite sets of L-V -sentences Γ and ∆ and all L-V -sentences A, we
assume the sequent Γ, A → A,∆.

3. For each non-branching block tableau rule

S
|
S′

we have a rule of inference 〈|S′|, |S|〉, i.e.,
|S′|

|S|
.

4. For each branching block tableau rule

S
/ \

S′ S′′

we have a rule of inference 〈|S′|, |S′′|, |S|〉, i.e.,
|S′| |S′′|

|S|
.

Thus LG includes the following rules of inference:

2For this reason, LG is sometimes called a sequent calculus.

63

Γ, A → A,∆

Γ,¬A → A,∆

Γ,¬A → ∆

Γ, A → ¬A,∆

Γ → ¬A,∆

Γ, A∧B,A,B → ∆

Γ, A∧B → ∆

Γ → A∧B,A,∆ Γ → A∧B,B,∆

Γ → A∧B,∆

Γ, A⇒B → A,∆ Γ, A⇒B,B → ∆

Γ, A⇒B → ∆

Γ, A → A⇒B,B,∆

Γ → A⇒B,∆

Γ, ∀xA,A[x/a] → ∆

Γ, ∀xA → ∆

Γ → ∀xA,A[x/a],∆

Γ → ∀xA,∆

where a does not occur in the conclusion.

Exercise 3.4.7. Explicitly display the remaining inference rules of LG .

Definition 3.4.8. A sequent A1, . . . , Am → B1, . . . , Bn is said to be logically
valid if and only if the L-V -sentence

(A1 ∧ · · · ∧Am)⇒ (B1 ∨ · · · ∨Bn)

is logically valid.3

Theorem 3.4.9 (soundness and completeness of LG). LG is sound and com-
plete. In other words, a sequent Γ → ∆ is logically valid if and only if it is
derivable in LG . In particular, an L-V -sentence A is logically valid if and only
if the sequent

→ A

is derivable in LG .

Proof. Note that the sequent A1, . . . , Am → B1, . . . , Bn is logically valid if
and only if the block TA1, . . . ,TAm,FB1, . . . ,FBn is not satisfiable. Thus,
soundness and completeness of LG is equivalent to soundness and completeness
of the block tableau method. The latter is in turn easily seen to be equivalent
to soundness and completeness of the signed tableau method, as presented in
Theorems 2.3.13 and 2.5.5. �

3In particular, the sequents A1, . . . , Am → and → B1, . . . , Bn are said to be logically
valid if and only if the L-V -sentences ¬ (A1 ∧ · · · ∧Am) and B1 ∨ · · · ∨Bn are logically valid,
respectively. The empty sequent → is deemed not logically valid.

64

Exercise 3.4.10. Construct a Gentzen-style proof of the sequent

∃x∀y Rxy → ∀y ∃xRxy.

Solution. A proof in LG is

1. ∃x∀y Rxy, ∀y Ray,Rab → Rab, ∃xRxb, ∀y ∃xRxy
2. ∃x∀y Rxy, ∀y Ray,Rab → ∃xRxb, ∀y ∃xRxy
3. ∃x∀y Rxy, ∀y Ray → ∃xRxb, ∀y ∃xRxy
4. ∃x∀y Rxy → ∃xRxb, ∀y ∃xRxy
5. ∃x∀y Rxy → ∀y ∃xRxy

Definition 3.4.11. In order to simplify the writing of Gentzen-style proofs, let
LG+ be LG augmented with the so-called weakening rules or padding rules :

Γ → ∆

Γ, A → ∆

Γ → ∆

Γ → A,∆

where A is an L-V -sentence. Clearly LG+ is sound and complete.

Remark 3.4.12. Any proof in LG is a proof in LG+, and any proof in LG+

may be straightforwardly “padded out” to a proof in LG. Thus LG+ differs only
slightly from LG . However, proofs in LG+ are easier. For example, patterned
on the above proof in LG , we have the following proof in LG+:

1. Rab → Rab
1.5. ∀y Ray,Rab → Rab
2. ∀y Ray → Rab

2.5. ∀y Ray → Rab, ∃xRxb
3. ∀y Ray → ∃xRxb

3.5. ∃x∀y Rxy, ∀y Ray → ∃xRxb
4. ∃x∀y Rxy → ∃xRxb

4.5. ∃x∀y Rxy → ∃xRxb, ∀y ∃xRxy
5. ∃x∀y Rxy → ∀y ∃xRxy

or, omitting the applications of the padding rules,

1. Rab → Rab
2. ∀y Ray → Rab
3. ∀y Ray → ∃xRxb
4. ∃x∀y Rxy → ∃xRxb
5. ∃x∀y Rxy → ∀y ∃xRxy

Exercise 3.4.13. Construct a Gentzen-style proof of the sequent

→ (∃x∀y Rxy)⇒ (∀y ∃xRxy).

Solution. A proof in LG+ consists of the previous proof followed by

5.5. ∃x∀y Rxy → ∀y ∃xRxy, (∃x∀y Rxy)⇒ (∀y ∃xRxy)
6. → (∃x∀y Rxy)⇒ (∀y ∃xRxy)

65

Exercise 3.4.14. Construct a Gentzen-style proof of the sequent

→ ¬∃x (Sx∧∀y (Eyx⇔ (Sy∧¬Eyy))).

Solution. A proof in LG+ with padding rules omitted is

1. Eaa → Eaa axiom
2. Eaa,¬Eaa → from 1
3. Eaa, Sa∧¬Eaa → from 2
4. Sa → Sa axiom
5. → Eaa,¬Eaa from 1
6. Sa → Eaa, Sa∧¬Eaa from 4 and 5
7. Sa,Eaa⇔ (Sa∧¬Eaa) → from 4 and 6
8. Sa, ∀y (Eya⇔ (Sy∧¬Eyy)) → from 7
9. Sa∧∀y (Eya⇔ (Sy∧¬Eyy)) → from 8

10. ∃x (Sx∧∀y (Eyx⇔ (Sy∧¬Eyy)) → from 9
11. → ¬∃x (Sx∧∀y (Eyx⇔ (Sy∧¬Eyy)) from 10

Exercise 3.4.15. Construct a Gentzen-style proof of ∃x (Px⇒∀y Py).

Solution. A proof in LG+ with padding rules omitted is

1. Pa → Pa axiom
2. → Pa, Pa⇒∀y Py from 1
3. → Pa, ∃x (Px⇒∀y Py) from 2
4. → ∀y Py, ∃x (Px⇒∀y Py) from 3
5. → Pa⇒∀y Py, ∃x (Px⇒∀y Py) from 4
6. → ∃x (Px⇒∀y Py) from 5

Exercise 3.4.16. Construct a Gentzen-style proof of ∃x (Px⇔∀y Py).

Solution. A proof in LG+ with padding rules omitted is

1. Pa → Pa, ∀y Py axiom
2. ∀y Py → Pa, ∀y Py axiom
3. → Pa⇔∀y Py, Pa, ∀y Py from 1 and 2 via →⇔
4. → Pa⇔∀y Py, ∀y Py from 3 via →∀
5. Pb → Pb axiom
6. ∀y Py → Pb from 5 via ∀→
7. → Pa⇔∀y Py, Pb⇔∀y Py from 4 and 6 via →⇔
8. → Pa⇔∀y Py, ∃x (Px⇔∀y Py) from 7 via →∃
9. → ∃x (Px⇔∀y Py) from 8 via →∃

The above proof was derived from the tableau in Exercise 3.2.10.

Exercise 3.4.17. Let LG(atomic) be a variant of LG in which Γ, A → A,∆ is
assumed only for atomic L-V -sentences A. Show that LG(atomic) is sound and
complete. (Hint: Use the result of Exercise 2.5.7.)

66

Exercise 3.4.18.

1. The modified block tableau rules are a variant of the block tableau rules of
Definition 3.4.3, replacing each non-branching rule of the form

S,X
|

S,X, Y1, Y2

by a pair of rules
S,X
|

S,X, Y1

S,X
|

S,X, Y2

Show that the modified block tableau rules are sound and complete.

2. Let LG ′ be the variant of LG corresponding to the modified block tableau
rules. Write out all the rules of LG ′ explicitly. Show that LG ′ is sound
and complete.

3.5 The Interpolation Theorem

As usual, let L be a language and let V be the set of parameters.

Theorem 3.5.1 (the Interpolation Theorem). Let A and B be L-V -sentences.
If A⇒B is logically valid, we can find an L-V -sentence I such that:

1. A⇒ I and I⇒B are logically valid.

2. Each predicate and parameter occurring in I occurs in both A and B.

Such an I is called an interpolant for A⇒B. We indicate this by writing

A
I
⇒ B.

Remark 3.5.2. If A and B have no predicates in common, then obviously the
theorem is incorrect as stated, because all L-V -sentences necessarily contain at
least one predicate. In this case, we modify the conclusion of the theorem to
say that at least one of ¬A and B is logically valid.4 The conclusion is obvious
in this case.

In order to prove the Interpolation Theorem, we introduce a “symmetric”
variant of LG , wherein sentences do not move from one side of → to the other.

Definition 3.5.3. A signed sequent is an expression of the form M → N where
M and N are finite sets of signed L-V -sentences. A variant of M → N is a
signed sequent obtained from M → N by transferring sentences from one side
of → to the other, changing signs. In particular, M,X → N and M → X,N
are variants of each other, where we use an overline to denote conjugation, i.e.,
TA = FA, FA = TA.

4This amounts to saying that at least one of the truth values T and F is an interpolant for
A⇒B.

67

Definition 3.5.4. Let

C1, . . . , Cm → D1, . . . , Dn

be an unsigned sequent5. A signed variant of C1, . . . , Cm → D1, . . . , Dn is any
variant of the signed sequent

TC1, . . . ,TCm → TD1, . . . ,TDn .

Note that each signed sequent is a signed variant of one and only one unsigned
sequent. We define a signed sequent to be logically valid if and only if the
corresponding unsigned sequent is logically valid.

Definition 3.5.5. LG(symmetric) is the following proof system.

1. The objects are signed sequents.

2. We have

M,X → X,N

and

M,X,X → N

and

M → X,X,N

for all X .

3. For each signed tableau rule of the form

...
X
...
|
Y

...
X
...
|
Y1

Y2

...
X
...

/ \
Y Z

...
X
...

/ \
Y1 Z1

Y2 Z2

we have a corresponding pair of signed sequent rules

5An unsigned sequent is just what we have previously called a sequent.

68

M,X, Y → N

M,X → N

M → X,Y ,N

M → X,N

M,X, Y1, Y2 → N

M,X → N

M → X,Y1, Y2, N

M → X,N

M,X, Y → N M,X,Z → N

M,X → N

M → X,Y ,N M → X,Z,N

M → X,N

M,X, Y1, Y2 → N M,X,Z1, Z2 → N

M,X → N

M → X,Y1, Y2, N M → X,Z1, Z2, N

M → X,N

respectively.

Lemma 3.5.6. An unsigned sequent is derivable in LG if and only if all of its
signed variants are derivable in LG(symmetric).

Proof. The proof is by induction on the length of derivations in LG . The
base step consists of noting that all signed variants of Γ, A → A,∆ are of
the form M,X → X,N or M,X,X → N or M → X,X,N , hence deriv-
able in LG(symmetric). The inductive step consists of checking that, for each
rule of inference of LG , if all signed variants of the premises are derivable
in LG(symmetric), then so are all signed variants of the conclusion. This is
straightforward. �

Theorem 3.5.7. LG(symmetric) is sound and complete. In other words, a
signed sequent is logically valid if and only if it is derivable in LG(symmetric).
In particular, an L-V -sentence A⇒B is logically valid if and only if the signed
sequent TA → TB is derivable in LG(symmetric).

Proof. Soundness and completeness of LG(symmetric) follows from Theorem
3.4.9, soundness and completeness of LG , using Lemma 3.5.6. �

We now prove the Interpolation Theorem.

Definition 3.5.8. Let M → N be a signed sequent. An interpolant forM → N
is an L-V -sentence I such that the signed sequents M → T I and T I → N are
logically valid, and all predicates and parameters occurring in I occur in both

M and N .6 We indicate this by writing M
I
→ N .

In order to prove the Interpolation Theorem, it suffices by Theorem 3.5.7 to
prove that every signed sequent derivable in LG(symmetric) has an interpolant.
We prove this by induction on the length of derivations.

6In the special case when M and N have no predicates in common, we require instead
that at least one of the signed sequents M → and → N be logically valid. This amounts to
requiring that at least one of T, F be an interpolant for M → N .

69

For the base step, we note that X is an interpolant for M,X → X,N , and

thatM,X,X → and→ X,X,N are logically valid. Thus we haveM,X
X
→ X,N

and M,X,X
F
→ N and M

T
→ X,X,N .

For the induction step we show that, for each rule of LG(symmetric), given
interpolants for the premises of the rule, we can find an interpolant for the
conclusion. We present some representative special cases.

M,TA∧B,TA,TB
I
→ N

M,TA∧B
I
→ N

M
I
→ FA∧B,FA,FB,N

M
I
→ FA∧B,N

M,FA∧B,FA
I
→ N M,FA∧B,FB

J
→ N

M,FA∧B
I ∨ J
−→ N

M
I
→ TA∧B,TA,N M

J
→ TA∧B,TB,N

M
I ∧ J
−→ TA∧B,N

M,T¬A,FA
I
→ N

M,T¬A
I
→ N

M
I
→ F¬A,TA,N

M
I
→ F¬A,N

M,F¬A,TA
I
→ N

M,F¬A
I
→ N

M
I
→ T¬A,FA,N

M
I
→ T¬A,N

M,F ∀xA,FA[x/a]
I
→ N

M,F ∀xA
I
→ N

where a does not occur in the conclusion.

M
I
→ T ∀xA,TA[x/a], N

M
I
→ T ∀xA,N

where a does not occur in the conclusion.

M,T ∀xA,TA[x/a]
I
→ N

M,T ∀xA
K
→ N

where K = I if a occurs in M,T ∀xA, otherwise K = ∀z I[a/z] where z is a
new variable.

M
I
→ F ∀xA,FA[x/a], N

M
K
→ F ∀xA,N

where K = I if a occurs in F ∀xA,N , otherwise K = ∃z I[a/z] where z is a new
variable.

This completes the proof.

70

Example 3.5.9. We give an example illustrating the Interpolation Theorem.
Let n be a large positive integer, say n = 1000. Let An say that the universe
consists of the vertices of a simple, undirected graph with a clique of size n.
Let Bn say that the graph is not (n − 1)-colorable. Both An and Bn contain
a predicate R denoting adjacency in the graph. An contains a unary predicate
Q denoting a clique. Bn contains a binary predicate E saying that two vertices
get the same color.

An is:

R and G are irreflexive relations on the universe, R is symmet-
ric, G is transitive, ∀x∀y ((Qx∧Qy ∧Gxy)⇒Rxy), and there exist
x1, . . . , xn such that Qx1 ∧ · · · ∧Qxn ∧Gx1x2 ∧ · · · ∧Gxn−1xn.

Bn is the negation of:

E is an equivalence relation on the universe, ∀x∀y (Rxy⇒¬Exy),
and there exist x1, . . . , xn−1 such that ∀y (Ex1y∨ · · · ∨Exn−1y).

Clearly An ⇒Bn is logically valid. Note that the lengths of An and Bn are O(n),
i.e., proportional to n. The obvious interpolant In says there exists a clique of
size n, i.e., there exist x1, . . . , xn such that Rx1x2 ∧Rx1x3 ∧ · · · ∧Rxn−1xn.
Note that the length of In is O(n2), i.e., proportional to n2. It appears that
there is no interpolant of length O(n).

71

Chapter 4

Extensions of Predicate

Calculus

In this chapter we consider various extensions of the predicate calculus. These
extensions may be regarded as inessential features or “bells and whistles” which
are introduced solely in order to make the predicate calculus more user-friendly.

4.1 Predicate Calculus with Identity

Definition 4.1.1. A language with identity consists of a language L with a
particular binary predicate, I, designated as the identity predicate.

Definition 4.1.2. Let L be a language with identity. The identity axioms for
L are the following sentences:

1. ∀x Ixx (reflexivity)

2. ∀x∀y (Ixy⇔ Iyx) (symmetry)

3. ∀x∀y ∀z ((Ixy ∧ Iyz)⇒ Ixz) (transitivity)

4. For each n-ary predicate P of L, we have an axiom

∀x1 · · · ∀xn ∀y1 · · · ∀yn ((Ix1y1 ∧ · · · ∧ Ixnyn)⇒ (Px1 · · ·xn ⇔Py1 · · · yn))

(congruence).

Exercise 4.1.3. Show that the identity predicate is unique in the following
sense. If L contains two identity predicates I1 and I2, then ∀x∀y (I1xy⇔ I2xy)
is a logical consequence of the identity axioms for I1 and I2.

Let L be a language with identity.

Definition 4.1.4. An L-structure M is said to be normal if the identity pred-
icate denotes the identity relation, i.e., IM = {〈a, a〉 | a ∈ UM}.

72

Note that any normal L-structure automatically satisfies the identity axioms
for L. Conversely, we have:

Theorem 4.1.5. Let M be an L-structure satisfying the identity axioms for
L. For each a ∈ UM put a = {b ∈ UM | vM (Iab) = T}. Then we have a normal
L-structureM and an onto mapping φ : UM → UM as in Theorem 2.7.3, defined
by putting UM = {a | a ∈ UM}, and PM = {〈a1, . . . , an〉 | 〈a1, . . . , an〉 ∈ PM}
for all n-ary predicates P .

Proof. This is straightforward, using the fact that IM is a congruence with
respect to each of the relations PM , P ∈ L. �

Theorem 4.1.6. If M is an L-structure satisfying the identity axioms for L,
then we have a normal L-structure M satisfying the same sentences as M .

Proof. This is immediate from Theorems 4.1.5 and 2.7.3. �

Let S be a set of L-sentences.

Definition 4.1.7. S is normally satisfiable if there exists a normal L-structure
which satisfies S.

Corollary 4.1.8. S is normally satisfiable if and only if

S ∪ {identity axioms for L}

is satisfiable.

We also have the Compactness Theorem for normal satisfiability:

Corollary 4.1.9. S is normally satisfiable if and only if each finite subset of S
is normally satisfiable.

Proof. This is immediate from Corollary 4.1.8 plus the Compactness Theorem
for predicate calculus without identity (Theorems 2.6.1 and 2.6.2), applied to
the set S ∪ {identity axioms for L}. �

Regarding normal satisfiability in particular domains, we have:

Example 4.1.10. Given a positive integer n, we exhibit a sentence En which
is normally satisfiable in domains of cardinality n but not in domains of any
other cardinality. The sentence

∃x1 · · · ∃xn (∀y (Ix1y ∨ · · · ∨ Ixny)∧¬ (Ix1x2 ∨ Ix1x3 ∨ · · · ∨ Ixn−1xn))

has this property. Intuitively, En says that there exist exactly n things.

Exercise 4.1.11. Let M = (UM , fM , gM , IM) where UM = {0, 1, 2, 3, 4}, IM is
the identity relation on UM , and fM , gM are the binary operations of addition
and multiplication modulo 5. Thus M is essentially just the ring of integers
modulo 5. Let L be the language consisting of f , g, I. Note that M is a normal
L-structure.

Write an L-sentence A such that for all normal L-structures M ′, M ′ satisfies
A if and only if M ′ is isomorphic to M .

73

Solution. A brute force solution is to let A be ∃x0 ∃x1 ∃x2 ∃x3 ∃x4 B, where B
is the conjunction of {∀y (Ix0y∨ Ix1y∨ Ix2y ∨ Ix3y∨ Ix4y)} ∪ {¬ Ixixj : i 6=
j} ∪ {Ifxixjxk | i + j = k mod 5} ∪ {Igxixjxk | ij = k mod 5} with i, j, k
ranging over 0, 1, 2, 3, 4.

Another solution is to let A be a sentence describing a field consisting of 5
elements. Namely, let A be the conjunction of the field axioms plus “there exist
exactly 5 things”. We are using the algebraic fact that, up to isomorphism,
there is exactly one field of 5 elements.

Exercise 4.1.12. Let L be a finite language with identity, and let M be a
finite normal L-structure. Construct an L-sentence A such that, for all normal
L-structures M ′, M ′ |= A if and only if M ′ is isomorphic to M .

Solution. Let a1, . . . , ak be the elements of UM , and let P, . . . , Q be the predi-
cates of L. As A we may take

∃x1 · · · ∃xk (DP ∧ · · · ∧DQ ∧∀y (Ix1y ∨ · · · ∨ Ixky))

where for each n-ary predicate P of L, DP is the conjunction of Pxi1 · · ·xin for
each n-tuple 〈ai1 , . . . , ain〉 ∈ PM , and ¬Pxi1 · · ·xin for each n-tuple
〈ai1 , . . . , ain〉 /∈ PM .

On the other hand, we have:

Theorem 4.1.13 (Löwenheim/Skolem Theorem).

1. If S is normally satisfiable in arbitrarily large finite domains, then S is
normally satisfiable in some infinite domain.

2. If S is normally satisfiable in some infinite domain, then S is normally
satisfiable in all infinite domains of cardinality ≥ the cardinality of S.

Proof. For the first part, let S∗ = S ∪ {Hn | n = 1, 2, . . .} where Hn is the
sentence

∃x1 · · · ∃xn ¬ (Ix1x2 ∨ Ix1x3 ∨ · · · ∨ Ixn−1xn)

saying that there exist at least n things. Since S is normally satisfiable in
arbitrarily large finite domains, each finite subset of S∗ is normally satisfi-
able. Hence, by Corollary 4.1.9, S∗ is normally satisfiable. But any normal
L-structure satisfying S∗ satisfies S and has an infinite domain.

For the second part, let κ be a cardinal number ≥ the cardinality of S. Let
L∗ = L∪{Qi | i ∈ X}, where each Qi is a new 1-ary predicate, and X is a set of
cardinality κ. Let S∗ = S ∪ {∃xQix | i ∈ X} ∪ {¬∃x (Qix∧Qjx) | i, j ∈ X, i 6=
j}∪ {identity axioms for L∗}. Thus S∗ is a set of L∗-sentences of cardinality κ.
Furthermore, any domain in which S∗ is satisfiable will contain pairwise distinct
elements ai, i ∈ X , and will therefore have cardinality ≥ κ. By assumption, S
is normally satisfiable in some infinite domain. It follows that each finite subset
of S∗ is satisfiable. Hence, by the Compactness Theorems 2.6.1 and 2.6.2, S∗ is
satisfiable. Hence, by part 2 of Theorem 2.7.1, S∗ is satisfiable in a domain of

74

cardinality κ. Therefore, by Theorems 4.1.5 and 4.1.6, S∗ is normally satisfiable
in a domain of cardinality ≤ κ, hence = κ. Let M∗ be a normal L∗-structure
with UM∗ of cardinality κ. Let M be the reduct of M∗ to L, i.e., M is the
L-structure with UM = UM∗ and PM = PM∗ for each predicate P in L. Then
M normally satisfies S and UM is of cardinality κ. �

Exercise 4.1.14. Let L be the following language:

Ox: x = 1

Pxyz: x+ y = z

Qxyz: x× y = z

Rxy: x < y

Sxy: x+ 1 = y

Ixy: x = y (identity predicate)

For each positive integer n, let Mn be the normal L-structure

Mn = (Un, On, Pn, Qn, Rn, Sn, In)

where

Un = {1, . . . , n}

On = {1}

Pn = {〈i, j, k〉 ∈ (Un)
3 | i + j = k}

Qn = {〈i, j, k〉 ∈ (Un)
3 | i× j = k}

Rn = {〈i, j〉 ∈ (Un)
2 | i < j}

Sn = {〈i, j〉 ∈ (Un)
2 | i+ 1 = j}

In = {〈i, j〉 ∈ (Un)
2 | i = j}

Exhibit an L-sentence Z such that, for all finite normal L-structures M ′, M ′ |=
Z if and only if M ′ is isomorphic to Mn for some n.

Solution. As Z we may take the conjunction of the following clauses.

(a) ∀x∀y (Rxy ∨Ryx∨ Ixy)

(b) ∀x∀y (Rxy⇒¬Ryx)

(c) ∀x∀y ∀z ((Rxy ∧Ryz)⇒Rxz)

(d) ∀x∀z (Sxz⇔ (Rxz ∧¬∃y (Rxy ∧Ryz)))

(e) ∀u (Ou⇔¬∃xRxu)

75

(f) ∀u (Ou⇒∀x∀z (Puxz⇔Sxz))

(g) ∀v ∀w (Svw⇒∀x∀z (Pwxz⇔∃y (Syz ∧Pvxy)))

(h) ∀u (Ou⇒∀x∀z (Quxz⇔ Ixz))

(i) ∀v ∀w (Svw⇒∀x∀z (Qwxz⇔∃y (Qvxy ∧Pxyz)))

Clauses (a), (b) and (c) say thatR is an irreflexive linear ordering of the universe.
Clause (d) says that S is the immediate successor relation, with respect to R.
Clause (e) says that 1 is the first element of the universe, with respect to R.
Clauses (f) and (g) define the addition predicate P , by induction along R,
in terms of S. Clauses (h) and (i) define the multiplication predicate Q, by
induction along R, in terms of S and P .

Exercise 4.1.15. Let L and Mn be as in Exercise 4.1.14. Show that there
exists an infinite normal L-structure M = M∞ with the following property: for
all L-sentences A, if Mp |= A for all sufficiently large primes p, then M∞ |= A.
(Hint: Use the Compactness Theorem.)

Solution. Let S be the set of L-sentences A with the following property: there
exists n = nA such that for all primes p > nA, Mp satisfies A. We claim that
every finite subset of S is normally satisfiable. To see this, let S0 = {A1, . . . , Ak}
be a finite subset of S. Put n = max(nA1

, . . . , nAk
). Let p be any prime > n.

Then Mp satisfies A1, . . . , Ak. This proves our claim. By the Compactness
Theorem for normal satisfiability (Corollary 4.1.9), it follows that S is normally
satisfiable. Let M∞ be a normal L-structure satisfying S. Among the sentences
of S are those asserting that the universe has at least k elements, for each
positive integer k. Since M∞ satisfies these sentences, M∞ is infinite.

4.2 The Spectrum Problem

Definition 4.2.1. Let A be a sentence of the predicate calculus with identity.
The spectrum of A is the set of positive integers n such that A is normally
satisfiable in a domain of cardinality n. A spectrum is a set X of positive
integers, such that X = spectrum(A) for some A.

Remark 4.2.2. The spectrum problem is the problem of characterizing the
spectra, among all sets of positive integers. This is a famous and apparently
difficult open problem.1 In particular, it is unknown whether the complement
of a spectrum is necessarily a spectrum.

Example 4.2.3. We show that the set {n ≥ 1 | n is even} is a spectrum.

1Jones/Selman [1] show that X is a spectrum if and only if there exists a nondeterministic
Turing machine which accepts X in time 2ck, where k is the length of the input. Since the
input is a positive integer n, we have k = [log2 n], as usual in computational number theory.

76

Let U be a nonempty set. A binary relation R ⊆ U2 is said to be an
equivalence relation on U if it is reflexive, symmetric, and transitive, i.e., if the
structure (U,R) satisfies (1)∧ (2)∧ (3):

(1) ∀xRxx

(2) ∀x∀y (Rxy⇔Ryx)

(3) ∀x∀y ∀z ((Rxy ∧Ryz)⇒Rxz)

In this situation, the equivalence classes [a]R = {b ∈ U | 〈a, b〉 ∈ R}, a ∈ U ,
form a partition of U , i.e., a decomposition of the set U into pairwise disjoint,
nonempty subsets.

Let A be the following sentence of the predicate calculus with identity:

(1) ∧ (2) ∧ (3) ∧ ∀x∃y ((¬ Ixy)∧ ∀z (Rxz⇔ (Ixz ∨ Iyz)))

Intuitively, A says that R is an equivalence relation with the property that each
equivalence class consists of exactly two elements. Obviously, a finite set U
admits an equivalence relation with this property if and only if the cardinality
of U is even. Thus the spectrum of A is the set of even numbers.

Exercises 4.2.4. Prove the following.

1. If X is a finite or cofinite2 set of positive integers, then X is a spectrum.

2. The set of even numbers is a spectrum.

3. The set of odd numbers is a spectrum.

4. If r and m are positive integers, {n ≥ 1 | n ≡ r mod m} is a spectrum.

5. If X and Y are spectra, X ∪ Y and X ∩ Y are spectra.

Solution.

1. Let En be sentence in the language with only the identity predicate I,
saying that the universe consists of exactly n elements (Exercise 4.1.10).
If X = {n1, . . . , nk}, then X is the spectrum of En1

∨ · · · ∨Enk
, and the

complement of X is spectrum of ¬ (En1
∨ · · · ∨Enk

).

2. The even numbers are the spectrum of a sentence which says: R is an
equivalence relation on the universe, such that each equivalence class con-
sists of exactly two elements. For more details, see Example 4.2.3.

3. The odd numbers are the spectrum of a sentence which says: R is an equiv-
alence relation on the universe, such that each equivalence class consists
of exactly two elements, except for one equivalence class, which consists
of exactly one element.

4. We may assume that 0 ≤ r < m. If r = 0, the set

2A set of positive integers is said to be cofinite if its complement is finite.

77

{n ≥ 1 : n ≡ 0 mod m} = {n ≥ 1 : m divides n with no remainder}

is the spectrum of a sentence which says: R is an equivalence relation
on the universe, such that each equivalence class consists of exactly m
elements. If r > 0, the set

{n ≥ 1 : n ≡ r mod m} = {n ≥ 1 : m divides n with remainder r}

is the spectrum of a sentence which says: R is an equivalence relation
on the universe, such that each equivalence class consists of exactly m
elements, except for one equivalence class, which consists of exactly r
elements.

5. Assume thatX is the spectrum of A and Y is the spectrum of B. ThenX∪
Y is the spectrum of A∨B. Also, X∩Y is the spectrum of A∧B, provided
A and B have no predicates in common except the identity predicate.
To arrange for this, replace B by an analogous sentence in a different
language.

Exercise 4.2.5. Prove that, for any sentence A of the predicate calculus with
identity, at least one of spectrum(A) and spectrum(¬A) is cofinite. (Hint: Use
part 1 of Theorem 4.1.13.)

Example 4.2.6. We show that the set of composite numbers3 is a spectrum.
Let L be a language consisting of two binary predicates, R and S, as well

as the identity predicate, I. Let A be an L-sentence saying that R and S are
equivalence relations, each with more than one equivalence class, and

∀x∀y (∃ exactly one z)(Rxz ∧Syz).

Thus, for any normal L-structure M = (UM , RM , SM , IM) satisfying A, we have
that RM and SM partition UM into “rows” and “columns”, respectively, in such
a way that the intersection of any “row” with any “column” consists of exactly
one element of UM . Thus, if UM is finite, the elements of UM are arranged
in an m × n “matrix”, where m,n ≥ 2. Therefore, the number of elements
in UM is mn, a composite number. Conversely, for any m,n ≥ 2, there is an
L-structure M as above, which satisfies A. Thus spectrum(A) is the set of
composite numbers.

Exercise 4.2.7. Use the result of Exercise 4.1.14 to prove the following:

1. The set of prime numbers and its complement are spectra.

2. The set of squares {1, 4, 9, . . .} and its complement are spectra.

3. The set of powers of 2, {2n | n = 1, 2, 3, . . .}, and its complement, are
spectra.

3A composite number is an integer greater than 1 which is not prime.

78

4. The set of prime powers {pn | p prime, n = 1, 2, . . .} and its complement
are spectra.

Solution. Let Z be as in Exercise 4.1.14 above. For each of the given sets X , we
exhibit a sentence A with the following properties: X is the spectrum of Z ∧A,
and the complement of X is the spectrum of Z ∧¬A.

1. ∃z ((¬∃wRzw)∧ (¬∃x∃y (Rxz ∧Ryz∧Qxyz))∧ (¬Oz)).

2. ∃z ((¬∃wRzw)∧∃xQxxz).

3. ∃z ∃v ((¬∃wRzw)∧ (∃u (Ou∧Suv))
∧∀x ((¬Ox∧ ∃y Qxyz)⇒∃wQvwx)).

4. ∃z ∃v ((¬∃wRzw)∧ (¬∃x∃y (Rxv ∧Ryv ∧Qxyv))∧ (¬Ov)
∧∀x ((¬Ox∧ ∃y Qxyz)⇒∃wQvwx)).

Exercise 4.2.8.

1. The Fibonacci numbers are defined recursively by F1 = 1, F2 = 2, Fn =
Fn−1 + Fn−2 for n ≥ 3. Show that the set of Fibonacci numbers

{Fn | n = 1, 2, . . .} = {1, 2, 3, 5, 8, 13, 21, 34, 55, . . .}

and its complement are spectra.

2. Show that {xy | x, y ≥ 2} and its complement are spectra.

Exercise 4.2.9. LetX be a subset of {1, 2, 3, . . .}. Prove that ifX is a spectrum
then {n2 | n ∈ X} is a spectrum.

4.3 Predicate Calculus With Operations

In this section we extend the syntax and semantics of the predicate calculus,
to encompass operations. As examples of operations, we may cite the familiar
mathematical operations of addition (+) and multiplication (×). Such opera-
tions are considered binary, because they take two arguments. More generally,
we consider n-ary operations.

Definition 4.3.1 (languages). A language is a set of predicates P,Q,R, . . . and
operations f, g, h, Each predicate and each operation is designated as n-ary
for some nonnegative4 integer n.

Definition 4.3.2 (terms, formulas, sentences). Let L be a language, and let U
be a set. The set of L-U -terms is generated as follows.

1. Each variable is an L-U -term.

4A 0-ary operation is known as a constant. Syntactically, constants behave as parameters.

79

2. Each element of U is an L-U -term.

3. If f is an n-ary operation of L, and if t1, . . . , tn are L-U -terms, then
ft1 · · · tn is an L-U -term.

An L-U -term is said to be variable-free if no variables occur in it. An atomic
L-U -formula is an expression of the form

Pt1 · · · tn

where P is an n-ary predicate of L, and t1, . . . , tn are L-U -terms. The set
of L-U -formulas is generated as in clauses 2, 3, 4 and 5 of Definition 2.1.3.
The notions of substitution, free variables, and L-U -sentences are defined as in
Section 2.1. Note that Pt1 · · · tn is a sentence if and only if it is variable-free.

Definition 4.3.3 (structures). An L-structure M consists of a nonempty set
UM , an n-ary relation PM ⊆ (UM)n for each n-ary predicate P of L, and an
n-ary function fM : (UM)n → UM for each n-ary operation f of L.

Definition 4.3.4 (isomorphism). Two L-structures M and M ′ are said to be
isomorphic if there exists an isomorphism of M onto M ′, i.e., a one-to-one
correspondence φ : UM

∼= UM ′ such that:

1. for all n-ary predicates P of L and all n-tuples 〈a1, . . . , an〉 ∈ (UM)n,
〈a1, . . . , an〉 ∈ PM if and only if 〈φ(a1), . . . , φ(an)〉 ∈ PM ′ .

2. for all n-ary operations f of L and all n-tuples 〈a1, . . . , an〉 ∈ (UM)n,
φ(fM (a1, . . . , an) = fM ′(φ(a1), . . . , φ(an)).

Lemma 4.3.5 (valuations). Let M be an L-structure.

1. There is a unique valuation

vM : {t | t is a variable-free L-UM -term} → UM

defined as follows:

(a) vM (a) = a for all a ∈ UM .

(b) vM (ft1 · · · tn) = fM (vM (t1), . . . , vM (tn)) for all n-ary operations f
of L and all variable-free L-UM -terms t1, . . . , tn.

2. There is a unique valuation

vM : {A | A is an L-UM -sentence} → {T,F}

defined as follows. For atomic L-U -sentences, we have

vM (Pt1 · · · tn) =

{
T if 〈vM (t1), . . . , vM (tn)〉 ∈ PM ,

F if 〈vM (t1), . . . , vM (tn)〉 /∈ PM .

For non-atomic L-UM -sentences, vM (A) is defined as in clauses 2 through
8 of Lemma 2.2.4.

80

Proof. The proof is as for Lemma 2.2.4. �

Definition 4.3.6 (tableau method). The signed and unsigned tableau methods
carry over to predicate calculus with operations. We modify the tableau rules
as follows.

Signed:
...

T ∀xA
...
|

TA[x/t]

...
F ∃xA

...
|

FA[x/t]

where t is a variable-free term

...
T ∃xA

...
|

TA[x/a]

...
F ∀xA

...
|

FA[x/a]

where a is a new parameter

Unsigned:
...

∀xA
...
|

A[x/t]

...
¬∃xA

...
|

¬A[x/t]

where t is a variable-free term

...
∃xA
...
|

A[x/a]

...
¬∀xA

...
|

¬A[x/a]

where a is a new parameter

81

Remark 4.3.7 (soundness and completeness). With the tableau rules as above,
the Soundness Theorem 2.3.13 carries over unchanged to the context of predicate
calculus with operations. The results of Section 2.4 on logical equivalence also
carry over. The notion of U -repleteness (Definition 2.5.2) is modified to say
that, for example, if S contains ∀xA then S contains A[x/t] for all variable-free
L-U -terms t. The conclusion of Hintikka’s Lemma 2.5.3 is modified to say that
S is satisfiable in the domain of variable-free L-U -terms. The conclusion of the
Completeness Theorem 2.5.5 is modified to say that X1, . . . , Xk is satisfiable in
the domain of variable-free L-V -terms. The Compactness Theorems 2.6.1 and
2.6.2 carry over unchanged.

Remark 4.3.8 (satisfiability in a domain). The notion of satisfiability in a
domain carries over unchanged to the context of predicate calculus with op-
erations. Theorems 2.2.6 and 2.2.11 on isomorphism, and Theorem 2.7.1 on
satisfiability in infinite domains, also carry over. Theorem 2.7.3 carries over in
an appropriately modified form. See Theorem 4.3.9 and Exercise 4.3.10 below.

Theorem 4.3.9. Let M and M ′ be L-structures. Assume that φ : UM → UM ′

is an onto mapping such that conditions 1 and 2 of Definition 4.3.4 hold. Then
as in Theorem 2.2.6 we have vM (A) = vM ′(A′) for all L-UM -sentences A, where
A′ = A[a1/φ(a1), . . . , ak/φ(ak)]. In particular, M and M ′ satisfy the same
L-sentences.

Proof. The proof is similar to that of Theorem 2.7.3. �

Exercise 4.3.10. Use Theorem 4.3.9 to show that Corollary 2.7.4 carries over
to the context of predicate calculus with operations.

Remark 4.3.11 (companions and proof systems). In our notion of companion
(Definition 3.2.3), clauses (1) and (4) are modified as follows:

(1) (∀xB)⇒B[x/t]

(4) B[x/t]⇒ (∃xB)

where t is any variable-free term. In our Hilbert-style proof system LH , the
instantiation rules are modified as follows:

(a) (∀xB)⇒B[x/t] (universal instantiation)

(b) B[x/t]⇒ (∃xB) (existential instantiation)

where t is any variable-free term. Also, our Gentzen-style proof system LG is
modified in accordance with the modified tableau rules. With these changes,
the soundness and completeness of LG and LH carry over.

Exercise 4.3.12 (the Interpolation Theorem). Strengthen the Interpolation
Theorem 3.5.1 to say that each operation, predicate and parameter occurring in
I occurs in both A and B. (Hint: The version with operations can be deduced
from the version without operations.)

Exercise 4.3.13. Skolemization.

82

4.4 Predicate Calculus with Identity and Oper-

ations

Remark 4.4.1 (predicate calculus with identity and operations). We augment
the identity axioms (Definition 4.1.2) as follows:

5. For each n-ary operation f of L, we have an axiom

∀x1 · · · ∀xn ∀y1 · · · ∀yn ((Ix1y1 ∧ · · · ∧ Ixnyn)⇒ Ifx1 · · ·xnfy1 · · · yn).

The notions of normal structure and normal satisfiability are defined as before.
The results of Section 4.1 on the predicate calculus with identity carry over
unchanged to the predicate calculus with identity and operations. See also
Exercise 4.4.2 below.

Exercise 4.4.2 (elimination of operations). Let L be a language with identity
and operations. Let Lo be the language with identity and without operations,
obtained by replacing each n-ary operation f belonging to L by a new (n+ 1)-
ary predicate Pf belonging to Lo. Each normal L-structure M gives rise to a
normal Lo-structure Mo where

(Pf)Mo = {〈a1, . . . , an, b〉 ∈ (UM)n+1 | fM (a1, . . . , an) = b}.

For each n-ary operation f of L, let Gf be the Lo-sentence

∀x1 · · · ∀xn ∃y ∀z (Iyz⇔Pfx1 · · ·xnz).

1. Show that to each L-sentence A we may associate an Lo-sentence Ao such
that, for all L-structures M , M |= A if and only if Mo |= Ao.

2. Show that a normal Lo-structure satisfies the sentences Gf , f in L, if and
only if it is of the form Mo for some L-structure M .

Exercise 4.4.3. Show that the spectrum problem for predicate calculus with
identity and operations is equivalent to the spectrum problem for predicate
calculus with identity and without operations, as previously discussed in Section
4.2. In other words, given a sentence A involving some operations, construct a
sentence Aoo involving no operations, such that spectrum(A) = spectrum(Aoo).
(Hint: Use the result of Exercise 4.4.2. Note that Aoo will not be the same as
the Ao of Exercise 4.4.2.)

Remark 4.4.4 (predicate calculus with equality). The predicate calculus with
identity and operations is well suited for the study of algebraic structures such
as number systems, groups, rings, etc. In such a context, one often writes t1 = t2
instead of It1t2, and one refers to predicate calculus with equality rather than
predicate calculus with identity. In this notation, the equality axioms (i.e., the
identity axioms) read as follows:

∀x (x = x),

83

∀x∀y (x = y⇔ y = x),

∀x∀y ∀z ((x = y ∧ y = z)⇒x = z),

∀x1 ∀y1 · · · ∀xn ∀yn ((x1 = y1 ∧ · · · ∧xn = yn)⇒ (Px1 · · ·xn ⇔Py1 · · · yn)),
for each n-ary predicate P ,

∀x1 ∀y1 · · · ∀xn ∀yn ((x1 = y1 ∧ · · · ∧xn = yn)⇒ fx1 · · ·xn = fy1 · · · yn),
for each n-ary operation f .

One also uses customary algebraic notation, e.g., t1+ t2 instead of +t1t2, t1× t2
or t1t2 instead of ×t1t2, etc. To avoid ambiguity, parentheses are used.

Examples 4.4.5 (groups and rings). Using predicate calculus with identity
and operations, a group may be viewed as a normal L-structure

G = (UG, fG, iG, eG, IG).

Here UG is the underlying set of the group, and L is the language {f, i, e, I},
where f is the group composition law (a binary operation), i is group inversion
(a unary operation), e is the group identity element (a 0-ary operation, i.e., a
constant), and I is the identity predicate (a binary predicate). We could refer
to L as the language of groups. It is customary to write G instead of UG, t1 · t2
or t1t2 instead of ft1t2, t

−1 instead of it, 1 instead of e, and t1 = t2 instead of
It1t2. Thus

G = (G, ·G,
−1

G, 1G,=G)

and G is required to satisfy the group axioms, consisting of the identity axioms
for L, plus ∀x∀y ∀z ((xy)z = x(yz)), ∀x (x−1x = xx−1 = 1), ∀x (1x = x1 = x).

Similarly, a ring may be viewed as a normal structure

R = (R,+R, ·R,−R, 0R, 1R,=R)

where + and · are binary operations, − is a unary operation, 0 and 1 are
constants, and = is the equality predicate. We could refer to the language
{+, ·,−, 0, 1,=} as the language of rings. R is required to satisfy the ring axioms,
consisting of the identity axioms plus ∀x∀y ∀y (x + (y + z) = (x + y) + z),
∀x∀y (x + y = y + x), ∀x (x + 0 = x), ∀x (x + (−x) = 0), ∀x∀y ∀z (x · (y · z) =
(x · y) · z), ∀x (x · 1 = 1 · x = x), ∀x∀y ∀z (x · (y + z) = (x · y) + (x · z)),
∀x∀y ∀z ((x+ y) · z = (x · z) + (y · z)), 0 6= 1.

Exercise 4.4.6. Let G be a group. For a ∈ G write an = a · · · · · a (n times).
Thus a1 = a and an+1 = an ·a. We say that G is a torsion group if for all a ∈ G
there exists a positive integer n such that an = 1. We say that G is torsion-free
if for all a ∈ G, if a 6= 1 then an 6= 1 for all positive integers n.

1. Show that the class of torsion-free groups can be characterized by a set of
sentences. I.e., there is a set of sentences S such that, for all groups G, G
is torsion-free if and only if G |= S.

Solution. Let S = {An : n ≥ 2}, where An is the sentence

84

∀x (x 6= 1⇒xn 6= 1).

Clearly the groups satisfying S are exactly the torsion-free groups.

2. Show that the class of torsion-free groups cannot be characterized by a
finite set of sentences.

Solution. Suppose S′ were a finite of sentences such that the groups sat-
isfying S′ are exactly the torsion-free groups. In particular, each sentence
in S′ is a logical consequence of the group axioms plus S = {An : n ≥ 2}
as above. By the Compactness Theorem, each sentence in S′ is a logical
consequence of the group axioms plus {A2, . . . , An} for sufficiently large n.
Since S′ is finite, there is a fixed n such that all of the sentences in S′ are
logical consequences of the group axioms plus {A2, . . . , An}. Now let G
be a torsion group satisfying {A2, . . . , An}. (For example, we may take G
to be the additive group of integers modulo p, where p is a prime number
greater than n.) Then G satisfies S′ yet is not torsion-free, contradicting
our assumption on S′.

3. Show that the class of torsion groups cannot be characterized by a set of
sentences. I.e., there is no set of sentences S with the property that, for
all groups G, G is a torsion group if and only if G |= S.

Exercise 4.4.7. Let L be the language of groups. Let S be the set of L-
sentences which are true in all finite groups. Define a pseudo-finite group to be
a group which satisfies S. Note that every finite group is pseudo-finite.

Does there exist an infinite, pseudo-finite group? Prove your answer.

4.5 Many-Sorted Predicate Calculus

Definition 4.5.1 (many-sorted languages). A many-sorted language consists
of

1. a set of sorts σ, τ, . . .,

2. a set of predicates P,Q, . . ., each designated as n-ary of type (σ1, . . . , σn)
for some nonnegative integer n and sorts σ1, . . . , σn,

3. a set of operations f, g, . . ., each designated as n-ary of type (σ1, . . . , σn, τ)
for some nonnegative integer n and sorts σ1, . . . , σn, τ .

Definition 4.5.2 (terms, formulas, sentences). Let L be a many-sorted lan-
guage. For each sort σ, we assume a fixed, countably infinite set of variables
of sort σ, denoted xσ , yσ, zσ, Let U = (Uσ, U τ , . . .) consist of a set Uσ for
each sort σ of L. The L-U -terms are generated as follows.

1. Each variable of sort σ is a term of sort σ.

85

2. Each element of Uσ is a term of sort σ.

3. If f is an n-ary operaton of type (σ1, . . . , σn, τ), and if t1, . . . , tn are terms
of sort σ1, . . . , σn respectively, then ft1 . . . tn is a term of sort τ .

An atomic L-U -formula is an expression of the form Pt1 . . . tn, where P is an
n-ary predicate of type (σ1, . . . , σn), and t1, . . . , tn are terms of sort σ1, . . . , σn

respectively. The L-U -formulas are generated as in Definition 2.1.3, with clause
5 modified as follows:

5′. If xσ is a variable of sort σ, and if A is an L-U -formula, then ∀xσ A and
∃xσ A are L-U -formulas.

Our notions of substitution, free and bound variables, sentences, etc., are ex-
tended in the obvious way to the many-sorted context. Naturally, the substitu-
tion A[xσ/t] makes sense only when t is a term of sort σ. An L-formula is an
L-U -formula where Uσ = ∅ for each sort σ.

Definition 4.5.3 (many-sorted structures). An L-structure M consists of

1. a nonempty set Uσ
M for each sort σ of L,

2. an n-ary relation PM ⊆ Uσ1

M × · · · × Uσn

M for each n-ary predicate P of
type (σ1, . . . , σn) belonging to L,

3. an n-ary function fM : Uσ1

M × · · · ×Uσn

M → U τ
M for each n-ary operation f

of type (σ1, . . . , σn, τ) belonging to L.

Notions such as isomorphism, valuation, truth, satisfiability, and results such
as Theorem 2.2.6 on isomorphism, and Theorem 4.3.9 on onto mappings, carry
over to the many-sorted context in the obvious way.

Definition 4.5.4 (many-sorted domains). We define a domain or universe for
L to be an indexed family of nonempty sets U = (Uσ, U τ , . . .), where σ, τ, . . . are
the sorts of L. In this way, the notion of satisfiability in a domain generalizes
to the many-sorted context.

Remark 4.5.5 (tableau method, proof systems). For each sort σ of L, fix a
countably infinite set V σ = {aσ, bσ, . . .}, the set of parameters of sort σ. Then
the tableau method carries over in the obvious way, generalizing Remark 4.3.7.
In the Completeness Theorem for the tableau method, we obtain satisfiability
in the domain U = (Uσ, U τ , . . .), where Uσ is the set of variable-free L-V -terms
of sort σ, with V = (V σ, V τ , . . .). The soundness and completeness of our proof
systems LH and LG and the Interpolation Theorem also carry over, just as in
Section 4.3.

Remark 4.5.6 (identity predicates). For each sort σ of L, L may or may not
contain a binary predicate Iσ of type (σ, σ) designated as the identity predicate
for σ. As identity axioms we may take the universal closures of all L-formulas
of the form

86

∀xσ ∀yσ (Iσxy⇒ (A⇔A[x/y]))

where A is atomic. An L-structure M is said to be normal if IσM = {〈a, a〉 | a ∈
Uσ
M} for all σ such that Iσ belongs to L. The results of Section 4.1 concerning

normal satisfiability carry over to the many-sorted context.

Definition 4.5.7 (languages with identity). A many-sorted language with iden-
tity is a many-sorted language which contains an identity predicate for each sort.

Remark 4.5.8 (many-sorted spectrum problem). Let L be a many-sorted lan-
guage with identity. If A is an L-sentence and σ1, . . . , σk are the sorts occurring
in A, the spectrum of A is the set of k-tuples of positive integers (n1, . . . , nk)
such that there exists a normal L-structure M with Uσi

M of cardinality ni, for
i = 1, . . . , k. In this way, the spectrum problem carries over to many-sorted
predicate calculus. So far as I know, the problem of characterizing many-sorted
spectra has not been investigated thoroughly.

Remark 4.5.9 (many-sorted Löwenheim/Skolem theorems). It is natural to try
to generalize the Löwenheim/Skolem Theorem 4.1.13 to many-sorted predicate
calculus. This is straightforward provided we consider only normal structures
M where all of the domains Uσ

M , U τ
M , . . . are of the same infinite cardinality.

However, if we require Uσ
M , U τ

M , . . . to be of specified distinct cardinalities, then
this leads to difficult issues. Even for two sorts, the topic of so-called two-
cardinal theorems turns out to be rather delicate and complicated. See for
example the model theory textbook of Marker [2].

Remark 4.5.10. Our reasons for including many-sorted predicate calculus in
this course are as follows:

1. it is more useful

FIXME

Remark 4.5.11 (one-sorted languages). A language or structure is said to
be one-sorted if it has only one sort. This term is used for contrast with the
many-sorted generalization which we are considering in this section. Generally
speaking, one-sorted logic tends to be a little simpler than many-sorted logic.

87

Chapter 5

Theories, Models,

Definability

5.1 Theories and Models

Definition 5.1.1. A theory T consists of a language L, called the language of
T , together with a set of L-sentences called the axioms of T . Thus T = (L, S),
where L is the language of T , and S is the set of axioms of T .

Definition 5.1.2. Let T = (L, S) be a theory.

1. A model of T is an L-structure M such that M satisfies S. If L contains
identity predicates, then M is required to be normal with respect to these
predicates.

2. A theorem of T is an L-sentence A such that A is true in all models of
T , i.e., A is a logical consequence of the axioms of T . Equivalently, A is
derivable in LH (S ∪ {identity axioms for L}).

If A is a theorem of T , we denote this by T ⊢ A.

3. T is finitely axiomatized if S is finite.

4. Two theories are equivalent if they have the same language and the same
theorems. I.e., they have the same language and the same models.

5. T is finitely axiomatizable if it is equivalent to a finitely axiomatized theory.

Definition 5.1.3 (consistency, categoricity, completeness). Let T = (L, S) be
a theory.

1. T is consistent if there exists at least one model of T . Equivalently, T is
consistent if and only if there is no L-sentence A such that both T ⊢ A
and T ⊢ ¬A. Equivalently, T is consistent if and only if there exists an
L-sentence A such that T 6⊢ A.

88

2. T is categorical if T is consistent and all models of T are isomorphic.

3. T is complete if T is consistent and all models of T are elementarily equiv-
alent. Equivalently, T is complete if and only if for all L-sentences A either
T ⊢ A or T ⊢ ¬A but not both.

Remark 5.1.4. Our formal notion of theory, as defined above, is intended as a
precise explication of the informal notion of “deductive scientific theory”. The
language of T is the vocabulary of our theory. The theorems of T are the
assertions of our theory. The axioms of T are the basic assertions, from which
all others are deduced. Consistency of T means that our theory is free of internal
contradictions. Categoricity of T means that our theory is fully successful in that
it fully captures the structure of the underlying reality described by the theory.
Completeness of T means that our theory is sufficiently successful to decide the
truth values of all statements expressible in the language of the theory.

Remark 5.1.5 (mathematical theories, foundational theories). Later in this
chapter we shall present several interesting examples of theories. Loosely speak-
ing, the examples are of two kinds.

The first kind consists of mathematical theories. By a mathematical theory
we mean a theory which is introduced in order to describe a certain class of
mathematical structures. See Section 5.2. Since the class is diverse, the the-
ory is typically not intended to be complete. Nevertheless we shall see that,
remarkably, several of these mathematical theories turn out to be complete.

The second kind consists of foundational theories, i.e., theories which are
introduced in order to serve as a general axiomatic foundation for all of mathe-
matics, or at least a large part of it. See Sections 5.5 and 5.6. Each such theory
is intended to fully describe a specific, foundationally important model, known
as the intended model of the theory. Although such theories are intended to
be complete, we shall see in Chapter 6 that, regrettably, most of these theories
turn out to be incomplete.

One way to show that a theory is complete is to show that it is categorical.

Theorem 5.1.6. If T is categorical, then (1) T is complete, and (2) the language
of T is a language with identity.

Proof. Assume that T is categorical. Then any two models of T are isomorphic.
Hence by Theorem 2.2.6 (see also Definition 4.5.3), any two models of T are
elementarily equivalent. Hence T is complete. Also, by Theorem 2.7.3 (see also
Theorem 4.3.9 and Definition 4.5.3), T contains an identity predicate for each
sort in the language of T . �

On the other hand, we have:

Exercise 5.1.7. Let T be a complete theory in a language with identity. Let
M be a model of T .

1. In the one-sorted case, show that T is categorical if and only if the universe
UM is finite.

89

2. In the many-sorted case with sorts σ, τ, . . ., show that T is categorical if
and only if each of the universes Uσ

M , U τ
M , . . . is finite.

Solution. If one of the universes Uσ
M is infinite, we can use the Löwenheim/Skolem

Theorem 4.1.13 to blow it up to an arbitrarily large uncountable cardinality.

Remark 5.1.8. Theorem 5.1.6 and Exercise 5.1.7 show that we cannot use
categoricity as a test for completeness, except in very special circumstances. A
similar but more useful test is provided by the following theorem.

Definition 5.1.9. Let κ be an infinite cardinal number. A one-sorted theory
T is said to be κ-categorical if all models of T of cardinality κ are isomorphic.

Theorem 5.1.10 (Vaught’s Test). Let T be a one-sorted theory. Assume that
(a) T is consistent, (b) all models of T are infinite, and (c) there exists an infinite
cardinal κ ≥ the cardinality of the language of T such that T is κ-categorical.
Then T is complete.

Proof. Suppose T is not complete. Since T is consistent, there exist M1 and
M2 which are models of T and not elementarily equivalent. By assumption (b),
M1 and M2 are infinite. Let κ be an infinite cardinal ≥ the cardinality of the
language of T . By the Löwenheim/Skolem Theorem 4.1.13, there exist models
M ′

1,M
′

2 of cardinality κ elementarily equivalent to M1,M2 respectively. Clearly
M ′

1,M
′

2 are not elementarily equivalent. Hence, by Theorem 2.2.6, M ′

1 and M ′

2

are not isomorphic. This contradicts assumption (c). �

Exercise 5.1.11. Generalize Vaught’s Test to many-sorted theories.

5.2 Mathematical Theories

In this section we give several examples of theories suggested by abstract algebra
and other specific mathematical topics. We point out that several of these
mathematical theories are complete.

Example 5.2.1 (groups). The language of groups consists of a binary operation
· (multiplication), a unary operation −1 (inverse), a constant 1 (the identity
element), and a binary predicate = (equality). The theory of groups consists of
the equality axioms plus

∀x∀y ∀z (x · (y · z) = (x · y) · z) (associativity),

∀x (x · x−1 = x−1 · x = 1) (inverses),

∀x (x · 1 = 1 · x = x) (identity).

A group is a model of the theory of groups. A group is said to be Abelian if it
satisfies the additional axiom

∀x∀y (x · y = y · x) (commutativity).

90

A torsion group is a group G such that for all a ∈ G there exists a positive
integer n such that an = 1. A group G is torsion-free if for all a ∈ G, if a 6= 1
then an 6= 1 for all positive integers n. Note that G is torsion-free if and only if
it satisfies the axioms ∀x (xn = 1⇒x = 1) for n = 2, 3, A group is said to
be divisible if it satisfies the axioms ∀x∃y (yn = x), for n = 2, 3,

Exercise 5.2.2. Show that the theory of torsion-free Abelian groups is not
finitely axiomatizable. Deduce that the theory of torsion-free groups is not
finitely axiomatizable.

Solution. Suppose that the theory of torsion-free Abelian groups were finitely
axiomatizable. By Compactness, the axioms would be logical consequences
of the Abelian group axioms plus finitely many axioms of the form ∀x (xn =
1⇒x = 1), say n = 1, . . . , k. Let p be a prime number greater than k. Then the
additive group of integers modulo p satisfies these axioms but is not torsion-free.
This is a contradiction.

If the theory of torsion-free groups were finitely axiomatizable, then the
theory of torsion-free Abelian groups would also be finitely axiomatizable, by
adjoining the single axiom ∀x∀y (x · y = y · x).

Exercise 5.2.3. Show that there exist Abelian groups G1 and G2 such that
G1 is a torsion group, G1 is elementarily equivalent to G2, yet G2 is not a
torsion group. Deduce that there is no theory in the language of groups whose
models are precisely the Abelian torsion groups. Hence, there is no theory in
the language of groups whose models are precisely the torsion groups.

Solution. Let G1 be a torsion group with elements of arbitrarily large finite
order. (For example, we could take G1 to be the additive group of rational
numbers modulo 1.) Let L be the language of groups, and let S be the set
of all L-sentences true in G1. Let L∗ = L ∪ {c} where c is a new constant,
and let S∗ = S ∪ {cn 6= 1 | n = 1, 2, . . .}. By choosing c ∈ G1 appropriately,
we see that any finite subset of S∗ is normally satisfiable. By the Compactness
Theorem for normal satisfiability (Corollary 4.1.9), it follows that S∗ is normally
satisfiable, so let (G2, c) be a model of S∗. Then G2 is an Abelian group which is
elementarily equivalent to G1 yet contains an element c of infinite order, hence
is not a torsion group.

If T were an L-theory whose models are just the Abelian torsion groups,
then G1 would be a model of T but G2 would not, contradicting the fact that
G1 and G2 are elementarily equivalent.

If T were an L-theory whose models are just the torsion groups, then T ∪
{∀x∀y (x · y = y · x)} would be an L-theory whose models are just the Abelian
torsion groups.

Remark 5.2.4. Let DAG0 be the theory of infinite torsion-free divisible Abelian
groups. It can be shown that DAG0 is κ-categorical for all uncountable cardinals
κ. (This is because such groups may be viewed as vector spaces over the rational
field, Q.) It follows by Vaught’s Test that DAG0 is complete.

91

Example 5.2.5 (linear orderings). The language of linear orderings consists
of a binary predicate < plus the equality predicate =. The axioms for lin-
ear orderings are ∀x∀y ∀z ((x < y∧ y < z)⇒x < z), and ∀x (¬x < x), and
∀x∀y (x < y ∨x = y ∨x > y). A linear ordering is a model of these axioms.

A linear ordering is said to be nontrivial if it satisfies ∃x∃y (x < y). It is
said to be dense if it is nontrivial and satisfies ∀x∀y (x < y⇒∃z (x < z < y)).
It is said to be without end points if it satisfies ∀x∃y (y < x) and ∀x∃y (y > x).
It is said to with end points if it satisfies ∃x¬∃y (y < x) and ∃x¬∃y (y > x).
An example of a dense linear ordering without end points is (Q, <), where Q is
the set of rational numbers, and < is the usual ordering of Q.

Remark 5.2.6. It can be shown that, up to isomorphism, (Q, <) is the unique
countable dense linear ordering without end points. (This is proved by a back-
and-forth argument.) Hence, if we let DLO be the theory of dense linear ordering
without end points, DLO is ℵ0-categorical. It follows by Vaught’s Test that DLO
is complete.

Example 5.2.7 (graphs). The language of graphs consists of a binary predicate,
R, plus the equality predicate, =. The theory of graphs consists of the equality
axioms plus ∀x∀y (Rxy⇔Ryx) and ∀x¬Rxx. A graph is a model of the theory
of graphs.

Thus a graph is essentially an ordered pair G = (VG, RG), where VG is a
nonempty set and RG is a symmetric, irreflexive relation on VG. The elements
of VG are called vertices. Two vertices a, b ∈ VG are said to be adjacent if
〈a, b〉 ∈ RG. A path from a to b is a finite sequence of pairwise distinct vertices
a = v0, v1, . . . , vn = b such that a = v0 is adjacent to v1, v1 is adjacent to v2,
. . . , vn−1 is adjacent to vn = b. G is said to be connected if for all a, b ∈ VG

there exists a path from a to b. Equivalently, G is connected if and only if, for
all partitions of VG into two disjoint nonempty sets X and Y , there exist a ∈ X
and b ∈ Y such that a and b are adjacent.

Exercise 5.2.8. Show that there exist graphs G1 and G2 such that G1 is
connected, G1 is elementarily equivalent to G2, yet G2 is not connected. Deduce
that there is no theory T in the language of graphs such that the models of T
are exactly the connected graphs.

Solution. If a and b are two vertices in a graph, we define d(a, b), the distance
from a to b, to be the smallest length of a path from a to b, or ∞ if there is no
such path. Let G1 be a graph which is connected yet contains pairs of vertices
which are at distance n for arbitrarily large n. (For example, we may take
G1 = (N, R1) where R1 = {〈n, n+ 1〉, 〈n + 1, n〉 | n ∈ N}.) Let L = {R,=} be
the language of graphs, and let S be the set of L-sentences satisfied by G1. Let
L∗ = L∪{a, b} where a, b are new constants, and let S∗ = S∪{An | n = 1, 2, . . .}
where An is an L∗-sentence saying that there is no path of length n from a to
b. By choosing a, b ∈ G1 appropriately, we see that all finite subsets of S∗

are normally satisfiable. Hence by the Compactness Theorem S∗ is normally
satisfiable, so let (G2, a, b) be a model of S∗. Then G2 is a graph which is

92

elementarily equivalent to G1, yet a, b ∈ G2 are such that d(a, b) = ∞, hence
G2 is not connected.

If there were an L-theory T whose models are exactly the connected graphs,
then G1 would be a model of T but G2 would not, contradicting the fact that
G1 and G2 are elementarily equivalent.

Exercise 5.2.9. A graph G is said to be random if for all finite sets of distinct
vertices a1, . . . , am, b1, . . . , bn there exists a vertex c such that c is adjacent
to a1, . . . , am and not adjacent to b1, . . . , bn. Show that the theory of random
graphs is ℵ0-categorical. It follows by Vaught’s Test that this theory is complete.

Solution. Let G and G′ be two random graphs of cardinality ℵ0, say G = {ak |
k ∈ N} and G′ = {a′k | k ∈ N}. We use a back-and-forth argument to construct
an isomorphism of G onto G′. At stage n of the construction, we have a finite
partial isomorphism, fn, which maps a finite subset of G isomorphically onto a
finite subset of G′. Start with f0 = ∅. Suppose we have already constructed fn.
To construct fn+1, consider two cases. If n is even, let kn be the least k such
that ak /∈ dom(fn), and put c = akn

. By randomness of G′, find c′ ∈ G′ such
that for all a ∈ dom(fn), c

′ is adjacent to fn(a) if and only if c is adjacent to
a. If n is odd, let kn be the least k such that a′k /∈ ran(fn), and put c′ = a′kn

.
By randomness of G, find c ∈ G such that for all a ∈ dom(fn), c is adjacent to
a if and only if c′ is adjacent to fn(a). In either case, let fn+1 = fn ∪ {(c, c′)}.
Finally, by construction, f =

⋃
∞

n=0 fn is an isomorphism of G onto G′.

Example 5.2.10 (rings). The language of rings consists of binary operations
+ and · (addition and multiplication), a unary operation − (subtraction), con-
stants 0 and 1 (the additive and multiplicative identity elements), and a binary
predicate = (equality). The theory of rings consists of the equality axioms plus

∀x∀y ∀z (x+ (y + z) = (x + y) + z),

∀x∀y (x + y = y + x),

∀x (x + (−x) = 0),

∀x (x + 0 = x),

∀x∀y ∀z (x · (y · z) = (x · y) · z),

∀x∀y ∀z (x · (y + z) = (x · y) + (x · z)) (left distributivity),

∀x∀y ∀z ((x+ y) · z = (x · z) + (y · z)) (right distributivity),

∀x (x · 1 = 1 · x = x),

∀x (x · 0 = 0 · x = 0),

0 6= 1.

A ring is a model of the theory of rings. A ring is said to be commutative if it
satisfies the additional axiom

93

∀x∀y (x · y = y · x).

An example of a commutative ring is the ring of integers,

Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

An example of a non-commutative ring is the ring of 2× 2 matrices.

Example 5.2.11 (fields). A field is a commutative ring satisfying the additional
axiom

∀x (x 6= 0⇒∃y (x · y = 1)).

A field is said to be of characteristic 0 if it satisfies

1 + · · ·+ 1︸ ︷︷ ︸
n

6= 0

for all positive integers n. Familiar fields such as the field of rational numbers,
Q, the field of real numbers, R, and the field of complex numbers, C, are of
characteristic 0. It can be shown that if a field satisfies 1 + · · ·+ 1︸ ︷︷ ︸

n

= 0 for some

positive integer n, then the least such n is a prime number, p. In this case, our
field is said to be of characteristic p. An example of a field of characteristic p
is the ring of integers modulo p.

A field F is said to be algebraically closed if for all nontrivial polynomials
f(z) = anz

n + · · · + a1z + a0, an, . . . , a1, a0 ∈ F , an 6= 0, n ≥ 1, there exists
z ∈ F such that f(z) = 0. It is known that the complex field C is algebraically
closed. (This theorem is known as the Fundamental Theorem of Algebra.) Note
that a field is algebraically closed if and only if it satisfies the axioms

∀x0 ∀x1 · · · ∀xn (xn 6= 0⇒∃z (xnz
n + · · ·+ x1z + x0 = 0))

for n = 1, 2, 3,

Exercise 5.2.12. Show that the theory of fields of characteristic 0 is not finitely
axiomatizable. Show that the theory ACF of algebraically closed fields is not
finitely axiomatizable. Show that the theory ACF0 of algebraically closed fields
of characteristic 0 is not finitely axiomatizable.

Solution. Suppose that the theory of fields of characteristic 0 were finitely
axiomatizable. By Compactness, the axioms would be logical consequences of
the field axioms plus finitely many axioms of the form 1 + · · ·+ 1︸ ︷︷ ︸

n

6= 0, say

n = 1, . . . , k. Let p be a prime number greater than k. The field of integers
modulo p satisfies these axioms but is not of characteristic 0, a contradiction.

Suppose ACF or ACF0 were finitely axiomatizable. By Compactness, the
axioms would be logical consequences of the field axioms plus finitely many of
the ACF0 axioms as presented in Example 5.2.11 above. But, for any finite
subset of the ACF0 axioms, we can construct a field which satisfies these axioms
yet is not algebraically closed. (The construction of such a field is perhaps
somewhat delicate.) This gives a contradiction.

94

Exercise 5.2.13. Let L be the language of rings. Let S be the set of L-sentences
which are true in the ring of integers modulo p for all but finitely many prime
numbers p. Does there exist a field of characteristic 0 satisfying S? Prove your
answer.

Solution. The answer is yes. Note first that, for each prime p, the ring of
integers modulo p is actually a field. Hence S includes the field axioms. Let
S0 = S ∪ {1 + · · ·+ 1︸ ︷︷ ︸

n

6= 0 | n = 1, 2, . . .}. Any finite subset of S0 is normally

satisfiable, e.g., in the integers modulo p for all sufficiently large primes p. By
the Compactness Theorem for normal satisfiability (Corollary 4.1.9), it follows
that S0 is normally satisfiable. The normal structures which satisfy S0 are fields
of characteristic 0 satisfying S.

Remark 5.2.14. Let ACF0 be the theory of algebraically closed fields of char-
acteristic 0. For each prime number p, let ACFp be the theory of algebraically
closed fields of characteristic p. It can be shown that the theories ACF0 and
ACFp are κ-categorical for all uncountable cardinals κ. It follows by Vaught’s
Test that these theories are complete.

Example 5.2.15 (vector spaces). The language of vector spaces is a 2-sorted
language with sorts σ and τ , denoting scalars and vectors respectively. For the
scalars we have binary operations + and · of type (σ, σ, σ), a unary operation −
of type (σ, σ), constants 0 and 1 of type σ, and an equality predicate = of type
(σ, σ). For the vectors we have a binary operation + of type (τ, τ, τ), a unary
operation − of type (τ, τ), a constant 0 of type τ , and an equality predicate =
of type (τ, τ). In addition we have a binary operation · of “mixed” type (σ, τ, τ),
denoting scalar multiplication.

The theory of vector spaces consists of the field axioms for scalars, the
Abelian group axioms for vectors, and the axioms

∀xσ ∀vτ ∀wτ (x · (v + w) = (x · v) + (x · w)),

∀xσ∀vτ (x · (−v) = −(x · v)),

∀xσ (x · 0τ = 0),

∀xσ ∀yσ ∀vτ ((x + y) · v = (x · v) + (y · v)),

∀xσ∀vτ ((−x) · v = −(x · v)),

∀xσ ∀yσ ∀vτ ((x · y) · v = x · (y · v)),

∀vτ (1 · v = v),

∀vτ (0 · v = 0)

for scalar multiplication. A vector space is a model of these axioms.
If V is a vector space, a set of vectors S in V is said to span V if every

vector v in V can be written as a linear combination of vectors in S, i.e., v =

95

a1 ·v1+ · · ·+an ·vn for some v1, . . . , vn ∈ S and scalars a1, . . . , an. An important
invariant of a vector space is its dimension, i.e., the minimum cardinality of a
spanning set. It can be shown that, up to isomorphism over a field F , the
unique vector space over F of dimension κ is the familiar space

⊕
i<κ F . Here

the vectors are sequences 〈ai | i < κ〉, with ai ∈ F for all i, and ai = 0 for all
but finitely many i. Vector addition is given by

〈ai | i < κ〉+ 〈bi | i < κ〉 = 〈ai + bi | i < κ〉,

and scalar multiplication is given by

c · 〈ai | i < κ〉 = 〈c · ai | i < κ〉.

Example 5.2.16 (ordered algebraic structures). The language of ordered rings
consists of the language of rings +, ·,−, 0, 1,=, together with <. The ordered
field axioms consist of the field axioms, plus the linear ordering axioms, plus

∀x∀y ∀z (x < y⇔x+ z < y + z),

∀x∀y ((x > 0 ∧ y > 0)⇒x · y > 0).

An ordered field is a model of these axioms. An example of an ordered field is
the field of rational numbers (Q, <) with its usual ordering.

An ordered field (F,<) is said to be real-closed if for all polynomials f(x) =
anx

n + · · ·+ a1x+ a0, an, . . . , a1, a0 ∈ F , and for all b, c ∈ F , if f(b) < 0 < f(c)
then there exists x ∈ F between b and c such that f(x) = 0. Clearly the
ordered field of real numbers (R, <) is real-closed. Note that an ordered field is
real-closed if and only if it satisfies the axioms

∀u ∀v ∀w0 ∀w1 · · · ∀wn

((u < v ∧ wnu
n + · · ·+ w1u+ w0 < 0 < wnv

n + · · ·+ w1v + w0)

⇒∃x (u < x < v ∧ wnx
n + · · ·+ w1x+ w0 = 0))

for n = 1, 2, 3,

Remark 5.2.17 (elimination of quantifiers). Let RCOF be the theory of real-
closed ordered fields. A famous and important theorem of Tarski says that
RCOF is complete. This holds despite the fact that RCOF is not κ-categorical
for any κ.

Tarski’s method of proof is as follows. A theory T = (L, S) is said to admit
elimination of quantifiers if for all L-formulas A there exists a quantifier-free L-
formula A∗ such that T ⊢ the universal closure of A⇔A∗. Tarski uses algebraic
methods to show that the theory RCOF admits elimination of quantifiers. For
example, the formula ∃x (ax2 + bx + c = 0) is equivalent over RCOF to the
quantifier-free formula (a = b = c = 0)∨ (a = 0 6= b)∨ (a 6= 0 ≤ b2 − 4ac).

As a special case of quantifier elimination, we have that each sentence in
the language of RCOF is equivalent over RCOF to a quantifier-free sentence. On
the other hand, it is evident that the quantifier-free sentences of the language

96

of RCOF are of a very simple nature, e.g., 1 + 0 = 1∧ (1 · 1) + 1 < 1 + 1 + 1.
Since the truth values of such sentences are decided by the axioms of RCOF, it
follows that RCOF is complete.

Exercise 5.2.18. Which of the following theories are complete? Justify your
answers.

1. The theory of dense linear orderings with end points.

2. The theory of fields of characteristic 0.

3. The theory of infinite, torsion-free, Abelian groups.

4. The theory of finite-dimensional vector spaces over a field of 5 elements.

5. The theory of infinite-dimensional vector spaces over a field of 5 elements.

Solution.

1. As noted in Remark 5.2.6, the theory of dense linear orderings without end
points is ℵ0-categorical. It follows immediately that the theory of dense
linear orderings with end points is ℵ0-categorical. Hence, by Vaught’s
Test, each of these theories is complete.

2. The fields Q, R, and C are of characteristic 0, yet they are not elementarily
equivalent, as can be seen by considering the sentences ∃x (x · x = 1 + 1)
and ∃z (z · z = −1). Therefore, the theory of fields of characteristic 0 is
incomplete.

3. The additive groups of Z and Q are infinite, Abelian, and torsion-free,
yet they are not elementary equivalent, as can be seen by considering
the sentence ∃x (x + x = 1). Therefore, the theory of infinite, Abelian,
torsion-free groups is incomplete.

4. The vector spaces of dimension n = 0, 1, 2, . . . over a particular finite
field F are not elementarily equivalent, because they have different finite
cardinalities 1, q, q2, . . . where q is the cardinality of F . Therefore, the
theory of finite-dimensional vector spaces over F is incomplete.

5. As noted in Example 5.2.15, any two vector spaces over the same field of
the same dimension are isomorphic. On the other hand, for any infinite
cardinal number κ, any vector space of cardinality κ over a finite field
is of dimension κ. Combining these facts, we see that for any particular
finite field F , the theory TF of infinite-dimensional vector spaces over F
is κ-categorical. Hence, by Vaught’s Test, TF is complete.

97

5.3 Definability over a Model

Definition 5.3.1 (explicit definability). Let L be a language, let M be an L-
structure, and let R be an n-ary relation on UM . We say that R is explicitly
definable over M , or just definable over M , if there exists an L-formula D with
n free variables x1, . . . , xn such that

R = {〈a1, . . . , an〉 | M |= D[x1/a1, . . . , xn/an]}.

Example 5.3.2. Consider the binary relation < = {〈a, b〉 ∈ R2 | a < b} on
the set R of real numbers. Viewing R as a commutative ring, we see that for
all a, b ∈ R, a < b if and only if R |= ∃x (x 6= 0 ∧ a + x2 = b). Thus < is
explicitly definable over the commutative ring R = (R,+,−, ·, 0, 1,=) by the
formula ∃z (z 6= 0 ∧ x+ z2 = y) with free variables x, y.

On the other hand, in view of Tarski’s theorem on elimination of quantifiers
for RCOF (see Remark 5.2.17), any subset of R which is definable over R consists
of a union of finitely many points and intervals. From this it follows that, for
example, the set of integers is not definable over R.

Example 5.3.3. Let N = (N,+, ·, 0, 1, <,=) be the natural number system. It
can be shown that the class of relations which are explicitly definable over N

includes all relations which are computable in the sense of Turing. In particular,
the 3-ary relation {〈m,n, k〉 ∈ N3 | m = nk} is definable over N, as we now show.

Theorem 5.3.4. The exponential function (n, k) 7→ nk is explicitly definable
over the natural number system.

Proof. The proof uses some number-theoretic lemmas, as follows.

Lemma 5.3.5 (the Chinese Remainder Theorem). Let m1, . . . ,mk be pairwise
relatively prime. Given r1, . . . , rk, we can find r such that r ≡ ri mod mi for
all i = 1, . . . , k.

Proof. We omit the proof of this well-known result. �

Lemma 5.3.6. For each k ∈ N we can find infinitely many a ∈ N such that the
integers a+ 1, 2a+ 1, . . . , ka+ 1 are pairwise relatively prime.

Proof. Let a be any multiple of k!. Suppose p is a prime number which divides
both ai + 1 and aj + 1 where 1 ≤ i < j ≤ k. Since p divides ai + 1 and a is
a multiple of k!, we clearly have p > k. On the other hand, p divides a(j − i),
and j − i < k, hence p divides a, a contradiction since p divides ai+ 1. �

Definition 5.3.7 (Gödel’s beta-function). We define β(a, r, i) = the remainder
of r upon division by a·(i+1)+1. Note that the β-function is explicitly definable
over the natural number system.

Lemma 5.3.8. Given a finite sequence of natural numbers n0, n1, . . . , nk, we
can find natural numbers a, r such that β(a, r, i) = ni for all i = 0, 1, . . . , k.

98

Proof. Let a ≥ max{ni | i ≤ k} be such that a · (i + 1) + 1, i ≤ k, are pairwise
relatively prime. By the Chinese Remainder Theorem, we can find r such that
r ≡ ni mod a · (i + 1) + 1 for all i ≤ k. Since 0 ≤ ni ≤ a < a · (i + 1) + 1, it
follows that β(a, r, i) = ni. �

Now, to prove Theorem 5.3.4, note that m = nk holds if and only if ∃a ∃r
(β(a, r, 0) = 1∧β(a, r, k) = m∧∀i (i < k⇒β(a, r, i) · n = β(a, r, i + 1))). �

Exercise 5.3.9. Let pn be the nth prime number. Thus p0 = 2, p1 = 3, p2 = 5,
p3 = 7, p4 = 11, etc. Show that the function k 7→ pk is explicitly definable over
the natural number system N. (This means, show that the binary relation
{〈k, pk〉 | k ∈ N} is explicitly definable over N.)

Solution. Let A be a formula expressing that x is prime, for example

1 < x∧¬∃u ∃v (u < x∧ v < x∧ u · v = x).

We then have pk = n if and only if ∃a ∃r (B ∧C), where B is

β(a, r, k) = n∧∀i (i < k⇒β(a, r, i) < β(a, r, i+ 1))

and C is
∀x (x ≤ n⇒ (A⇔∃i (i ≤ k∧β(a, r, i) = x))).

We now turn to implicit definability.

Definition 5.3.10 (implicit definability). Let L be a language, let M be an
L-structure, and let R be an n-ary relation on UM . We say that R is implicitly
definable over M if there exists a sentence D∗ in the language L∗ = L ∪ {R}
with an additional n-ary predicate R, such that for all n-ary relations R′ on
UM , (M,R′) |= D∗ if and only if R′ = R.

Example 5.3.11. Let R = (R,+,−, ·, 0, 1, <,=) be the ordered field of real
numbers. Consider the set of integers, Z ⊂ R. As noted above, Z is not
explicitly definable over R. However, Z is implicitly definable over R, by the
following sentence with an additional unary predicate Z:

Z0∧Z1∧ (¬∃x (Zx∧ 0 < x < 1))∧ (∀x (Zx⇔Z(x+ 1))).

Example 5.3.12. It can be shown that there exists a subset of N which is
implicitly definable over the natural number system N = (N,+, ·, 0, 1, <,=) but
is not explicitly definable over N. See Remark 6.4.6 and Exercise 6.4.7 below.

Definition 5.3.13 (automorphisms). Let M be a structure. An automorphism
of M is an isomorphism of M onto itself. An n-ary relation R on UM is said to
be invariant if

R = {〈f(a1), . . . , f(an)〉 | 〈a1, . . . , an〉 ∈ R}

for all automorphisms f of M .

99

Exercise 5.3.14. Let M be a structure. Show that any relation which is ex-
plicitly definable over M is implicitly definable over M . Show that any relation
which is implicitly definable over M is invariant under all automorphisms of
M . Give counterexamples showing that the converses of these assertions fail in
general.

Solution. Let R be an n-ary relation over UM . If R is explicitly defined over
M by a formula D with free variables x1, . . . , xn, then R is implicitly defined
overM by the L∪{R}-sentence ∀x1 · · · ∀xn (Rx1 · · ·xn ⇔D). Now suppose R is
implicitly defined overM by an L∪{R}-sentenceD∗. Let f be an automorphism
of M , and put R′ = {〈f(a1), . . . , f(an)〉 | 〈a1, . . . , an〉 ∈ R}. Then f is an
isomorphism of (M,R) onto (M,R′). Since (M,R) |= D∗, it follows by Theorem
2.2.6 that (M,R′) |= D∗. Hence R′ = R, i.e., R is invariant under f .

Consider the ordered field R of real numbers. Example 5.3.11 shows that the
subset Z of R is implicitly definable over R but not explicitly definable over R.
Since there are only countably many sentences, only countably many subsets of
R are implicitly definable over R. However, all subsets of R are invariant under
automorphisms of R, inasmuch as R has no automorphisms except the identity.

Exercise 5.3.15. Let R = (R,+,−, ·, 0, 1, <,=) be the ordered field of real
numbers. Show that the relations y = ex and y = sinx are implicitly definable
over R. It can be shown that these relations are not explicitly definable over R.
(Hint: The relations y = ex and y = sinx are implicitly defined by differential
equations which can be expressed as formulas of the predicate calculus, using
the ǫ-δ-method.)

Exercise 5.3.16. Show that if UM is finite, then any relation which is implicitly
definable over M is explicitly definable over M .

Solution. Let us say that 〈a1, . . . , an〉, 〈b1, . . . , bn〉 ∈ (UM)n are of the same n-
type if (M,a1, . . . , an) is elementarily equivalent to (M, b1, . . . , bn). Thus (UM)n

is partitioned into equivalence classes, the n-types. Since UM is finite, there
are only finitely many n-types, and each n-type is explicitly definable over M .
Moreover, by Theorem 2.2.6 and Exercise 4.1.12, the n-types are just the orbits
of (UM)n under the automorphism group of M . If R ⊆ (UM)n is implicitly
definable over M , then R is invariant under automorphisms of M , hence R is
the union of some of the n-types, hence R is explicitly definable over M .

Exercise 5.3.17. (In this exercise we assume familiarity with saturated mod-
els.) Show that if a structure M is saturated, then any relation which is implic-
itly definable over M is explicitly definable over M .

Exercise 5.3.18. Let G be a group which has infinitely many distinct sub-
groups. Prove that there exists a countable group G′ such that

1. G′ is elementarily equivalent to G, and

2. G′ has a subgroup which is not explicitly definable over G′.

100

Solution. Let S be the set of sentences which are true in G. Introduce a
new unary predicate P , and let S′ consist of S plus the sentences P1 and
∀x (Px⇒Px−1) and ∀x∀y ((Px∧Py)⇒P (x · y)) and ¬∀x (Px⇔D) where D
is any formula with x as its only free variable. Since G has infinitely many
subgroups, each finite subset of S′ is normally satisfiable in G by letting P
be an appropriately chosen subgroup of G. It follows by Compactness plus
Löwenheim/Skolem that we can find a countable normal structure (G′, P ′) sat-
isfying S′. Then G′ is a countable group which is elementarily equivalent to G,
and P ′ is a subgroup of G′ which is not explicitly definable over G′.

Remark 5.3.19. In this section we have considered explicit and implicit de-
finability over a model, M . We have given examples showing that, in general,
implicit definability over M does not imply explicit definability over M .

In Sections 5.4 and 5.8 below, we shall consider the related but more re-
strictive notions of explicit and implicit definability over a theory, T . It will be
obvious that explicit definability over T implies explicit definability over any
model of T , and implicit definability over T implies implicit definability over
any model of T . A pleasant surprise is that explicit definability over T is equiv-
alent to implicit definability over T . This is the content of Beth’s Definability
Theorem, Theorem 5.8.2 below.

5.4 Definitional Extensions of Theories

We now show how theories can be usefully extended by adding new predicates
and operations which are explicitly definable in terms of old predicates and op-
erations. This method of extending a theory is known as definitional extension.

In this section we are considering only explicit definitional extensions. Later,
in Section 5.8, we shall consider implicit definitional extensions. It will turn
out that, in principle, an implicit definitional extension of a theory is always
equivalent to an explicit definitional extension of the same theory.

Definition 5.4.1 (defining a new predicate). Let T = (L, S) be a theory,
and let D be an L-formula with free variables x1, . . . , xn. Introduce a new
n-ary predicate P , and let T ′ = (L′, S′) where L′ = L ∪ {P} and S′ = S ∪
{∀x1 · · · ∀xn (Px1 · · ·xn ⇔D)}.

Definition 5.4.2 (defining a new operation). Let T = (L, S) be a theory with
an identity predicate I. Let D be an L-formula with free variables x1, . . . , xn, y
such that

T ⊢ ∀x1 · · · ∀xn (∃ exactly one y)D,

i.e.,
T ⊢ ∀x1 · · · ∀xn ∃z ∀y (Iyz⇔D)

where z is a new variable. Introduce a new n-ary operation f , and let T ′ =
(L′, S′) where L′ = L ∪ {f} and S′ = S ∪ {∀x1 · · · ∀xn ∀y (Ifx1 . . . xny⇔D)}.

101

Remark 5.4.3. In Definition 5.4.2 above, we have assumed for simplicity that
T is one-sorted. In case T is many-sorted, we make the obvious modifications.
Namely, letting σ1, . . . , σn, τ be the sorts of the variables x1, . . . , xn, y respec-
tively, we require that z is a new variable of sort τ , I is an identity predicate of
sort τ , and f is an operation of type (σ1, . . . , σn, τ).

Remark 5.4.4. We are going to prove that these extensions of T are “trivial” or
“harmless” or “inessential”, in the sense that each formula in the extended lan-
guage L∪{P} or L∪{f} can be straightforwardly translated into an equivalent
formula of the original language L. See Theorem 5.4.10 below.

Lemma 5.4.5. Let T = (L, S) and T ′ = (L′, S′) be as in Definition 5.4.1 or
5.4.2. Then for all L-sentences A we have T ′ ⊢ A if and only if T ⊢ A.

Proof. It suffices to show that, for each model M of T , there exists a model M ′

of T ′ such that M = M ′↾L, i.e., M is the reduct of M ′ to L. In the case of
Definition 5.4.1, let M ′ = (M,PM ′) where

PM ′ = {〈a1, . . . , an〉 | M |= D[x1/a1, . . . , xn/an]}.

In the case of Definition 5.4.2, let M ′ = (M, fM ′) where fM ′(a1, . . . , an) = the
unique b such that M |= D[x1/a1, . . . , xn/an, y/b]. Clearly M ′ is as desired. �

Definition 5.4.6 (translation). Let T = (L, S) and T ′ = (L′, S′) be as in
Definition 5.4.1 or 5.4.2. To each L′-formula A we associate an L-formula A′,
the translation of A into L. In order to define A′, we first modify D, replacing
the free and bound variables of D by new variables which do not occur in A.
(Compare Definition 2.4.9.) In the case of Definition 5.4.1, where we are adding
a new predicate P , we obtain A′ from A by replacing each atomic formula of
the form Pt1 . . . tn by D[x1/t1, . . . , xn/tn].

In the case of Definition 5.4.2, where we are adding a new operation f , the
translation is more complicated. For non-atomic A we obtain A′ by induction
on the degree of A, putting (¬A)′ = ¬A′, (A∧B)′ = A′ ∧B′, (∀xA)′ = ∀xA′,
etc. For atomic A we obtain A′ by induction on the number of occurrences of f
in A. If there are no occurrences of f in A, let A′ be just A. Otherwise, write
A in the form B[w/ft1 · · · tn] where w is a new variable and f does not occur
in t1, . . . , tn, and let A′ be

∃w (D[x1/t1, . . . , xn/tn, y/w]∧B′)

or equivalently
∀w (D[x1/t1, . . . , xn/tn, y/w]⇒B′).

Lemma 5.4.7. Let T and T ′ be as in Definition 5.4.1 or 5.4.2, and let A 7→ A′

be our translation of L′-formulas to L-formulas as in Definition 5.4.6. Then:

1. A′ has the same free variables as A and is equivalent to it over T ′, i.e.,
T ′ ⊢ A⇔A′.

102

2. Propositional connectives and quantifiers are respected, i.e., we have
(¬A)′ ≡ ¬A′, (A∧B)′ ≡ A′ ∧B′, (∀xA)′ ≡ ∀xA′, etc.

3. If A happens to be an L-formula, then A′ is just A.

Consequently, for all L′-sentences A we have T ′ ⊢ A if and only if T ⊢ A′.

Proof. The first part is straightforward. For the last part, since T ′ ⊢ A⇔A′,
we obviously have T ′ ⊢ A if and only if T ′ ⊢ A′. But then, since A′ is an
L-sentence, it follows by Lemma 5.4.5 that T ′ ⊢ A if and only if T ⊢ A′. �

Definition 5.4.8 (definitional extensions). Let T be a theory. A definitional ex-
tension of T is a theory T ∗ which is a union of sequences of theories T0, T1, . . . , Tk

beginning with T0 = T such that each Ti+1 is obtained by extending Ti as in
Definition 5.4.1 or 5.4.2.

Definition 5.4.9 (conservative extensions). Let T = (L, S) and T ∗ = (L∗, S∗)
be theories such that L∗ ⊇ L. We say that T ∗ is a conservative extension of T
if, for all L-sentences A, T ∗ ⊢ A if and only if T ⊢ A.

Theorem 5.4.10. Let T ∗ be a definitional extension of T . Then T ∗ is a conser-
vative extension of T . Moreover, there is a straightforward translation A 7→ A∗

of L∗-formulas to L-formulas, with the following properties.

1. A∗ has the same free variables as A and is equivalent to it over T ∗, i.e.,
T ∗ ⊢ A⇔A∗.

2. Propositional connectives and quantifiers are respected, i.e., we have
(¬A)∗ ≡ ¬A∗, (A∧B)∗ ≡ A∗ ∧B∗, (∀xA)∗ ≡ ∀xA∗, etc.

3. If A happens to be an L-formula, then A∗ is just A.

Consequently, for all L∗-sentences A, we have

T ∗ ⊢ A if and only if T ⊢ A∗.

Proof. This is clear from Lemmas 5.4.5 and 5.4.7. �

Remark 5.4.11. In practice, when it comes to working with specific theories
T , the technique of definitional extensions is very useful. This is because for-
mulas written in the extended language L∗ tend to be much shorter than their
translations in L. This is particularly important for the foundational theories
Z1, Z2, . . . , Zn, . . . , Z∞, ZC, ZFC which are discussed in Sections 5.5 and 5.6
below.

Exercise 5.4.12. Show that for any theory T there is a definitional extension
of T which admits elimination of quantifiers.

Solution. Let L be the language of T . For each L-formula A with free variables
x1, . . . , xn introduce a new n-ary predicate PA and a new axiom

∀x1 · · · ∀xn (PAx1 · · ·xn ⇔A).

The resulting theory admits elimination of quantifiers.

103

Exercise 5.4.13. Let T = (L, S) be a theory. Let A be an L-formula with free
variables x1, . . . , xn, y. Let T ′ = (L′, S′) where L′ consists of L plus a new n-
ary operation f , and S′ consists of S plus ∀x1 · · · ∀xn (A[y/fx1 · · ·xn]⇔∃y A).
Show that T ′ is a conservative extension of T .

Solution. Let B be an L-sentence such that T ′ ⊢ B. We must show that T ⊢ B.
If T 6⊢ B, let M be a model of T ∪ {¬B}. Let M ′ = (M, fM ′) where fM ′ is
an n-ary function on UM with the following property: for all a1, . . . , an ∈ UM

such that M |= ∃y A[x1/a1, . . . , xn/an], we have M |= A[x1/a1, . . . , xn/an, y/b]
where b = fM ′(a1, . . . , an). (Note that fM ′ is not necessarily unique and is not
necessarily definable over M . The existence of an fM ′ with the desired property
follows from the axiom of choice.) Clearly M ′ is a model of T ′ ∪ {¬B}, hence
T ′ 6⊢ B, a contradiction.

5.5 Foundational Theories

In this section and the next, we present several specific theories which are of
significance in the foundations of mathematics. We point out that these theories
are, in certain senses, “almost complete” or “practically complete.” On the other
hand, we shall see in Chapter 6 that these theories are not complete.

Definition 5.5.1 (first-order arithmetic). One of the most famous and impor-
tant foundational theories is first-order arithmetic, Z1, also known as Peano
Arithmetic, PA. The language of first-order arithmetic is L1 = {+, ·, 0, S,=}
where + and · are binary operations, S is a unary operation, 0 is a constant,
and = is the equality predicate. Let Q be the finitely axiomatizable L1-theory
with axioms

∀x (Sx 6= 0),

∀x∀y (Sx = Sy⇒x = y),

∀x (x + 0 = x),

∀x∀y (x + Sy = S(x+ y)),

∀x (x · 0 = 0),

∀x∀y (x · Sy = (x · y) + x).

The axioms of Z1 consist of the axioms of Q plus the induction scheme, i.e., the
universal closure of

(A[x/0]∧∀x (A⇒A[x/Sx]))⇒∀xA

where A is any L1-formula.
Note that the induction scheme consists of an infinite set of axioms. It can

be shown that Z1 is not finitely axiomatizable.

104

Remark 5.5.2 (practical completeness of first-order arithmetic). The intended
model of Z1 is the natural number system

N = (N,+, ·, 0, S,=)

where N = {0, 1, 2, . . .} and +, ·, 0,= are as expected, and S is the successor
function, S(n) = n + 1 for all n ∈ N. Obviously the axioms of Z1 are true in
this model. The idea behind the axioms of Z1 is that we are trying to write
down a set S1 of L1-sentences with the property that, for all L1-sentences A,
S1 ⊢ A if and only if N |= A. In particular, the axioms of Z1 are intended
to be complete. Unfortunately this intention cannot be fulfilled, as shown by
Gödel’s First Incompleteness Theorem (see Chapter 6). However, it is known
that Z1 “almost” fulfills the intention. This is because it has been found that, in
practice, all or most of the theorems of number theory which can be written in
(definitional extensions of) Z1 are either provable or refutable in Z1. Exceptions
are known, but the exceptions are obscure and marginal. In this sense, we can
say that Z1 is “practically complete.”

Remark 5.5.3 (definitional extensions of first-order arithmetic). We have seen
in Theorem 5.3.4 and Exercise 5.3.9 that the exponential function (n, k) 7→ nk

and the “kth prime” function k 7→ pk are definable over N, the intended model
of Z1. It can be shown that the same definitions work abstractly over the
theory Z1. Thus we have a definitional extension of Z1 in which basic properties
such as ∀m ∀n ∀k (mknk = (mn)k) and ∀n ∀i ∀j (ninj = ni+j) can be stated and
proved. Similarly, many other number-theoretical operations can be introduced,
and their properties proved, in definitional extensions of Z1. Our remarks above
concerning practical completeness of Z1 apply all the more to these definitional
extensions of Z1.

Exercise 5.5.4. Show that the commutative laws ∀x∀y (x + y = y + x) and
∀x∀y (x · y = y · x) are theorems of Z1. Similarly it can be shown that the
associative laws ∀x∀y ∀z (x + (y + z) = (x + y) + z) and ∀x∀y ∀z (x · (y · z) =
(x · y) · z) and the distributive law ∀x∀y ∀z (x · (y + z) = (x · y) + (x · z)) are
theorems of Z1.

Definition 5.5.5 (second-order arithmetic). Another important foundational
theory is second-order arithmetic, Z2. See also my book [3].

The language of Z2 is a 2-sorted language, L2, with sorts σ and τ designating
numbers and sets respectively. The number variables xσ, yσ, . . . are written as
i, j, k, l,m, n, . . ., while the set variables xτ , yτ , . . . are written as X,Y, Z,

The predicates and operations of L2 are +, ·, 0, S,=,∈. Here + and · are
binary number operations, S is a unary number operation, and 0 is a numerical
constant. Thus + and · are of type (σ, σ, σ), S is of type (σ, σ), and 0 is of type
σ. In addition, the numerical equality predicate = is a binary predicate of type
(σ, σ), and the membership predicate ∈ is a binary predicate of “mixed” type
(σ, τ).

We identify the variables x, y, . . . of L1 with the number variables m,n, . . .
of L2. Also, we identify the operations and predicates +, ·, 0, S,= of L1 with
the +, ·, 0, S,= of L2. Thus L1 is a sublanguage of L2.

105

The axioms of Z2 consist of Q (Definition 5.5.1), i.e.,

∀m (Sm 6= 0),

∀m ∀n (Sm = Sn⇒m = n),

∀m (m+ 0 = m),

∀m ∀n (m+ Sn = S(m+ n)),

∀m (m · 0 = 0),

∀m ∀n (m · Sn = (m · n) +m),

plus the induction axiom

∀X ((0 ∈ X ∧∀n (n ∈ X⇒Sn ∈ X))⇒∀n (n ∈ X)),

plus the comprehension scheme, i.e., the universal closure of

∃X ∀n (n ∈ X⇔A)

where A is any L2-formula in which X does not occur.
Note that the comprehension scheme consists of an infinite set of axioms. It

can be shown that Z2 is not finitely axiomatizable.

Remark 5.5.6 (practical completeness of second-order arithmetic). The in-
tended model of Z2 is the 2-sorted structure

P (N) = (N, P (N),+, ·, 0, S,=,∈)

where (N,+, ·, 0, S,=) is the natural number system (see Remark 5.5.2), P (N)
is the power set of N, i.e., the set of all subsets of N,

P (N) = {X | X ⊆ N},

and ∈ is the membership relation between natural numbers and sets of natural
numbers, i.e.,

∈ = {〈n,X〉 ∈ N× P (N) | n ∈ X}.

As in the case of Z1 (compare Remark 5.5.2), it is obvious that the axioms of
Z2 are true in the 2-sorted structure P (N), and again, the idea behind Z2 is
that we are trying to write down axioms for the complete theory of P (N). This
intention cannot be fulfilled because of the Gödel Incompleteness Theorem, but
again, Z2 is “practically complete.”

Remark 5.5.7 (definitional extensions of second-order arithmetic). The foun-
dational significance of Z2 is that, within definitional extensions of Z2, it is
possible and convenient to develop the bulk of ordinary countable and sep-
arable mathematics. This includes differential equations, analysis, functional
analysis, algebra, geometry, topology, combinatorics, descriptive set theory, etc.
For details of how this can be done, see my book [3].

106

Exercise 5.5.8. As noted in Defintion 5.5.5, L1 is a sublanguage of L2. Show
that all of the axioms of Z1 are theorems of Z2. In this sense Z1 is a subtheory
of Z2.

Solution. Recall that Q is a subtheory of Z2. It remains to show that, for any
L1-formula A, the universal closure of (A[n/0]∧∀n (A⇒A[n/Sn]))⇒∀nA is a
theorem of Z2. More generally, we shall prove this when A is any L2-formula. Let
the free variables of A be among n, n1, . . . , nk, X1, . . . , Xl. Within Z2 we reason
as follows. Given n1, . . . , nk, X1, . . . , Xl, we use the comprehension scheme of
Z2 to prove the existence of a set X such that ∀n (n ∈ X⇔A). From the
induction axiom of Z2 we have (0 ∈ X ∧∀n (n ∈ X⇒Sn ∈ X))⇒∀n (n ∈ X).
From this it follows that (A[n/0]∧∀n (A⇒A[n/Sn]))⇒∀nA. Since this holds
for arbitrary n1, . . . , nk, X1, . . . , Xl, we obtain the universal closure.

Remark 5.5.9 (nth order arithmetic). Similarly we can define third-order arith-
metic, Z3, a 3-sorted theory with variables intended to range over numbers, sets
of numbers, and sets of sets of numbers. The intended model of Z3 is the 3-sorted
structure

P 2(N) = (N, P (N), P (P (N)),+, ·, 0, S,=,∈1,∈2)

where
∈1 = {〈n,X〉 ∈ N× P (N) | n ∈ X}

and
∈2 = {〈X,A〉 ∈ P (N)× P (P (N)) | X ∈ A}.

More generally, for each positive integer n ≥ 1 we can define nth-order arith-
metic, Zn, an n-sorted theory whose intended model is the n-sorted structure

Pn−1(N) = P (P · · · (P︸ ︷︷ ︸
n−1

(N)) · · ·)

where P is the power set operation. Thus we have a sequence of theories

Z1 ⊆ Z2 ⊆ · · · ⊆ Zn ⊆ Zn+1 ⊆ · · · .

The union Z∞ =
⋃

∞

n=1 Zn is known as simple type theory. This theory is his-
torically important, because it or something like it was offered by Russell as a
solution of the Russell Paradox.

5.6 Axiomatic Set Theory

We now turn to another kind of foundational theory, known as axiomatic set
theory.

Definition 5.6.1 (the language of set theory). The language of set theory, Lset,
consists of two binary predicates, ∈ and =, the membership predicate and the
identity predicate. The variables u, v, w, x, y, z, . . . are intended to range over

107

sets. Note that u ∈ x means that u is an element of the set x, i.e., a member of
x. We also use notations such as x = {u, v, . . .} meaning that x is a set whose
elements are u, v, . . ., and x = {u | . . .} meaning that x is a set whose elements
are all u such that

Remark 5.6.2 (pure well-founded sets). In order to motivate and clarify our
presentation of the axioms of set theory, we first note that the axioms are
intended to apply only to sets which are pure and well-founded. A set x is said
to be pure if all elements of x are sets, all elements of elements of x are sets,
all elements of elements of elements of x are sets, etc. A set x is said to be
well-founded if there is no infinite descending ∈-chain

· · · ∈ un+1 ∈ un ∈ · · · ∈ u2 ∈ u1 ∈ u0 = x.

Remark 5.6.3. In order to state the axioms and theorems of set theory effi-
ciently, we shall tacitly employ the technique of definitional extensions, which
has been discussed in Section 5.4.

Definition 5.6.4 (Zermelo set theory). Zermelo set theory with the axiom of
choice, ZC, is a theory in the language Lset consisting of the following axioms.

1. The axiom of extensionality: ∀x∀y (x = y⇔∀u (u ∈ x⇔u ∈ y)).

We define a binary predicate ⊆ by x ⊆ y⇔∀u (u ∈ x⇒u ∈ y), i.e., x is a
subset of y. Extensionality1 says that x = y is equivalent to x ⊆ y ∧ y ⊆ x.

2. The pairing axiom: ∀x∀y ∃z ∀u (u ∈ z⇔ (u = x∨u = y)).

By extensionality this z is unique, so we define a binary operation {x, y} =
this z. Note that {x, y} is the unordered pair consisting of x and y. In
addition, we define a unary operation {x} = {x, x}. Note that {x} is the
singleton set consisting of x.

We also define a binary operation (x, y) = {{x}, {x, y}}, the ordered pair
consisting of x and y. Using extensionality, we can prove the basic property

∀x∀y ∀u ∀v ((x, y) = (u, v)⇔ (x = u∧ y = v)).

3. The union axiom: ∀x∃z ∀u (u ∈ z⇔∃v (u ∈ v ∧ v ∈ x)).

By extensionality this z is unique, so we define a unary operation
⋃
x =

this z. Note that
⋃
x is the union of x, i.e., the union of all of the sets

which are elements of x. We also define a binary operation x∪y =
⋃
{x, y},

the union of x and y.

4. The power set axiom: ∀x∃z ∀y (y ∈ z⇔ y ⊆ x).

1Recall that Lset is a one-sorted language with only set variables. This fact together with
the axiom of extensionality embodies our restriction to pure sets. Later we shall introduce
another axiom, the axiom of foundation, which embodies our restriction to well-founded sets.

108

By extensionality this z is unique, so we define a unary operation P (x) =
this z. Note that P (x) is the power set of x,

P (x) = {y | y ⊆ x},

the set of all subsets of x.

5. The comprehension scheme: the universal closure of

∀x∃z ∀u (u ∈ z⇔ (u ∈ x∧A))

where A is any Lset-formula in which z does not occur.

The idea here is that x is a given set, and A expresses a property of
elements u ∈ x. The comprehension scheme asserts the existence of a set

z = {u ∈ x | A},

i.e., z is a subset of x consisting of all u ∈ x such that A holds. By
extensionality, this z is unique.

Note that the comprehension scheme consists of an infinite set of axioms.
It can be shown that ZC is not finitely axiomatizable.

Using comprehension, we define binary operations

(a) x ∩ y = {u ∈ x | u ∈ y}, the intersection of x and y,

(b) x \ y = {u ∈ x | u /∈ y}, the set-theoretic difference of x and y, and

(c) x × y = {w ∈ P (P (x ∪ y)) | ∃u ∃v (u ∈ x∧ v ∈ y ∧ (u, v) = w)}, the
Cartesian product of x and y.

We also define a constant ∅ = {} = x \ x, the empty set.

We define a unary predicate Fcn(f) saying that f is a function, i.e., a set
f such that

∀w (w ∈ f ⇒∃x∃y (w = (x, y)))

and
∀x∀y ∀z (((x, y) ∈ f ∧ (x, z) ∈ f)⇒ y = z).

Using comprehension, the domain and range of f are defined as unary
operations

dom(f) = {x ∈
⋃⋃

f | ∃y ((x, y) ∈ f)}

and
ran(f) = {y ∈

⋃⋃
f | ∃x ((x, y) ∈ f)}.

We also define f(x), the value of f at x ∈ dom(f), to be the unique y
such that (x, y) ∈ f .

109

6. The axiom of infinity: ∃z (∅ ∈ z ∧∀x∀y ((x ∈ z ∧ y ∈ z)⇒x ∪ {y} ∈ z)).

Using comprehension, we can prove the existence of a unique smallest set
z as above, namely the intersection of all such sets. We define a constant
HF = this z. Note that HF is an infinite set. The elements of HF are the
hereditarily finite sets, i.e., those pure well-founded sets x such that C(x)
is finite. Here

C(x) = x ∪
⋃

x ∪
⋃⋃

x ∪ · · · ,

i.e., C(x) is the set consisting of all elements of x, elements of elements of
x, elements of elements of elements of x,

Similarly, we can prove that there exists a unique smallest set w such
that ∅ ∈ w ∧∀x (x ∈ w⇒x ∪ {x} ∈ w). We define a constant ω = this
w. Note that ω ⊆ HF. The elements of ω are just the natural numbers,
inductively identified with hereditarily finite sets via n = {0, 1, . . . , n−1}.
Thus ω = N, the set of natural numbers, and we have 0 = ∅ and, for all
n, n + 1 = n ∪ {n}. We define a finite sequence to be a function f such
that dom(f) ∈ ω. We define an infinite sequence to be a function f such
that dom(f) = ω.

A set x is said to be finite if

∃n ∃f (n ∈ ω∧Fcn(f)∧dom(f) = n∧ ran(f) = x).

We define |x|, the cardinality of x, to be the least such n. We can prove
that, for all n ∈ ω, |n| = n. For m,n ∈ ω we define

m+ n = |(m× {0}) ∪ (n× {1})|

and m · n = |m× n|. On this basis, we can prove the essential properties
of + and · on ω. Moreover, from the definition of ω it follows that

∀x ((x ⊆ ω∧ 0 ∈ x∧∀n (n ∈ x⇒n ∪ {n} ∈ x))⇒ x = ω).

Thus we have a copy of the natural number system.

7. The axiom of choice:

∀f ((Fcn(f)∧∀x (x ∈ dom(f)⇒ f(x) 6= ∅))⇒

∃g (Fcn(g)∧dom(g) = dom(f)∧∀x (x ∈ dom(f)⇒ g(x) ∈ f(x)))).

The axiom of choice says that, given an indexed family of nonempty sets,
there exists a function which chooses one element from each of the sets.
There is a history of controversy surrounding this axiom.

8. The axiom of foundation: ∀x (x 6= ∅⇒∃u (u ∈ x∧ u ∩ x = ∅)).

The axiom of foundation amounts to saying that all sets are well-founded.
To see this, note that if there were an infinite descending ∈-chain

· · · ∈ un+1 ∈ un ∈ · · · ∈ u2 ∈ u1 ∈ u0

110

then we would have a counterexample to the axiom of foundation, namely
x = {u0, u1, . . . , un, un+1, . . .}. Conversely, if x were a counterexample to
the axiom of foundation, i.e., x 6= ∅ and ∀u (u ∈ x⇒u ∩ x 6= ∅), then
we could use the axiom of choice to obtain an infinite descending ∈-chain
u1 ∈ x, u2 ∈ u1 ∩ x, u3 ∈ u2 ∩ x,

Remark 5.6.5 (foundational significance of set theory). The significance of
ZC and similar theories is that they can serve as an axiomatic, set-theoretical
foundation for virtually all of mathematics. As already noted, within ZC we
have the natural number system, N. On this basis, it is possible to follow the
usual Dedekind construction of the integers Z, the rational numbers Q, and
the real numbers R. We can also develop the theory of higher mathematical
objects such as manifolds, topological spaces, operators on Banach spaces, etc.,
all within (definitional extensions of) ZC.

Definition 5.6.6 (Zermelo/Fraenkel set theory). ZFC, Zermelo/Fraenkel set
theory with the axiom of choice, consists of ZC, Zermelo set theory with the
axiom of choice, plus

9. The replacement scheme: universal closure of

(∀u (∃ exactly one v)A)⇒∀x∃y ∀v (v ∈ y⇔∃u (u ∈ x∧A))

where A is any Lset-formula in which y does not occur.

The idea here is that to each u is associated exactly one v such that A
holds. Under this assumption, we assert that for all sets x there exists a
set y consisting of all v associated to some u ∈ x. By extensionality, this
y is unique.

Note that the replacement scheme consists of an infinite set of axioms. It can
be shown that ZFC is not finitely axiomatizable.

Remark 5.6.7 (practical completeness of set theory). The most obvious model
of Zermelo set theory is the set

Pω(HF) =
⋃

n∈ω

Pn(HF) =
⋃

n∈N

P (P · · · (P︸ ︷︷ ︸
n

(HF)) · · ·)

consisting of HF plus all subsets of HF plus all subsets of subsets of HF plus
. . . . Thus Pω(HF) is the set of all sets of finite order over HF. The axioms of
ZC express evident properties of Pω(HF).

The existence of the set Pω(HF) cannot be proved in Zermelo set theory.
However, the existence of Pω(HF) can be proved in Zermelo/Fraenkel set theory,
as follows. Let A be a formula which associates to each n ∈ N the set Pn(HF).
Since N is a set, the replacement scheme for A gives us the set {Pn(HF) | n ∈ N},
and then the union axiom gives us

⋃
{Pn(HF) | n ∈ N} = Pω(HF).

The intended model of Zermelo/Fraenkel set theory is the collection V of all
pure, well-founded sets. V is also known as the universe of set theory. It can be

111

shown that V =
⋃

α Pα(HF), where α ranges over transfinite ordinal numbers.
Thus V is the collection of all sets of all transfinite orders over HF.

The axioms of ZFC express evident properties of V . Moreover, it has been
found that ZFC is “practically complete” in the sense that all Lset-sentences
expressing evident properties of V are provable in ZFC. At the same time, there
are many interesting Lset-sentences, e.g., the Continuum Hypothesis, which are
neither evidently true nor evidently false in V according to our current under-
standing, and which are known to be neither provable nor refutable in ZFC.
Thus it appears that ZFC accurately reflects our current understanding of V .

5.7 Interpretability

Definition 5.7.1. Let T1 and T2 be theories. We say that T1 is a subtheory of
T2 if the language of T1 is included in the language of T2 and the theorems of
T1 are included in the theorems of T2.

Definition 5.7.2 (interpretability). Let T1 and T2 be theories. We say that T1

is interpretable in T2 if T1 is a subtheory of some definitional extension of T2.
Intuitively, this means that T2 is “at least as strong as” T1, in some abstract
sense. We sometimes write T1 ≤ T2 to mean that T1 is interpretable in T2.

Remark 5.7.3. It is straightforward to show that the interpretability relation
is transitive. In other words, T1 ≤ T2 and T2 ≤ T3 imply T1 ≤ T3. Thus we have
equivalence classes of theories under mutual interpretability, partially ordered
by the interpretability relation.

Examples 5.7.4. First-order arithmetic is interpretable in second-order arith-
metic, and second-order arithmetic is interpretable in set theory. More generally,
for all n ≥ 1, nth-order arithmetic is interpretable in (n+1)st-order arithmetic
and in set theory. It can be shown that (n+1)st-order arithmetic and set theory
are not interpretable in nth order arithmetic. In particular, second-order arith-
metic is not interpretable in first-order arithmetic. Results of this kind follow
from Gödel’s Second Incompleteness Theorem. We have

Z1 < Z2 < · · · < Zn < Zn+1 < · · · < Z∞ < ZC < ZFC

where T1 < T2 means that T1 is “weaker than” T2, i.e., T2 is “stronger than”
T1, i.e., T1 is interpretable in T2 and not vice versa.

Remark 5.7.5 (the Gödel hierarchy). The partial ordering of foundational
theories under interpretability is sometimes known as the Gödel hierarchy. This
hierarchy is of obvious foundational interest.

Remark 5.7.6. The foundational significance of interpretability is highlighted
by the following observations. If T1 is interpretable in T2, then:

1. Consistency of T2 implies consistency of T1.

112

2. Essential incompleteness of T1 implies essential incompleteness of T2.

3. Effective essential incompleteness of T1 implies effective essential incom-
pleteness of T2.

5.8 Beth’s Definability Theorem

In this section we consider implicit definitional extensions of theories. We state
and prove Beth’s Definability Theorem, which says that an implicit definitional
extension of a theory T is always equivalent to an explicit definitional extension
of the same theory, T .

We consider only the case of predicates, but operations can be handled
similarly. Let T = (L, S) be a theory, and let P be an n-ary predicate of L.

Definition 5.8.1.

1. We say that T explicitly defines P if there exists an L-formula D not
involving P with free variables x1, . . . , xn such that

T ⊢ ∀x1 · · · ∀xn (Px1 · · ·xn ⇔D).

2. We say that T implicitly defines P if, letting P ′ be a new n-ary predicate
and letting T ′ = T [P/P ′], we have

T ∪ T ′ ⊢ ∀x1 · · · ∀xn (Px1 · · ·xn ⇔P ′x1 · · ·xn).

Theorem 5.8.2 (Beth’s Definability Theorem). T explicitly defines P if and
only if T implicitly defines P .

Proof. Assume first that T explicitly defines P , say

T ⊢ ∀x1 · · · ∀xn (Px1 · · ·xn ⇔D).

It follows that
T ′ ⊢ ∀x1 · · · ∀xn (P ′x1 · · ·xn ⇔D).

Hence
T ∪ T ′ ⊢ ∀x1 · · · ∀xn (Px1 · · ·xn ⇔P ′x1 · · ·xn),

i.e., T implicitly defines P .
Conversely, assume that T implicitly defines P , i.e.,

T ∪ T ′ ⊢ ∀x1 · · · ∀xn (Px1 · · ·xn ⇔P ′x1 · · ·xn).

By the Compactness Theorem, there are finitely many axioms A1, . . . , Ak ∈ S
such that

(A∧A′)⇒∀x1 · · · ∀xn (Px1 · · ·xn ⇔P ′x1 · · ·xn)

113

is logically valid, where A = A1 ∧ · · · ∧Ak and A′ = A[P/P ′]. Introducing
parameters a1, . . . , an, we see that

(A∧A′)⇒ (Pa1 · · · an ⇔P ′a1 · · ·an) (5.1)

is logically valid. It follows quasitautologically that

(A∧Pa1 · · · an)⇒ (A′ ⇒P ′a1 · · ·an) (5.2)

is logically valid. By the Interpolation Theorem 3.5.1, we can find an L-formula
D with free variables x1, . . . , xn such that D[x1/a1, . . . , xn/an] is an interpolant
for (5.2). Thus

(A∧Pa1 · · · an)⇒D[x1/a1, . . . , xn/an] (5.3)

and
D[x1/a1, . . . , xn/an]⇒ (A′ ⇒P ′a1 · · · an) (5.4)

are logically valid, and P and P ′ do not occur in D. Since (5.4) is logically
valid, it follows that

D[x1/a1, . . . , xn/an]⇒ (A⇒Pa1 · · · an) (5.5)

is logically valid. From the logical validity of (5.3) and (5.5), it follows quasitau-
tologically that

A⇒ (Pa1 · · · an ⇔D[x1/a1, . . . , xn/an]) (5.6)

is logically valid. Hence

A⇒∀x1 · · · ∀xn (Px1 · · ·xn ⇔D)

is logically valid, so

T ⊢ ∀x1 · · · ∀xn (Px1 · · ·xn ⇔D).

Thus we see that T explicitly defines P . �

114

Chapter 6

Arithmetization of

Predicate Calculus

6.1 Primitive Recursive Arithmetic

Definition 6.1.1. To each natural number n we associate a variable-free PRA-
term n as follows: 0 = 0, n+ 1 = S n. Thus

n = S · · ·S︸ ︷︷ ︸
n

0.

These terms are known as numerals.

Theorem 6.1.2. Let f be a k-ary primitive recursive function. Then for all
k-tuples of natural numbers m1, . . . ,mk we have

PRA ⊢ f m1 · · ·mk = f(m1, . . . ,mk) .

Proof. �

6.2 Interpretability of PRA in Z1

6.3 Gödel Numbers

Let L be a countable language. Assume that to all the sorts σ, predicates P ,
and operations f of L have been assigned distinct positive integers #(σ), #(P),
#(f) respectively. As usual, let V be the set of parameters.

Definition 6.3.1 (Gödel numbers). To each L-V -term t and L-V -formula A
we assign a positive integer, the Gödel number of t or of A, denoted #(t) or

115

#(A), respectively.

#(vσi) = 2 · 3#(σ) · 5i

#(aσi) = 22 · 3#(σ) · 5i

#(ft1 · · · tn) = 23 · 3#(f) · p
#(t1)
2 · · · p

#(tn)
n+1 if f is an n-ary operation

#(Pt1 · · · tn) = 24 · 3#(P) · p
#(t1)
2 · · · p

#(tn)
n+1 if P is an n-ary predicate

#(¬A) = 25 · 3#(A)

#(A∧B) = 26 · 3#(A) · 5#(B)

#(A∨B) = 27 · 3#(A) · 5#(B)

#(A⇒B) = 28 · 3#(A) · 5#(B)

#(A⇔B) = 29 · 3#(A) · 5#(B)

#(∀v A) = 210 · 3#(v) · 5#(A)

#(∃v A) = 211 · 3#(v) · 5#(A)

Definition 6.3.2. The language L is said to be primitive recursive if the fol-
lowing items are primitive recursive.

Sort(x) ≡ x = #(σ) for some sort σ

Pred(x) ≡ x = #(P) for some predicate P

Op(x) ≡ x = #(f) for some operation f

arity(#(P)) = n if P is an n-ary predicate

arity(#(f)) = n if f is an n-ary operation

sort(#(P), i) = #(σi) if 1 ≤ i ≤ n and P is an n-ary predicate of
type (σ1, . . . , σn)

sort(#(f), i) = #(σi) if 1 ≤ i ≤ n and sort(#(f)) = #(τ) and f is an n-ary operation
of type (σ1, . . . , σn, τ).

Lemma 6.3.3. If L is primitive recursive, then the following are primitive
recursive.

Var(x) ≡ x = #(v) for some variable v

Param(x) ≡ x = #(a) for some parameter a

Term(x) ≡ x = #(t) for some term t

ClTerm(x) ≡ x = #(t) for some closed term t

AtFml(x) ≡ x = #(A) for some atomic formula A

Fml(x) ≡ x = #(A) for some formula A

sort(#(t)) = #(σ) if t is a term of sort σ

Proof. We have

Var(x) ≡ (x)0 = 1 ∧ x = 2(x)0 · 3(x)1 · 5(x)2 ∧ Sort((x)1)

116

and

Param(x) ≡ (x)0 = 2 ∧ x = 2(x)0 · 3(x)1 · 5(x)2 ∧ Sort((x)1) .

To show that the predicate Term(x) is primitive recursive, we first show that the
function sort(x) is primitive recursive, where sort(#(t)) = #(σ) if t is a term of
sort σ, sort(x) = 0 otherwise. Put lh(x) = least w < x such that (x)w = 0. We
then have

sort(x) =

(x)1 if Var(x) ∨ Param(x) ,

sort((x)1, lh(x) ·− 1) if (x)0 = 3 ∧ Op((x)1) ∧ (+) ,

0 otherwise ,

where

(+) arity((x)1) = lh(x) ·− 2 ∧ x =
∏lh(x) ·−1

i=0 p
(x)i
i

∧ (∀i < lh(x) ·− 2) (sort((x)i+2) = sort((x)1, i+ 1)) .

Then
Term(x) ≡ sort(x) > 0 .

For closed terms, define clsort(x) like sort(x) replacing Var(x)∨Param(x) by
Param(x). We then have

ClTerm(x) ≡ clsort(x) > 0 .

For formulas we have

AtFml(x) ≡ ((x)0 = 4 ∧ Pred((x)1) ∧ (+))

and

Fml(x) ≡ AtFml(x) ∨ ((x)0 = 5 ∧ x = 2(x)0 · 3(x)1 ∧ Fml((x)1))

∨ (6 ≤ (x)0 ≤ 9 ∧ x = 2(x)0 · 3(x)1 · 5(x)2 ∧ Fml((x)1) ∧ Fml((x)2))

∨ (10 ≤ (x)0 ≤ 11 ∧ x = 2(x)0 · 3(x)1 · 5(x)2 ∧ Var((x)1) ∧ Fml((x)2))

and this completes the proof. �

Lemma 6.3.4 (substitution). There is a primitive recursive function sub(x, y, z)
such that for any formula A and any variable v and any closed term t,

sub(#(A),#(v),#(t)) = #(A[v/t]) .

Proof.

sub(x, y, z) =

z if x = y,

2(x)0 · 3(x)1 ·
∏lh(x) ·−1

i=2 p
sub((x)i,y,z)
i if 3 ≤ (x)0 ≤ 4,

2(x)0 · 3sub((x)1,y,z) if (x)0 = 5,

2(x)0 · 3sub((x)1,y,z) · 5sub((x)2,y,z) if 6 ≤ (x)0 ≤ 9,

2(x)0 · 3(x)1 · 5sub((x)2,y,z) if 10 ≤ (x)0 ≤ 11∧ (x)1 6= y,

x otherwise.

117

�

Lemma 6.3.5. If L is primitive recursive, then the predicate

Snt(x) ≡ x = #(A) for some sentence A

is primitive recursive.

Proof. Recall that, by Exercise 2.1.10, a formula A is a sentence if and only if
A[v/a] = A for all variables v occurring in A. Note also that if y = #(vσi) then
2y = #(aσi). Thus we have

Snt(x) ≡ Fml(x) ∧ (∀y < x) (Var(y)⇒ x = sub(x, y, 2y)) .

�

Lemma 6.3.6. There is a primitive recursive function num(x) such that

num(n) = #(n)

for any nonnegative integer n.

Proof. The recursion equations for num(x) are

num(0) = #(0) ,

num(x+ 1) = 23 · 3#(S) · 5num(x) .

�

6.4 Undefinability of Truth

In this section, let T be a theory which includes PRA. For example, we could
take T to be PRA itself. Or, by Section 6.2, we could take T to be an appropriate
definitional extension of Z1 or Z2 or ZFC.

Lemma 6.4.1 (Self-Reference Lemma). Let L be the language of T . Let A be
an L-formula with a free number variable x. Then we can find an L-formula B
such that

T ⊢ B⇔A[x/#(B)] .

The free variables of B are those of A except for x. In particular, if x is the
only free variable of A, then B is an L-sentence.

Proof. Put d(z) = sub(z,#(x), num(z)). Thus d is a 1-ary primitive recursive
function such that, if A is any L-formula containing the number variable x
as a free variable, then d(#(A)) = #(A[x/#(A)]. Now given A as in the
hypothesis of the lemma, let D be the formula A[x/d x], and let B be the
formula A[x/d #(D)], i.e., D[x/#(D)]. Note that d(#(D)) = #(B). It follows
by Theorem 6.1.2 that PRA ⊢ d #(D) = #(B). Since T includes PRA, it
follows that T ⊢ d #(D) = #(B). Hence T ⊢ A[x/d #(D)]⇔A[x/#(B)]. In
other words, T ⊢ B⇔A[x/#(B)]. This completes the proof. �

118

Definition 6.4.2. If M is any model of T , let TrueM be the set of Gödel
numbers of sentences that are true in M , i.e.,

TrueM = {#(B) | B is a sentence and M |= B}.

Definition 6.4.3. An ω-model of T is a model M of T such that the number
domain of M is ω = {0, 1, 2, . . .} and 0M = 0 and SM (n) = n+ 1 for all n ∈ ω.
More generally, if M is any model of T , we may assume that ω is identified
with a subset of the number domain of M in such a way that 0M = 0 and
SM (n) = n+ 1 for each n ∈ ω. Thus each n ∈ ω is identified with the element
of M that is denoted by n, i.e., n = vM (n).

Theorem 6.4.4 (undefinability of truth). If M is an ω-model of T , then TrueM
is not explicitly definable over M . More generally, if M is any model of T , then
the characteristic function of TrueM is is not included in the characteristic
function of any subset of M that is explicitly definable over M .

Proof. LetX be a subset of the number domain ofM which is explicitly definable
over M . Let A be an L-formula with a free number variable x and no other free
variables, such that A explicitly defines X over M . Applying Lemma 6.4.1 to
the negation of A, we obtain an L-sentence B such that T ⊢ B⇔¬A[x/#(B)].
Since M is a model of T , it follows that #(B) ∈ TrueM if and only if #(B) /∈ X .
Hence the characteristic function of TrueM is not included in the characteristic
function of X , q.e.d. �

Corollary 6.4.5. Let M = (ω,+, ·, 0, 1,=) be the standard model of first-order
arithmetic, Z1. Then TrueM is not explicitly definable over M . This1 may be
paraphrased by saying that arithmetical truth is not arithmetically definable.

Remark 6.4.6. With M = (ω,+, ·, 0, 1,=) as above, it can be shown that
TrueM is implicitly definable over M . (See also Exercise 6.4.7.) Thus the
Beth’s Definability Theorem does not hold for definability over this particular
model.

Exercise 6.4.7. Let M be an ω-model of Z1 or Z2 or ZFC. Let SatM be the
satisfaction relation on M . Show that SatM is implicitly definable over M .

6.5 The Provability Predicate

In this section, let L be a primitive recursive language, and let T be an L-
theory which is primitive recursively axiomatizable. For example, T could be
PRA itself, or T could be any of the mathematical or foundational theories
discussed in Sections 5.2, 5.5, 5.6.

Definition 6.5.1. Choose a primitive recursive predicate AxT for the set of
Gödel numbers of axioms of T . In terms of AxT show that various predicates

1This result is due to Tarski [5].

119

associated with T are primitive recursive. Introduce the provability predicate
PvblT by definition:

PvblT (x) ⇔ ∃y PrfT (x, y) .

Note that, for all L-sentences B, PvblT (#(B)) is true if and only if T ⊢ B.

Lemma 6.5.2 (derivability condition 1). For any L-sentence A, if T ⊢ A then

PRA ⊢ PvblT (#(A)) .

Proof. Suppose T ⊢ A. Let p be a proof of A in T . Then PrfT (#(A),#(p))
holds. Since PrfT (x, y) is a primitive recursive predicate, it follows by Theorem
6.1.2 that PRA ⊢ PrfT (#(A),#(p)). Hence PRA ⊢ PvblT (#(A)), q.e.d. �

Lemma 6.5.3 (derivability condition 2). For any L-sentence A, we have

PRA ⊢ PvblT (#(A))⇒PvblPRA(#(PvblT (#(A)))) .

Proof. This is just Lemma 6.5.2 formalized in PRA. The details of the formal-
ization are in Section 6.7. �

Lemma 6.5.4 (derivability condition 3). For any L-sentences A and B, we
have

PRA ⊢ PvblT (#(A⇒B)) ⇒ (PvblT (#(A))⇒PvblT (#(B))) .

Proof. This is a straightforward consequence of the fact that our rules of infer-
ence include modus ponens. �

6.6 The Incompleteness Theorems

In this section, let T be a theory which is primitive recursively axiomatizable
and includes PRA. For example, T could be PRA itself, or it could be an
appropriate definitional extension of Z1 or Z2 or ZFC. As in Section 6.5, let
PvblT be a provability predicate for T .

Lemma 6.6.1. Let A(x) be a PRA-formula with one free variable x. Then we
can find a PRA-sentence B such that PRA ⊢ B⇔A(#(B)).

Proof. This is the Self-Reference Lemma 6.4.1 specialized to PRA. �

Lemma 6.6.2. We can find a PRA-sentence S such that

PRA ⊢ S⇔¬PvblT (#(S)) . (6.1)

Note that S is self-referential and says “I am not provable in T .”

Proof. This is an instance of Lemma 6.6.1 with A(x) ≡ ¬PvblT (x). �

120

Lemma 6.6.3. Let S be as in Lemma 6.6.2. If T is consistent, then T 6⊢ S.

Proof. Suppose for a contradiction that T ⊢ S. By Lemma 6.5.2 we have
PRA ⊢ PvblT (#(S)). Hence by (6.1) it follows that PRA ⊢ ¬S. Since T
includes PRA, we have T ⊢ ¬S. Thus T is inconsistent. �

Theorem 6.6.4 (the First Incompleteness Theorem). If T is consistent, then
we can find a sentence S′ in the language of first-order arithmetic such that S′

is true yet S′ is not a theorem of T .

Proof. Let S be a PRA-sentence as in Lemma 6.6.2. By Lemma 6.6.3, T 6⊢ S. It
follows by (6.1) that S is true. As in Section 6.2, let S′ be the translation of S
into the language of first-order arithmetic. Thus S′ is also true. By the results
of Section 6.2, PRA ⊢ S⇔S′. Hence T ⊢ S⇔S′. Hence T 6⊢ S′. �

Assume now that the primitive recursive predicate AxT has been chosen
in such a way that PRA ⊢ ∀x (AxPRA(x)⇒AxT (x)). It follows that PRA ⊢
∀x (PvblPRA(x)⇒PvblT (x)). In particular we have:

Lemma 6.6.5. For all PRA-sentences A, we have

PRA ⊢ PvblPRA(#(A))⇒PvblT (#(A)) .

Definition 6.6.6. ConT is defined to be the sentence ¬PvblT (#(0 6= 0)). Note
that ConT is a PRA-sentence which asserts the consistency of T .

Theorem 6.6.7 (the Second Incompleteness Theorem). If T is consistent, then
T 6⊢ ConT .

Proof. Let S be as in Lemma 6.6.2. By Theorem 6.6.4 we have T 6⊢ S. Therefore,
to show T 6⊢ ConT , it suffices to show T ⊢ ConT ⇒S. Since T includes PRA, it
suffices to show PRA ⊢ ConT ⇒S. By (6.1) it suffices to show

PRA ⊢ ConT ⇒ ¬PvblT (#(S)) . (6.2)

But this is just Lemma 6.6.3 formalized in PRA.
Details: We need to prove (6.2). Reasoning in PRA, suppose PvblT (#(S)).

By Lemma 6.5.3 we have PvblPRA(#(PvblT (#(S)))). Moreover, from (6.1)

and Lemma 6.5.2 we have PvblPRA(#(S⇔¬PvblT (#(S)))). Hence by Lem-

mas 6.5.2 and 6.5.4 we have PvblPRA(#(¬S)). By Lemma 6.6.5 it follows that
PvblT (#(¬S)). Hence by Lemmas 6.5.2 and 6.5.4 we have PvblT (#(0 6= 0)),
i.e., ¬ConT . This completes the proof. �

Exercise 6.6.8. Show that PRA ⊢ S⇔ConT .

Exercise 6.6.9 (Rosser’s Theorem). Show that if T is as in Theorems 6.6.4
and 6.6.7, then T is incomplete.

Hint: Use the Self-Reference Lemma 6.4.1 to obtain a sentence B such that
PRA ⊢ B⇔A[x/#(B)], where A[x/#(B)] says that for any proof p of B in T
there exists a proof q of ¬B in T such that #(q) < #(p). Using the assumption
that T is consistent, show that T 6⊢ B and T 6⊢ ¬B.

121

Exercise 6.6.10. Give an example of a T as in Theorems 6.6.4 and 6.6.7 such
that T ⊢ ¬ConT .

Solution. We may take T = PRA+ ¬ConPRA, or T = Z1 + ¬ConZ1
, etc.

6.7 Proof of Lemma 6.5.3

FIXME Write this section!

122

Bibliography

[1] Neil D. Jones and Alan L. Selman. Turing machines and the spectra of
first-order formulas. Journal of Symbolic Logic, 39:139–150, 1974.

[2] David Marker. Model Theory: An Introduction. Springer, 2002. VIII + 342
pages.

[3] Stephen G. Simpson. Subsystems of Second Order Arithmetic. Perspectives
in Mathematical Logic. Springer-Verlag, 1999. XIV + 445 pages.

[4] Raymond M. Smullyan. First-Order Logic. Dover Publications, New York,
1995. XII + 158 pages.

[5] Alfred Tarski. Introduction to Logic and to the Methodology of Deductive
Sciences. Oxford University Press, 4th edition, 1994. XXII + 229 pages.

123

Index

Abelian group, 89
ACF, 93
ACF0, 94
ACFp, 94
Algebra, Fundamental Theorem of, 93
algebraically closed field, 93
antisymmetry, 22
arithmetic

first-order, 103
second-order, 104
nth order, 106

arity, 24, 78, 84
assignment, 6
associativity, 10, 30, 104
atomically closed, 43
atomic formula, 3, 24, 79, 85
automorphism, 98
axiom of choice, 109
axiom of foundation, 109

Beth’s Definability Theorem, 100, 112,
118

binary, 3
block tableau, 61

modified, 66
bound variable, 25

C (complex numbers), 93
Cartesian product, 108
categoricity, 88, 89
characteristic, 93
choice, 109
Church’s Theorem, 52
clause, 11
closed, 15, 40

atomically, 43
cofinite, 76

commutativity, 10, 89, 92
Compactness Theorem, 72
companion, 51, 52
completeness, 19, 43, 51, 58, 64, 66, 81,

85
practical, 103–105, 111

complete theories, 88–92, 94–96, 103
complex numbers, 93
composite number, 77
comprehension, 105, 108
congruence, 71, 72
consequence

logical, 8, 10, 27, 35, 40, 60, 87
quasitautological, 57, 58

conservative extension, 102
consistency, 87
constant, 78

DAG0, 90
Dedekind, 110
definability, 97
definitional extension, 100, 102
degree, 3, 24
dense linear ordering, 91
difference, 108
differential equations, 99
disjunctive normal form, 11
distance, 91
distributivity, 10, 92, 104
divisible group, 90
DLO, 91
dom, 108
domain, 26, 85, 108
dyadic, 20

element, 107
elementary equivalence, 27, 88

124

elimination of quantifiers, 95
empty set, 108
end node, 20
end points, 91
equality, 82
equivalence relation, 76
ex, 99
explicit definability, 97, 112
exponential function, 97
extensionality, 107

falsity, 27
Fcn, 108
Fibonacci numbers, 78
field, 93
finite, 109
finitely branching, 20
first-order arithmetic, 103
formation sequence, 4
formation tree, 4
formula, 3, 24, 79, 85
foundation, axiom of, 109
foundational theories, 88, 102–111
free variable, 25
function, 79, 85, 108
Fundamental Theorem of Algebra, 93

Gentzen-style proof system, 63
Gödel number, 114
Gödel hierarchy, 111
graph, 22, 70, 91
group, 83

Hilbert-style proof system, 50
Hintikka’s Lemma, 19, 41

identity, 71, 85
identity axioms, 71, 82, 85
identity predicate, 71, 85
immediate extension, 12, 35
immediate predecessor, 20
immediate successor, 20
implicit definability, 98, 112
induction, 103
infinity, 109
integers, 93, 97

intended model, 88, 104–106, 110
interpolation, 66, 69
interpretability, 111
intersection, 108
invariance, 98
irreflexivity, 75
isomorphism, 26, 79

König’s Lemma, 20

L1, 103
L2, 104
language, 3, 24, 78

primitive recursive, 115
LG , 63, 81, 85
LG+, 64
LG ′, 66
LG(atomic), 66
LG(symmetric), 67
LH , 56, 81, 85
LH (S), 60
LH ′, 59
linear ordering, 91
logical consequence, 8, 10, 27, 35, 40,

60, 87
logical equivalence, 10, 37
logical validity, 8, 27, 35, 37, 64, 67

many-sorted, 84
mathematical theories, 88–96
membership, 45, 104–106
mixed type, 94, 104
modus ponens, 51

N (natural numbers), 97, 104
n, 114
n-ary function, 79, 85
n-ary operation, 78, 84
n-ary predicate, 24, 84
n-ary relation, 26, 85
natural numbers, 97, 104
normal satisfiability, 72, 82
normal structure, 71, 82, 86
nth-order arithmetic, 106
numeral, 114

∅ (empty set), 108

125

one-sorted, 86
open, 15, 18, 40
operation, 78, 84
ordered field, 95
ordered pair, 107
ordering

linear, 91
partial, 22

P (power set), 108
PA, 103
padding, 64
pair

ordered, 107
unordered, 107

pairing, 107
parameter, 31, 85
partial ordering, 22
partition, 76
path, 20
Peano arithmetic, 103
power set, 105–108
practical completeness, 103–105, 111
predecessor, 20
predicate, 24, 84
prenex form, 39
prime numbers, 77
primitive recursive language, 115
product, Cartesian, 108
proof system, 50

Gentzen-style, 63
Hilbert-style, 50

pure set, 107

Q, 103
Q (rational numbers), 93
quantifier, 24
quantifier-free, 39
quantifier elimination, 95
quasitautological consequence, 57, 58
quasitautology, 51, 53, 56
quasiuniversal, 43

R (real numbers), 93, 95, 97–99
ran, 108
random graph, 92

range, 108
rational numbers, 93
RCOF, 95
real-closed field, 95
real numbers, 93, 95, 98, 99
reduct, 74, 101
reflexivity, 71
relation, 26, 85
replacement, 110
replacement of bound variables, 38
replete, 18, 40
ring, 83, 92
root, 20

S (successor function), 104
satisfaction, 8, 27, 35
satisfiability, 8, 27, 28, 35, 37
scalar, 94
second-order arithmetic, 104
sentence, 25, 26
sequent, 62
sequent calculus, 63
set theory, 106, 107, 110
signed formula, 12
signed sequent, 67
signed variant, 67
simple type theory, 106
singleton, 107
sinx, 99
sort, 84
soundness, 51
spectrum, 75, 82, 86
strength, 111
structure, 26, 35
sub, 116
subtheory, 111
subtree, 20
successor, 20
successor function, 104
symmetric, 67
symmetry, 71

tableau, 12, 15, 31, 80
Tarski, 95, 118
tautology, 8, 51
term, 78, 84

126

theories, 87
complete, 88–92, 94–96, 103
foundational, 88, 102–111
mathematical, 88–96
practically complete, 103–105, 111

torsion, 83, 90
transitivity, 71
tree, 20
truth, 27
truth values, 6
type theory, 106

⋃
(union), 107

unary, 3
union, 107
universal closure, 40
universe, 26, 85, 110
unordered pair, 107
unsigned formula, 12
unsigned sequent, 67

valuation, 6, 26, 79
value, 108
variable, 24, 84

bound, 25
free, 25

variable-free, 79
variant, 39, 67
Vaught’s Test, 89
vector space, 94

weakening, 64
well-founded set, 107

Z (integers), 93
Z1, 103
Z2, 104
Zn, 106
Z∞, 106
ZC, 107
ZFC, 110
Zermelo, 107
Zermelo/Fraenkel, 110

127

