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Abstract

Let Q be Robinson’s weak theory of arithmetic. We use recursion-

theoretical methods to show that Q is essentially undecidable. Conse-

quently, any recursively axiomatizable theory in which Q is interpretable

is undecidable and incomplete. This is a strengthening of theorems of

Gödel, Rosser and Tarski. We also present proofs of Gödel’s First and

Second Incompleteness Theorems. In these proofs, the role of Q is per-

haps a bit unusual.

1 Undecidable Theories

This section is based on a talk which I gave on November 18, 2008 in the Penn
State Logic Seminar. Sankha Basu took notes, and this section is essentially a
polished version of those notes.

* * *

Recall Chapter 2 of my Math 558 notes [1], where we proved that all recursive
functions are definable over (N,+, ·, 0, 1,=). We now begin with a refinement
of that result.

Definition 1.1. The ∆0 formulas are the smallest class of number-theoretical
formulas containing all atomic formulas (i.e., of the form t1 = t2 where t1, t2
are polynomials with coefficients from N) and closed under ∧, ∨, ¬ , ⇒, ⇔ and
bounded quantifiers (∀x < t), (∃x < t) where t is a term not involving x. Note
that (∀x < t)Φ ≡ ∀x (x < t ⇒ Φ) and (∃x < t)Φ ≡ ∃x (x < t ∧ Φ).

Definition 1.2. A ∆0 predicate is a number-theoretical predicate P ⊆ Nk

which is defined over (N,+, ·, 0, 1,=, <) by a ∆0 formula.
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Remark 1.3. Obviously all ∆0 predicates are primitive recursive. It can be
shown that the ∆0 predicates are a small subclass of the primitive recursive
predicates. Trivially, the class of ∆0 predicates is closed under ∧, ∨, ¬ , ⇒, ⇔
and bounded quantification.

Definition 1.4. A Σ1 formula is a formula of the form ∃xΦ where x is a
number variable and Φ is a ∆0 formula. A generalized Σ1 formula is a formula
of the form ∃x1 · · · ∃xk Φ where x1, . . . , xk are number variables and Φ is a
∆0 formula. A Σ1 predicate is a number-theoretical predicate which is defined
over N by a Σ1 formula. Equivalently, it is defined over N by a generalized Σ1

formula.

Lemma 1.5. The class of Σ1 predicates is closed under ∧, ∨, ∃x, ∃x < t,
∀x < t.

Proof.

∃x∃y P (x, y,−)
︸ ︷︷ ︸

∆0

≡ ∃z (∃x < z) (∃y < z)P (x, y,−).
︸ ︷︷ ︸

∆0

(∃xP (x,−)) ∧ (∃y Q(y,−)) ≡ ∃x∃y (P (x,−) ∧Q(y,−)).

(∀x < t)∃y . . . ≡ ∃z (∀x < t) (∃y < z) . . . .

Theorem 1.6. For every recursive function f : Nk → N, the graph of f is a Σ1

predicate.

Proof. We use the familiar characterization of recursive functions in terms of
composition, primitive recursion and minimization.

Composition:
For example, suppose f = g ◦ h. Then

f(x) = y ≡ ∃z (h(x) = z
︸ ︷︷ ︸

Σ1

∧ g(z) = y
︸ ︷︷ ︸

Σ1

)

so this is Σ1.
Minimization:
Suppose f(−) = least y such that R(−, y), where R is recursive. Then

f(−) = y ≡ χR(−, y) = 1
︸ ︷︷ ︸

Σ1

∧(∀z < y) (χR(−, z) = 1)
︸ ︷︷ ︸

Σ1

so this is Σ1.
Primitive Recursion:
Recall the Gödel beta-function, β(a, r, i) = Rem(r, a · (i + 1) + 1). We have

β(a, r, i) = v ≡ ∃u ((r = u · (a · (i + 1) + 1) + v) ∧ (v < a · (i+ 1) + 1))
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so the graph of the beta-function is Σ1. Now suppose f is obtained by primitive
recursion, f(0,−) = g(−) and f(x + 1,−) = h(x, f(x,−),−) where the graphs
of g and h are Σ1. Then

f(x,−) = w ≡ ∃a ∃r (β(a, r, 0) = g(−) ∧ β(a, r, x) = w
∧ (∀i < x)β(a, r, i + 1) = h(i, β(a, r, i),−))

so the graph of f is Σ1.

Corollary 1.7. The Σ1 predicates are the same as the Σ0
1 predicates.

Proof. Clearly Σ1 implies Σ0
1. Conversely, given a Σ0

1 predicate P (−) ≡ ∃xR(x,−)
where R is recursive, we have

P (−) ≡ ∃x (χR(x,−) = 1)
︸ ︷︷ ︸

Σ1

and this is Σ1.

Definition 1.8. We consider theories T = (L, S) where L is a finite language,
the language of T , and S is a set of L-sentences, the axioms of T . Recall that an
L-sentence is an L-formula with no free variables. Let B range over L-sentences.

1. T ⊢ B means that B is a theorem of T .

2. T is consistent if T 0 Φ ∧ ¬Φ.

3. T is complete if for all B either T ⊢ B or T ⊢ ¬B.

4. T is decidable if ThmT = {#(B) | T ⊢ B} is recursive.

5. T is recursively axiomatizable if AxT := {#(B) | B ∈ S} is recursive.

Examples 1.9.

1. Th(N,+, ·, 0, 1,=), the complete theory of the natural numbers, is not
decidable and not recursively axiomatizable. In this case L = {+, ·, 0, 1,=}
and S = TrueSntN.

2. Th(R,+, ·, 0, 1,=), the complete theory of the real numbers, is decidable.
This is a consequence of quantifier elimination. In this case S = TrueSntR.

Theorem 1.10. If T is recursively axiomatizable, then ThmT is recursively
enumerable, i.e., Σ0

1.

Sketch of proof. Use the tableau method or some other proof system. Given an
L-sentence B, search for a finite proof of B from the axioms of T .

Theorem 1.11. If T is recursively axiomatizable and complete, then T is de-
cidable.
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Proof. Let B range over L-sentences. By Theorem 1.10 we have that {#(B) |
T ⊢ B} is Σ0

1. But then, by completeness of T , we also have that {#(B) | T 0
B} = {#(B) | T ⊢ ¬B} is Σ0

1. Hence {#(B) | T ⊢ B} is ∆0
1, i.e., recursive.

Thus T is decidable.

Definition 1.12. Consider the particular theory Q. Roughly speaking, Q is
first-order arithmetic minus the induction scheme. Formally, the language of Q
is {+, ·, 0,=, S} where, + and · are binary operations, S is a unary operation,
0 is a constant, and = is a binary predicate. The axioms of Q are:

• ∀x∀y (Sx = Sy ⇒ x = y)

• ∀x (Sx 6= 0)

• ∀y (y 6= 0 ⇒ ∃x (Sx = y))

• ∀x (x + 0 = x)

• ∀x∀y (x + Sy = S(x+ y))

• ∀x (x · 0 = 0)

• ∀x∀y (x · Sy = x · y + x)

The idea of using Q is due to Tarski/Mostowski/Robinson [2].

Remark 1.13. Q is a very weak fragment of first-order arithmetic. For instance
Q 0 ∀x (0 + x = x), etc.

Notation 1.14.

1. We write n = S · · ·S
︸ ︷︷ ︸

n times

0. Or, inductively, 0 = 0 and n+ 1 = Sn for each

n ∈ N.

2. We introduce a 2-place predicate ≤ by x ≤ y ≡ ∃z (z + x = y).

Lemma 1.15. For each m,n ∈ N the following are provable in Q:

1. m+ n = m+ n

2. m · n = m · n

3. ∀x (x ≤ n ⇔ (x = 0 ∨ x = 1 ∨ · · · ∨ x = n− 1 ∨ x = n))

4. m 6= n if m 6= n

5. m ≤ n if m ≤ n

6. ∀x (x ≤ n ∨ n ≤ x)

Proof. By external induction on n.
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1. E.g., 3+2 = SSS0+SS0 = S(SSS0+S0) = SS(SSS0+0) = SSSSS0 =
5.

2. Similar.

3. We prove this by external induction on n.

Base step, n = 0: x ≤ 0. So ∃w (w + x = 0). This implies, x = 0 because
otherwise x = Su for some u. Then 0 = w + Su = S(w + u) which is a
contradiction.

Induction step: Suppose the claim holds for all n ≤ k where, k ≥ 0. We
now prove it for n = k + 1. Suppose x ≤ k + 1. Then w + x = k + 1
for some w. If x = 0, we are done. If x 6= 0, x = Su for some u, so
w + x = w + Su = k + 1. Now w + Su = S(w + u), so w + u = k.
Then by induction hypothesis u = 0 ∨ u = 1 ∨ · · · ∨ u = n which implies
x = 1 ∨ x = 2 ∨ · · · ∨ x = k + 1, Q.E.D.

4. E.g., we prove 2 6= 3. Suppose 2 = 3, i.e., SS0 = SSS0. This implies
S0 = SS0 which in turn implies 0 = S0, a contradiction.

5. Similar.

6. Suppose, x � n. Then by part 3, x 6= 0, 1, . . . , n, so we can deduce from
the axioms of Q that x = SS · · ·S

︸ ︷︷ ︸

n+1

w for some w. Then x = SS · · ·S
︸ ︷︷ ︸

n+1

w =

Sw + SS · · ·S
︸ ︷︷ ︸

n

0 = Sw + n, hence n ≤ x.

Theorem 1.16. For all ∆0 sentences Φ we have:

1. Q ⊢ Φ if and only if Φ is true.

2. Q ⊢ ¬Φ if and only if Φ is not true.

Proof. The proof is by induction on the number of connectives and quantifiers
in Φ. Suppose for instance that Φ ≡ (∀x ≤ t)Ψ where t is a variable-free term.
By inductive hypothesis, Q ⊢ Ψ[x/n] for all n ≤ t. Using part 3 of Lemma 1.15,
we have Q ⊢ ∀x (x ≤ t ⇒ Ψ), i.e., Q ⊢ Φ, Q.E.D. Next, suppose Φ ≡ (∃x ≤ t)Ψ.
By inductive hypothesis, there is n ≤ t such that Q ⊢ Ψ[x/n]. Also, Q ⊢ n ≤ t,
so Q ⊢ (∃x ≤ t)Ψ, i.e., Q ⊢ Φ, Q.E.D.

Theorem 1.17. For all generalized Σ1 sentences S, Q ⊢ S if and only if S is
true.

Proof. Since the axioms of Q are true, all sentences provable in Q are true. For
the converse, let S ≡ ∃x1 · · · ∃xk Φ where Φ is ∆0. If S is true, let m1, . . . ,mk ∈
N be such that Φ[x1/m1, . . . , xk/mk] is true. Then, by the previous theorem,
Q ⊢ Φ[x1/m1, . . . , xk/mk]. It follows that Q ⊢ ∃x1 · · · ∃xk Φ, i.e., Q ⊢ S,
Q.E.D.
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Theorem 1.18. Q is undecidable.

Proof. Let H = the Halting Problem. Recall that H is Σ0
1 but not recursive.

Let Halt be a Σ1 formula defining H . Then

H = {n | Halt[x/n] is true}

= {n | Q ⊢ Halt[x/n]}

= {n | Q ⊢ ∃x (x = n ∧ Halt)}.

Now f(n) := #(∃x (x = n ∧ Halt)) is a primitive recursive function. Moreover
H is reducible to ThmQ = {#(B) | Q ⊢ B} via f . In other words, n ∈ H ⇔
f(n) ∈ ThmQ. Since H is nonrecursive, it follows that ThmQ is nonrecursive,
i.e., Q is undecidable.

Remark 1.19. It follows from Theorems 1.18 and 1.11 that Q is incomplete,
but this was obvious anyway. We are now going to show that any consistent
theory which contains Q is incomplete.

Definition 1.20. Two sets A,B ⊆ N are said to be recursively inseparable if
there is no recursive set X such that A ⊆ X and X ∩B = ∅.

Remark 1.21. Let A,B ⊆ N be recursively enumerable (i.e., Σ0
1), and disjoint

and recursively inseparable. It is well known that such a pair of sets exists.
Let A,B be defined by Σ1 formulas ∃yΦ and ∃zΨ be Σ1 respectively. Thus
A = {m | ∃yΦ[x/m]} and B = {m | ∃zΨ[x/m]} where Φ and Ψ are ∆0

formulas. Let Φ∗ ≡ Φ ∧ ¬ (∃z ≤ y)Ψ. This is again a ∆0 formula. Note that
A = {m | ∃yΦ∗[x/m]}. The passage from Φ to Φ∗ is known as Rosser’s Trick.

Theorem 1.22. Let T be a consistent theory which contains Q. Then T is
undecidable.

Proof. Let A,B,Φ,Ψ,Φ∗ be as in Remark 1.21. Let

A∗ = {m ∈ N | T ⊢ ∃yΦ∗[x/m]}.

As before, A∗ is reducible to ThmT . Thus, it will suffice to show that A∗ is not
recursive.

Obviously A∗ ⊇ A, because for all m ∈ A we have Q ⊢ ∃yΦ∗[x/m], hence
T ⊢ ∃yΦ∗[x/m], hence m ∈ A∗.

We claim that A∗ ∩ B = ∅. To see this, suppose m ∈ A∗ ∩ B. Because
m ∈ A∗ we have T ⊢ ∃yΦ∗[x/m], i.e.,

T ⊢ ∃y (Φ[x/m] ∧ ¬ (∃z ≤ y)Ψ[x/m]). (1)

At the same time, because m ∈ B we have ∃zΨ[x/m] so let n ∈ N be such that
Ψ[x/m, z/n] holds. Then Q ⊢ Ψ[x/m, z/n], hence

T ⊢ Ψ[x/m, z/n]. (2)
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Combining (1) and (2) we obtain

T ⊢ ∃y (Φ[x/m] ∧ n � y) (3)

and from (3) and Lemma 1.15 it follows that

T ⊢ ∃y (Φ[x/m] ∧ (y = 0 ∨ · · · ∨ y = n)),

i.e.,
T ⊢ Φ[x/m, y/0] ∨ · · · ∨Φ[x/m, y/n]. (4)

On the other hand, because m ∈ B and A ∩ B = ∅ we have m /∈ A, hence
¬∃yΦ[x/m] holds, hence for all k ∈ N we have ¬Φ[x/m, y/k] hence Q ⊢
¬Φ[x/m, y/k] hence T ⊢ ¬Φ[x/m, y/k] so in particular

T ⊢ ¬ (Φ[x/m, y/0] ∨ · · · ∨ Φ[x/m, y/n]). (5)

Now (4) and (5) contradict our assumption that T is consistent. This proves
our claim.

We have seen that A∗ ⊇ A and A ∩ B = ∅. Since A and B are recursively
inseparable, it follows that A∗ is nonrecursive. Hence ThmT is nonrecursive,
i.e., T is undecidable.

Theorem 1.23. Let T be a recursively axiomatizable, consistent theory which
contains Q. Then T is undecidable and incomplete.

Proof. Immediate from Theorems 1.11 and 1.22.

Corollary 1.24. Each of the theories Z1, Z2, ZFC, . . . is undecidable and
incomplete.

Proof. Let T be any of these recursively axiomatizable theories. Clearly Q is
interpretable in T , i.e., we can find a definitional extension T ′ of T which contains
Q. Then, by Theorems 1.22 and 1.23, T ′ is undecidable and incomplete. Using
known results on definitional extensions, it follows that T is undecidable and
incomplete.

2 The Incompleteness Theorems of Gödel

In this section we sketch a proof of Gödel’s First and Second Incompleteness
Theorems. I presented this proof in December 2009 in a course at Penn State.
In this presentation, the role of Robinson’s theory Q is perhaps a bit unusual.

Lemma 2.1. Let f : N → N be a recursive function. Then, we can find a Σ1

formula F in the language of Q which represents f in the sense that

Q ⊢ ∀x (x = f(m) ⇔ F [w/m])

for each m ∈ N. The free variables of F are w and x.
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Proof. Since f is recursive, the graph of f is Σ1-definable over the natural
numbers. Let ∃y1 · · · ∃yk Φ be a Σ1 formula with free variables w and x which
defines f over N. Thus for all m,n ∈ N we have that f(m) = n if and only if
∃y1 · · · ∃yk Φ[w/m, x/n] holds in N. Let F be the following Σ1 formula:

There exists z such that

1. z = the least z such that (∃x, y1, . . . , yk ≤ z)Φ,

2. x = the least x ≤ z such that (∃y1, . . . , yk ≤ z)Φ.

Note that the free variables of F are w and x. We can use our lemmas concerning
Q to show that F has the desired property.

Lemma 2.2 (Self-Reference Lemma). Let L be a recursive language which
includes the language of Q. Let A be an L-formula. Let T be an L-theory
which includes Q. Let x be a number variable. Then, we can find an L-formula
B such that

T ⊢ B ⇔ A[x/#(B)].

Remark 2.3. The free variables of B are those of A except for x. In particular,
if x is the only free variable of A, then B is an L-sentence.

Proof of Lemma 2.2. Let w be a number variable different from x and which
does not occur in A. For all m ∈ N let d(m) = sub(m,#(w), num(m)). Note
that d : N → N is a primitive recursive function and for all L-formulas C we
have d(#(C)) = #(C[w/#(C)]). Let D be a Σ1 formula which represents d as
in Lemma 2.1. The free variables of D are w and x and for each m ∈ N we have

Q ⊢ ∀x (x = d(m) ⇔ D[w/m]).

Let A∗ be the formula ∀x (D ⇒ A), and let B be the formula A∗[w/#(A∗)].
Since d(#(A∗)) = #(B), we have

Q ⊢ ∀x (x = #(B) ⇔ D[w/#(A∗)]).

It follows that

T ⊢ A[x/#(B)] ⇔ ∀x (D[w/#(A∗)] ⇒ A),

i.e.,
T ⊢ A[x/#(B)] ⇔ A∗[w/#(A∗)],

i.e.,
T ⊢ A[x/#(B)] ⇔ B.

This completes the proof.

Definition 2.4 (the provability predicate). Let L be a recursive language,
and let T be a recursively axiomatizable L-theory. By Theorem 1.10 the set
ThmT = {#(B) | T ⊢ B} is recursively enumerable, i.e., Σ0

1. By Corollary 1.7
let PvblT be a Σ1 formula which defines ThmT over N. Thus ThmT = {m ∈
N | PvblT [x/m]}. Here x is number variable, the only free variable of PvblT .
The Σ1 formula PvblT is called the provability predicate for T .
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Lemma 2.5. Let L be a recursive language which includes the language of Q.
Let T be a recursively axiomatizable L-theory. Then, we can find a sentence
G = GT such that

Q ⊢ G ⇔ ¬PvblT [x/#(G)].

Moreover G is of the form ¬S where S is a generalized Σ1 sentence.

Proof. This is essentially the special case of Lemma 2.2 with T = Q and A =
¬PvblT . However, we have to slightly modify the proof of Lemma 2.2. Instead
of A∗ use the logically equivalent formula ¬S∗ where S∗ is generalized Σ1.
Explicitly, S∗ is ∃x∃y ∃z (Φ∧Ψ) where D is ∃yΦ and PvblT is ∃zΨ and Φ and
Ψ are ∆0 formulas. Then G is (¬S∗)[w/#(¬S∗)] and the proof goes through as
before. Note that G is identical to ¬S where S is the generalized Σ1 sentence
S∗[w/#(¬S∗)].

Theorem 2.6 (The First Incompleteness Theorem). Let L be a recursive lan-
guage which includes the language of Q. Let T be a recursively axiomatizable
L-theory which includes Q. If T is consistent, then T 0 GT .

Proof. Let G = GT and suppose T ⊢ G. Then PvblT [x/#(G)] is true. Since
the axioms of Q are true, it follows by Lemma 2.5 that ¬G is true. Moreover
¬G is logically equivalent to a generalized Σ1 sentence, so by Theorem 1.17 we
have Q ⊢ ¬G. Since T ⊇ Q it follows that T ⊢ ¬G. Thus T is inconsistent.

Remark 2.7. Theorem 2.6 is a refinement of Gödel’s First Incompleteness
Theorem. The sentence GT is known as the Gödel sentence for T . Note that
GT , although not provable in T , is true. This is because, by Lemma 2.5, GT is
equivalent to T 0 GT , and the latter statement is true in view of Theorem 2.6.

Remark 2.8. Next we turn to Gödel’s Second Incompleteness Theorem. In
order to prove the Second Incompleteness Theorem, we need an additonal con-
dition on T . The condition that we need is adequacy as formulated in the
following definition. It can be shown that each of the theories Z1, Z2, ZFC, etc.,
is adequate. It is not clear whether Q is adequate. It is conceivable that the
adequacy of Q may depend on the choice of the provability predicate PvblQ.

Definition 2.9 (adequacy). Let L be a recursive language which includes the
language of Q. Let T be a recursively axiomatizable L-theory which includes
Q. We say that T is adequate if

T ⊢ S ⇒ PvblT [x/#(S)]

for all generalized Σ1 sentences S. Note that, in view of Theorem 1.17, all
sentences of the form S ⇒ PvblT [x/#(S)] where S is a generalized Σ1 sentence
are true. Hence, it is reasonable to expect these sentences to be provable in T .

Definition 2.10 (the consistency sentence). Let L be a recursive language
which includes the language of Q. Let T be a recursively axiomatizable L-
theory which includes Q. Let G = GT be the Gödel sentence for T . Recall that
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G is of the form ¬S where S is a generalized Σ1 sentence. Let ConT be the
sentence ¬ (PvblT [x/#(S)]∧PvblT [x/#(¬S)]). Note that T is consistent if and
only if ConT is true. The sentence ConT is known as the consistency sentence

for T .

Theorem 2.11 (the Second Incompleteness Theorem). Let L be a recursive
language which includes the language of Q. Let T be a recursively axiomatizable
L-theory which includes Q and is adequate. If T is consistent, then T 0 ConT .

Proof. Write G = GT . By Theorem 2.6 we have T 0 G. Therefore, it suffices
to show that T ⊢ ConT ⇒ G, i.e., T ⊢ S ⇒ ¬ConT . Here G = ¬S where S is
a generalized Σ1 sentence. By adequacy of T we have

T ⊢ S ⇒ PvblT [x/[#(S)]. (6)

On the other hand, by Lemma 2.5 we have

T ⊢ G ⇔ ¬PvblT [x/#(G)],

i.e.,
T ⊢ S ⇔ PvblT [x/#(¬S)]. (7)

Combining (6) and (7) we have

T ⊢ S ⇒ (PvblT [x/[#(S)] ∧ PvblT [x/#(¬S)]),

i.e., T ⊢ S ⇒ ¬ConT , Q.E.D.
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