
Computability, Unsolvability, Randomness

Stephen G. Simpson
Department of Mathematics

Pennsylvania State University
http://www.math.psu.edu/simpson/

February 5, 2009

Please send corrections to the author at 〈simpson@math.psu.edu〉.

1

Preface

This book originated as a set of lecture notes for a junior-senior-level course
which I taught at the Pennsylvania State University in Fall Semester (August
27 through December 14), 2007. The note-taker was my teaching assistant in the
course, Jonas Kibelbek, a Mathematics Ph.D. student at Penn State. The stu-
dents in the course were outstanding undergraduate mathematics majors from
colleges and universities around the United States. These students were parti-
pating in our Mathematics Advanced Study Semester program, also known as
MASS. The MASS program is sponsored by the United States National Science
Foundation.

The purpose of my Fall 2007 course and of this book is twofold. First, I ex-
posit Turing’s 1936 theory of computability and unsolvability, as subsequently
developed by Kleene and Post. This theory is of the essence in theoretical com-
puter science and in the study of unsolvable mathematical problems. Second,
I provide an introductory account of a research area which is currently very
active: algorithmic randomness and Kolmogorov complexity.

2

Contents

Title 1

Preface 2

1 Computability 6

1.1 Computable functions . 6
1.2 Composing computable functions 9
1.3 Computable predicates . 12
1.4 Primitive recursion . 17
1.5 Prime power coding . 20
1.6 Computable real numbers . 22

2 Partial recursive functions 24

2.1 Partial recursive functions . 24
2.2 Gödel numbers and indices . 26
2.3 The Enumeration Theorem . 28
2.4 The Parametrization Theorem 30
2.5 Universal partial recursive functions 32

3 Unsolvability 33

3.1 Noncomputable sets and functions 33
3.2 An unsolvable decision problem 34
3.3 Almost all problems are unsolvable 35
3.4 Unsolvable problems in core mathematics 36
3.5 A remark on Hilbert’s 10th Problem 39
3.6 Many-one reducibility . 40

4 The arithmetical hierarchy 43

4.1 Definition of the arithmetical hierarchy 43
4.2 Closure properties . 44
4.3 Distinguishing levels of the hierarchy 46
4.4 Many-one completeness . 48
4.5 Recursively enumerable sets . 49
4.6 Homework #3, due September 17, 2007 51

3

4.7 Recursively enumerable sets . 51
4.8 Parametrization and uniformity 53

5 Oracles and relativization 56

5.1 Oracle computation . 56
5.2 Relativization . 58
5.3 Turing degrees . 58
5.4 The Turing jump operator . 60
5.5 Finite approximation . 62
5.6 Structure of the Turing degrees 66
5.7 Homework #5, due October 1, 2007 68
5.8 Comments on Homework #4, continued 70
5.9 Review for the upcoming Midterm Exam 73
5.10 Solutions of some homework and midterm problems 79

6 Kolmogorov complexity 80

6.1 Kolmogorov complexity . 80
6.2 Prefix-free complexity . 83
6.3 The Kraft/Chaitin Theorem . 85

7 The Cantor space 90

7.1 Partial recursive functionals, etc. 90
7.2 Homework #8, due October 22, 2007 92
7.3 Σ0

1 and Π0
1 sets in 2N and NN . 94

7.4 Compactness of 2N . 99
7.5 Σ0

1 and Π0
1 predicates in 2N . 101

8 Randomness 104

8.1 Foundations of mathematics . 104
8.2 Definitions of randomness . 105
8.3 Homework #9, due October 29, 2007 108
8.4 Properties of Martin-Löf randomness 109
8.5 Comments on Homework #8 . 115
8.6 Homework #10, due November 5, 2007 117
8.7 Initial segment complexity . 119
8.8 Solutions for Homework #9 . 121
8.9 Homework #11, due November 12, 2007 123

9 Some advanced topics 125

9.1 Turing degrees of random sequences 125
9.2 The Low Basis Theorem . 126
9.3 Randomness relative to an oracle 129
9.4 Comments on Homework #11 . 130
9.5 Homework #12, due November 26, 2007 132
9.6 The Kučera/Gács Theorem . 132
9.7 Some solutions for Homework #10 136

4

9.8 Some solutions for Homework #11 138
9.9 Comments on Homework #12 . 141
9.10 Homework #13, due December 3, 2007 141
9.11 LR- and LK-reducibility . 142

10 Solutions to all of the exercises 151

5

Chapter 1

Computability

In this chapter we study Turing’s concept of what it means for a function to be
computable. Computable functions are also known as recursive functions.

1.1 Computable functions

We denote the natural numbers by N = {0, 1, 2, . . .}. We shall deal with 1-place
number-theoretic functions f : N→ N.

Example 1.1.1. An example of a 1-place number-theoretic function is f(x) =
2x. Thus f(0) = 1, f(1) = 2, f(2) = 4, f(3) = 8, etc. Note that the vari-
able x ranges over N, i.e., x takes on integer values only. Later we shall see
that the number-theoretic function f(x) = 2x is, in a precisely defined sense,
“computable.”

There are a great many number-theoretic functions, and many of them be-
have in a very unpredictable manner. We wish to define a subclass consisting
of the number-theoretic functions which are “well behaved” or “predictable.”
We shall call these functions “computable.” In order to define this concept
rigorously, we now introduce register machines and register machine programs.

Definition 1.1.2. A register machine consists of a finite set of registers, denoted
R1, . . . , Rs. Each register Ri is a container which can hold an arbitrary natural
number zi ∈ N. Here 1 ≤ i ≤ s. We think of each register Ri as a box containing
zi marbles. The basic register machine operations are: adding a marble to a
box, and removing a marble from a box. The register Ri is said to be empty if
zi = 0, i.e., there are no marbles in Ri. A register machine program is a finite
flow diagram consisting of the following types of instructions.

1. The increment instruction, denoted R+
i . This instruction replaces zi by

zi + 1 (i.e., adds a marble to the box Ri) and then goes to the next
instruction, indicated by an arrow.

6

2. The decrement instruction, denoted R−
i . This is a branching instruction.

If zi > 0, it replaces zi by zi − 1 (i.e., removes a marble from the box Ri)
and then goes to the next instruction, indicated by an unlabeled arrow. If
zi = 0, it leaves Ri empty and goes to the next instruction, indicated by
an arrow labeled e.

3. Start and stop instructions. Each program has exactly one start instruc-
tion. A stop instruction indicates that we are to stop, i.e., no more in-
structions are to be executed. We sometimes use the word “halt” instead
of “stop.”

Example 1.1.3. Consider the following register machine program.

startONMLHIJK // R−
1

ONMLHIJK
��

e // stopONMLHIJK

R+
2

ONMLHIJK // R+
2

ONMLHIJK
__???????

Note that this program, if started with x in R1 and y in R2, will eventually halt
(after a finite number of steps) with 0 in R1 and 2x+ y in R2.

Definition 1.1.4 (computable functions). A 1-place number-theoretic function
f(x) is said to be computable if there exists a program, call it P , with the
following property. For any x ∈ N, if we start P with x in R1 and all other
registers empty (in other words, we start with 0 in R2, . . . , Rs), then P will
eventually halt with f(x) in R2.

Example 1.1.5. The program of Example 1.1.3 computes the function f(x) =
2x. Thus, f(x) = 2x is a computable function.

Exercise 1.1.6. Exhibit a register machine program showing that the function
f(x) = 2x is computable.

Solution. The following program, if started with x inR1 and 0 in R2 andR3, will
eventually halt with 2x in R2. This shows that the function 2x is computable.

startONMLHIJK // R+
2

ONMLHIJK // R−
1

ONMLHIJK
e

��

// R−
2

ONMLHIJK
��

e // R−
3

ONMLHIJK
��

e

zz

stopONMLHIJK R+
3

ONMLHIJK
��

R+
2

ONMLHIJK
OO

R+
3

ONMLHIJK

DD

7

We now generalize Definition 1.1.4 to functions of several variables.

Definition 1.1.7 (computable functions). A k-place number-theoretic function,
f : Nk → N, is said to be computable if there exists a program, call it P , with
the following property. For any x1, . . . , xk ∈ Nk, if we start P with x1 in R1,
. . . , xk in Rk, and all other registers empty (i.e., 0 in Rk+1, . . . , Rs), then P will
eventually halt with f(x1, . . . , xk) in Rk+1.

Example 1.1.8. The following program, if started with x in R1, y in R2, and
0 in R3, will eventually halt with x+ y in R3.

startONMLHIJK // R−
1

ONMLHIJK
��

e // R−
2

ONMLHIJK
��

e // stopONMLHIJK

R+
3

ONMLHIJK
OO

R+
3

ONMLHIJK
OO

Thus we see that the 2-place number-theoretic function f(x, y) = x+ y is com-
putable.

The following piece of notation will be useful.

Notation 1.1.9. We write P(x1, . . . , xk) to denote the run of the program P
when it is started with x1 in R1, . . . , xk in Rk, and all other registers empty.
In this context R1, . . . , Rk are called input registers, Rk+1 is called the output
register, and Rk+2, . . . , Rs are called auxiliary registers.

Example 1.1.10. Exhibit a register machine program showing that the 2-place
number-theoretic function f(x, y) = xy is computable.

Solution. The following program, if started with x in R1, y in R2, and 0 in R3

and R4, will eventually halt with xy in R3.

startONMLHIJK // R−
1

ONMLHIJK
e

��

// R−
2

ONMLHIJK
��

e // R−
4

ONMLHIJK
��

e

zz

stopONMLHIJK R+
3

ONMLHIJK
��

R+
2

ONMLHIJK
OO

R+
4

ONMLHIJK

DD

Note that R4 serves as an auxiliary register.

8

Exercise 1.1.11. Exhibit a register machine program showing that the 2-place
number-theoretic function

x ·− y =

{
x− y if x > y ,

0 if x ≤ y

is computable.

Solution. The following program, if started with x in R1, y in R2, and 0 in R3,
will eventually halt with x ·− y in R3.

startONMLHIJK // R−
1

ONMLHIJK
e

��

//
R−

2
ONMLHIJK

oo
e // R+

3
ONMLHIJK // R−

1
ONMLHIJK

��

e // stopONMLHIJK

stopONMLHIJK R+
3

ONMLHIJK
OO

Exercise 1.1.12. Exhibit a register machine program which computes the ex-
ponential function, exp(x, y) = xy . Remember that the variables x and y range
over N, the set of natural numbers. Note that x0 = 1 for all x, even for x = 0.

In general, given a program P and inputs x1, . . . , xk, the run P(x1, . . . , xk)
may or may not eventually halt, depending on x1, . . . , xk. Later we shall prove
the following important theorem.

Theorem 1.1.13 (Turing, 1936). We can construct a particular program, call
it P , with the following property. The 1-place number-theoretic function

g(x) =

{
1 if P(x) eventually halts,

0 if P(x) never halts,

is not computable. (Here we are using Notation 1.1.9.)

We shall describe this situation by saying that the “Halting Problem” for
the program P is “unsolvable.”

1.2 Composing computable functions

The purpose of this chapter is to convince the reader that a great many familiar
number-theoretic functions and predicates are computable. We are going to
develop some simple yet powerful tools for proving that particular functions are
computable, without actually having to write programs which compute them.

We begin with the following simple theorem.

9

Theorem 1.2.1 (composition). Given 1-place number-theoretic functions f
and g, there is a unique 1-place number-theoretic function h = g ◦ f defined
by h(x) = g(f(x)) for all x. Moreover, if f and g are computable, then h is
computable.

Proof. The existence and uniqueness of h = g ◦ f are obvious.
Suppose now that f and g are computable. Let F and G be programs which

compute f and g respectively. We may safely assume that F and G use the
same set of registers R1, . . . , Rs where s ≥ 2. Let H be the program

startONMLHIJK
��

R+
1

ONMLHIJK
��

stopONMLHIJK

F // R−
1

ONMLHIJK
cdfeg̀

!!
e // R−

2
ONMLHIJK

OO

// R−
3

ONMLHIJK
cdfeg̀

!!
e // · · · // R−

s
ONMLHIJK

cdfeg̀
!!

e // G

OO

It is easily verified that H computes h.

Below we shall generalize the above theorem from 1-place functions to k-
place functions. But first, in order to simplify constructions of this kind, let us
make the following definition.

Definition 1.2.2 (clean computation). Let f : Nk → N be a k-place number-
theoretic function, and let P be a program which computes f in the sense of
Definition 1.1.7. We say that P cleanly computes f if, whenever P halts, all
registers except the output register Rk+1 are empty.

For example, the program of Example 1.1.8 cleanly computes the function
f(x, y) = x+ y.

Remark 1.2.3. Given a program P which computes a k-place number-theoretic
function f , we can easily modify P to obtain a program which cleanly computes
f . Namely, replace the stop instruction of P by

// R−
1

ONMLHIJK
cdfeg̀

!!
e // · · · e // R−

k
ONMLHIJK

cdfeg̀
!!

e // R−
k+2

WVUTPQRS
cdfeg̀

!!

e // · · · e // R−
s

ONMLHIJK
cdfeg̀

!!
e // stopONMLHIJK

Here we have k+ 1 ≤ s where R1, . . . , Rs are the registers of P and Rk+1 is the
output register. Obviously this modified program has the desired property.

Using Definition 1.2.2 and Remark 1.2.3, we may simplify the proof of The-
orem 1.2.1 as follows.

Simplified Proof of Theorem 1.2.1. Let F and G be programs on R1, . . . , Rs
which compute f and g. By Remark 1.2.3 we may assume that F and G cleanly

10

compute f and g. Letting H be the program

startONMLHIJK
��

R+
1

ONMLHIJK
��

stopONMLHIJK

F // R−
2

ONMLHIJK
OO

e // G

OO

we see that H computes g ◦ f . (In fact, H cleanly computes g ◦ f , but this is
not essential for our purposes. We are only interested in knowing that g ◦ f is
computable.)

We now generalize Theorem 1.2.1 as follows.

Theorem 1.2.4 (generalized composition). Let g be anm-place number-theoretic
function, and let f1, . . . , fm be k-place number-theoretic functions. Then, there
is a unique k-place number-theoretic function h given by

h(x1, . . . , xk) = g(f1(x1, . . . , xk), . . . , fm(x1, . . . , xk))

for all x1, . . . , xk ∈ N. Moreover, if g and f1, . . . , fm are computable then h is
computable.

Proof. The special case m = k = 1 has already been proved as Theorem 1.2.1.
Let us consider the more representative special case m = 2, k = 1. Thus we
have h(x) = g(f1(x), f2(x)) for all x. Let G,F1,F2 be programs on R1, . . . , Rs
which cleanly compute g, f1, f2 respectively. Introduce new auxiliary registers
X = Rs+1, Y = Rs+2, W = Rs+3. Let H be the program

startONMLHIJK // R−
1

ONMLHIJK
��

e // W−ONMLHIJK
��

e // F1
// R−

2
ONMLHIJK

��

e // X−ONMLHIJK
��

e // F2

��

X+ONMLHIJK
��

R+
1

ONMLHIJK
OO

Y +ONMLHIJK
OO

R+
1

ONMLHIJK
OO

W+ONMLHIJK

DD

stopONMLHIJK R−
3

ONMLHIJK
��

eoo Goo Y −ONMLHIJK
��

eoo

R+
2

ONMLHIJK
OO

R+
1

ONMLHIJK
OO

It is straightforward to verify that H computes h. (In fact, H cleanly computes
h, but this is not essential for our purposes.)

11

Examples 1.2.5. We know from Section 1.1 that the functions x+y, xy, and xy

are computable. Moreover, it is easy to see that the functions f(x1, . . . , xk) = xi,
1 ≤ i ≤ k are computable, and for each c ∈ N the constant function f(x) = c is
computable. But then, by applying generalized composition, we see that many
more functions such as

x+ 2y, x5 + 7xy2, xy
z

, xy+3z · yx, etc.,

are computable.

1.3 Computable predicates

Definition 1.3.1 (computable predicates). A k-place number-theoretic predi-
cate is a set P ⊆ Nk. We view P as a proposition with k variables:

P (x1, . . . , xk) ≡ “the k-tuple 〈x1, . . . , xk〉 is an element of the set P.”

If P is a k-place predicate, the characteristic function of P is the k-place number-
theoretic function χP defined by

χP (x1, . . . , xk) =

{
1 if P (x1, . . . , xk) is true,

0 if P (x1, . . . , xk) is false

for all x1, . . . , xk ∈ N. We shall often identify P with χP . In particular, a
predicate is said to be computable if and only if its characteristic function is
computable.

Example 1.3.2. Consider the “less than” predicate, denoted by x < y or
simply <. We identify this 2-place predicate with the set L ⊆ N2 given by

L = {〈x, y〉 ∈ N2 | x < y}
= {〈0, 1〉, 〈0, 2〉, 〈1, 2〉, 〈0, 3〉, . . .} .

The characteristic function of < is the characteristic function of L, i.e., the
2-place function χL given by

χ<(x, y) = χL(x, y) =

{
1 if x < y ,

0 if x ≥ y .
The function χ< is computable, for instance by the program

startONMLHIJK // R−
1

ONMLHIJK
��

e // R−
2

ONMLHIJK //

e
��

??
??

??
?

R+
3

ONMLHIJK
��

R−
2

ONMLHIJK
OO

e // stopONMLHIJK
Therefore, the predicate < is computable.

12

Example 1.3.3. Consider the 2-place predicate D(x, y) ≡ “x is a divisor of y.”
Thus D(3, 5) is false, while D(3, 6) is true. Viewing this as a set D ⊆ N2, we
have

D = {〈x, y〉 | x is a divisor of y}
= {〈1, 1〉, 〈1, 2〉, 〈2, 2〉, 〈1, 3〉, 〈3, 3〉, 〈1, 4〉, 〈2, 4〉, . . .} .

Thus χD(x, y) = 1 if x is a divisor of y, χD(x, y) = 0 otherwise. It can be
shown that the 2-place function χD is computable. (See Exercise 1.3.15 below.)
Therefore, the predicate D(x, y) is computable.

We now develop some useful techniques for proving that various predicates
and functions are computable.

Theorem 1.3.4 (Boolean operations). Assume that P and Q are computable
k-place predicates. Then, the following Boolean combinations are computable:

1. P ∧Q ≡ “P and Q”, in other words, P ∩Q.

2. P ∨Q ≡ “P or Q”, in other words, P ∪Q.

3. ¬P ≡ “not P”, in other words, Nk \ P , the complement of P .

Proof. Let us use − as an abbreviation for the list of number-theoretic variables
x1, . . . , xk. Thus P (−) is abbreviates P (x1, . . . , xk). First, note that P ∧ Q
is computable because χP∧Q(−) = χP (−) · χQ(−). Next, ¬P is computable
because χ¬P (−) = α(χP (−)) where α(1) = 0, α(0) = 1. It is easy to see that
α(x) is a computable function, for example it is computed by the program

startONMLHIJK // R−
1

ONMLHIJK
��

??
??

??
?

e // R+
2

ONMLHIJK
��

stopONMLHIJK
Finally, P ∨Q is computable because χP∨Q(−) = α(α(χP (−)) ·α(χQ(−))).

Example 1.3.5. Here is an example illustrating the usefulness of Theorem
1.3.4. By Example 1.3.2 we know that the predicate x < y is computable.
It follows by Theorem 1.3.4 that the predicate x = y is computable. This is
because

x = y if and only if ¬ (x < y ∨ y < x),

or in other words, χ=(x, y) = α(χ<(x, y)) ·α(χ<(y, x)). Alternatively, we could
have proved directly that χ= is computable by writing a program for it, for

13

instance

startONMLHIJK // R−
1

ONMLHIJK
��

e // R−
2

ONMLHIJK e //

��
??

??
??

?

R+
3

ONMLHIJK
��

R−
2

ONMLHIJK
OO

e // stopONMLHIJK
However, the easier proof is the one via Theorem 1.3.4.

Theorem 1.3.6 (definition by cases). Let P be a k-place number-theoretic
predicate, and let f1 and f2 be k-place number-theoretic functions. Then, there
is a unique k-place number-theoretic function f defined by

f(−) =

{
f1(−) if P (−) holds,

f2(−) if ¬P (−) holds.

Moreover, if P and f1 and f2 are computable, then f is computable.

Proof. Clearly f(−) = χP (−) · f1(−) + α(χP (−)) · f2(−). From this it follows
easily that if P, f1, f2 are computable then f is computable.

Remark 1.3.7. In Theorem 1.3.6 we have considered only two cases. The
generalization to more than two cases is straightforward.

Example 1.3.8. Using definition by cases, we easily see that the function

f(x, y) =

0 if x = y,

1 if x < y,

2 if x > y

is computable.

Theorem 1.3.9 (the µ-operator). Let P be a k + 1-place number-theoretic
predicate. Assume that for all k-tuples 〈x1, . . . , xk〉 ∈ Nk there exists at least
one y ∈ N such that P (x1, . . . , xk, y) holds. Then, there is a unique k-place
number-theoretic function f defined by

f(x1, . . . , xk) = the least y such that P (x1, . . . , xk, y) holds

= µy P (x1, . . . , xk, y) .

Furthermore, if P is computable then f is computable.

Proof. The existence and uniqueness of f(x1, . . . , xk) follows from the least-
number principle for N. Namely, our assumption is that, for each k-tuple
x1, . . . , xk ∈ N, the set

{y ∈ N | P (x1, . . . , xk, y)}

14

is nonempty. Since this set is nonempty, it has a least element. The least
element of this set is denoted µy P (x1, . . . , xk, y).

Assume now that the predicate P is computable. We wish to prove that
the function f is computable. For simplicity we consider only the case k = 1.
Thus P (x, y) is a 2-place predicate, f(x) is a 1-place function, and f(x) =
µy P (x, y) for all x. Let P be a program which cleanly computes χP using the
registers R1, . . . , Rs. Referring to Definitions 1.1.7 and 1.2.2, we know that for
all x and y the run P(x, y) starting with x, y, 0, . . . , 0 in R1, R2, R3, . . . , Rs will
eventually halt with 1 in R3 if P (x, y) holds, 0 in R3 otherwise, and with 0 in
R1, R2, R4, . . . , Rs. Introduce additional registers X = Rs+1, Y = Rs+2, and
W = Rs+3. Letting Q be the program

startONMLHIJK
��

Y +ONMLHIJK //
W−ONMLHIJK

oo
e // R−

1
ONMLHIJK //

e
��

X+ONMLHIJK // W+ONMLHIJK
dd

W+ONMLHIJK $$

R+
2

ONMLHIJKoo Y −ONMLHIJKoo

e
OO

W−ONMLHIJK
e

��

//
R+

1
ONMLHIJK

oo

R+
1

ONMLHIJK //
X−ONMLHIJK

oo

e
OO

P

��

R+
2

ONMLHIJK
��

Y +ONMLHIJK
OO

R−
3

ONMLHIJK
e

oo // Y −ONMLHIJK
OO

e // stopONMLHIJK
we claim that Q computes f . The idea is that, when we run Q(x), we are
successively running P(x, 0), P(x, 1), P(x, 2), . . . , P(x, y), . . . , until we find a y
such that P(x, y) halts with R3 nonempty. In order to conserve our knowledge
of x and y while running P(x, y), we store copies of x and y in the registers X
and Y respectively.

Example 1.3.10. By Theorem 1.3.9 and Exercise 1.1.12, the function

f(x) = the number of decimal digits in x

= µy (x < 10y)

is computable.

15

Theorem 1.3.11 (bounded quantification). Assume that R(x, y,−) is a k+ 2-
place predicate.1 Consider the k + 1-place predicates

P (y,−) ≡ (∀x < y)R(x, y,−)

and
Q(y,−) ≡ (∃x < y)R(x, y,−) .

If R is computable, then P and Q are computable.

Proof. Note that P (y,−) holds if and only if R(x, y,−) holds for all x < y.
Thus we have

P (y,−) ≡ y = µx (x = y ∨ ¬R(x, y,−)) .

Similarly, Q(y,−) holds if and only if R(x, y,−) holds for some x < y, and thus
we have

Q(y,−) ≡ y > µx (x = y ∨R(x, y,−)) .

By Theorems 1.3.4 and 1.3.9, the proof follows.

Remark 1.3.12. The content of Theorems 1.3.4 and 1.3.11 is that the class of
computable predicates is closed under Boolean operations and bounded quan-
tification. This provides an easy way to prove that many familiar predicates are
computable. The following example is particularly important.

Example 1.3.13. Consider the 1-place predicate

Prime(x) ≡ “x is a prime number.”

This predicate can be written using Boolean operations and bounded quantifiers
as follows:

Prime(x) ≡ x > 1 ∧ ¬ (∃u < x) (∃v < x) [x = u · v] .

Therefore, by Theorems 1.3.4 and 1.3.11, Prime(x) is a computable predicate.
Note that we proved this without actually having to write a program to compute
the characteristic function of the predicate Prime(x). Of course, we know in
principle how to write such a program if needed.

Example 1.3.14. Using Theorem 1.3.9 and Example 1.3.13 we see that the
function

f(x) = the least prime number greater than x

= µy (y is prime ∧ y > x)

is computable.

Exercise 1.3.15. Use Theorems 1.3.9 and 1.3.11 to prove that the following
functions and predicates are computable.

1Here we are using − as an abbreviation for the list of variables z1, . . . , zk.

16

Rem(y, x) = the remainder of y on division by x.

Quot(y, x) = the quotient of y on division by x.

For example, Rem(17,5)=2 and Quot(17,5)=3.

GCD(x, y) = the greatest common divisor of x and y.

LCM(x, y) = the least common multiple of x and y.

D(x, y) ≡ x is a divisor of y.

LD(x, y) ≡ x is the largest prime divisor of y.

1.4 Primitive recursion

An important tool for proving that many familiar functions are computable is
primitive recursion. This is essentially just the well-known method of “definition
by induction.”

Example 1.4.1. We can define the factorial function f(n) = n! by

0! = 1

(n+ 1)! = n! · (n+ 1).

Note that there is one and only one (unique) number-theoretic function f sat-
isfying these equations.

Example 1.4.2. Similarly, we can define multiplication by

f(x, 0) = 0

f(x, y + 1) = f(x, y) + x

because the only number-theoretic function satisfying these equations is f(x, y) =
xy. In these terms the equations look like this:

x · 0 = 0

x · (y + 1) = x · y + x.

Theorem 1.4.3 (primitive recursion). Let f(x1, . . . , xk) be a k-place number-
theoretic function, and let g(x1, . . . , xk, y, z) be a k + 2-place number-theoretic
function. Then, there is one and only one k+1-place number-theoretic function
h(x1, . . . , xk, y) satisfying the primitive recursion equations

h(x1, . . . , xk, y) = f(x1, . . . , xk),

h(x1, . . . , xk, y + 1) = g(x1, . . . , xk, y, h(x1, . . . , xk, y))

for all x1, . . . , xk, y. Moreover, if f and g are computable, then h is computable.

17

Remark 1.4.4. Before proving Theorem 1.4.3, let us sketch the proof. As usual,
we use − as an abbreviation for x1, . . . , xk. The existence and uniqueness of
h(−, y) for all − is easily proved by induction on y. The hard part of the proof is
to show that if f and g are computable then h is computable. The program for
h will include the programs for g and h and work as follows. Given the inputs
−, y, we wish to compute h(−, y). To guide the computation, we maintain a
counter i which will run from 0 to y. We also maintain a quantity called z. At
certain stages of the computation, z will take on successive values zi = h(−, i)
where i = 0, 1, . . . , y. We compute these values as follows. Initially i = 0 and we
use our program for f to compute z0 = f(−). Then, for each i < y successively,
having already computed zi, we increment the counter i and use our program
for g to compute zi+1 = g(−, i, zi). Finally, when i = y, we output z = zy. The
details of the proof are below.

Proof of Theorem 1.4.3. For simplicity, assume k = 1. Thus we have

h(x, 0) = f(x)

h(x, y + 1) = g(x, y, h(x, y))

for all x, y ∈ N. Let F and G be programs which cleanly compute f and g
respectively, using registers R1, . . . , Rs. The output registers used by F and
G are R2 and R4 respectively. Introduce new registers X = Rs+1, Y = Rs+2,

18

W = Rs+3, and I = Rs+4. Let H be the program

startONMLHIJK // R−
1

ONMLHIJK
��

e // W−ONMLHIJK
��

e // R−
2

ONMLHIJK
��

e // F

��

X+ONMLHIJK
��

R+
1

ONMLHIJK
OO

Y +ONMLHIJK
OO

R−
2

ONMLHIJK
e

��

//
R+

3
ONMLHIJK

oo

W+ONMLHIJK

DD

Y −ONMLHIJK

��
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

e // stopONMLHIJK

R+
3

ONMLHIJK //
R−

4
ONMLHIJK

oo
e // I+ONMLHIJK

??�������

G

OO

W−ONMLHIJK
��

eoo I−ONMLHIJK
��

eoo W−ONMLHIJK
��

eoo X−ONMLHIJK
��

eoo

I+ONMLHIJK
OO

R+
2

ONMLHIJK
��

X+ONMLHIJK
OO

R+
1

ONMLHIJK
��

W+ONMLHIJK

DD

W+ONMLHIJK

DD

We claim that H computes h. The idea is that we run F once to compute
h(x, 0) = f(x) and then we run G y times to successively compute h(x, i+ 1) =
g(x, i, h(x, i)) for i = 0, 1, . . . , y − 1. The successive values of i and h(x, i) for
i = 0, 1, . . . , y are stored in the registers I and R3 respectively. We use the
register Y as a counter which is initially set to y and decremented each time we
run G. When Y becomes empty, we halt with h(x, y) in R3.

Example 1.4.5. An example illustrating Theorem 1.4.3 and its proof is our
program for multiplication using repeated addition. See Examples 1.1.10 and
1.4.2.

The following example of primitive recursion will be important in Section
1.5.

Example 1.4.6. Recall from Example 1.3.13 that the predicate

Prime(x) ≡ “x is a prime number”

19

is computable. We can use the µ-operator plus primitive recursion to show that
the function

pn = the nth prime number

is computable as a function of n. Note that p0 = 2, p1 = 3, p2 = 5, p3 = 7,
p4 = 11, The basic idea is to use primitive recursion to define p0 = 2,
pn+1 = the least prime > pn. By Theorem 1.3.9 and Example 1.3.13 (see also
Example 1.3.14), we see that the function

g(x) = µw (w > x ∧ w is prime)

is computable. We then have the recursion p0 = 2, pn+1 = g(pn) and this shows
that pn is computable as a function of n.

1.5 Prime power coding

Given a k-tuple 〈a1, . . . , ak〉 ∈ Nk, we can “encode” the k-tuple as a single
integer, z ∈ N. Our preferred method of doing so is to designate

z =

k∏

i=1

pai

i

as the “code” of the k-tuple 〈a1, . . . , ak〉. For example, the “code” of the 3-tuple
〈8, 9, 10〉 is the number z = 3859710.

Moreover, the Fundamental Theorem of Arithmetic tells us that every pos-
itive integer can be factored uniquely into prime powers. Thus, z can be “de-
coded” to recover the k-tuple 〈a1, . . . , ak〉.

For us, the point is that these coding and decoding methods are computable!
For decoding, consider the 2-place function g(z, i) = the exponent of pi in the
prime power decomposition of z. This is computable, because

g(z, i) = (µx < z) (Rem(z, px+1
i) 6= 0).

Here Rem(u, v) = the remainder of u on division by v, which is computable by
Exercise 1.3.15.

Notation 1.5.1. We write

(z)i = the exponent of pi in the prime power decompsition of z.

We have seen that (z)i is computable as a function of two variables, z and i.

The following example illustrates how to use prime power coding to prove
that various functions are computable.

Example 1.5.2 (the Fibonacci sequence). Consider the sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

20

defined by
F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2 for n ≥ 2 .

Here Fn is the nth Fibonacci number. We would like to prove that Fn is
computable as a function of n. Unfortunately, the above definition of Fn does
not quite fit into our scheme of primitive recursion,

h(−, 0) = f(−)

h(−, y + 1) = g(−, y, f(−, y))

(see Theorem 1.4.3). The difficulty is that Fn is defined by a 2-step recursion,
while primitive recursion is a 1-step recursion.

In order to get around this difficulty, let Gn = 3Fn5Fn+1 = the “code” of
the ordered pair 〈Fn, Fn+1〉 via prime power coding. Thus (Gn)1 = Fn and
(Gn)2 = Fn+1. We then have

G0 = 5

Gn+1 = 3(Gn)25(Gn)1+(Gn)2

and this is a 1-step recursion. Thus, by Theorem 1.4.3, Gn is computable as a
function of n. It follows that Fn = (Gn)1 is computable as a function of n.

As another application of prime power coding, we now introduce a technique
known as course-of-values recursion.

Course-of-values recursion is a powerful variant of primitive recursion, in
which h(−, y) is defined by recursion on y in terms of the entire sequence of
previous values, h(−, 0), h(−, 1), . . . , h(−, y−1). We can use prime power coding
to convert this to an ordinary 1-step recursion. Namely, consider the course-of-
values function h̃ defined by

h̃(−, y) =

y−1∏

i=0

p
h(−,i)
i .

We then have the following lemma.

Lemma 1.5.3 (course-of-values recursion). Let g(−, y, z) be a k + 2-place
number-theoretic function. Then, there is a unique k+1-place number-theoretic
function h(−, y) defined by

h(−, y) = g(−, y, h̃(−, y))

for all −, y. Moreover, if g is computable then h is computable.

21

Proof. The course-of-values function h̃ can be defined from g by primitive re-
cursion, namely

h̃(−, 0) = 1 ,

h̃(−, y + 1) = h̃(−, y) · pg(−,y,eh(−,y))y .

Since g is computable, it follows by Theorem 1.4.3 that h̃ is computable. Hence

h(−, y) = (h̃(−, y + 1))y

is computable.

Example 1.5.4. The function

h(x, y) = x+

y−1∑

i=0

h(x, i)x

is computable, because it is defined by course-of-values recursion.

Remark 1.5.5. Summarizing our discussion so far, we have introduced several
tools for proving that various familiar number-theoretic functions and number-
theoretic predicates are computable. Among our tools are:

1. generalized composition

2. Boolean operations ∧, ∨, ¬

3. bounded quantifiers (∀x < y), (∃x < y)

4. the µ-operator

5. primitive recursion

6. prime power coding

7. course-of-values recursion.

1.6 Computable real numbers

We end this chapter with some exercises dealing with Turing’s concept of a
computable real number. These exercises are not essential for the rest of the
book, but they are interesting nonetheless.

Exercise 1.6.1 (approximating the square root of 2). Consider successive ra-
tional approximations of

√
2 given by Newton’s method:

x0 = 1, xn+1 = xn −
f(xn)

f ′(xn)

22

where f(x) = x2−2. The first few values are x0 = 1, x1 = 3/2, x2 = 17/12, x3 =
577/408. Let a(n) and b(n) respectively be the numerator and denominator of
xn. Thus a(n) and b(n) are 1-place number-theoretic functions. The first few
values of these functions are a0 = b0 = 1, a1 = 3, b1 = 2, a2 = 17, b2 = 12,
a3 = 577, b3 = 408. Prove that the functions a(n) and b(n) are computable.

Hint: First prove that a(n) and b(n) can be defined by the simultaneous
recursion

a(0) = 1 ,

b(0) = 1 ,

a(n+ 1) = a(n)2 + 2b(n)2 ,

b(n+ 1) = 2a(n)b(n) .

Then use the method of Example 1.5.2 to prove that these functions are com-
putable.

Exercise 1.6.2 (computable real numbers). A positive real number r is said
to be computable if there exist computable sequences of positive integers an, bn,
n = 0, 1, 2, . . ., such that

r = lim
n→∞

an
bn

and in addition ∣∣∣∣r −
an
bn

∣∣∣∣ <
1

2n

for all n ∈ N.
Use primitive recursion to give a convincing argument that all of the standard

examples of positive real numbers including
√

2 = 1.41421 · · ·, e = 2.71828 · · ·,
π = 3.14159 · · ·, etc., are computable.

Remark 1.6.3. Warning: In our definition of a computable real number given
above, the condition |r − an/bn| < 1/2n is essential. Without this condition,
Exercise 1.6.4 would not be correct.

Exercise 1.6.4. Let r be a positive real number. Prove that r is computable
if and only if the number-theoretic function

f(n) = the nth decimal digit of r

is computable.

Exercise 1.6.5. Prove that the sum, product, and quotient of two computable
positive real numbers are computable.

23

Chapter 2

Partial recursive functions

2.1 Partial recursive functions

Consider a program P and inputs x1, . . . , xk. The run P(x1, . . . , xk) (see Nota-
tion 1.1.9) may or may not eventually halt. If it does not halt, then obviously
the k-place computable function described by P is undefined at the arguments
x1, . . . , xk. Thus it becomes necessary to consider computable functions which
may or may not be defined for all arguments.

The purpose of this section is to introduce an appropriate terminology in
order to deal with this kind of situation.

Definition 2.1.1 (partial functions). A (k-place number-theoretic) partial func-
tion

ψ : ⊆ Nk → N

is a function ψ(x1, . . . , xk) where x1, . . . , xk ∈ N. The value y = ψ(x1, . . . , xk)
also belongs to N, or it may be undefined. Thus, the domain of ψ is a subset of
Nk, namely

dom(ψ) = {〈x1, . . . , xl〉 | ψ(x1, . . . , xk) is defined}.
Example 2.1.2. The partial function ψ(x, y) = x/y is undefined if y 6= 0 or if
Rem(x, y) 6= 0. Thus, the domain of ψ is

dom(ψ) = {〈x, y〉 | y 6= 0 and Rem(x, y) = 0}.
Definition 2.1.3 (total functions). Let ψ : ⊆ Nk → N be a k-place partial
function. We say that ψ is total if the domain of ψ is all of Nk. Note that a
k-place total function is just what we have previously called a k-place number-
theoretic function (see for instance Definition 1.1.7).

Definition 2.1.4. A partial function ψ(x1, . . . , xk) is said to be partial recur-
sive if it is “computable” in the sense that there exists a program P with the
foloowing property. For all x1, . . . , xk ∈ N, ψ(x1, . . . , xk) is defined if and only
if P(x1, . . . , xk) eventually halts, in which case the value y = ψ(x1, . . . , xk)
appears in register Rk+1.

24

In the previous definition, note that the expression ψ(x1, . . . , xk) may or
may not be defined. In order to deal with such expressions, we introduce the
following notation and terminology.

Notation 2.1.5. Let E be an expression which may or may not be defined. We
write E ↓ to mean that E is defined. We write E ↑ to mean that E is undefined.
If E1 and E2 are two such expressions, we write E1 ≃ E2 to mean that E1 and
E2 are both defined and have the same value, or both are undefined. The binary
relation ≃ is known as strong equality.

Remark 2.1.6. Given a program P and a positive integer k ≥ 1, there is
obviously a unique k-place partial recursive function ψ : ⊆ Nk → N which is
computed by P . Namely,

ψ(x1, . . . , xk) ≃

the content of Rk+1 if and when
P(x1, . . . , xk) halts,

undefined otherwise.

Remark 2.1.7. The k-place partial recursive functions which happen to be to-
tal are exactly what we have previously called the computable k-place functions.
See Definition 1.1.7.

Remark 2.1.8. One way that partial recursive functions arise naturally is from
the µ-operator, as shown by the following lemma.

Theorem 2.1.9 (the µ-operator, revisited). Given a k + 1-place predicate
P (x1, . . . , xk, y), there is a unique k-place partial function ψ(x1, . . . , xk) given
by

ψ(x1, . . . , xk) ≃ µy P (x1, . . . , xk, y)

≃

the least y such that P (x1, . . . , xk, y) holds,
if such a y exists,

undefined, if no such y exists.

Moreover, if P is computable then ψ is partial recursive.

Proof. The proof of this theorem is essentially the same as that of our earlier
theorem on the µ-operator, Theorem 1.3.9. Again we assume k = 1 for sim-
plicity. The same program Q is used. The only new point is to note that if
µy R(x, y) ↑ then there is no y such that R(x, y) holds, hence Q(x) goes into an
infinite loop and never halts.

Exercise 2.1.10. Let ψ(x1, . . . , xk) be a k-place partial function. Show that ψ
is partial recursive if and only if the 1-place partial function

ψ∗(w) ≃ ψ((w)1, . . . , (w)k)

is partial recursive. Thus, for many purposes, the study of k-place partial recur-
sive functions is equivalent to the study of 1-place partial recursive functions.

25

Exercise 2.1.11. If f is a computable permutation of N, prove that the inverse
permutation f−1 is also computable.

(Here f−1(y) = x if and only if f(x) = y. By a computable permutation of
N we mean a computable 1-place function f : N→ N which maps N one-to-one
onto N.)

Exercise 2.1.12. Generalize the previous exercise as follows. Prove that if
ψ is a 1-place partial recursive function which is one-to-one, then the inverse
function ψ−1 is again partial recursive.

Warning: This exercise is more difficult than the previous exercise.

2.2 Gödel numbers and indices

In this section we introduce what amounts to a computable method of indexing
the partial recursive functions. The existence of such an indexing method will
be of crucial importance in what follows.

Definition 2.2.1 (Gödel numbers). To each register machine program P we
shall assign a unique number #(P), the Gödel number of P . Thus we shall have
a one-to-one function

: {programs} 1-1−→ N.

The idea is that #(P) will be a number which completely describes the program
P . In order to define #(P), suppose P consists of l instructions of the form R+

i

or R−
i which are labeled I1, . . . , Il. This list of instructions does not include the

start and stop instructions. We always assume that I1 is the instruction pointed
to by the start instruction. We take I0 to be the stop instruction. Using prime
power coding, we define

#(P) =

l∏

m=1

p#(Im)
m

where #(Im), m = 1, . . . , l are numbers which completely describe the instruc-
tions Im, m = 1, . . . , l. These numbers are defined as follows. If Im is an
increment instruction R+

i pointing to In, let #(Im) = 3i · 5n. If Im is a
decrement instruction R−

i pointing to In0 if Ri is empty, In1 otherwise, let
#(Im) = 2 · 3i · 5n0 · 7n1 . This completes the definition of #(P). Note that
#(I1), . . . ,#(Il) ∈ N and #(P) ∈ N.

Example 2.2.2. Here is a program P with three instructions labeled I1, I2, I3

26

not including the start and stop instructions.

I1 I3

startONMLHIJK // R−
1

ONMLHIJK e //

��

R+
2

ONMLHIJK // stopONMLHIJK

R+
2

ONMLHIJK
OO

I2

Note that the program P computes the function f(x) = x + 1. The Gödel
number of P is found as follows:

#(I1) = 2 · 31 · 53 · 72 = 6 · 125 · 49 = 36750

#(I2) = 32 · 51 = 45

#(I3) = 32 · 50 = 9

#(P) = p
#(I1)
1 p

#(I2)
2 p

#(I3)
3 = 336750 · 545 · 79

Note that this number encodes the complete structure of the program P , via
prime power coding.

Notation 2.2.3. For each e, k ∈ N we have a k-place partial recursive function

ϕ
(k)
e defined as follows. If e = #(P) for some program P , then ϕ

(k)
e is the k-

place partial recursive function computed by P . If e is not the Gödel number

of a program, then ϕ
(k)
e is the empty or totally undefined function.

In other words, for all nonnegative integers e, k, x1, . . . , xk, the expression

ϕ(k)
e (x1, . . . , xk)

is defined as the content of Rk+1 if and when P(x1, . . . , xk) halts, provided
e is the Gödel number of a program P , and provided the run P(x1, . . . , xk)

eventually halts. Otherwise, ϕ
(k)
e (x1, . . . , xk) is undefined.

Example 2.2.4. Let e = #(P) = 336750 · 545 · 79 as in Example 2.2.2. Note
that P(x) simply adds 1 to x and outputs x + 1 in register R2. Therefore, for

this e and for all x, ϕ
(1)
e (x) is defined and equal to x+ 1.

Definition 2.2.5. An index of a partial recursive function is the Gödel number
of a program which computes the function. In the previous example, the integer
e = 336750 · 545 · 79 is an index of the 1-place function x+ 1.

27

Remark 2.2.6. Clearly each partial recursive function has an index. Indeed,
each partial recursive function has infinitely many indices, because there are
infinitely many distinct programs which compute it.

Exercise 2.2.7. Consider the 2-place computable number-theoretic function
f(x, y) = x + y. Exhibit three different indices of f . Show how to construct
infinitely many distinct indices of f .

Definition 2.2.8 (recursively inseparable sets). Two sets A,B ⊆ N are said to
be recursively separable if there exists a recursive function f : N → {0, 1} such
that f(n) = 1 for all n ∈ A, and f(n) = 0 for all n ∈ B. Otherwise, A and B
are said to be recursively inseparable.

Exercise 2.2.9. Consider the sets

Bn = {x ∈ N | ϕ(1)
x (x) ≃ n}

where n = 0, 1, 2, Note that the sets Bn for n = 0, 1, 2, . . ., are pairwise
disjoint. Show that the sets B0 and B1 are recursively inseparable. More gen-
erally, show that Bm and Bn are recursively inseparable for all m,n such that
m 6= n.

2.3 The Enumeration Theorem

We now present an important theorem concerning indices. This theorem is basic
for everything that follows.

Theorem 2.3.1 (the Enumeration Theorem). For each k ≥ 1, the k + 1-place
function

ϕ(k)
e (x1, . . . , xk)

is partial recursive. Note that the arguments of this function are e, x1, . . . , xk.

Proof. The proof will be explained in terms of a (k + 2)-place function

State(e, x1, . . . , xk, n) = pm0 p
z1
1 · · · pzs

s = z

which uses prime power coding to represent the state of P(x1, . . . , xk) after n
steps of computation. We write e = #(P) where P is a program with registers
R1, . . . , Rs. Here Im is the next instruction to be executed, and zi is the content
of register Ri. Note that (z)0 = m and (z)i = zi for each i = 1, . . . , s. Note also
that this data together with P completely determines the run of P(x1, . . . , xk)
from step n onward.

The main point of the proof is that State(e, x1, . . . , xk, n) is a computable
(k + 2)-place function. This is proved by primitive recursion on n. We begin
with

State(e, x1, . . . , xk, 0) = p1
0p
x1
1 · · · pxk

k

28

which means that at step 0 we are about to execute instruction I1 and the inputs
x1, . . . , xk are in the input registers R1, . . . , Rk. This is the initial state of the
run P(x1, . . . , xk). In general, for n ≥ 0 we have

State(e, x1, . . . , xk, n+ 1) = NextState(e, State(e, x1, . . . , xk, n))

where NextState is a function to be described. This means that the state of
P(x1, . . . , xk) after n + 1 steps of computation is to be specified in terms of
the program P and the state of P(x1, . . . , xk) after n steps of computation. It
remains to show that an appropriate 2-place function NextState(e, z) is com-
putable. The details of this are below.

Note that z = State(e, x1, . . . , xk, n) is a halting state if and only if I0 is
the next instruction to be executed, i.e., (z)0 = 0, in which case the output is
(z)k+1. Thus by Theorem 2.1.9 we have a partial recursive function

StopTime(e, x1, . . . , xk) ≃ µn (State(e, x1, . . . , xk, n))0 = 0)

which gives the number of steps needed for P(x1, . . . , xk) to halt, and then

ϕ(k)
e (x1, . . . , xk) ≃ (State(e, x1, . . . , xk, StopTime(e, x1, . . . , xk))k+1

which completes the proof.

Proof of Theorem 2.3.1, additional details. The heart of the proof is the func-
tion State(e, x1, . . . , xk, n). Recall that e = #(P) and P(x1, . . . , xk) is the run
of P with inputs x1, . . . , xk in registers R1, . . . , Rk and all other registers empty.
The first instruction to be executed is I1. After n steps of computation, we have
z1, . . . , zs in registers R1, . . . , Rs and we are about to execute instruction Im for
some m in the range 1 ≤ m ≤ l. Then

State(e, x1, . . . , xk, n) = z = pm0 p
z1
1 · · · pzs

s .

We use primitive recursion on n to show that the (k + 2)-place function State
is computable. Namely

State(e, x1, . . . , xk, 0) = p1
0p
x1
1 · · · pxk

k

State(e, x1, . . . , xk, n+ 1) = NextState(e, State(e, x1, . . . , xk, n))

where the 2-place function NextState(e, z) does the following. It decodes from
z all of the information about the state of P(x1, . . . , xk) after n steps. It then
decodes the Gödel number e to find the next instruction, and executes that
instruction. It then recodes the state of P(x1, . . . , xk) after n + 1 steps, using
prime power coding. In detail we have

NextState(e, z) =

z · pi · p−m+n0
0 if ((e)m)0 = 0 (increment)

z · p−m+n0
0

if ((e)m)0 = 1 and (z)i = 0
(decrement with Ri empty)

z · p−1
i · p−m+n1

0

if ((e)m)0 = 1 and (z)i > 0
(decrement with Ri nonempty)

z otherwise

29

where m = (z)0 and i = ((e)m)1 and n0 = ((e)m)2 and n1 = ((e)m)3. Here we
are using the method of definition by cases (see Theorem 1.3.6).

It is now clear that State(e, x1, . . . , xk, n) is computable as a (k + 2)-place
function of e, x1, . . . , xk, n.

We shall also need the following easy lemma.

Lemma 2.3.2. The predicate

Program(e) ≡ “e is the Gödel number of a program”

is computable.

Proof. This is straightforward, using bounded quantification. Roughly speak-

ing, Program(e) ≡ (∃l < e) (e =
∏l
m=1 p

(e)m
m ∧ (∀m < e) (if 1 ≤ m ≤ l then

∃i, j, k < e) ((e)m = 3i · 5j ∨ (e)m = 2 · 3i · 5j · 7k)), etc.

We have seen that State(e, x1, . . . , xk, n) = z is a computable (k + 2)-place
function. Note that (z)0 = 0 means m = 0, i.e., we are in a halting state,
because I0 is the stop instruction. Therefore, the function

StopTime(e, x1, . . . , xk) ≃ µn ((State(e, x1, . . . , xk, n))0 = 0 ∧ Program(e))

tells us how many steps it takes for P(x1, . . . , xk) to halt. This is undefined
if P(x1, . . . , xk) never halts, or if e is not the Gödel number of a program.
By Theorem 2.1.9 StopTime(e, x1, . . . , xk) is a (k + 1)-place partial recursive
function. Furthermore (z)k+1 = the content of Rk+1 after n steps. Therefore,
we have

ϕ
(k)
e (x1, . . . , xk) ≃ (State(e, x1, . . . , xk, StopTime(e, x1, . . . , xk)))k+1

which shows that ϕ
(k)
e (x1, . . . , xk) is partial recursive as a function of e, x1, . . . , xk.

This completes the proof of the Enumeration Theorem.

2.4 The Parametrization Theorem

The Enumeration Theorem for 1-place partial recursive functions says:

ϕ
(1)
e (x) is a 2-place partial recursive function (as a function of e, x).

An important supplement to the Enumeration Theorem is the Parametrization
Theorem. The Parametrization Theorem for 1-place partial recursive functions
says:

Given a 2-place partial recursive function ψ(w, x), we can find a
1-place total recursive function h(w) such that

ϕ
(1)
h(w)(x) ≃ ψ(w, x)

for all w, x.

30

Remark 2.4.1. The Parametization Theorem will be useful in solving Exercise
2.5.2, and it will also be used many times in later chapters of this book. See
also the discussion of parametrization and uniformity in Section 4.8 below. We
shall see there that the Uniformity Principle is of fundamental importance.

Proof of the Parametrization Theorem. Let P be a program which computes
the 2-place partial recursive function ψ(w, x). For each fixed w, consider the
program

startONMLHIJK // R−
1

ONMLHIJK e //

��

R+
1

ONMLHIJK // · · · // R+
1

ONMLHIJK // P

��

R+
2

ONMLHIJK
OO

stopONMLHIJK R−
3

ONMLHIJKeoo

��

R−
2

ONMLHIJK
cdabg̀ ==

eoo

R+
2

ONMLHIJK
OO

where the number of R+
1 instructions is w. Call this program Qw.

To explain the operation of Qw, suppose we start Qw with an arbitrary
x ∈ N in R1 and all other registers empty. We begin by transferring x to R2.
We then put w into R1 by simply incrementing R1 w times. We are now ready
to run P(w, x). After running P(w, x), the output ψ(w, x) is in R3. We then
clear R2, transfer the output from R3 to R2, and halt.

Thus, starting with x in R1, Qw(x) eventually halts with ψ(w, x) in R2 pro-
vided ψ(w, x) is defined. If ψ(w, x) is undefined, Qw(x) does not halt. In other
words, Qw is a program which computes ψ(w, x) as a function of x. Defining
h(w) = #(Qw), we see that h(w) has the desired property. It remains to show
that h(w) is computable as a function of w, but this is straightforward.

We now state a more general version of the Parametrization Theorem, with
k arguments instead of one.

Theorem 2.4.2 (Parametrization Theorem). Given a k+1-place partial recur-
sive function ψ(w, x1, . . . , xk), we can find a total recursive function h(w) such
that

ϕ
(k)
h(w)(x1, . . . , xk) ≃ ψ(w, x1, . . . , xk)

for all w, x1, . . . , xk.

Proof. The proof is a straightforward generalization of the special case k = 1,
which was proved above.

31

2.5 Universal partial recursive functions

The Enumeration Theorem, due to Turing in 1936, embodies the idea of a
“universal machine” which is capable of computing any recursive function. His-
torically, this concept of a “universal machine” led to the development of the
stored-program digital computer, an invention which is of great importance in
modern life, to say the least.

In this section we present some exercises which elaborate upon Turing’s idea
of universality. The results of this section will not be used in the rest of the
book, but we discuss them anyway because they are interesting and elegant.

Definition 2.5.1 (universal partial recursive functions). Let ψ(x) and θ(x) be
1-place partial recursive functions. We say that ψ is reducible to θ if there exists
a 1-place total recursive function h(x) such that ψ(x) ≃ θ(h(x)) for all x ∈ N.
We refer to h(x) as a reduction function, and we say that h reduces ψ to θ. We
say that θ is universal if all 1-place partial recursive functions are reducible to
θ.

Exercise 2.5.2.

1. Prove that the 1-place function ϕ
(1)
(x)1

((x)2) is a universal partial recursive

function.

Hint: Use the Enumeration Theorem.

2. Prove that the 1-place function ϕ
(1)
x (x) is a universal partial recursive

function.

Hint: Use the Enumeration and Parametrization Theorems.

3. Give some additional examples of universal partial recursive functions.

Exercise 2.5.3. Construct a 1-place partial recursive function θ which is uni-
versal via linear reduction functions.

(This means that each 1-place partial recursive function is reducible to θ by
means of a reduction function which is linear. We say that h(x) is linear if there
exist constants a and b such that h(x) = ax+ b for all x.)

Hint: Proceed as in part 1 of Exercise 2.5.2. However, instead of the pairing
function 3x5y, use a pairing function which is linear in one of its arguments.

Exercise 2.5.4. Prove that if θ is a universal partial recursive function, then
the domain of θ is not recursive.

(The domain of θ is defined to be the set dom(θ) = {x | θ(x) ↓}.)
Exercise 2.5.5. Prove that any two universal partial recursive functions θ1
and θ2 are recursively isomorphic. This means that there exists a computable
permutation of N, call it f , such that

θ1(x) ≃ y if and only if θ2(f(x)) ≃ f(y)

for all x and y.

32

Chapter 3

Unsolvability

The purpose of this chapter is to study a certain class of mathematical problems
known as decision problems. We show that, in a certain precise sense, almost
all decision problems are unsolvable. We present some specific examples of
unsolvable decision problems. We indicate a method of classifying unsolvable
decision problems.

3.1 Noncomputable sets and functions

Remark 3.1.1. The Enumeration Theorem gives us a 2-place partial recursive

function, namely ϕ
(1)
e (x), which enumerates all 1-place partial recursive func-

tions. Using this, we can exhibit a specific, total, 1-place function which is not
recursive. This is accomplished by means of a trick known as diagonalization,
as in the proof of the following theorem and corollary.

Theorem 3.1.2. We can exhibit a 1-place partial recursive function which
cannot be extended to a 1-place total recursive function.

Proof. It follows from the Enumeration Theorem 2.3.1 that the 1-place partial
function

ψ(x) ≃ ϕ
(1)
x (x) + 1

is partial recursive. We claim that there is no extension of ψ(x) to a total 1-place
computable function f : N→ N. To see this, let f(x) be a total 1-place function
which extends ψ(x), i.e., f(x) = ψ(x) whenever ψ(x) is defined. We claim that
f(x) is not computable. If f(x) were computable, let e be an index of f(x),
i.e., e = #(P) where P is a program which computes f(x). In other words,

f(x) = ϕ
(1)
e (x) for all x. In particular ϕ

(1)
e (e) = f(e) 6= f(e) + 1 = ϕ

(1)
e (e) + 1,

a contradiction. This completes the proof.

Corollary 3.1.3. We can exhibit a specific 1-place number-theoretic function
which is not computable.

33

Proof. For example, the function

f(x) =

{
ϕ

(1)
x (x) + 1 if ϕ

(1)
x (x) is defined

0 otherwise

is noncomputable.

Remark 3.1.4. In set theory, a set S is defined to be countable if and only
if S can be placed in one-to-one correspondence with a subset of N. From
this point of view, it is obvious that the set of computable 1-place functions is
countable. (This is because there are only countably many programs to compute
such functions.) On the other hand, it can be shown that the set of all 1-place
functions is uncountable. (See for instance Section 3.3 below.)

From these set-theoretic cardinality considerations, it is obvious that there
exist noncomputable 1-place functions. However, this kind of argument doesn’t
give us any specific examples of noncomputable functions. Specific examples
are most easily obtained as in Theorem 3.1.2 and 3.1.3 above, by means of the
Enumeration Theorem.

3.2 An unsolvable decision problem

Definition 3.2.1. Let A ⊆ N. In other words, A is a subset of N. We associate
to A what is called a decision problem, namely:

Given n, to “decide” whether n ∈ A or not.

This decision problem is said to be solvable if A is computable, i.e., if χA(n)
is a recursive 1-place function. Otherwise, this decision problem is said to be
unsolvable.

Example 3.2.2. Consider the set K defined by

K = {x ∈ N | ϕ(1)
x (x) ↓}.

We claim that K is noncomputable, i.e., the decision problem for K is unsolv-
able. To see this, suppose K were recursive, i.e., computable. Consider the
function

f(x) =

{
ϕ

(1)
x (x) + 1 if x ∈ K ,

0 if x /∈ K .

If K were computable, f(x) would be computable, using definition by cases
plus the Enumeration Theorem. But we already know (by diagonalization, see
Corollary 3.1.3) that this particular function f(x) is noncomputable.

Remark 3.2.3. Note also that K =
∞⋃
n=0

Bn where Bn is as in Exercise 2.2.9.

Moreover, Exercise 2.2.9 implies that each of the sets Bn, n = 0, 1, 2, . . . is, like
K, noncomputable. In other words, each of the decision problems associated to
Bn, n = 0, 1, 2, . . . is, like the decision problem for K, unsolvable.

34

Remark 3.2.4. The decision problem for K is our first main example of an
unsolvable problem. This specific decision problem is known as the Diagonal
Halting Problem. Namely, it is the problem of deciding for a given x ∈ N whether

or not the diagonalized computation ϕ
(1)
x (x) eventually halts.

One can also consider the Halting Problem, i.e., the decision problem for the
set

H = {x | ϕ(1)
x (0) ↓} .

It is called the Halting Problem, because it is the problem of deciding whether
or not a given program P eventually halts, if started with all registers empty.

Note that P eventually halts if and only if ϕ
(1)
x (0) ↓, where x = #(P).

Later we shall see that the Halting Problem is unsolvable. Moreover, we
shall see that H and K have the same “degree of unsolvability.”

Later we shall also see various additional examples of unsolvable decision
problems, from various branches of mathematics. Moreover, we shall classify
the “degree of unsolvability” of these problems.

3.3 Almost all problems are unsolvable

In this section we argue that, in a certain precise sense, almost all decision
problems are unsolvable.

Uncountable sets

By definition, the set N is countable, and any set that can be indexed by N is

countable. For example, the set {ϕ(1)
e | e ∈ N} is countable. In particular, there

are only countable many computable number-theoretic functions.
On the other hand, a diagonal argument shows that various sets of number-

theoretic functions are uncountable:

1. NN = {f : N→ N}

2. {0, 1}N = {f : N→ {0, 1}}

3. S∞ = {permutations of N}

Namely, given a countable sequence of functions fn : N → N, n = 0, 1, 2, . . .,
construct g /∈ {fn | n = 0, 1, 2, . . .} by letting g(n) = fn(n) + 1 for all n.
This shows that NN is uncountable. To show that {0, 1}N is uncountable, use a
0, 1-valued variant, namely

g(n) =

{
1 if fn(n) = 0

0 if fn(n) 6= 0 .

To show that S∞ is uncoutable, define a permutation g by letting g(2n) = 2n+1
and g(2n+1) = 2n if fn(n) = 2n, otherwise g(2n) = 2n and g(2n+1) = 2n+1.

35

In particular, we see that the group of recursive permutations of N is a count-
able subgroup of an uncountable group, namely the group of all permutations
of N. In other words, S∞(recursive) is a countable subgroup of S∞. See also
Exercise 2.1.11.

Note also that, if g ∈ {0, 1}N is noncomputable, then the real number
g(0).g(1)g(2)g(3) · · · is noncomputable. Here g(n) is the nth decimal digit of
the number. See also Exercise 1.6.4.

The above arguments based on cardinality show that the mentioned sets of
functions are uncountable. It follows that they contain noncomputable func-
tions. In fact, the same argument shows that “almost all” functions are un-
countable, where “almost all” means “all except a countable set.” The point is
that, set-theoretically speaking, any uncountable set is much, much larger than
any countable set.

Diagonal nonrecursiveness

Definition 3.3.1. A 1-place total number-theoretic function g : N→ N is said
to be diagonally non-recursive (abbreviated DNR) if

g(x) 6≃ ϕ
(1)
x (x)

for all x.

Remark 3.3.2. Instead of ϕ
(1)
x (x) we could use any universal partial recursive

function, as explained in Section 2.5.

Obviously, any DNR function is nonrecursive. The class of DNR functions
and its subclasses have been the subject of much recent study.

3.4 Unsolvable problems in core mathematics

We have defined a decision problem to be a set A ⊆ N. The problem A is said
to be solvable if A is recursive, i.e., computable. As an example of an unsolvable
problem, we have mentioned the Diagonal Halting Problem,

K = {x ∈ N | ϕ(1)
x (x) ↓} .

We shall now discuss two examples of unsolvable problems which are inter-
esting from the viewpoint of core mathematics:

1. Hilbert’s 10th Problem.

2. The Word Problem for Groups.

These examples will play only a small role in the rest of this book. Nevertheless,
these examples are important because they provide relevant connections and
applications to core mathematics.

36

Remark 3.4.1. In the Pennsylvania State University Department of Mathe-
matics, there are several experts on these topics. Professor Kirsten Eisentraeger,
who joined the department recently, is an expert on generalizations of Hilbert’s
10th Problem. Professor Alexandra Shlapentokh is another expert on Hilbert’s
10th problem who will visit the department and give a MASS colloquium on
November 8, 2007. Professor Alexander Nabutovsky is an expert on unsolvabil-
ity of the Word Problem for Groups and its applications to geometry.

Hilbert’s 10th Problem

In a famous talk in 1900 Hilbert listed 23 problems which were intended to
set the tone for 20th century mathematics. Included in the list were several
problems in mathematical logic and foundations of mathematics. Problem 1 was
the continuum hypothesis, while Problem 2 concerned the formal consistency of
mathematics. Problem 10 on Hilbert’s list read as follows:

Given a Diophantine equation f(x1, . . . , xk) = 0, does this equation
have a solution in integers x1, . . . , xk? The problem is to construct
an algorithm for answering this question given the polynomial f .

(By definition, a Diophantine equation is a polynomial equation with integer
coefficients.)

The following theorem due to Matiyasevich 1969 is an improvement of a
result of Davis/Putnam/Robinson from the 1950s.

Theorem 3.4.2 (Matiyasevich’s Theorem). Hilbert’s 10th Problem is unsolv-
able.

In order to state Matiyasevich’s Theorem rigorously, we use Gödel numbering
to translate Hilbert’s 10th Problem into a “decision problem” as defined above.
That is, we define a function

: {Diophantine equations} 1−1−→ N .

Let E be a Diophantine equation

f(x1, . . . , xk) =
∑

e1,...,ek

ae1···ek
xe11 · · ·xek

k = 0

where e1, . . . , ek ∈ N and ae1···ek
∈ Z. To define #(E), we first Gödel number

the integers
#(a) = 2a for a ≥ 0

#(−a) = 2a− 1 for a > 0

and the k-tuples
#(〈e1, . . . , ek〉) = pe11 · · · pek

n

(prime power coding). Then we define

#(E) =
∏

e1,...,ek

p
#(ae1...ek

)

#(〈e1,...,ek〉)

37

and this allows us to state Matiyasevich’s Theorem precisely:

Theorem 3.4.3 (Matiyasevich 1969). The set of Gödel numbers

{#(E) | E is a Diophantine equation, E has a solution in integers}

is nonrecursive.

Proof. The proof is long and involves some non-trivial number theory. Full
details are in my Spring 2005 lecture notes, available on the course web page.

The word problem for groups

Consider a finite set of symbols A = {a1, . . . , ak}. By a relation we mean a
group-theoretic equation on these symbols. Such an equation may be written
in the form W = 1 where W is a word, i.e., a concatenation of symbols chosen
from a1, . . . , ak, a

−1
1 , . . . , a−1

k . Given a finite set of relations

R = {W1 = 1, . . . ,Wl = 1}

there is a unique largest group G = 〈A | R〉 generated by a1, . . . , ak satisfying
the given set of relations R.

Example 3.4.4. Consider the generators A = {a, b} and the relations

R = {ab = ba, a2 = 1, b3 = 1}.

Note also that the relation ab = ba can be written using a word as aba−1b−1 = 1.
We can use the relations to simplify words on this alphabet. For example

aba2ba−1b−1a−1b2a2ba−1 = a2b4 = b.

The group G = 〈A | R〉 defined by these generators and relations is isomorphic
to C2 × C3 with elements {1, a, b, b2, ab, ab2}. Here Cn is the cyclic group of
order n.

Remark 3.4.5. Finitely presented groups arise naturally in algebraic topology
and geometry. For instance, the fundamental group of a finite simplicial complex
is a finitely presented group.

For each finitely presented group G = 〈A | R〉, the word problem for G is
the following problem:

Given a word W on the finite set of generators A, does the equation
W = 1 hold in G? The problem is to construct an algorithm for
deciding whether W = 1 in G.

This problem was originally posed by the group theorist Dehn in the 1890s.
Note that for G as in Example 3.4.4, the word problem is solvable, because

there is an algorithm to simplify each word and thus identify it with one of the
six elements of G.

38

Theorem 3.4.6 (Boone, Novikov, 1950’s). We can construct a finitely pre-
sented group G = 〈A | R〉 such that the word problem for G is unsolvable.

In order to state this theorem rigorously, we define a Gödel numbering

: {words on a1, . . . , ak} 1−1−→ N .

We first Gödel number the symbols a1, . . . , ak, a
−1
1 , . . . , a−1

k by

#(ai) = 2i

#(a−1
i) = 2i+ 1

and then words W = aǫ1i1 · · · a
ǫn
in

can be Gödel numbered as

#(aǫ1i1 · · ·a
ǫn
in

) =
n∏

j=1

p
#(a

ǫj
ij

)

j

where ij ∈ {1, . . . , k} and ǫj = ±1. We can then state:

Theorem 3.4.7 (Boone, Novikov, 1950’s). We can construct a finitely pre-
sented group G = 〈A | R〉 such that the set of Gödel numbers

{#(W) |W is a word on A, W = 1 in G}

is nonrecursive.

Proof. The proof is long and involves some non-trivial group theory. Full details
are in my Spring 2005 lecture notes, available on the course web page.

3.5 A remark on Hilbert’s 10th Problem

Professor Kirsten Eisentraeger will talk about Hilbert’s 10th Problem at the
MASS seminar tomorrow, October 30.

Recall our various characterizations of Σ0
1 subsets of N. Letting A be a

subset of N, we know that

A is Σ0
1

⇔ A is recursively enumerable
⇔ A is the range of a partial recursive function
⇔ A is the domain of a partial recursive function
⇔ A is finite or the range of a 1-1 total recursive function, etc.

Matiyasevich showed:

A is Σ0
1

⇔ A is Diophantine
⇔ A is range(g) ∩ N where g is a polynomial with integer coefficients.

39

Definition 3.5.1. A k-place number-theoretic predicate P ⊆ Nk is said to
be Diophantine if we can find a polynomial equation with k + n variables and
integer coefficients such that

P (x1, . . . , xk) ≡ ∃y1 · · · ∃yn (f(x1, . . . , xk, y1, . . . , yn) = 0︸ ︷︷ ︸
Diophantine equation

)

︸ ︷︷ ︸
Diophantine predicate

for all x1, . . . , xk ∈ N.

Obviously, Diophantine predicates are Σ0
1.

Theorem 3.5.2 (Matiyasevich’s Theorem).

P is Σ0
1 if and only if P is Diophantine.

For example, the Halting Problem H ⊆ N is Diophantine; hence Hilbert’s
10th Problem is unsolvable. In fact, since H is Σ0

1 complete, we have the
following corollary.

Corollary 3.5.3. Hilbert’s 10th Problem ≡m the Halting Problem.

3.6 Many-one reducibility

In view of the fact that almost all decision problems are unsolvable, it is desirable
to develop methods for classifying unsolvable decision problems.

In this section we introduce an easy and obvious method of classifying un-
solvable decision problems. Our method is embodied in the concept of many-one
reducibility, which we now define.

Definition 3.6.1 (many-one reducibility). Let A,B ⊆ N be decision problems.
We say that A is many-one reducible to B, abbreviated A ≤m B, if there exists
a 1-place total recursive function f such that for all x, x ∈ A if and only if
f(x) ∈ B.

Intuitively this means that, if we knew how to solve the problem B, we
could then solve the problem A as follows. Given x, to decide whether x ∈ A,
compute f(x) and ask whether f(x) ∈ B. If f(x) ∈ B, then x ∈ A. Conversely,
if f(x) /∈ B, then x /∈ A.

Supporting this intuition, we have the following proposition.

Proposition 3.6.2. If A ≤m B and B is recursive (“solvable”), then A is
recursive (“solvable”).

Proof. Because A ≤m B, we have χA(x) = χB(f(x)) for all x, where f is a
recursive function. If in addition χB is a recursive function, then obviously χA
is a recursive function.

Proposition 3.6.3. If A ≤m B and A is nonrecursive, then B is nonrecursive.

40

Proof. This is the contrapositive of the previous proposition.

Corollary 3.6.4. If K ≤m B, then B is nonrecursive.

Proof. Obvious, because K is nonrecursive.

Remark 3.6.5. The previous corollary can be used to demonstrate the unsolv-
ability of many mathematical problems, including Hilbert’s 10th Problem and
the Word Problem for Groups. One shows that the unsolvable problem K is
reducible to each of these problems, hence they too must be unsolvable.

1. In the case of Hilbert’s 10th Problem, one constructs a specific Diophan-
tine equation f(x0, x1, . . . , xk) = 0 such that for all n ∈ N, n ∈ K if and
only if there exist integers x1, . . . , xk such that f(n, x1, . . . , xk) = 0. Thus
the recursive function

n 7→ #(f(n, x1, . . . , xk) = 0)

shows that K is many-one reducible to Hilbert’s 10th Problem.

Note: By working harder, one can find a Diophantine equation

f(n, x1, . . . , xk) = 0

as above with k = 9. An open question is, what is the smallest number of
variables, k, which will suffice. It is known that k = 2 will not suffice.

2. In the case of the Word Problem for groups, the rough idea is to construct
a specific, finitely presented group G with generators a, b, c, d and some
other generators having the following property: for all n ∈ N, n ∈ K if and
only if abncb−nd = 1 in G. Thus the unsolvable problem K is many-one
reducible to the word problem for this particular group G.

Note: By working harder, one can construct a finitely presented group G
with only two generators such that K is many-one reducible to the word
problem for G.

Remark 3.6.6. Conversely, it is also true (and easy to prove, by means of the
Parametrization Theorem) that Hilbert’s 10th Problem and the Word Problem
for Groups are many-one reducible to K. Thus, all of these unsolvable problems
are equivalent to each other, in the sense that they all have the same “degree of
unsolvability.” Later we shall define and study degrees of unsolvability in more
detail.

We end this section with some obvious facts and definitions.

Proposition 3.6.7. The relation ≤m is reflexive and transitive. In other words,
for all A,B,C ⊆ N we have

1. A ≤m A.

41

2. A ≤m B and B ≤m C imply A ≤m C.

Proof. Clearly A ≤m A via the identity function, f(x) = x. If A ≤m B and
B ≤m C via recursive functions f and g respectively, then A ≤m C via the
recursive function h = g ◦ f given by h(x) = g(f(x)).

Definition 3.6.8 (many-one equivalence). For A,B ⊆ N we say that A and B
are many-one equivalent, abbreviated A ≡m B, if A ≤m B and B ≤m A.

Intuitively, A ≡m B means that the decision problems A and B are equiv-
alent problems, in the sense that each of these problems is reducible to the
other.

Proposition 3.6.9. The relation≡m is an equivalence relation. In other words,
it is reflexive, transitive, and symmetric:

1. A ≡m A.

2. A ≡m B and B ≡m C imply A ≡m C.

3. A ≡m B if and only if B ≡m A.

Proof. Obvious.

Definition 3.6.10. For A,B ⊆ N we define

A⊕B = {2x | x ∈ A} ∪ {2y + 1 | y ∈ B} .

Note that we are putting a copy of A on the even numbers and a copy of B on
the odd numbers.

Intuitively, if A andB are decision problems, then A⊕B is a decision problem
to which both A and B are reducible.

Proposition 3.6.11. A ⊕ B is the supremum (i.e., least upper bound) of A
and B with respect to many-one reducibility. In other words, for all C,

A⊕B ≤m C if and only if A ≤m C and B ≤m C.

Proof. Straightforward.

42

Chapter 4

The arithmetical hierarchy

4.1 Definition of the arithmetical hierarchy

In Chapter 3 we proposed many-one reducibility as a method of classifying
unsolvable problems. We now introduce another such method, known as the
arithmetical hierarchy.

In order to motivate the arithmetical hierarchy, consider K, our favorite
example of a non-recursive set. We have

x ∈ K ≡ ϕ
(1)
x (x) ↓

≡ ∃y

(State(x, x, y))0 = 0︸ ︷︷ ︸

a halting state

︸ ︷︷ ︸
a recursive predicate R(x,y)︸ ︷︷ ︸

a Σ0
1 predicate

So, although K is not recursive, K is described by a recursive predicate plus
one existential quantifier, ∃y.

We shall see that Σ0
1 is “level one” of the arithmetical hierarchy. The arith-

metical hierarchy as a whole consists of level 1, level 2, . . . , level n, The
arithmetical hierarchy provides a method of classifying non-recursive predicates
according to the number of quantifiers needed to describe them.

Definition 4.1.1. As usual, abbreviate x1, . . . , xk as −. Recall that a k-place
predicate P (−) is the same thing as a subset of Nk.

1. For n ≥ 1, a k-place predicate P (−) is said to be Σ0
n if P (−) can be

written in the form

P (−) ≡ ∃y1 ∀y2 ∃y3 ∀y4 · · · ∃∀ yn
︸ ︷︷ ︸

n alternating quantifiers starting with ∃

R(−, y1, y2, . . . , yn)

43

where R is a recursive predicate.

2. A k-place predicate P (−) is said to be Π0
n (n ≥ 1) if P (−) can be written

in the form

P (−) ≡ ∀y1 ∃y2 ∀y3 ∃y4 · · · ∀∃ yn
︸ ︷︷ ︸

n alternating quantifiers starting with ∀

R(−, y1, y2, . . . , yn)

where R is a recursive predicate.

Example 4.1.2. Consider the 1-place predicate (i.e., the set) T ⊆ N defined
by

T = {e ∈ N | ϕ(1)
e is a total function}.

To classify T in the arithmetical hierarchy, we have

e ∈ T ≡ ∀x ϕ(1)
e (x) ↓

≡ ∀x∃y [(State(e, x, y))0 = 0]

≡ Π0
2

so T belongs to the class Π0
2.

Question: does T belong to the class Σ0
2? Later we shall develop a method

for answering such questions. See also Example 4.4.5 below.

Exercise 4.1.3. Prove that T is not recursive.

Hint: Use the Parametrization Theorem.

4.2 Closure properties

The various levels of the arithmetical hierarchy have some useful closure prop-
erties, expressed in the next four propositions.

Proposition 4.2.1. For n ≥ 1, each of the classes Σ0
n and Π0

n is closed under
substitution of total recursive functions.

This means that, if P (−, y) is a Σ0
n predicate and f(−) is a total recursive

function, then the predicate

Q(−) ≡ P (−, f(−))

is again Σ0
n. And similarly for Π0

n.

Proof. For example, suppose P is Σ0
3, i.e.,

P (−, y) ≡ ∃u ∀v ∃wR(−, y, u, v, w)

where R(−, y, u, v, w) is recursive. Then

Q(−) ≡ ∃u ∀v ∃wR(−, f(−), u, v, w)

so Q is again Σ0
3.

44

Proposition 4.2.2. The classes Σ0
n and Π0

n for n ≥ 1 are closed under ∧, ∨,
∀x < y, ∃x < y.

Remark 4.2.3. Caution: The classes Σ0
n and Π0

n for n ≥ 1 are not closed under
negation. For instance, K is Σ0

1 but not Π0
1, and ¬K is Π0

1 but not Σ0
1.

Proof of Proposition 4.2.2. We have

∃y P (−, y) ∧ ∃y Q(−, y) ≡ ∃y ∃z [P (−, y) ∧Q(−, z)]

≡ ∃w [P (−, (w)1) ∧Q(−, (w)2)] .

Thus consecutive ∃’s (and similarly, consecutive ∀’s) can be reduced to a single
∃ (or a single ∀) by means of a pairing function or prime power coding.

Bounded quantifiers can be handled by means of Theorem 1.3.11 plus the
following manipulations:

(∀x < y)∃z P (x, y, z,−) ≡ ∃w (∀x < y) (∃z < w)P (x, y, z,−)

and

(∃x < y)∀z P (x, y, z,−) ≡ ∀w (∃x < y) (∀z < w)P (x, y, z,−) .

Proposition 4.2.4. The class Σ0
n is closed under ∃. Similarly, the class Π0

n is
closed under ∀. Here ∃ and ∀ refer to existential and universal quantification
over N, respectively.

Proof. Suppose P (−, y) is Σ0
n. We then have

Q(−) ≡ ∃y P (−, y)
≡ ∃y ∃y1 ∀y2 · · · ynR(−, y, y1, . . . , yn)
≡ ∃w ∀y2 · · · ynR(−, (w)1, (w)2, . . . , yn)

≡ Σ0
n

The next example illustrates how our closure properties can be useful in
classifying unsolvable problems.

Example 4.2.5. Consider the set

S = {e | the domain of ϕ
(1)
e is infinite}.

45

Classifying S in the arithmetical hierarchy, we have

e ∈ S ≡ ϕ
(1)
e (x) ↓ for infinitely many x

≡ ∀y ∃x (x > y ∧ ϕ
(1)
e (x) ↓)

≡ ∀y ∃x (x > y︸ ︷︷ ︸
recursive

∧ ∃s (State(e, x, s))0 = 0)︸ ︷︷ ︸
recursive︸ ︷︷ ︸
Σ0

1

)

︸ ︷︷ ︸
Σ0

1︸ ︷︷ ︸
Σ0

1︸ ︷︷ ︸
Π0

2

Thus we see that S is Π0
2. This kind of computation is called a Tarski/Kuratowski

computation.

Proposition 4.2.6. If P (−) is Σ0
n, then ¬P (−) is Π0

n. If P (−) is Π0
n, then

¬P (−) is Σ0
n.

Proof. ¬∃ ≡ ∀¬ and ¬∀ ≡ ∃¬
¬∃y1 ∀y2 ∃y3 ≡ ∀y1 ¬∀y2 ∃y3 ≡ ∀y1 ∃y2 ¬∃y3 ≡ ∀y1 ∃y2 ∀y3 ¬

Notation 4.2.7. We shall frequently use the notation

We = domain of ϕ
(1)
e = {x | ϕ(1)

e (x) ↓}.
Here e is called an index of the set We.

Note that some of our previous examples can be expressed concisely using
this notation. In particular we have K = {e | e ∈ We}, T = {e | We = N},
S = {e |We is infinite}. Another such example is:

R = {e |We is recursive}.
Exercise 4.2.8. Perform a Tarski/Kuratowski computation to classify R in the
arithmetical hierarchy.

(picture of arithmetical hierarchy)

4.3 Distinguishing levels of the hierarchy

In this section we continue our discussion of the arithmetical hierarchy. We
show that all of the levels of the arithmetical hierarchy are distinct.

The following theorem is a useful characterization of the lowest level of the
hierarchy, Σ0

1.
As usual, we denote x1, . . . , xk by −.

46

Theorem 4.3.1. P ⊆ Nk, a k-place predicate, is Σ0
1 if and only if P is the

domain of some partial recursive function.

Proof. (⇐):

Assume P = dom(ϕ
(k)
e)

Then P (−) ≡ ϕ
(k)
e ↓

≡ ∃n (State(e,−, n))0 = 0︸ ︷︷ ︸
recursive︸ ︷︷ ︸
Σ0

1

(⇒):
P (−) is Σ0

1.
Then P (−) ≡ ∃y R(−, y) where R is recursive. Then ψ(−) ≃ µyR(−, y) is a
partial recursive function, and P = dom(ψ)

In order to distinguish the levels of the arithmetical hierarchy, we first in-
troduce universal predicates at each level.

Definition 4.3.2. A (k + 1)-place predicate U(e,−) is said to be universal Σ0
n

(for k-place predicates) if

1. U(e,−) is Σ0
n

2. every k-place Σ0
n predicate is ≡ U(e,−) for some fixed e.

(Universal Π0
n predicates are defined similarly.)

Theorem 4.3.3. For each k ≥ 1 and n ≥ 1, there exist universal Σ0
n and Π0

n

predicates.

Proof. 1. The predicate U(e,−) ≡ ϕ
(k)
e (−) ↓ is universal Σ0

1.

2. If U(e,−) is universal Σ0
n, then ¬U(e,−) is universal Π0

n. If U(e,−) is
universal Π0

n, then ¬U(e,−) is universal Σ0
n.

3. If U(e,−, y) is universal Σ0
n for (k+1)-place predicates, then ∀y U(e,−, y)

is universal Π0
n+1 for k-place predicates.

Theorem 4.3.4. For each n ≥ 1 there exist sets which are Σ0
n and not Π0

n (or,
Π0
n and not Σ0

n).

Proof. Let Un(e, x) be a universal Σ0
n predicate. Consider the set

Kn = {e | Un(e, e) holds}.
For example, K1 = K. Clearly Kn is Σ0

n. The usual diagonal argument shows
that Kn is not Π0

n. By taking the complement of Kn, we obtain a set which is
Π0
n and not Σ0

n.

Definition 4.3.5. ∆0
n = Σ0

n ∩Π0
n. In other words, a predicate P (−) is said to

be ∆0
n if and only if it is both Σ0

n and Π0
n.

47

Theorem 4.3.6. A predicate P (−) is ∆0
1 if and only if P (−) is recursive.

Proof. (⇐):
trivial

(⇒):
P (−) is ∆0

1, so P (−) ≡ ∀y R1(−, y) and P (−) ≡ ∃z R2(−, z).

Exercise 4.3.7. Show that for each n ≥ 1 there exist sets which are ∆0
n+1 and

neither Σ0
n nor Π0

n.

4.4 Many-one completeness

We continue our discussion of the arithmetical hierarchy. We develop a method
for proving that decision problems at specific levels of the arithmetical hierarchy
do not belong to any lower level.

Recall our discussion of many-one reducibility in Section 3.6. For A,B ⊆ N,
the definition of A ≤m B is that we can find a total recursive function f such
that x ∈ A⇔ f(x) ∈ B for all x ∈ N.

Proposition 4.4.1. If A ≤m B and B is Σ0
n, then A is Σ0

n. And similarly for
Π0
n.

Proof. Recall that the class of Σ0
n predicates is closed under recursive substi-

tution. (See Proposition 4.2.1.) Suppose A ≤m B via a recursive function f .
Viewing A,B ⊆ N as 1-place predicates, we have A(x) ≡ B(f(x)) for all x ∈ N.
If the predicate B(y) is Σ0

n, it follows that the predicate A(x) is Σ0
n, Q.E.D.

Proposition 4.4.2. If A and B are Σ0
n, then A ⊕ B is Σ0

n. And similarly for
Π0
n.

Proof. Straightforward.

Definition 4.4.3 (Σ0
n completeness). A set C ⊆ N is said to be Σ0

n complete,
or many-one complete within the class Σ0

n, if it has the following two properties.

1. C is Σ0
n.

2. Every Σ0
n set is ≤m C.

Π0
n completeness is defined similarly.

Theorem 4.4.4. For each n ≥ 1 we have:

1. Σ0
n complete sets exist.

2. Any such set is not Π0
n.

Proof. 1. Let Un(e, x) be a universal Σ0
n predicate. Let Cn = {3e5x | Un(e, x)

holds}. Clearly Cn is Σ0
n complete.

48

2. If C is Σ0
n complete, we have in particular Kn ≤m C. (See the proof of

Theorem 4.3.4.) Since Kn is not Π0
n, it follows that C is not Π0

n.

Example 4.4.5. Recall from Example 4.1.2 that T = {e | ϕ(1)
e is total} is Π0

2.
We claim that T is Π0

2 complete. It follows that T is not Σ0
2. In particular, T is

neither Σ0
1 nor Π0

1.
To show that T is Π0

2 complete, let A be any Π0
2 set. We need to show that

A ≤m T . We have x ∈ A ≡ ∀y ∃z R(x, y, z) where R is recursive. Consider
the partial recursive function ψ(x, y) ≃ µz R(x, y, z). By the Parametrization

Theorem, there is a total recursive function h(x) such that ϕ
(1)
h(x)(y) ≃ ψ(x, y)

for all x, y. Then
x ∈ A ≡ ∀y ∃z R(x, y, z)

≡ ∀y ψ(x, y) ↓
≡ ∀y ϕ(1)

h(x)(y) ↓
≡ ϕ

(1)
h(x) is total

Example 4.4.6. Recall the sets K = {x | ϕ(1)
x (x) ↓} and H = {x | ϕ(1)

x (0) ↓
} = {#(P) | P halts} = the Halting Problem.

Note that K,H are Σ0
1 sets. We claim they are Σ0

1 complete. To see this,
let A be any Σ0

1 set. To show A ≤m K, A ≤m H , note that x ∈ A ≡ ∃y R(x, y)
where R(x, y) is a recursive predicate. We have a partial recursive function
ψ(x, z) ≃ µy R(x, y). By the Parametrization Theorem, we get a recursive

function h(x) such that ϕ
(1)
h(x)(z) ≃ ψ(x, z). Then

x ∈ A ≡ ∃y R(x, y)
≡ ψ(x, z) ↓
≡ ϕ

(1)
h(x)(z) ↓ (independent of z)

≡ ϕ
(1)
h(x)(0) ↓≡ x ∈ H

≡ ϕ
(1)
h(x)(h(x)) ↓≡ x ∈ K

Exercise 4.4.7. Show that Kn (in the proof of Theorem 4.3.4) is Σ0
n complete.

Remark 4.4.8. The sets K,H, S, T,R,E are all complete at appropriate levels
of the arithmetical hierarchy.

But, we shall see later that there exist Σ0
n and Π0

n sets which are not com-
plete.

Remark 4.4.9. Hilbert’s 10th Problem, the Word Problem for Groups, etc.
are Σ0

1 complete. Thus, they are equivalent to the Halting Problem.

4.5 Recursively enumerable sets

Theorem 4.5.1 (recursively enumerable sets). For A ⊆ N, t.f.a.p.e. (the fol-
lowing are pairwise equivalent):

49

1. A is Σ0
1

2. A = domain of a partial recursive function

3. A = We = dom(ϕ
(1)
e) for some e

4. A = range of a partial recursive function

5. A = ∅ or A is the range of a total recursive function

6. A is finite or A is the range of a 1-1 total recursive function

We call such sets A recursively enumerable sets, or r.e. sets for short.

Proof. 1⇔ 2⇔ 3 is obvious, and 6⇒ 5⇒ 4 is obvious.
4⇒ 1:
Suppose A = range of ϕ

(1)
e = {y | ∃xϕ(1)

e (x) ≃ y}.
Then: y ∈ A ≡ ∃xϕ(1)

e (x) ≃ y

≡ ∃x∃n

(State(e, x, n))0 = 0 ∧ (State(e, x, n))2 = y︸ ︷︷ ︸

recursive

︸ ︷︷ ︸
Σ0

1

≡ Σ0
1

We will show 1⇒ 6 to complete the proof, but first a lemma:

Lemma 4.5.2. Let B ⊆ N be an infinite recursive set. Then the principal
function

πB(n) = nth element of B in increasing order

is a total recursive function.

Pf: πB(0) = µw (w ∈ B)
πB(n+ 1) = µw (w ∈ B ∧w > πB(n))

Now, to prove 1⇒ 6:
Assume A is infinite and Σ0

1, A = {x | ∃y R(x, y)} where R(x, y) is a re-
cursive predicate. Let ψ(x) ≃ µy R(x, y) (a partial recursive function) and
B = {3x5ψ(x) | x ∈ A} = {3x5y | R(x, y) ∧ ¬∃z < y R(x, z)︸ ︷︷ ︸

recursive

}.

Note that B is infinite and recursive, so πB is recursive. Then B = the range
of πB, and πB is one-to-one. Define f(n) = (πB(n))1. Then A = the range of
f ; and by construction, f is one-to-one and recursive.

Remark 4.5.3. Define a set A ⊆ N to be Diophantine if there exists a polyno-
mial f(w, x1, . . . , xk) with integer coefficients such that

A = {n | ∃x1 · · · ∃xk f(n, x1, . . . , xk) = 0}.
Here n ranges over N and x1, . . . , xk range over Z. Obviously every Diophantine
set is Σ0

1. It follows by the previous theorem that every Diophantine set is
recursively enumerable. A consequence of Matiyasevich’s solution of Hilbert’s
10th Problem is:

50

A is Diophantine if and only if A is recursively enumerable.

This is another nice characterization of r.e. sets.

4.6 Homework #3, due September 17, 2007

Remark 4.6.1. For the next exercise, recall that Wx = dom(ϕ
(1)
x). Note that

Wx, x = 0, 1, 2, . . ., is the standard recursive enumeration of the recursively
enumerable subsets of N.

Exercise 4.6.2. Which many-one reducibility relations hold or do not hold
among the following sets and their complements?

K = {x | x ∈ Wx}

H = {x | 0 ∈ Wx}

T = {x |Wx = N}

E = {x |Wx = ∅}

S = {x |Wx is infinite}

Prove your answers.
Hint: Show that each of these sets is many-one complete within an appro-

priate level of the arithmetical hierarchy.

4.7 Recursively enumerable sets

Exercise 4.7.1. Prove the following:

1. Every infinite recursively enumerable set includes an infinite recursive set.

2. Every infinite recursive set includes a recursively enumerable set which is
not recursive.

3. Every infinite recursive set is the union of two disjoint infinite recursive
sets.

4. Every infinite recursively enumerable set is the union of two disjoint infi-
nite recursively enumerable sets.

5. (Extra Credit) Every recursively enumerable set which is nonrecursive is
the union of two disjoint recursively enumerable sets which are nonrecur-
sive.

51

Solution. A simple fact is that, for any infinite set A, πA (the principal function
of A) is ≡T A. (Recall that A = {πA(0) < πA(1) < πA(2) < · · · < πA(n) <
· · ·}.)

In particular, if A is nonrecursive then πA is nonrecursive.
For part 3, let S be infinite recursive, so πS is recursive. Define S1 =

{πS(n) | n odd}, S2 = {πS(n) | n even}. Then S1 and S2 are infinite recursive,
and S = S1 ∪ S2 and S1 ∩ S2 = ∅.

Part 4 is similar. Let A be r.e. infinite. Then A = rng(f) for some 1-1
total recursive f . Let A1 = {f(n) | n odd} and A2 = {f(n) | n even}. Then
A = A1 ∪A2 and A1, A2 are r.e. infinite and A1 ∩A2 = ∅.

For part 1, let A and f be as above. Define a recursive increasing function
g by g(0) = f(0), g(i + 1) = f(µn f(n) > g(i)). Then g is recursive and by
definition g(i+ 1) > g(i) for all i. Letting B = rng(g) we have g = πB, B ⊆ A,
B is recursive and infinite.

Here is an alternative solution, from Robin Tucker-Drob, inspired by defi-
ciency sets. Let C = {f(n) | f(n) ≥ n}. We have m ∈ C ≡ (∃n ≤ m) (m =
f(n)) so C is recursive. We can argue that C is infinite.

For part 2, let S be an infinite recursive set. Let B = {πS(n) | n ∈ K}.
Clearly B is an infinite r.e. subset of S. Also B is nonrecursive, because for all
n we have n ∈ K ⇔ πS(n) ∈ B, so K ≤m B.

Part 5 is harder; the result is a published paper.

Exercise 4.7.2 (creative sets). A set P ⊆ N is said to be productive if there
exists a total recursive function h(x) such that for all x, if Wx ⊆ P then h(x) /∈
Wx and h(x) ∈ P . Such a function is called a productive function for P .

A creative set is a recursively enumerable set whose complement is produc-
tive.

Prove the following.

1. K is creative.

2. If A and B are recursively enumerable sets and A ≤m B and A is creative,
then B is creative.

3. If B is recursively enumerable and many-one complete, then B is creative.

4. (Extra Credit) If B is creative, then B is many-one complete.

5. (Extra Credit) If A and B are creative, then A and B are recursively
isomorphic. This means that there exists a recursive permutation of N,
call it g, such that x ∈ A if and only if g(x) ∈ B, for all x.

Exercise 4.7.3 (simple sets). A set I ⊆ N is said to be immune if I is infinite
yet includes no infinite recursively enumerable set.

A simple set is a recursively enumerable set whose complement is immune.
Prove the following.

1. If A is simple, then A is not recursive.

52

2. If A is simple, then A is not creative.

Exercise 4.7.4 (deficiency sets). Let f : N 1−1−→ N be a one-to-one total recursive
function such that the range of f is nonrecursive. The deficiency set of f is
defined as

Df = {x | ∃y (x < y ∧ f(x) > f(y))} .
Prove that Df is a simple set.

Conclude that there exist recursively enumerable sets which are neither re-
cursive nor many-one complete.

Exercise 4.7.5. (Extra Credit) Generalize Exercises 4.7.2, 4.7.3, 4.7.4 to higher
levels of the arithmetical hierarchy. Conclude that for each n ≥ 1 there exist Σ0

n

sets which are neither ∆0
n nor many-one complete within the class of Σ0

n sets.

4.8 Parametrization and uniformity

In this section we discuss a fundamental but somewhat vague principle, known
as the Uniformity Principle.

Recall the concept of indices. If e = #(P), we say that e is an index of the

partial recursive function ϕ
(1)
e (x) which is computed by P . We also say that e

is an index of the r.e. set We = dom(ϕ
(1)
e) = {x | ϕ(1)

e (x) ↓}.
The true meaning of the Parametrization Theorem is embodied in the fol-

lowing vague but useful “uniformity principle”:

Many operations on partial recursive functions and r.e. sets can be
described as computable operations on the indices of these functions
and sets.

Example 4.8.1. Consider the union of two r.e. sets, Wx ∪Wy. We know that
this is r.e., hence there exists z such that Wz = Wx ∪ Wy. The Uniformity
Principle tells us something more. Namely, given x and y we can compute an
index z = f(x, y) of Wx ∪Wy . Here f(x, y) is a total computable function.

Proof. We have

u ∈ Wx ∪Wy ≡ ∃s [(State(x, u, s))0 = 0 ∨ (State(y, u, s))0 = 0]

≡ ψ(u, x, y) ↓

where ψ(u, x, y) ≃ µs [(State(x, u, s))0 = 0 ∨ (State(y, u, s))0 = 0]. So far we
have shown that Wx ∪Wy is Σ0

1, i.e., it is an r.e. set. We want to show more,
that we can find its index computably from x and y.

By the Parametrization Theorem, find a recursive function g(w) such that

ϕ
(1)
g(w)(u) ≃ ψ(u, (w)1, (w)2) for all u,w. Consider the recursive function f(x, y) =

g(3x5y). Then ϕ
(1)
f(x,y)(u) ≃ ϕ

(1)
g(3x5y)(u) ≃ ψ(u, x, y), hence ϕ

(1)
f(x,y)(u) ↓≡ u ∈

Wx ∪Wy . Thus Wf(x,y) = Wx ∪Wy for all x, y as desired.

53

Example 4.8.2. Similarly, we can show that various other operations on indices
are recursive. For instance, we obtain total recursive functions f, g, h, k, l with
the following properties.

1. Wf(x,y) = Wx ∪Wy

2. Wg(x,y) = Wx ∩Wy

3. Wh(x,y) = Wx ∪ {y}

4. ϕ
(1)
k(x,y) = ϕ

(1)
x ◦ ϕ(1)

y

5. Wl(x,y) =
(
ϕ

(1)
x

)−1

(Wy) = {u | ϕ(1)
x (u) ↓∈Wy}

We now apply the Uniformity Principle to solve some of the problems in
Homework #3.

Solution of Homework #3, Problem 2(b)

Show that A ≤m B, A creative, B r.e. imply B creative. It suffices to show that
if P ≤m Q and P is productive, then Q is productive.

Proof. Let h(x) be a productive function for P . This means that if Wx ⊆ P
then h(x) /∈ Wx and h(x) ∈ P . Assume P ≤m Q via the recursive function
f , i.e., x ∈ P if and only if f(x) ∈ Q. Suppose now that Wx ⊆ Q. Then
f−1(Wx) is an r.e. set; further, by the uniformity principle (Parametrization
Theorem), there is a recursive function g(x) such that Wg(x) = f−1(Wx) for all
x. We have Wg(x) ⊆ P since Wx ⊆ Q, so we apply our productive function for
P to get h(g(x)) ∈ P, /∈ Wg(x). Finally, apply the reduction function f to get
k(x) = f(h(g(x))) ∈ Q, /∈ Wx. Thus k = f ◦ h ◦ g is a productive function for
Q.

Solution of Homework #3, Problem 3(b)

Show that a creative set is not simple. It suffices to show that a productive set
P is not immune. We need to show that P has an infinite r.e. set.

Let h(x) be a productive function for P . Start with x0, an index of ∅,
the empty set. Then Wx0 = ∅, so trivially Wx0 ⊆ P . Hence h(x0) /∈ Wx0

(obviously) and h(x0) ∈ P . Let Wx1 = {h(x0)} ⊆ P . Then h(x1) /∈ Wx1

and h(x1) ∈ P . Continuing in this fashion, we generate a sequence of distinct
integers h(x0), h(x1), h(x2), . . . which hopefully form an infinite r.e. subset of P .

To make this work, we need to show the construction of x0, x1, x2, . . . can be
done in a uniform or recursive manner, via the Parametrization Theorem. The
Uniformity Principle gives us a recursive function g(x, y) such that Wg(x,y) =
Wx∪{y} for all x, y. We want Wxn+1 = Wxn

∪{h(xn)} = Wg(xn,h(xn)) for all n,
so define the infinite sequence x0, x1, x2, . . . by letting xn+1 = g(xn, h(xn)) for all

54

n. Since h(x) and g(x, y) are recursive functions, the sequence x0, x1, . . . , xn, . . .
is recursive. It follows that the set {h(x0), h(x1), h(x2), . . .} is an infinite r.e.
subset of P .

Lecture 16: September 28, 2007

55

Chapter 5

Oracles and relativization

5.1 Oracle computation

We now extend the power of register machines by considering oracle programs.
Our programs already include the increment instruction R+

i and the decre-
ment instruction R−

i . We now add the oracle instruction R0
i which replaces n

in Ri with f(n). Here f : N → N is a fixed, total, 1-place, number-theoretic
function, called a Turing oracle.

Example 5.1.1. Given a 1-place number-theoretic function f(x), consider the
function g(x) = f(f(x) + 1). We claim that g is computable using f as an
oracle. This is shown by the oracle program

startONMLHIJK // R0
1

ONMLHIJK // R+
1

ONMLHIJK // R0
1

ONMLHIJK // R−
1

ONMLHIJK
��

e // stopONMLHIJK

R+
2

ONMLHIJK
OO

which uses f as an oracle to compute g.

Definition 5.1.2 (Gödel numbers). We extend our Gödel numbering system
to oracle programs. The definition of #(Im) for an oracle instruction Im is
#(Im) = 4 · 3i · 5n where Im is an R0

i instruction pointing to In as the next
instruction. The definition of #(P) is then as before. Thus we now have a
Gödel numbering

: {oracle programs} 1−1−→ N

extending our earlier Gödel numbering

: {programs} 1−1−→ N.

56

Definition 5.1.3. An oracle is a total, 1-place, number-theoretic function.

Notation 5.1.4. Let P be an oracle program, and let f be an oracle.

1. We denote by Pf(x1, . . . , xk) the run of P using oracle f starting with
x1, . . . , xk in R1, . . . , Rk and all other registers empty. The output of
Pf (x1, . . . , xk) is the content of Rk+1 if and when Pf (x1, . . . , xk) halts.
This is an obvious generalization of Notation 1.1.9.

2. Let e = #(P). We write

ϕ
(k),f
e (x1, . . . , xk) ≃ the output of Pf (x1, . . . , xk) .

This is an obvious generalization of Notation 2.2.3.

3. We denote by W f
e the domain of ϕ

(1),f
e . This is an obvious generalization

of Notation 4.2.7.

Definition 5.1.5. Let f be a fixed oracle. A partial function

ψ : ⊆ Nk → N

is said to be partial f -recursive, or partial recursive relative to f , if there exists
e such that

ψ(x1, . . . , xk) ≃ ϕ
(k),f
e (x1, . . . , xk)

for all x1, . . . , xk ∈ N.

Example 5.1.6. Let

f(x) = χH =

{
1 if ϕ

(1)
x (0) ↓

0 if ϕ
(1)
x (0) ↑

Then clearly the Halting Problem H is solvable relative to f . Further, all r.e.
sets are f -recursive.

Proof. Given an r.e. set We = {x | ϕ(1)
e (x) ↓}, define the function θ(x, y) =

ϕ
(1)
e (x). By the parametrization theorem, there is a total recursive function h

such that θ(x, y) ≃ ϕ(1)
h(x)(y).

In particular, this is true for y = 0; so ϕ
(1)
e (x) ≃ ϕ(1)

h(x)(0).

Then χWe
= χH ◦ h, which is f -recursive. The oracle program will contain

the program for h, then will run the oracle instruction on h(x) to see if it
halts.

Example 5.1.7. If the oracle f is itself a computable function, then the f -
computable functions are exactly the computable functions.

57

5.2 Relativization

Theorem 5.2.1 (Enumeration Theorem). Let f be a fixed oracle. For each
k ≥ 0, the (k + 1)-place partial function

(e, x1, . . . , xk) 7→ ϕ(k),f
e (x1, . . . , xk)

is partial f -recursive.

Proof. Define the functions Statef (e, x1, . . . , xk, n), NextStatef (e, z), and
StopTimef (e, x1, . . . , xk) as before. These functions are partial f -recursive. The
definition of NextState(e, z) has an extra clause for oracle instructions:

NextStatef (e, z) = z · p−m+n
0 · p−x+f(x)

i

whenever (z)0 = m and (e)m = 4 · 3i · 5n and (z)i = x.

Then as before we have

ϕ
(k),f
e (x1, . . . , xk) ≃ (Statef (e, x1, . . . , x,StopTimef (e, x1, . . . , xk)))k+1.

Theorem 5.2.2 (Parametrization Theorem). Given a 2-place partial f -recursive
function ψ(w, x), we can find a 1-place total recursive function h(w) such that

ϕ
(1),f
h(w)(x) ≃ ψ(w, x) for all w, x.

Note: We can find a function h which is recursive, not merely f -recursive.

Proof. Relativize the proof given earlier.

Definition 5.2.3 (Relativized Arithmetical Hierarchy). Let f be a fixed oracle.
For k, n ≥ 1, a k-place predicate P (−) is Σ0,f

n if P (−) can be written in the
form

P (−) ≡ ∃y1 ∀y2 · · · ∃∀ ynR(−, y1, y2, . . . , yn)

where R is an f -recursive predicate.
(Similarly define Π0,f

n and ∆0,f
n .)

Theorem 5.2.4. Consider a set A ⊆ N. Then A is Σ0,f
1 if and only if S = W f

n

for some n.

Proof. Relativization.

5.3 Turing degrees

Definition 5.3.1. Given two functions f, g : N → N, we say f is Turing

reducible to g, denoted f ≤T g, if there is an integer e such that f(x) = ϕ
(1),g
e (x)

for all x. (i.e., f is g-recursive.)

The relation ≤T is reflexive and transitive.

58

1. f ≤T f

2. f ≤T g, g ≤T h⇒ f ≤T h
Pf: If P computes f using g as an oracle, and Q computes g using h as
an oracle, then construct a program R with oracle h as follows:

Starting with the program P , but replace every oracle instruction R0
i with

the program Q (modified so that it takes its input from Ri and outputs
back into Ri). Then R computes f with oracle h.

Definition 5.3.2. Two functions f, g : N→ N are Turing equivalent if f ≤T g
and g ≤T f . In this case, we write f ≡T g. Note that ≡T is an equivalence
relation.

Definition 5.3.3 (Degrees of unsolvability). The Turing degrees are the set of
≡T equivalence classes. If f : N → N, then degT (f) = {g : N → N | f ≡T g} is
the Turing degree of f .

The Turing degrees are partially ordered by Turing reducibility.

f ≤T g ⇔ degT (f) ≤T degT (g).

Lectures 11,12: September 19 and 20, 2007

Turing degrees are partially ordered by Turing reducibility. This partial ordering
is an object of great interest in the study of unsolvable problems, and many
papers have been written investigating its properties.

Basic properties:

1. There is a least Turing degree 0 = {f : N→ N | f is recursive.}.

2. Any two Turing degrees have a least upper bound.

Proof. Let a = degT (f) and b = degT (g). Their least upper bound is
sup(a,b) = degT (f ⊕ g) (a join b) where

{
f ⊕ g(2n) = f(n)
f ⊕ g(2n+ 1) = g(n)

Clearly, f ≤T f ⊕ g and g ≤T f ⊕ g. Suppose f ≤T h and g ≤T h; then
f ⊕ g ≤T h by using the program for computing f on the even values and
the program for computing g on the odd values.

3. Not every pair of Turing degrees has a greatest lower bound inf(a,b) (the
infimum or meet of a b).

Proof. The construction of such a pair of Turing degrees is a homework
problem.

59

4. For each f : N → N, there is a set A ⊆ N such that degT (A) :=
degT (χA) = degT (f).

So, without loss of generality, we could just study the Turing degrees of
sets.

Proof. Define A = {3x · 5f(x) | x ∈ N} = Gf , the “graph” of f .

χA ≤T f , since y ∈ A ≡

y = 3(y)1 · 5(y)2

︸ ︷︷ ︸
recursive

∧ f((y)1) = (y)2︸ ︷︷ ︸
f−recursive

︸ ︷︷ ︸
f−recursive

.

Note also that f ≤T χA, since f(x) = µy (3x · 5y ∈ A).

5.4 The Turing jump operator

Problem: Given a Turing degree a = degT (f), find a Turing degree strictly
greater than a. (In other words, given a function f , find a function g that is
not f -recursive.)

Definition 5.4.1. The Halting problem relative to f is Hf = {x | ϕ(1),f
x (0) ↓}.

The Turing jump operator maps degT (f) 7→ degT (Hf)
a 7→ a′

Properties:

1. Hf is Σ0,f
1 complete.

2. f <T H
f (f ≤T Hf and Hf �T f)

3. f ≤T g ⇒ Hf ≤T Hg

4. In particular, a′ ≥T 0′ for all a

We present two theorems, without proof for now, that describe further the
structure of Turing degrees and the Turing jump operator.

Theorem 5.4.2 (Friedberg’s Jump Theorem). For all Turing degrees c > 0′

(0′ = deg(H), the Turing degree of the halting problem), there exists a Turing
degree a such that a′ = c.

In other words, the range of the Turing jump operator is {c | c ≥ 0′}.

Proof. See pages 31-33 of Spring 2004 lecture notes.

Exercise 5.4.3. Given Turing oracles f and g, prove that the following condi-
tions are pairwise equivalent:

1. f ≤T g

60

2. Hf ≤m Hg

3. all partial f -recursive functions are partial g-recursive

4. all total f -recursive functions are g-recursive.

Solution. This is an exercise in understanding Turing reducibility, many-one
reducibility, and the Turing jump operator. Basically, the problem is to prove
that f ≤T g if and only if Hf ≤m Hg.

Recall that

Hf = the Halting Problem relative to the oracle f

= {x | ϕ(1),f
x (0) ↓}

is the “relativization to f” of H = {x | ϕ(1)
x (0) ↓} = the Halting Problem.

We have already implicitly proved that the Halting Problem is unsolvable,
but let us now make this explicit:

Theorem 5.4.4. H is Σ0
1 complete, hence not recursive.

Proof. We used the Parametrization Theorem to prove that H is Σ0
1-complete.

It follows that H is not ∆0
1, hence not recursive.

We now relativize this to Hf to obtain:

Theorem 5.4.5. Hf is not f -recursive. I.e., Hf �T f . Note also that f ≤T Hf

Proof. The point is that Hf is Σ0,f
1 complete, hence not ∆0,f

1 , hence not ≤T f .
This is just the relativization to f of the previous theorem.

It remains to show that f ≤T Hf . By definition, for any set A ⊆ N, f ≤T A
means f ≤T χA, also degT (A) = degT (χA), etc.

For any function f , define the “graph” of f to be the set Gf = {3x5y |
f(x) = y}. Then f ≡T Gf , because f(x) = µy 3x5y ∈ Gf , and z ∈ Gf ≡ (∃x <
z) (∃y < z) (z = 3x5y ∧ y = f(x)). It follows that Gf is ∆0,f

1 , so it is Σ0,f
1 .

Hence Gf ≤m Hf , hence Gf ≤T Hf , hence f ≤T Hf .

Summary: For any Turing oracle f , we have Hf >T f .
In the above proof, we used the fact that many-one reducibility is a special

case of Turing reducibility. Formally,

Lemma 5.4.6. A ≤m B implies A ≤T B.

Proof. Suppose A ≤m B via a function h. Then χA(x) = χB(h(x)). h is
recursive, so χA is χB-recursive.

Definition 5.4.7. The Turing jump operator is the operator which takes f to
Hf .

61

Thus the Turing jump operator is simply the relativization of the Halting
Problem. If a = degT (f), then we write a′ = degT (Hf). Note that a < a′

for all Turing degrees a. In other words, given any unsolvable problem, the
jump operator gives us a problem which is “more unsolvable,” i.e., its degree of
unsolvability is greater.

In particular, starting with the Turing degree 0 = degT (0) where 0 denotes
any recursive function, we may iterate the jump operator to obtain an ascending
sequence of Turing degrees 0 < 0′ < 0′′ < 0′′′ < · · · < 0(n) < 0(n+1) < · · · which
represent higher and higher degrees of unsolvability. It can be shown that this
sequence of Turing degrees is closely related to the arithmetical hierarchy. See
the discussion of Post’s Theorem, below.

To solve Problem 1, use the following facts:

1. Hf is complete Σ0,f
1 .

2. A set A is Σ0,f
1 if and only if A is the range of a partial f -recursive function.

3. A 1-place partial function ψ(x) is partial f -recursive if and only if Gψ , the

graph of ψ, is Σ0,f
1 . Here of course Gψ = {3x5y | ψ(x) ≃ y}.

All of these are straightforward relativizations of known facts about Σ0
1 sets and

partial recursive functions.

5.5 Finite approximation

Definition 5.5.1. A string is a finite sequence of natural numbers.

Notation 5.5.2. We use Greek letters such as σ, τ, . . . to denote strings. The
length of a string σ will be denoted |σ|. The elements of σ will be denoted σ(i)
for i < |σ|. So, if |σ| = m, then

σ = 〈σ(0), σ(1), . . . , σ(m− 1)〉 .

We write σ ⊆ τ if and only if |σ| ≤ |τ | and σ(i) = τ(i) for all i < |σ|. The
concatenation of σ and τ is

σaτ = 〈σ(0), σ(1), . . . , σ(m− 1), τ(0), τ(1), . . . , τ(n − 1)〉

where |σ| = m and |τ | = n. Note that σaτ is a string of length m+ n.

Since strings are finite objects, they can be Gödel numbered. For concrete-
ness we choose the Gödel numbering

#(σ) =
∏

i<|σ|

p
σ(i)+1
i

noting that

: {strings} 1−1−→ N .

62

For example, if σ = 〈3, 8, 11〉, then |σ| = 3, σ(0) = 3, σ(1) = 8, σ(2) = 11, and
p0 = 2, p1 = 3, p2 = 5, so #(σ) = 2439512.

Note that the set of Gödel numbers of strings is recursive (use bounded quan-
tification, etc.). Moreover, |σ| is recursive as a function of #(σ), and #(σaτ) is
recursive as a function of #(σ) and #(τ). Also, σ(i) is recursive as a function
of #(σ) and i, σ ⊆ τ is recursive as a predicate on #(σ) and #(τ), etc.

We now introduce the important concept of finite approximations.
If f is an oracle, let

f ↾ n = 〈f(0), f(1), . . . , f(n− 1)〉 .

We call this string f ↾ n a finite approximation of f . Note that f is the union of
its finite approximations. We write σ ⊂ f to mean that the string σ is a finite
approximation of the oracle f , i.e., σ = f ↾ n for some n.

In general, an oracle contains an infinite amount of information:
f(0), f(1), f(2), f(3), f(4), However, in any particular halting computation

ϕ
(1),f
e (x) ≃ y

only finitely much information from the oracle is used, since the computation
halts in only a finite number of steps and consults the oracle only a finite number
of times. We use the following notation to describe oracle computations that
use only a finite approximation to f .

Notation 5.5.3. ϕ
(k),σ
e,s (x1, . . . , xk) ≃ y means:

for any or all oracles f approximated by σ, ϕ
(k),f
e (x1, . . . , xk) ≃ y

in less than or equal to s steps of computation using only oracle
information from σ.

We write ϕ
(k),σ
e (x1, . . . , xk) ≃ y as an abbreviation for ϕ

(k),σ
e,|σ| (x1, . . . , xk) ≃ y.

Lemma 5.5.4. The following are pairwise equivalent:

1. ϕ
(k),f
e (x1, . . . , xk) ≃ y.

2. ϕ
(k),f↾n
e,s (x1, . . . , xk) ≃ y for some n and s.

3. ϕ
(k),f↾n
e,s (x1, . . . , xk) ≃ y for all sufficiently large n and s.

4. ϕ
(k),f↾n
e (x1, . . . , xk) ≃ y for some n.

5. ϕ
(k),f↾n
e (x1, . . . , xk) ≃ y for all sufficiently large n.

6. ϕ
(k),σ
e,s (x1, . . . , xk) ≃ y for some string σ ⊂ f and some s.

7. ϕ
(k),σ
e,s (x1, . . . , xk) ≃ y for all sufficiently long strings σ ⊂ f and all suffi-

ciently large s.

8. ϕ
(k),σ
e (x1, . . . , xk) ≃ y for some string σ ⊂ f .

63

9. ϕ
(k),σ
e (x1, . . . , xk) ≃ y for all sufficiently long strings σ ⊂ f .

Proof. Obvious.

Note also that the above-mentioned predicates on strings have a monotonic-
ity property:

Lemma 5.5.5. As usual let us write − instead of x1, . . . , xk.

1. If σ ⊆ τ and s ≤ t, then ϕ
(k),σ
e,s (−) ≃ y implies ϕ

(k),τ
e,t (−) ≃ y.

2. If σ ⊆ τ and s ≤ t, then ϕ
(k),σ
e,s (−) ↓ implies ϕ

(k),τ
e,t (−) ↓.

3. If σ ⊆ τ then ϕ
(k),σ
e (−) ≃ y implies ϕ

(k),τ
e (−) ≃ y.

4. If σ ⊆ τ then ϕ
(k),σ
e (−) ↓ implies ϕ

(k),τ
e (−) ↓.

Proof. Obvious.

Some of the usefulness of finite approximations lies in the fact that certain
predicates associated with them are recursive. Namely:

Lemma 5.5.6. Let us write σ instead of #(σ), the Gödel number of σ. As
usual we write − instead of x1, . . . , xk.

1. The (k + 4)-place predicate {〈e, s, σ,−, y〉 | ϕ(k),σ
e,s (−) ≃ y} is recursive.

2. The (k + 3)-place predicate {〈e, σ,−, y〉 | ϕ(k),σ
e (−) ≃ y} is recursive.

3. The (k + 3)-place predicate {〈e, s, σ,−〉 | ϕ(k),σ
e,s (−) ↓} is recursive.

4. The (k + 2)-place predicate {〈e, σ,−〉 | ϕ(k),σ
e (−) ↓} is recursive.

Proof. Let NextStateσ(e, z) be the finite approximation version of the NextState
function. Note thatNextStateσ(e, z) is recursive as a function of the three vari-
ables #(σ), e, z. The only difference is that its definition now has an extra clause
for oracle instructions:

NextStateσ(e, z) = z · p−m+n
0 · p−x+σ(x)

i

whenever (z)0 = m and (e)m = 4 · 3i · 5n and (z)i = x and x < |σ|.
By recursion on n, it follows that Stateσ(e, x1, . . . , xk, n) is recursive as a func-
tion of #(σ), e, x1, . . . , xk, n. Hence, the predicates

ϕ
(k),σ
e,s (x1, . . . , xk) ≃ y ≡ (∃n ≤ s) [(Stateσ(e, x1, . . . , xk, n))0 = 0

∧ (Stateσ(e, x1, . . . , xk, n))k+1 = y]

and

ϕ
(k),σ
e,s (x1, . . . , xk) ↓ ≡ (∃n ≤ s) [(Stateσ(e, x1, . . . , xk, n))0 = 0]

etc., are recursive.

64

The method of finite approximation is a valuable tool in studying the struc-
ture of the Turing degrees. For example:

Theorem 5.5.7 (Kleene/Post). There exist incomparable Turing degrees below
0′. That is, there are a,b ≤ 0′ such that a � b and a � b.

Proof. By finite approximation.
We will build sets A,B ⊆ N so that a = degT A and b = degT B, by defining

longer and longer strings σn, τn ∈ 2<N with σn ⊆ σn+1 and τn ⊆ τn+1. Then

f = χA =
∞⋃

n=1

σn and g = χB =
∞⋃

n=1

τn.

The condition a � b requires that for all e, f 6= ϕ
(1),g
e ; the condition b � a

requires that for all e, g 6= ϕ
(1),f
e . We will take care of one of these infinitely

many requirements at each step of our construction.
Start with σ0, τ0 = 〈〉 (the empty string); this is stage n = 0.
Stage n = 2e+ 1:
Case 1: If it exists, find the least (by Gödel number) σ ∈ 2<N extending

σ2e such that ϕ
(1),σ
e (|τ2e|) ≃ 1. Then set σ2e+1 = σ and τ2e+1 = τ2e

a〈0〉.
Case 2: Otherwise, set σ2e+1 = σ2e and τ2e+1 = τ2e

a〈1〉.
The even-numbered stages will be the same as the odd-numbered stages,

except that the roles of σn and τn will be interchanged. In detail:
Stage n = 2e+ 2:
Case 1: If it exists, find the least (by Gödel number) τ ∈ 2<N extending

τ2e+1 such that ϕ
(1),τ
e (|σ2e+1|) ≃ 1. Set τ2e+2 = τ and σ2e+2 = σ2e+1

a〈0〉.
Case 2: Otherwise, set τ2e+2 = τ2e+ 1 and σ2e+2 = σ2e+1

a〈1〉.

Finally, define f = χA =

∞⋃

n=1

σn and g = χB =

∞⋃

n=1

τn.

Claim: f �T g.
To prove this claim, consider any e ∈ N. We will show that it is not the case

that f = ϕ
(1),g
e . Consider step 2e+ 2. Let x = |σ2e+1|.

If f(x) = 0, then step 2e+ 2 was case 1. Then ϕ
(1),g
e (x) ≃ ϕ

(1),τ
e (x) ≃ 1, so

f 6≃ ϕ(1),g
e .

If f(x) = 1, then step 2e+2 was case 2. That means there was no extension

τ of τ2e+1 so that ϕ
(1),τ
e (x) ≃ 1. But g is an extension of τ2e+1, so we know that

f 6≃ ϕ(1),g
e .

Claim: g �T f .
This is proved by mirroring the argument for the previous claim.
Claim: degT (f) ≤ 0′ and degT (g) ≤ 0′

This is because the entire construction is recursive relative to the Halting
problem, i.e., 0′-recursive.

Everything is recursive except the division into cases 1 and 2. The search
for extensions σ and τ might never halt. Use the oracle 0′ to determine whether
this search will halt. If it halts, use case 1; if it does not, use case 2.

65

5.6 Structure of the Turing degrees

In this section we present some exercises where the structure of the Turing
degrees is further explored.

Given two Turing degrees a and b, we know that the least upper bound
sup(a,b) always exists. Exercises 5.6.1, 5.6.4, and 5.6.8 below show that the
greatest lower bound inf(a,b) sometimes exists and sometimes does not exist.

Exercise 5.6.1. Use the method of finite approximation to construct Turing
degrees a,b such that a > 0 and b > 0 and inf(a,b) = 0.

Solution. The problem is to find a,b such that a,b > 0 and inf(a,b) = 0.
So, we want to find f, g such that f �T g and g �T f (this requirement is

as before) and in addition, if h ≤T f and h ≤T g then h is recursive.
Thus, for each pair of indices i, j we have a new requirement:

if ϕ
(1),f
i (x) is total and ϕ

(1),g
j (x) is total and they are the same total

function, then that function is recursive.

Here are some possible ways to bring this about at stage n:

1. ∃x¬∃σ ⊇ σn ∃s ϕ(1),σ
i,s (x) ↓.

[In this case, ϕ
(1),f
i is not total.]

2. ∃x¬∃τ ⊇ τn ∃s ϕ(1),τ
j,s (x) ↓.

[In this case, ϕ
(1),g
j (x) is not total.]

3. ∃x∃σ ⊇ σn ∃τ ⊇ τn ∃s ϕ(1),σ
i,s (x) ↓6= ϕ

(1),τ
j,s (x) ↓.

[This insures that they are not the same total function.]

4. ϕ
(1),f
i (x) is total and recursive.

Now for the actual construction:
Stage n+ 1 where n = 4 · 3i5j:
We are given σn, τn.

Case 1: ∃x∃σ ⊇ σn ∃τ ⊇ τn ∃s ϕ(1),σ
i,s (x) ↓ 6= ϕ

(1),τ
j,s (x) ↓

In this case choose σ, τ as above and let σn+1 = σ and τn+1 = τ .
Case 2: Not case 1.
In this case let σn+1 = σn and τn+1 = τn.
Finally let f =

⋃∞
n=0 σn and g =

⋃∞
n=0 τn.

We need to prove that our requirement is satisfied. Suppose h(x) = ϕ
(1),f
i (x) =

ϕ
(1),g
j (x) are the same total function. We need to prove that this function is

recursive.
To see this, let n = 4 ·3i5j and consider what happened at stage n+1 of the

construction. If Case 1 happened, then we have an x such that ϕ
(1),σn+1

i (x) ↓
6= ϕ

(1),τn+1

j (x) ↓, hence ϕ
(1),f
i (x) and ϕ

(1),g
j (x) could not be the same total

66

function. So, Case 2 must have happened at stage n+ 1. In this case we claim
that h(x) is computable. Namely, given x, to compute h(x), search for σ ⊇ σn
and s such that ϕ

(1),σ
i,s (x) ↓. Then h(x) = ϕ

(1),σ
i,s (x), since there is exactly one

possible value that we can get, no matter which extension σ we choose. If there
were more than one possible value, then Case 1 would have happened at this
stage.

This completes our sketch of the solution.

Exercise 5.6.2. Use the method of finite approximation to construct Turing
degrees a,b such that a < 0′ and b < 0′ and sup(a,b) = 0′.

Exercise 5.6.3. Combine Exercises 5.6.1 and 5.6.2 to prove the following:

There exist two incomprable Turing degrees a,b such that inf(a,b) =
0 and sup(a,b) = 0′.

Exercise 5.6.4. Generalize Exercise 5.6.3 to prove the following:

Given two Turing degrees c,d such that c′ ≤ d, we can find two in-
comparable Turing degrees a,b such that inf(a,b) = c and sup(a,b) =
d.

Remark 5.6.5 (iterating the Turing jump operator). For any Turing oracle f
we have

f ′ = Hf = {x | ϕ(1),f
x (0) ↓} = the Halting Problem relative to f .

We know that f ′ is a complete Σ0
1 set relative to the oracle f . For any Turing

degree a = degT (f) we define

a′ = degT (f ′) = the Turing jump of a.

Clearly a < a′ holds for all a. Thus, starting with any Turing degree a, we have
an ascending sequence of Turing degrees

a < a′ < a′′ < · · · < a(n) < a(n+1) < · · ·

In particular, starting with the zero Turing degree 0, we have the ascending
sequence

0 < 0′ < 0′′ < · · · < 0(n) < 0(n+1) < · · ·
corresponding to the arithmetical hierarchy.

Exercise 5.6.6. Prove the following result.

Given an ascending sequence of Turing degrees

d0 < d1 < · · · < dn < dn+1 < · · ·

we can find a pair of Turing degrees a,b such that for all Turing
degrees c

67

∃n (c ≤ dn) if and only if c ≤ a and c ≤ b .

Exercise 5.6.7. Use the result of Exercise 5.6.6 to prove that no ascending
sequence of Turing degrees has a least upper bound.

Exercise 5.6.8. For any pair of Turing degrees a,b as in Exercise 5.6.6, prove
that the greatest lower bound inf(a,b) does not exist.

5.7 Homework #5, due October 1, 2007

Exercise 5.7.1. Recall that a simple r.e. set is neither recursive nor many-one
complete. Use Post’s Theorem plus relativization to generalize this to higher
levels of the arithmetical hierarchy.

Conclude that for each n ≥ 1 there exist Σ0
n sets which are neither many-one

complete (within the class of Σ0
n sets) nor ∆0

n.

Solution. The problem is to prove that for each n ≥ 1 there exist Σ0
n sets which

are neither ∆0
n nor Σ0

n-complete.
For n = 1, let A be a simple set. We have seen in a previous homework that

A is not recursive and not Σ0
1-complete.

For n = 2, it does not work to take A′ = the jump of A, where A is a simple
set. The set A′ is indeed Σ0

2, but it could be Σ0
2-complete. For instance, suppose

A is a simple set which is ≡T K. Such A’s exist by Problem 4. Then A′ ≡m K ′

is Σ0
2-complete.
For a correct solution, use the following definition.

Definition 5.7.2. A set A is n-simple if A is Σ0
n, Ac is infinite, and Ac does

not include an infinite Σ0
n set.

Post’s Theorem says that Σ0
n is the same as Σ0,0(n−1)

1 . By relativizing the
usual facts about simple sets to 0(n−1), we see that there exists an n-simple set
and any such set is neither Σ0

n-complete nor ∆0
n.

Exercise 5.7.3.

1. Given a Σ0
1 predicate P (x, y) such that ∀x∃y P (x, y) holds, prove that

there exists a recursive function f(x) such that ∀xP (x, f(x)) holds.

2. Use Post’s Theorem plus relativization to generalize the previous result to
higher levels of the arithmetical hierarchy.

Conclude that for all n ≥ 1, given a Σ0
n predicate P (x, y) such that

∀x∃y P (x, y) holds, there exists a ∆0
n function f(x) such that ∀xP (x, f(x))

holds.

Solution. Part 1: Given a Σ0
1 predicate P (x, y) such that ∀x∃y P (x, y), to find

a recursive selector, i.e., a recursive function f(x) such that ∀xP (x, f(x)).
A wrong construction is f(x) = µy P (x, y). The wrong thing about this is

that we are applying the µ operator to a nonrecursive predicate.

68

A correct construction is as follows. Let P (x, y) ≡ ∃z R(x, y, z) where R is
a recusive predicate. Let g(x) = least 3y · 5z such that R(x, y, z) holds. Then,
let f(x) = (g(x))1.

Part 2: Using Post’s Theorem, this generalizes as follows. Given a Σ0
n pred-

icate P (x, y) such that ∀x∃y P (x, y), we can find a ∆0
n selector.

Note also that we can drop the hypothesis ∀x∃y P (x, y). In this case the
same construction gives a partial recursive selector, i.e., a partial recursive func-
tion ψ(x) such that for all x, if ∃y P (x, y) then ψ(x) is defined and is such a y.
In the generalization to Σ0

n predicates, we get a selector whose graph is Σ0
n.

Here is an alternative solution.

Solution. Given a Σ0
1 predicate P (x, y) such that ∀x∃y P (x, y), let P (x, y) ≡

∃z R(x, y, z) with R recursive and define

f(x) ≃ (µwR(x, (w)1, (w)2))1 .

Then clearly f(x) is recursive and ∀xP (x, f(x)).
Now, imitate the above argument with Σ0

n instead of Σ0
1. This will give

a direct solution without using Post’s Theorem. Assume that P (x, y) is Σ0
n

and ∀x∃y P (x, y). Then P (x, y) ≡ ∃z R(x, y, z) where R is Π0
n−1. Define

f(x) as above. We need to show that f is ∆0
n. We have f(x) = y ≡

∃w [(R(x, (w)1, (w)2)∧¬∃v < wR(x, (v)1, (v)2))∧y = (w)1] so the graph of f is
Σ0
n. Similarly f(x) = y ≡ ∀w [R(x, (w)1, (w)2) ∧ ¬∃v < wR(x, (v)1, (v)2)] ⇒

y = (w)1] so the graph of f is Π0
n. Thus the graph of f is ∆0

n, i.e., f is ∆0
n.

Exercise 5.7.4. Given a nonrecursive recursively enumerable set A, prove that
we can find a simple set B such that A ≡T B.

Hint: Use a deficiency set.

Exercise 5.7.5. Prove the followng theorem:

Given a Turing degree d ≥ 0′, we can find a Turing degree a such
that a′ = d.

Thus, the range of the Turing jump operator consists precisely of the Turing
degrees which are ≥ 0′.

Hint: Use the technique of finite approximation.

Solution. The problem was to prove the following theorem of Friedberg:

Given a Turing degree d ≥ 0′, to find a Turing degree a such that a′ = d.

In other words, given g ≥T H where H is the Halting Problem, to find f
such that Hf ≡T g.

We construct f by finite approximations, f =
⋃∞
n=0 σn, σ0 ⊆ σ1 ⊆ · · · ⊆

σn ⊆ · · ·. Our strategy is, at even-numbered stages control Hf , and at odd-
numbered stages code in g.

Stage 0: Let σ0 = 〈〉, the empty string.

69

Stage 2e+ 1: Let σ2e+1 = σ2e
a〈g(e)〉. The purpose here is to code in some

information about g.
Stage 2e+ 2:

Case 1: (∃σ ⊇ σ2e+1) (ϕ
(1),σ
e (0) ↓). In this case choose the least such σ

(according to the Gödel numbering of strings) and let σ2e+2 = σ. Thus we have

forced e ∈ Hf , recalling that Hf = {e | ϕ(1),f
e (0) ↓}.

Case 2: Not case 1. In this case let σ2e+2 = σ2e+1. The purpose of this case
distinction is to control the jump of f . The construction insures that e ∈ Hf if
and only if Case 1 held at Stage 2e+ 2.

We claim that the entire construction (i.e., the 1-place total function c where
c(n) = #(σn) for all n) is ≤T each of the oracles g, H ⊕ f , Hf .

To prove the claim, let J = {〈e, τ〉 | (∃σ ⊇ τ) (ϕ
(1),σ
e (0) ↓)}. This J is

exactly the oracle that we need in order to distinguish between Case 1 and Case
2 at Stage 2e+ 2. Namely, we are in Case 1 if and only if 〈e, σ2e+1〉 ∈ J . Once
we know which case we are in, we can compute σ2e+2 recursively given σ2e+1.
Now observe that J is Σ0

1. Since H is Σ0
1 complete, it follows that J ≤m H ,

hence J ≤T H . Since H ≤T g, it follows that the entire construction is ≤T g.
Also, the entire construction is ≤T H ⊕ f , because at Stage 2e + 1 we have
σ2e+1 = σ2e

a〈f(|σ2e|)〉. Since the entire construction is ≤T H ⊕ f , it is also
≤T Hf , because obviouslyH⊕f ≤T Hf . This completes the proof of the claim.

Note also that Hf ≤T the entire construction. This is clear, because e ∈ Hf

if and only if Case 1 held at Stage 2e+ 2, i.e., if and only if ϕ
(1),σ2e+2
e (0) ↓.

Finally, note that g ≤T the entire construction, because g(e) = σ2e+1(|σ2e|).
Putting everything together, we have g ≡T H ⊕ f ≡T Hf ≡T the entire

construction. Letting a = degT (f), it follows that d = sup(0′,a) = a′. This
completes the proof.

Lecture 14: September 24, 2007

5.8 Comments on Homework #4, continued

Finite approximation: additional explanation

A basic method in the study of Turing degrees is finite approximation. Let σ

be a string. The technique of finite approximation says: ϕ
(1),g
e (x) ≃ y iff

(∃s) (∃σ a finite approximation to g) [ϕ(1),σ
e,s (x) ≃ y]

︸ ︷︷ ︸
this predicate is recursive!

.

The finite approximation method consists of defining functions f, g by f =⋃∞
n=0 σn and g =

⋃∞
n=0 τn where σ0 ⊆ σ1 ⊆ σ2 ⊆ · · · ⊆ σn ⊆ · · · and τ0 ⊆ τ1 ⊆

τ2 ⊆ . . . ⊆ τn ⊆ This method was originally introduced by Kleene and Post.
At each step n, we choose extensions σn+1 and τn+1 to accomplish some

requirement which we want to hold for f, g.
As a first application of the method, we prove the following theorem.

70

Theorem 5.8.1. There exist Turing degrees a,b such that a � b and b � a.
(I.e., they are incomparable.)

In other words, there exist 1-place total functions f, g such that f �T g and
g �T f .

Note that the requirement f �T g can be broken down into a countable

family of requirements. For each index e, we require: f(x) 6≃ ϕ
(1),g
e (x) for

some x. This requirement can be satisfied in either of two ways: ϕ
(1),g
e (x) ↑, or

ϕ
(1),g
e (x) ↓ 6= f(x).

Proof. We shall construct f and g by finite approximation. This means that,
by induction on n, we shall construct infinite increasing sequences of strings

σ0 ⊆ σ1 ⊆ σ2 ⊆ σ3 ⊆ . . . ⊆ σn ⊆ . . .
and

τ0 ⊆ τ1 ⊆ τ2 ⊆ τ3 ⊆ . . . ⊆ τn ⊆ . . .
and after that we shall define f =

⋃∞
n=0 σn and g =

⋃∞
n=0 τn.

The construction:
Stage 0: Let σ0 = τ0 = 〈〉 = the empty string = the unique string of length

0.
Stage 2e+1: We may assume inductively that σ2e and τ2e are already known.

Let x = |σ2e|.
Case 1: ∃s ∃τ ⊇ τ2e such that ϕ

((1),τ
e,s (x) ↓. In this case, choose such s, τ .

(For example, we could choose the least such pair (s, τ) according to some fixed

Gödel numbering of pairs.) Then define y = ϕ
(1),τ
e,s (x) and σ2e+1 = σ2e

a〈y + 1〉
and τ2e+1 = τ .

Case 2: Not case 1. In this case, let σ2e+1 = σ2e and τ2e+1 = τ2e.
Stage 2e+ 2: We proceed as in Stage 2e+1 except that the roles of f and g

are reversed. Here are the details. We may assume inductively that σ2e+1 and
τ2e+1 are already known. Let x = |τ2e+1|.

Case 1: ∃s ∃σ ⊇ σ2e+1 such that ϕ
((1),σ
e,s (x) ↓. In this case, choose such s, σ

and define y = ϕ
(1),σ
e,s (x) and τ2e+2 = τ2e+1

a〈y + 1〉 and σ2e+2 = σ.
Case 2: Not case 1. In this case, let σ2e+2 = σ2e+1 and τ2e+2 = τ2e+1.
This completes the construction.
As already mentioned, we now define f =

⋃∞
n=0 σn and g =

⋃∞
n=0 τn.

We claim that f �T g and g �T f . To prove the claim, we argue by
contradiction.

Suppose for instance that f ≤T g. Then, there exists e such that f(x) =

ϕ
(1),g
e (x) for all x. For this particular e, consider what happened at stage 2e+1

of the construction. Let x be as in stage 2e+1, i.e., x = |σ2e|. For this particular

x, let n and s be sufficiently large so that ϕ
(1),g↾n
e,s (x) ↓ and n ≥ |τ2e|. Letting

τ = g ↾ n, we see that τ2e ⊆ τ and ϕ
(1),τ
e,s (x) ↓. Thus we see that Case 1 holds.

Therefore, let s and τ be as chosen in Case 1, and let y = ϕ
(1),τ
e,s (x). (Note that

71

this s and τ may be different from the previous s and τ). Then, by construction,

we have f(x) = σ2e+1(x) = y+1 and τ2e+1 = τ and ϕ
(1),g
e (x) = ϕ

(1),τ2e+1
e,s (x) = y,

a contradiction. Thus we have proved that f �T g.
The proof that g �T f is similar, looking at stage 2e + 2 instead of stage

2e+ 1.

Lecture 15: September 26, 2007

Hint for Homework #4, Problem 3

We want sup(a,b) = 0′. Construct f, g by finite approximation. We need

1. f �T g and g �T f .

2. f ⊕ g ≤T H

3. H ≤T f ⊕ g

We have done (1).
Essentially, we have done (2). In our finite approximation constructions,

f =
⋃∞
n=1 σn where σ0 ⊆ σ1 ⊆ . . . ⊆ σn ⊆n+1⊆ . . .

Stage n+1: Given σn, construct σn+1. We divide our constructions into two
cases:

Case 1: ∃σ ⊇ σn ∃x∃s (ϕ
(1),σ
e,s (x) ↓)

Case 2: Not case 1
Note that the division into cases is not computable. However, it is Σ0

1.
Since the Halting Problem is Σ0

1 complete, the division into cases is computable
relative to the Halting Problem (0′). Thus, the construction of f is computable
from 0′; that is f ≤T H .

Hint for Homework #4, Problems 4 and 5

Problem 4 combines and generalizes problems 2 and 3. We need inf(a,b) = 0

and sup(a,b) = 0′. Then relativize to get inf(a,b) = c and sup(a,b) = d.
Instead of finite approximation, use coinfinite approximation.

Definition 5.8.2. A coinfinite condition is a 1-place partial function, p, such
that dom(p) is recursive and coinfinite.

For problems 4 and 5, construct sequences of coinfinite conditions p0 ⊆
p1 ⊆ p2 ⊆ · · · ⊆ pn ⊆ pn+1 ⊆ · · · and let f =

⋃∞
n=0 pn. Similarly, construct

q0 ⊆ q1 ⊆ q2 ⊆ . . . ⊆ qn ⊆ . . . and let g =
⋃∞
n=0 qn. Here p ⊆ q means

dom(p) ⊆ dom(q) and p(x) = q(x) for all x ∈ dom(p). It is also useful to define
p ⊆fin q to mean p ⊆ q and dom(q) \ dom(q) is finite.

For problem 4 use coinfinite conditions which are ≤T C where c = degT (C).
For problem 5 use coinfinite conditions which are ≤T Dn for some n, where

dn = degT (Dn).

72

5.9 Review for the upcoming Midterm Exam

Some topics to study are:

1. r.e. sets (various characterizations)

2. creative sets, simple sets, deficiency sets

3. Post’s Theorem

4. Parametrization Theorem, uniformity

5. the diamond:

0′

/ \
a b

\ /
0

6. coinfinite approximation

Post’s Theorem

As usual abbreviate a k-place predicate P (x1, . . . , xk) as P (−). Recall that P
is a subset of Nk.

Theorem 5.9.1 (Post’s Theorem). P (−) is Σ0
n if and only if P (−) is Σ0,0(n−1)

1 .

n = 1: trivial.
n = 2: P (−) is Σ0

2 ⇔ P (−) is Σ0
1 relative to 0′ = the Halting Problem.

An interesting consequence is: A is ∆0
2 if and only if A ≤T the Halting

Problem.

Proof. We omit the proof; it is by finite approximation to 0(n−1).

The point of Post’s Theorem is that many properties of Σ0
1 sets easily rela-

tivize to become properties of Σ0
n sets. Of course, we understand Σ0

1 sets very
well, because they are the same thing as recursively enumerable sets. Post’s
Theorem says that our detailed understanding of Σ0

1 sets applies also to higher
levels of the arithmetical hierarchy.

Deficiency sets

Consider a 1 − 1 total recursive function f . If f is monotone increasing (x <
y ⇒ f(x) < f(y)), then the range of f is recursive (not just Σ0

1). Namely,
z ∈ range of f ≡ ∃xf(x) = z

≡ ∃x ≤ zf(x) = z
In general, the range of a recursive 1− 1 function need not be recursive. In

fact, any nonrecursive r.e. set is the range of a 1-1 total recursive function.
We define the deficiency set of f to be Df = {x | ∃y (x < y ∧ f(y) < f(x)}.

The set Df measures the failure of f to be monotone increasing. Note that Df

73

is Σ0
1 by definition. It is easy to show that if rng(f) is recursive then Df is

recursive. Moreover, if rng(f) is nonrecursive, then Df is norecursive, and in
fact Df is simple.

Let us show that if rng(f) is nonrecursive then Df is simple. We have to
show three things:

1. Df is Σ0
1 (obvious).

2. Df is coinfinite.

3. Df is not disjoint from any infinite r.e. set.

If Df is cofinite, then for all sufficiently large x we have x ∈ Df , which means
∃y > xf(y) < f(x). Choose x0 to be such a sufficiently large x. Then we can
find x1 > x0 with f(x1) < f(x0). Then we can find x2 > x1 with f(x2) < f(x1).
Then we can find x3 > x2 with f(x3) < f(x2). This gives an infinite
descending sequence of natural numbers: f(x0) > f(x1) > f(x2) > · · ·. No
such sequence exists, so Df is coinfinite.

Now suppose B∩Df = ∅, where B is infinite Σ0
1. We then argue that rng(f)

is recursive. Namely, to decide whether z ∈ rng(f), search for x ∈ B such that
f(x) > z. But x ∈ B implies x /∈ Df , i.e., f(y) > f(x) for all y > x. So,
z ∈ rng(f) ≡ ∃y ≤ x z = f(y).

Here is a more formal version of the proof. Suppose B is Σ0
1 and disjoint

from Df . Since B is Σ0
1, we have x ∈ B ≡ ∃y R(x, y), where R is recursive.

Consider the total recursive function g(z) = (µw (R((w)1, (w)2) ∧ f((w)1) >
z))1. Then g(z) = x where x ∈ B and f(x) > z. Then, as we found above,
z ∈ rng(f) ≡ [z = f(y) for some y ≤ g(z)].

A problem in Homework #5 is: Given a nonrecursive r.e. set A, find a simple
set B such that A ≡T B.

Here is a hint. By our characterization of r.e. sets, let f be a 1-1 recursive
function whose range is A. Then we may let B = Df . The proof that A ≡T Df

is somewhat similar to the above proof that Df is simple.

Coinfinite conditions

A coinfinite condition is a 1-place partial function p such that dom(p) is recursive
and coinfinite. The technique of coinfinite approximation is a variant of the
technique of finite approximation by strings. For a coinfinite condition p define

ϕ
(1),p
e,s (x) ≃ y just as we did for strings, namely this means that the program

with Gödel number e and input x using oracle p halts in ≤ s steps with output
y consulting the oracle only for values in dom(p). Some useful notations for
coinfinite conditions are:

1. p ⊆ q means: dom(p) ⊆ dom(q) and p(x) = q(x) for all x ∈ dom(p).

2. p ⊆fin q means: p ⊆ q and dom(q) \ dom(p) is finite.

As an example of how to use coinfinite approximation, consider the proof of
the following result concerning Turing degrees:

74

For all c there exist a,b > c such that inf(a,b) = c.

This is the relativization to c of the unrelativized result that there exist Turing
degrees a,b > 0 such that inf(a,b) = 0. The unrelativized result was proved
with finite approximations. To prove the relativization, use coinfinite approxi-
mations which are ≤T h for some fixed function h such that degT (h) = c. We
will have a = degT (f), b = degT (g), f = union of p0 ⊆fin p1 ⊆fin p2 ⊆fin · · ·,
g = union of q0 ⊆fin q1 ⊆fin q2 ⊆fin · · ·. To guarantee a,b ≥ c, start with p0

and q0 defined as follows: p0(2n) = h(n) and p0(2n+1) ↑ for all n, and q0 = p0.
Note that p0 and q0 are coinfinite conditions which include an infinte amount
of information, namely h. We use finite extensions of p0 and q0 to accomplish
a � b and b � a and inf(a,b) = c. This is similar to how we earlier used finite
approximations to get incomparable a,b with inf(a,b) = 0.

Coinfinite conditions are useful for Homework #4, Problems 4 and 5. For
Problem 4 use coinfinite conditions which are ≤T C where degT (C) = c.
For Problem 5 use coinfinite conditions which are ≤T Dn for some n, where
degT (Dn) = dn.

Exercise 5.9.2. Explicitly exhibit a set which is Π0
5 and not Σ0

5.

Exercise 5.9.3. We have seen that, given a 1-place partial recursive function
ψ which is one-to-one, the inverse function ψ−1 is again partial recursive. The
Uniformity Principle tells us that, given an index of ψ, we should expect to be
able to compute an index of ψ−1.

1. Give a rigorous statement of this result concerning indices.

2. Give a full proof of this result, using the Parametrization Theorem.

Exercise 5.9.4. Let A and B be subsets of N. If A and B are simple, prove
that A ∩B is simple.

Solution. We are to prove that if A and B are simple then A∩B is simple. The
proof is based on the following lemma.

Lemma 5.9.5. If A is simple, then every infinite r.e. set We has an infinite
intersection with A.

Proof. Supose We infinite and We ∩ A = F finite. Then We \ F is also infinite
and r.e. However, (We \F)∩A 6= ∅ since A is simple. This contradiction proves
the lemma.

To see that A∩B is simple, let We be an infinite r.e. set. Since A is simple,
we see by the previous lemma that We ∩ A is infinite. This is again an infinite
r.e. set. Since B is simple, it follows that We ∩A ∩B 6= ∅, Q.E.D.

Exercise 5.9.6. Let A,B,C be recursively enumerable subsets of N such that
A = B ∪ C and B ∩ C = ∅. Let a,b, c be the respective Turing degrees of
A,B,C. Prove that a = sup(b, c).

75

Exercise 5.9.7. Consider the sets R = {e | We is recursive}, C = {e | We is
creative}, and S = {e | We is simple}. What can you say or guess in the way
of classifying R, C and S in the arithmetical hierarchy? Prove as much as you
can.

Solution. Define

1. R = {e |We recursive}

2. C = {e | We creative}

3. S = {e |We simple}

The problem is to classify R,C, S in the arithmetical hierarchy.
To classify R we have
e ∈ R ≡ ∃i [Wi is the complement of We]

≡ ∃i [Wi ∩We = ∅ ∧Wi ∪We = N]

≡ ∃i ∀x

x /∈ Wi ∩We︸ ︷︷ ︸

Π0
1

∧x ∈ Wi ∪We︸ ︷︷ ︸
Σ0

1

︸ ︷︷ ︸
∆0

2︸ ︷︷ ︸
Π0

2︸ ︷︷ ︸
Σ0

3

.

Thus R is Σ0
3 by this Tarski/Kuratowski computation.

Similarly for C we have
e ∈ C ≡ ∃ total recursive h(x)∀x [Wx ∩We = ∅ ⇒ h(x) /∈Wx ∪We]

≡ ∃i
([
∀xϕ(1)

i (x) ↓
]
∧
[
∀xWx ∩We 6= ∅ ∨ ∀x∀s ϕ(1)

i,s (x) /∈ Wi ∪We

])

≡ Σ0
3

A similar computation shows S is Π0
3.

There is a useful heuristic principle. Namely, if an index set is classified
in the arithmetical hierarchy by means of a Tarski/Kuratowski computation as
above, then the set “ought to be” many-one complete within that class.

To complete the solution of Problem 5, one must prove that, indeed, R and
C are Σ0

3-complete and S is Π0
3-complete. This can be done, but the proofs are

rather difficult.

Exercise 5.9.8.

1. Let fi, i = 0, 1, 2, . . . be a countable sequence of nonrecursive total 1-
place functions. Use the method of finite approximation to construct a
nonrecursive total 1-place function g such that fi �T g for all i.

2. Deduce that for any Turing degree a > 0 we can find a Turing degree
b > 0 such that inf(a,b) = 0.

76

Solution. Let fi, i = 0, 1, 2, . . . be a sequence of nonrecursive functions. Then
we can find g nonrecursive such that fi �T g for i = 0, 1, 2, This is done by
finite approximation: g =

⋃∞
n=0 τn where τ0 ⊆ τ1 ⊆ · · ·.

Stage 0. Let τ0 = 〈〉.
Stage 2e + 1. Let x = |τ2e|. If ϕ

(1)
e (x) ↓ let τ2e+1 = τ2e

a〈ϕ(1)
e (x) + 1〉.

Otherwise do nothing, i.e., let τ2e+1 = τ2e.
Stage 2e+ 2 where e = 3i5j.

Case 1: (∃τ ⊇ τ2e+1)∃x (ϕ
(1),τ
j (x) ↓6= fi(x)). In this case choose such a τ

and let τ2e+2 = τ .
Case 2: Not case 1. In this case do nothing, i.e., let τ2e+2 = τ2e+1.
Stage 2e+1 insures that g is not recursive with index e. Stage 2e+2 insures

that fi 6= ϕ
(1),g
j because otherwise fi would be recursive. Namely, for all x we

would have fi(x) = ϕ
(1),τ
j (x) for the least τ ⊇ τ2e+1 such that ϕ

(1),τ
j (x) ↓.

Exercise 5.9.9. For each natural number n define

Cϕ(n) = µe
(
ϕ

(1)
e (0) ≃ n

)
.

Intuitively, Cϕ(n) is the smallest “description” of n in terms of our standard

enumeration of the 1-place partial recursive functions, ϕ
(1)
e , e = 0, 1, 2, Note

that Cϕ is a total 1-place function, but it is not recursive.

Consider the set

S = {n | Cϕ(n) < log log logn} .

Intuitively, S is the set of all n such that n has a relatively small description.
For example, the number

n = (10 to the 10 to the 10 to the 10 to the 1, 000, 000, 000 power)

belongs to S because, although it is very large, it is also very easy to describe.

Prove that S is a simple set. This means:

1. S is recursively enumerable.

2. The complement of S is infinite.

3. The complement of S includes no infinite recursively enumerable set.

Solution. We define Cϕ(n) = µe (ϕ
(1)
e (0) ≃ n) and S = {n | Cϕ(n) < log log log n}.

The problem is to show that S is a simple set.

1. S is r.e.

We have n ∈ S ≡ ∃e (e < log3 n︸ ︷︷ ︸
recursive

∧ ϕ(1)
e (0) ≃ n︸ ︷︷ ︸

Σ0
1

)

︸ ︷︷ ︸
Σ0

1

.

77

2. Sc is infinite.

We know there are infinitely many e such that ϕ
(1)
e (0) ↑. Given k, choose

x to be > at least k many such e’s. It follows that x is > at least k many
n’s such that Cϕ(n) ≥ x. For these n’s we have n < x ≤ Cϕ(n), hence
n /∈ S. Thus Sc includes at least k elements.

3. Sc ⊇ no infinite r.e. set. In other words, “any infinite r.e. set contains
elements with short descriptions.”

By the Parametrization Theorem, let f(e, x) be a recursive function such
that

ϕ
(1)
f(e,x)(0) ≃ ϕ(1)

e (x)

for all e, x. Define a recursive binary relation ≪ by

m≪ n ≡ (∀e ≤ m) (∀x ≤ m) [f(e, x) < log3(n)] .

Note that ∀m ∃n (m ≪ n). Now let B be any infinite r.e. set. Let g
be a total recursive function such that B = rng(g). Define a recursive
function h by h(x) = g(µy (x ≪ g(y))) for all x. Then for all x we have
x ≪ h(x) ∈ B. Let e be an index of h. Then for all x we have h(x) ≃
ϕ

(1)
e (x) ≃ ϕ

(1)
f(e,x)(0). In particular, for all x ≥ e we have Cϕ(h(x)) ≤

f(e, x) < log3 h(x), hence h(x) ∈ B ∩ S, Q.E.D.

Exercise 5.9.10. Exhibit an oracle program P such that

ϕ
(1),f
e (x) ≃ µy (y > x ∧ f(y) = 0)

for all f ∈ NN and all x ∈ N, where e = #(P).

Exercise 5.9.11. 1. Give an explicit example of a ∆0
4 set which is neither

Σ0
3 nor Π0

3.

2. Give an example of a set which cannot be classified in the arithmetical
hierarchy.

Exercise 5.9.12. Let A,B,C be recursively enumerable sets with A = B ∪ C
and B∩C = ∅. If a,b, c are the respective Turing degrees of A,B,C prove that
a = sup(b, c).

Note: The hardest part is to prove that B ≤T A and C ≤T A. Your proof
should use the assumption that A,B,C are r.e. sets. Without this assumption,
the result would not be correct.

Exercise 5.9.13. Construct an infinite descending sequence of Turing degrees

a0 > a1 > · · · > an > an+1 > · · ·

or prove that no such sequence exists.

78

Lecture 18: October 8, 2007

5.10 Solutions of some homework and midterm

problems

Lecture 19: October 10, 2007

Advance comments on Homework #7

We comment on each of the problems individually.

1. This is a routine exercise concerning oracle programs. We use the following
notation:

Notation 5.10.1. NN is the set of all oracles, i.e., total 1-place number-
theoretic functions.

NN = {f : N→ N} .
The space NN is called the Baire space.

2. This is a routine exercise concerning the arithmetical hierarchy.

3. This is a repeat of one of the midterm problems.

4. This is another exercise on Turing degrees.

5. This exercise concerns Kolmogorov complexity. The idea of Kolmogorov
complexity is, if τ is a finite sequence of 0’s and 1’s, then C(τ) = the
“complexity” of τ , i.e., the “length of the shortest description” of τ . For
example,

τ = 〈
101010

10

︷ ︸︸ ︷
0, 1, 0, 1, 0, 1, . . . , 0, 1〉

is a very long string of 0’s and 1’s but it has a very short description. The
precise definition of C(τ) is below.

79

Chapter 6

Kolmogorov complexity

6.1 Kolmogorov complexity

The purpose of this section is to introduce Kolmogorov complexity. First, some
preliminaries.

Notation 6.1.1. Recall that a string is a finite sequence of natural numbers,
σ = 〈n1, n2, . . . , nl〉. Here l = length of σ = |σ|. We write

N<N = the set of all strings

=
⋃∞
l=0 Nl .

A bitstring (= 0,1-valued string) is a string of 0’s and 1’s. For example, σ =
〈0, 1, 1, 0, 0, 0, 1, 0〉 is a bitstring of length 8. We write

2<N = {0, 1}<N = the set of all bitstrings

=
⋃∞
l=0{0, 1}l .

We often identify a string σ with its Gödel number #(σ).

Definition 6.1.2. A machine is a partial recursive function from bitstrings to
bitstrings:

M : ⊆ 2<N → 2<N .

From our standard recursive enumeration ϕ
(1)
e , e = 0, 1, 2, . . . of all partial

recursive functions, we obtain a recursive enumeration Me, e = 0, 1, 2, . . . of all
machines. Namely, we write

Me(σ) ≃ τ ≡ ϕ
(1)
e (#(σ)) ≃ #(τ)

where σ, τ ∈ 2<N.

Definition 6.1.3. A universal machine is a machine, call it U , with the fol-
lowing property:

80

(∀ machines M) (∃ bitstring ρ) (∀ bitstrings σ) [U(ρaσ) ≃M(σ)] .

We may think of the fixed bitstring ρ as a “code” for the machine M in terms
of the universal machine U . The length of ρ is then called a “coding constant.”

Theorem 6.1.4. Universal machines exist.

Proof. Define
U(〈0, . . . , 0︸ ︷︷ ︸

e

, 1〉aσ) ≃ Me(σ) .

It is easy to check that U is a universal machine.

Now we define Kolmogorov complexity.

Definition 6.1.5 (Kolmogorov). Fix a universal machine U . The complexity
of a bitstring τ is defined as

C(τ) = min{|σ| | U(σ) ≃ τ} .

Thus C(τ) is the length of the shortest “description” of τ in terms of the
universal machine U . The idea of this definition is that C(τ) is supposed to
measure the “amount of information” which is inherent in the bitstring τ . We
shall now show that this measure of complexity is, in a sense, independent of
the choice of universal machine.

Notation 6.1.6. f(x) ≤ g(x) +O(1) means:

∃c ∀x (f(x) ≤ g(x) + c) .

Theorem 6.1.7. “Up to an additive constant, C(τ) is well-defined.”

The precise statement reads as follows. If Û is another universal machine,
and if we define Ĉ(τ) = min{|σ| | Û(σ) ≃ τ}, then

|C(τ) − Ĉ(τ)| ≤ O(1) .

Proof. Since Û is a machine, let ρ be a bitstring such that U(ρaσ) ≃ Û(σ) for

all σ. Given τ , let σ, σ̂ be such that U(σ) ≃ τ , Û(σ̂) ≃ τ , |σ| = C(τ), |σ̂| = Ĉ(τ).

We have Û(σ̂) ≃ U(ρaσ̂) ≃ τ , hence C(τ) ≤ |ρaσ̂| = |ρ| + |σ̂| = |ρ| + Ĉ(τ).

Thus C(τ) ≤ Ĉ(τ)+O(1) because ρ is independent of τ . Similarly we can show

that Ĉ(τ) ≤ C(τ) +O(1). This completes the proof.

Notation 6.1.8. We define the Kolmogorov complexity of an integer as

C(n) = C(〈1, . . . , 1︸ ︷︷ ︸
n

〉) .

Some easy facts are:

1. C(|τ |) ≤ C(τ) +O(1) .

81

2. C(τ) ≤ |τ |+O(1).

3. C(τ1
aτ2) ≤ 2C(τ1) + 2C(τ2) +O(1).

Question: Can we improve this to

C(τ1
aτ2) ≤ C(τ1) + C(τ2) +O(1) ?

This would be more intuitive.

Lecture 20: October 12, 2007

We have defined the complexity of a bitstring τ as

C(τ) = min{|σ| | U(σ) ≃ τ} = “the amount of information in τ”

where U is a fixed universal machine. We now prove some simple facts about
this notion of complexity.

Proposition 6.1.9. The following hold for all strings τ . Recall that f(x) ≤
g(x) +O(1) means ∃c ∀x (f(x) ≤ g(x) + c).

1. C(|τ |) ≤ C(τ) +O(1) (where C(n) = C(〈0, 0, . . . , 0︸ ︷︷ ︸
n

〉)).

Proof. Define M(σ) ≃ 〈0, 0, . . . , 0︸ ︷︷ ︸
|U(σ)|

〉. Clearly M is a machine. Let ρ be a

“code” for M in terms of U . This means that M(σ) ≃ U(ρaσ) for all σ.
Now, given τ , let σ be such that U(σ) ≃ τ and |σ| = C(τ). Then, for this
σ, U(ρaσ) ≃M(σ) ≃ 〈0, 0, . . . , 0︸ ︷︷ ︸

|U(σ)|

〉 = 〈0, 0, . . . , 0︸ ︷︷ ︸
|τ |

〉.

Hence C(|τ |) ≤ |ρaσ| = |ρ| + |σ| = C(τ) + |ρ| = C(τ) + O(1) since ρ is
independent of τ .

2. C(τ) ≤ |τ |+O(1).

Proof. Consider the “identity machine,” I(σ) = σ. Let ρ be a “code” for
I, i.e., U(ρaτ) ≃ I(τ) = τ for all τ . Then C(τ) ≤ |ρaτ | = |ρ| + |τ | =
|τ | +O(1).

3. C(τ1
aτ2) ≤ 2C(τ1) + 2C(τ2) +O(1).

Proof. Temporarily define a “pairing function” for bitstrings, denoted σ∗τ .
If σ = 〈i1, . . . , im〉 and τ = 〈j1, . . . , jn〉, let

σ ∗ τ = 〈0, i1, 0, i2, . . . , 0, im〉a〈1, j1, 1, j2, . . . , 1, jn〉 .

82

Note that from σ ∗ τ we can recover σ and τ . Note also that |σ ∗ τ | =
2|σ|+ 2|τ |. Now let M be a machine such that

M(σ1 ∗ σ2) ≃ U(σ1)
aU(σ2)

for all bitstrings σ1, σ2. Let ρ be a “code” for M , i.e. U(ρaσ) ≃ M(σ)
for all σ. Given τ1, τ2 let σ1, σ2 be “shortest descriptions” of τ1, τ2;
U(σ1) ≃ τ1, |σ1| = C(τ1) and U(σ2) ≃ τ2, |σ2| = C(τ2). Then

U(ρa(σ1 ∗ σ2)) ≃ M(σ1 ∗ σ2)
≃ U(σ1)

aU(σ2)
≃ τ1

aτ2

so
C(τ1

aτ2) ≤ |ρa(σ1 ∗ σ2)|
= |ρ|+ |σ1 ∗ σ2|
= |ρ|+ 2|σ1|+ 2|σ2|
= |ρ|+ 2C(τ1) + 2C(τ2)
= 2C(τ1) + 2C(τ2) +O(1).

Exercise 6.1.10. Let C(σ) denote the Kolmogorov complexity of a 0, 1-valued
string σ.

We have seen in class that

C(σaτ) ≤ 2C(σ) + 2C(τ) +O(1)

for all 0, 1-valued strings σ and τ . Improve this inequality to

C(σaτ) ≤ C(σ) + 2 log2 C(σ) + C(τ) +O(1)

where log2 x denotes the base 2 logarithm of x.
Can you make further improvements?

6.2 Prefix-free complexity

In this section we consider a variant of Kolmogorov complexity which is some-
what better behaved.

Recall that a machine is a partial recursive function from bitstrings to bit-
strings,

M : ⊆ 2<N → 2<N .

It follows that dom(M) is a recursively enumerable set of bitstrings.

Definition 6.2.1. A prefix-free machine is a machine M such that dom(M) is
prefix-free.

Intuitively, dom(M) consists of “self-delimiting programs,” i.e., each “valid
program” σ ∈ dom(M) has an “end-of-program marker” and therefore cannot
be an initial segment of another program in dom(M).

83

Definition 6.2.2. A universal prefix-free machine is a prefix-free machine, call
it U , such that

(∀ prefix-free machines M) (∃ bitstring ρ) (∀ bitstrings σ) (U(ρaσ) ≃M(σ)).

Theorem 6.2.3. Universal prefix-free machines exist.

Proof. Later.

Definition 6.2.4. Let U be a fixed universal prefix-free machine. The prefix-
free complexity of a bitstring τ is defined as

K(τ) = min{|σ| | U(σ) ≃ τ} .

Remark 6.2.5. Prefix-free complexity, K(τ), has the same nice properties as
“plain” complexity, C(τ). In fact, we shall see that it tends to have even better
properties.

Theorem 6.2.6. K(τ) is well-defined up to an additive constant.
The precise statement reads as follows. If U1 and U2 are two universal prefix-

free machines, and if for i = 1, 2 we define Ki(τ) = min{|σ| | Ui(σ) ≃ τ}, then
|K1(τ)−K2(τ)| ≤ O(1) for all τ .

Proof. As before.

Also as before define K(n) = K(〈1, . . . , 1︸ ︷︷ ︸
n

〉). We then have:

Theorem 6.2.7.

1. K(|τ |) ≤ K(τ) +O(1).

2. K(τ) ≤ C(τ)+K(|τ |)+O(1). In particular K(τ) ≤ |τ |+2 log2 |τ |+O(1),
etc.

3. K(τ1
aτ2) ≤ K(τ1) +K(τ2) +O(1).

Note that in the case of “plain” complexity there was an annoying factor
of 2 in part 3. For prefix-free complexity this factor of 2 disappears and is not
needed.

Proof. Parts 1 and 2 are proved as before. Part 3 is Homework #8, Problem
1.

Remark 6.2.8. It would be interesting to compare C(τ) and K(τ). For in-
stance, it is easy to see that C(τ) ≤ K(τ)+O(1) and K(τ) ≤ 2C(τ)+O(1). To
what extent can we improve these inequalities? This would be an interesting
research project.

84

We now prove Theorem 6.2.3 by constructing a universal prefix-free machine.
As before let Me, e = 0, 1, 2, . . . be our standard recursive enumeration of all
machines, given by

Me(σ) ≃ τ ≡ ϕ(1)
e (#(σ)) ≃ #(τ)

where σ and τ are bitstrings. Define

Me,s(σ) ≃ τ ≡ #(σ) < s and ϕ(1)
e,s(#(σ)) ≃ #(τ) .

Some easy facts are:

1. Me(σ) ≃ τ if and only if ∃s (Me,s(σ) ≃ τ).

2. If s ≤ t and Me,s(σ) ≃ τ then Me,t(σ) ≃ τ .

3. The 4-place predicate Me,s(σ) ≃ τ is recursive.

4. The 3-place predicate Me,s(σ) ↓ is recursive.

5. For all σ ∈ dom(Me,s) we have #(σ) < s.

Define M̃e to be the obvious “prefix-free restriction” of Me, namely

M̃e(σ) ≃ τ ≡ ∃s [Me,s(σ) ≃ τ︸ ︷︷ ︸
recursive

and dom(Me,s) is prefix-free︸ ︷︷ ︸
recursive

] ,

and note that M̃e is partial recursive. Some easy facts are:

1. For each e, M̃e is a prefix-free machine.

2. For each e, if Me is a prefix-free machine then M̃e = Me.

3. M̃e(σ) is a partial recursive function of e and σ.

Thus we see that M̃e, e = 0, 1, 2, . . . is a recursive enumeration of all prefix-free
machines. It follows that the machine Ũ defined by

Ũ(〈0, . . . , 0︸ ︷︷ ︸
e

, 1〉aσ) ≃ M̃e(σ)

is a universal prefix-free machine.

6.3 The Kraft/Chaitin Theorem

Lecture 27: October 29, 2007

The following lemma is a useful technical tool in studying prefix-free complexity.

85

Remark 6.3.1. Given a prefix-free machine M , we know that dom(M) is a
prefix-free set of bitstrings. Therefore,

∑

σ∈dom(M)

1

2|σ|
= µ

 ⋃

σ∈dom(M)

Nσ

 ≤ 1 .

This is known as Kraft’s Inequality. The following lemma is a converse to Kraft’s
Inequality.

Lemma 6.3.2 (Kraft/Chaitin Lemma). Let L be a Σ0
1 subset of N× 2<N such

that ∑

(m,τ)∈L

1

2m
≤ 1 .

Then, we can find a prefix-free machine M such that for each pair (m, τ) ∈ L
there exists a bitstring σ such that |σ| = m and M(σ) ≃ τ .

Remark 6.3.3. Think of L as an abstract specification of a prefix-free machine
M . Each pair (m, τ) ∈ L specifies that there should exist a bitstring σ of length
m such that M(σ) ≃ τ . The pairs (m, τ) ∈ L are known as the “axioms” of
the specification. The conclusion of the lemma says that we can construct a
“designer” prefix-free machine M which will satisfy the given specification.

Proof. Since L is recursively enumerable, let (mi, τi), i = 0, 1, 2, . . . be a recur-
sive enumeration of L. Our assumption on L tells us that

∞∑

i=0

1

2mi
≤ 1 .

Sublemma. Given a recursive sequence of integers mi ≥ 0, i = 0, 1, 2, . . .
such that

∞∑

i=0

1

2mi
≤ 1 ,

we can effectively find a recursive, prefix-free sequence of bitstrings σi, i =
0, 1, 2, . . . such that |σi| = mi for all i.

Once we have this, we can simply define M(σi) ≃ τi for all i. It is then
obvious that M is a prefix-free machine as desired.

Proof of sublemma. We define σi, i = 0, 1, 2, . . . by recursion on i. In defining
σk, we may use course-of-values recursion and assume that we already know
σi, 0 ≤ i < k. We may also assume inductively that we have another finite,
prefix-free set of bitstrings Dk with the following properties:

1. Dk ∩ {σi | 0 ≤ i < k} = ∅.

2. Dk ∪ {σi | 0 ≤ i < k} is a partition.

86

3. All of the bitstrings in Dk have different lengths.

Definition 6.3.4. A partition is a finite, prefix-free set of bitstrings, call it F ,
such that

2N =
⋃

σ∈F

Nσ .

To be finished next time

Lecture 28: October 31, 2007

We resume our analysis of prefix-free complexity.

Remark 6.3.5. Given a prefix-free sequence of bitstrings σi, i = 0, 1, 2, . . ., we
have

∞∑

i=0

1

2|σi|
≤ 1

because the sum on the left is just µ(
⋃∞
i=0Nσi

) which is ≤ 1 because
⋃∞
n=0Nσi

⊆
2N and µ(2N) = 1. This is the Kraft Inequality. The following lemma is a
converse of this remark.

Lemma 6.3.6. Given a sequence of positive integers mi, i = 0, 1, 2, . . . such
that

∞∑

i=0

1

2mi
≤ 1 ,

we can find a prefix-free sequence of bitstrings σi, i = 0, 1, 2, . . . such that
|σi| = mi for all i. Moreover, if the sequence mi, i = 0, 1, 2, . . . is recursive, we
can take the sequence σi, i = 0, 1, 2, . . . to be recursive.

Proof. The proof is based on the following definition.

Definition 6.3.7. A partition is a finite, prefix-free set of bitstrings, F , such
that

2N =
⋃

σ∈F

Nσ .

We will construct σi, i = 0, 1, 2, . . . by induction. At each stage k, in defining
σk we may assume that the prefix-free finite sequence of bitstrings σi, i < k, is
already known. In addition we assume that we have a finite prefix-free set of
bitstrings Dk with the following properties:

1. Dk ∩ {σi | i < k} = ∅.

2. Dk ∪ {σi | i < k} is a partition.

3. All of the strings in Dk are of different lengths.

87

Example 6.3.8. To illustrate the construction, consider m0 = 2,m1 = 4,m2 =
3,m3 = 2, . . . such that

∞∑

i=0

1

2mi
=

1

4
+

1

16
+

1

8
+

1

4
+ · · · ≤ 1 .

In constructing the sequence of bitstrings σ0, σ1, σ2, σ3, . . ., the idea is to always
choose the leftmost available branch on the binary tree at each step (i.e., the
branch with the most 0’s). The sets Dk are constructed by taking the shortest
possible branches from the right side of the binary tree until Dk satisfies the
induction hypothesis.

Given m0 = 2, pick σ0 = 〈0, 0〉 and D1 = {〈1〉, 〈0, 1〉}.
Then, givenm1 = 4, pick σ1 = 〈0, 1, 0, 0〉 and D2 = {〈1〉, 〈0, 1, 1〉, 〈0, 1, 0, 1〉}.
Then, given m2 = 3, pick σ2 = 〈0, 1, 1〉 and D3 = {〈1〉, 〈0, 1, 0, 1〉}.
Then, given m3 = 2, pick σ3 = 〈1, 0〉 and D4 = {〈1, 1〉, 〈0, 1, 0, 1〉}.
Etc.

Formally, at stage k+1, suppose we already have σi, i < k and Dk as above.
We claim that mk ≥ min{|ρ| | ρ ∈ Dk}. Otherwise mk < min{|ρ| | ρ ∈ Dk},

hence
1

2mk
>
∑

ρ∈Dk

1

2|ρ|

in view of the requirement that all strings in Dk are of different lengths. Hence

k∑

i=0

1

2mi
=

1

2mk
+

k−1∑

i=0

1

2mi
>

∑

ρ∈Dk

1

2|ρ|
+

k−1∑

i=0

1

2|σi|
= 1

a contradiction. This proves the claim.
By the claim, let ρk ∈ Dk be of maximal length such that |ρk| ≤ mk. Letting

σk = ρk
a〈0, . . . , 0︸ ︷︷ ︸

mk−|ρk|

〉

we see that |σk| = mk and σk | σi for all i < k. Letting

Dk+1 = Dk \ {ρk} ∪ {ρka〈0, . . . , 0︸ ︷︷ ︸
j

, 1〉 | j < mk − |ρk|}

it is straightforward to check that properties 1,2, and 3 hold with Dk+1 in place
of Dk. This completes the proof.

Theorem 6.3.9 (Kraft/Chaitin Theorem). Given a Σ0
1 set L ⊆ N× 2<N such

that ∑

(m,τ)∈L

1

2m
≤ 1 ,

we can find a prefix-free machine M such that for all (m, τ) ∈ L there exists σ
such that |σ| = m and M(σ) ≃ τ .

88

Proof. Since L is recursively enumerable, let (mi, τi), i = 0, 1, 2, . . . be a one-to-
one recursive enumeration of L. Apply the previous lemma to find a recursive,
prefix-free sequence of bitstrings σi, i = 0, 1, 2, . . . such that |σi| = mi for all i.
Let M(σi) ≃ τi for all i.

Remark 6.3.10. The idea of the Kraft/Chaitin Theorem is that L is an ab-
stract specification of a prefix-free machine. The pairs (m, τ) ∈ L are called
the “axioms” of the specification. Each axiom (m, τ) says that our prefix-free
machine M is intended to have M(σ) ≃ τ for some σ of length m. The the-
orem asserts that we can find a prefix-free machine which meets all of these
requirements.

The Kraft/Chaitin Theorem has the following consequence for prefix-free
complexity, K.

Corollary 6.3.11. Let L be a Σ0
1 subset of N× 2<N such that

∑

(m,τ)

1

2m
< ∞ .

Then for all (m, τ) ∈ L we have K(τ) ≤ m+O(1).

Proof. Let c be such that

∑

(m,τ)∈L

1

2m
≤ 2c < ∞ .

Then ∑

(m,τ)∈L

1

2m+c
≤ 1

so by the Kraft/Chaitin Theorem, let M be a prefix-free machine such that for
all (m, τ) ∈ L there exists σ such that |σ| = m+ c and M(σ) ≃ τ . Then for all
(m, τ) ∈ L we have K(τ) ≤ m+ c+O(1) = m+O(1).

89

Chapter 7

The Cantor space

7.1 Partial recursive functionals, etc.

Remark 7.1.1. The following three spaces are important for us.

1. NN = the Baire space.

2. 2N = {0, 1}N = the Cantor space.

3. N = the natural numbers.

Recall that NN = {f : N → N}, the space of total 1-place number-theoretic
functions. We use letters such as f, g, h, . . . for points of NN. We also consider
2N, the space of all 0, 1-valued total 1-place number-theoretic functions, 2N =
{X : N → {0, 1}}. Note that 2N ⊂ NN. We use letters such as X,Y, Z, . . . to
denote points in 2N.

We deal explicitly with the Baire space, but everything that we are saying
applies also to the Cantor space as well as various “mixed” spaces.

Definition 7.1.2. A partial functional is a function

Φ : ⊆ NN × Nk → N .

Note that dom(Φ) = the domain of Φ, a subset of NN × Nk, and rng(Φ) =
the range of Φ, a subset of N. We use notations such as Φ(f, x1, . . . , xk) ≃ y
and Φ(f, x1, . . . , xk) ↓ and Φ(f, x1, . . . , xk) ↑ for partial functionals, just as for
partial functions. Here f ranges over NN and x1, . . . , xk range over N.

Definition 7.1.3. A partial functional Φ as above is said to be partial recursive
if and only if

∃e (∀f ∈ NN) (∀x1, . . . , xk, y ∈ N) (Φ(f, x1, . . . , xk) ≃ y ≡ ϕ(1),f
e (x1, . . . , xk) ≃ y) .

In other words, Φ(f, x1, . . . , xk) ≃ ϕ(1),f
e (x1, . . . , xk) for all f, x1, . . . , xk.

90

Example 7.1.4. An example of a partial recursive functional is

Φ(f, x) ≃ µy (y > x ∧ f(y) = 0).

Note that for this Φ we have Φ(f, x) ↓≡ ∃y (y > x ∧ f(y) = 0). Homework #7
Problem 1 is to exhibit an oracle machine computing this partial functional.

Definition 7.1.5. A predicate R ⊆ NN ×Nk is said to be recursive if and only
if its characteristic function χR : NN × Nk → {0, 1} is recursive.

Definition 7.1.6. For n ≥ 1, a predicate P ⊆ NN × Nk is said to be Σ0
n if

P (f, x1, . . . , xk) ≡ ∃y1 ∀y1 · · · ∀∃ ynR(f, x1, . . . , xk, y1, . . . , yn)

where R is a recursive predicate. Similarly we extend the definitions of Π0
n and

∆0
n for n ≥ 1 to predicates P ⊆ NN × Nk.

Remark 7.1.7. All of the usual closure properties hold in the context of pred-
icates P ⊆ NN × Nk. The class of Σ0

n predicates is closed under ∧, ∨, bounded
quantification, total recursive substitution, etc. A predicate is Σ0

n if and only if
its negation is Π0

n, etc. Thus we can perform Tarski/Kuratowski computations
in this context.

We now consider how to relativize the above to a fixed Turing oracle g.

Remark 7.1.8. A useful fact about the spaces NN and 2N is the existence of a
1− 1 onto pairing function

NN × NN 1−1←→
onto

NN

(f, g) f ⊕ g

where
(f ⊕ g)(2n) = f(n)

(f ⊕ g)(2n+ 1) = g(n)

and
2N × 2N 1−1←→

onto
2N

(X,Y) X ⊕ Y
as a special case.

Definition 7.1.9. Let g be a fixed oracle, i.e., g ∈ NN. A partial functional
Φ : ⊆ NN×Nk → N is said to be partial g-recursive, or partial recursive relative
to g, if

∃e (∀f ∈ NN) (∀x1, . . . , xk ∈ N) (Φ(g, x1, . . . , xk) ≃ ϕ(k),f⊕g
e (x1, . . . , xk)) .

Similarly we define what it means for a predicate P ⊆ NN×Nk to be g-recursive,
Σ0,g
n , etc.

91

Remark 7.1.10. We can extend all of this to “mixed” functionals and predi-
cates on spaces such as

(NN)m × (2N)l × Nk

using the pairing function ⊕. For example, a partial functional

Φ : ⊆ (NN)m × (2N)l × Nk → N

is said to be partial g-recursive if and only if it is defined by

Φ(f1, . . . , fm, X1, . . . , Xl, x1, . . . , xk) ≃ ϕ(k),f1⊕···⊕fm⊕X1⊕···⊕Xl⊕g
e (x1, . . . , xk)

for some fixed e and for all f1, . . . , fm ∈ NN, X1, . . . , Xl ∈ 2N, x1, . . . , xk ∈ N.

Remark 7.1.11. Post’s Theorem fails in this context. For predicates P ⊆
NN×Nk or P ⊆ 2N×Nk, it is not true in general that P ∈ Σ0

2 ≡ P ∈ Σ0,0′

1 . It is

true that P ∈ Σ0,0′

1 implies P ∈ Σ0
2, but the converse does not hold in general.

See also Homework #8, Problem 2.

7.2 Homework #8, due October 22, 2007

Exercises 7.2.1.

1. Let K(τ) denote the prefix-free complexity of a bitstring τ . Prove that

K(τ1
aτ2) ≤ K(τ1) +K(τ2) +O(1) .

2. (a) Give an example of a subset of NN which is Σ0
2 but not Σ0,0′

1 .

(b) Can you replace NN by 2N here?

Note: Recall Post’s Theorem, which says (among other things) that a

subset of N is Σ0
2 if and only if it is Σ0,0′

1 . The point of (a) is to show that
Post’s Theorem does not hold for subsets of NN.

Hint: Recall that a set is open if and only if it is Σ0
1 relative to an oracle.

Therefore, it suffices to find a set which is Σ0
2 and not open.

3. A real number is said to be left recursively enumerable (respectively right
recursively enumerable) if it is the limit of an increasing (respectively
decreasing) recursive sequence of rational numbers.

(a) If A is a recursively enumerable subset of N, show that the real num-
ber

∑
n∈A 1/2n is left recursively enumerable.

(b) Show that there exist real numbers which are left recursively enu-
merable but not recursive.

(c) Show that a real number is recursive if and only if it is both left
recursively enumerable and right recursively enumerable.

92

4. Let P be a Π0
1 subset of 2N. We have seen how to construct a recursive

tree T ⊆ 2<N such that P = {paths through T }. For each n = 0, 1, 2, . . .
let Tn be the set of strings in T of length n.

(a) Show that Tn is prefix-free.

(b) Show that the set

Vn =
⋃

τ∈Tn

Nτ

is ∆0
1. (Note that Vn is a subset of 2N.)

(c) Show that P is the intersection of the Vn’s. In other words,

P =

∞⋂

n=0

Vn .

(d) Show that the measure of P is given by

µ(P) = lim
n→∞

|Tn|
2n

.

Here |Tn| denotes the number of strings in Tn.

(e) Show that the real number µ(P) is right recursively enumerable.

(f) Show that µ(P) is not necessarily a recursive real number.

5. Given a nonempty Π0
1 set P ⊆ 2N, can we always find a member of P

which is recursive?

Hint: Consider a recursively inseparable pair of r.e. sets.

6. Two sets P,Q ⊆ NN are said to be Turing isomorphic if the members of
P and Q have the same Turing degrees, i.e.,

{degT (f) | f ∈ P} = {degT (g) | g ∈ Q} .

(a) Prove that every Π0
2 subset of NN is Turing isomorphic to a Π0

1 subset
of NN.

(b) Prove that every Π0
2 subset of NN is Turing isomorphic to a Π0

2 subset
of 2N.

(c) Is every Π0
2 subset of 2N Turing isomorphic to a Π0

1 subset of 2N?
Justify your answer.

Hints: (a) If ∀x∃y R(f, x, y) holds, map f to f⊕g where g(x) = µy R(f, x, y).
(b) Map f to the characteristic function of the set Gf = {3x5y | f(x) =
y} = the “graph” of f .

93

Lecture 21: October 15, 2007

7.3 Σ0
1 and Π0

1 sets in 2N and NN

We have defined the three spaces N, 2N, and NN (the natural numbers, the
Cantor space, and the Baire space). For mixed predicates, P ⊆ (NN)m× (2N)l×
Nk, we know what it means for P (−,−,−) to be recursive, or Σ0

n, or Σ0
n relative

to an oracle, etc.

Remark 7.3.1. All of our rules about combining predicates apply in this con-
text. If P,Q ∈ Σ0

n then P ∧ Q ∈ Σ0
n, P ∨ Q ∈ Σ0

n, ¬P ∈ Π0
n). P is recursive

if and only if P is ∆0
1. The class of Σ0

n predicates is closed under bounded
quantification, recursive substitution, etc.

Remark 7.3.2. Post’s Theorem fails in this context. For instance, we can find

a Σ0
2 set P ⊆ NN which is not Σ0,0′

1 . See Homework #8, Problem 2.

For the sake of our later discussion of randomness, we want to focus on Σ0
1

sets and Π0
1 sets in 2N, the Cantor space.

Recall that

2N = {X | N→ {0, 1}}
= {infinite sequences of 0’s and 1’s} .

Each point X ∈ 2N is an infinite sequence of 0’s and 1’s, i.e.,

X = 〈X(0), X(1), . . . , X(n), . . .〉
with each X(n) = either 0 or 1. We view X as the outcome of an infinite
sequence of independent coin tosses using a “fair coin”, i.e., probability of heads
= probability of tails. We identify 1 as heads, 0 as tails. This corresponds to
the fair coin measure on the space 2N.

In order to define the fair coin measure rigorously, recall that

2<N = {bitstrings} = {0,1-valued strings}.
Definition 7.3.3. Given a bitstring σ ∈ 2<N and a point X ∈ 2N, write σ ⊂ X
to mean that σ is an initial segment of X , i.e., σ = 〈X(0), X(1), . . . , X(n−1)〉 =
X ↾ n for some n. We then have n = |σ|. Define

Nσ = {X ∈ 2N | σ ⊂ X} = the neighborhood determined by σ.

The fair coin probability measure is defined as the unique measure µ on 2N with
µ(Nσ) = 1/2|σ| for all bitstrings σ. To motivate this definition, note that if
|σ| = n then the probability of the event X ↾ n = σ is 1/2n = 1/2|σ|.

Definition 7.3.4. A set U ⊆ 2N is said to be open if U is the union of a
collection of neighborhoods. In other words,

U =
⋃

σ∈S

Nσ

where S ⊆ 2<N is a set of bitstrings.

94

Remark 7.3.5. Σ0
1 sets in the Cantor space are open. This is because of finite

approximation. Let us elaborate.
A typical Σ0

1 set in 2N is

Ue = {X ∈ 2N | ϕ(1),X
e (0) ↓} .

We use Ue, e = 0, 1, 2, . . . as our standard recursive enumeration of the Σ0
1 sets

in 2N. By finite approximation, X ∈ Ue ≡ ∃σ (σ ⊂ X ∧ϕ(1),σ
e (0) ↓). This shows

that X ∈ Ue depends only on a finite amount of information from X , i.e., it
depends only on an initial segment of X .

Recall the notation ϕ
(1),σ
e,s (x) ≃ y which means that the oracle computation

with input x and oracle f halts in ≤ s steps with output y using only oracle
information from σ ⊂ f . This predicate is recursive. Furthermore, the predicate

ϕ
(1),σ
e (x) ≃ ϕ(1),σ

e,|σ| (x)

is also recursive. We then have

Ue =
⋃

ϕ
(1),σ
e (0)↓

Nσ .

Hence Ue is an open set.

We now refine the above remark to get a useful technical fact. Note that
for each X ∈ Ue there is a unique shortest initial segment σ ⊂ X such that

ϕ
(1),σ
e (0) ↓. Thus we have

X ∈ Ue ≡ ∃σ
(
σ ⊂ X ∧ ϕ(1),σ

e (0) ↓
)

≡ ∃σ
(
σ ⊂ X ∧ ϕ(1),σ

e (0) ↓ ∧ ¬∃τ ⊂ σ (ϕ
(1),τ
e (0) ↓)

)

≡ X ∈
⋃

σ∈Se

Nσ

where Se is a recursive set of bitstrings, namely

Se = {σ | ϕ(1),σ
e (0) ↓ ∧ ¬∃τ ⊂ σ (ϕ(1),τ

e (0) ↓)} .

Note also that Se is prefix-free, in the following sense.

Definition 7.3.6. If σ, τ ∈ 2<N are bitstrings, σ ⊆ τ means that σ is an initial
segment of τ (possibly σ = τ). Also σ ⊂ τ means that σ is a proper initial
segment or prefix of τ , i.e., σ ⊆ τ and σ 6= τ . A set of bitstrings S ⊆ 2<N is
said to be prefix-free if ¬ (∃σ ∈ S) (∃τ ∈ S) (σ ⊂ τ).

Summarizing, we have proved the following theorem which says among other
things that Σ0

1 sets are open.

Theorem 7.3.7. For a set U ⊆ 2N, the following are pairwise equivalent.

95

1. U is Σ0
1 .

2. U = Ue for some e.

3. U =
⋃
σ∈S Nσ for some recursively enumerable set of bitstrings S.

4. U =
⋃
σ∈S Nσ for some recursive, prefix-free set of bitstrings S.

Proof. 1 ⇔ 2 by definition.
2 ⇒ 4 is what we have already proved.
4 ⇒ 3 is trivial.
3 ⇒ 1: Assuming 3, we have

X ∈ U ≡ X ∈ ⋃σ∈S Nσ, S is r.e.

≡ ∃σ

σ ∈ S︸ ︷︷ ︸

Σ0
1

∧ σ ⊂ X︸ ︷︷ ︸
recursive

︸ ︷︷ ︸
Σ0

1︸ ︷︷ ︸
Σ0

1

which proves 1.

Remark 7.3.8. If an open set has been written as

U =
⋃

σ∈S

Nσ

where S is prefix-free, then we can find the measure of U as follows. Note first
that σ ⊆ τ if and only if Nσ ⊇ Nτ . On the other hand, if σ * τ and τ * σ
(i.e., σ is incompatible with τ , abbreviated σ | τ), then Nσ ∩Nτ = ∅. Thus, for
any prefix-free set of bitstrings S, U =

⋃
σ∈S Nσ is a union of pairwise disjoint

neighborhoods, hence

µ(U) =
∑

σ∈S

1

2|σ|
.

We also have:

Theorem 7.3.9. For a set U ⊆ 2N, the following are pairwise equivalent.

1. U is open.

2. U is Σ0,f
1 for some oracle f .

3. U =
⋃
σ∈S Nσ for some set of bitstrings S.

4. U =
⋃
σ∈S Nσ for some prefix-free set of bitstrings S.

In the latter case we have µ(U) =
∑
σ∈S 1/2|σ|.

Proof. 1 ⇔ 3 holds by definition. If 3 holds then clearly U is Σ0,S
1 , hence 2

holds. The previous theorem relativizes to prove 2⇒ 4. The implication 4⇒ 3
is trivial. This completes the proof.

96

Lecture 22: October 17, 2007

Review: We have seen that a typical Σ0
1 set in the Cantor space 2N looks like

Ue = {X ∈ 2N | ϕ(1),X
e (0) ↓} .

We have proved that

Ue =
⋃

σ∈Se

Nσ

where Se is a set of bitstrings which is recursive and prefix-free, i.e., ¬ (∃σ, τ ∈
Se) (σ ⊂ τ). Here the neighborhoods are defined by Nσ = {X ∈ 2N | σ ⊂ X}
for all bitstrings σ.

Remark 7.3.10. The same analysis holds for Σ0
1 sets in the Baire space, NN,

using strings instead of bitstrings. In this case we would have to define the
neighborhoods differently, namely we would have Nσ = {f ∈ NN | σ ⊂ f} for
all strings σ.

We now consider the structure of Π0
1 sets.

Of course, P ⊆ NN is Π0
1 if and only if NN \ P is Σ0

1. Hence, a picture of a
Π0

1 set can be obtained by viewing it as the complement of a Σ0
1 set, which in

turn is described by a recursive, prefix-free set of strings.
We wish to observe that another useful picture of Π0

1 sets can be obtained
in terms of trees. See also Homework #8, Problem 4.

Definition 7.3.11. A tree is a set of strings, T , which is closed when taking
initial segments. In other words, ∀σ ∀τ (σ ⊆ τ, τ ∈ T ⇒ σ ∈ T).

Example 7.3.12. T = 2<N = the full binary tree.

〈0, 0〉 〈0, 1〉 〈1, 0〉 〈1, 1〉

〈0〉

DDDDDDDD

zzzzzzzz

〈1〉

DDDDDDDD

zzzzzzzz

〈 〉

QQQQQQQQQQQQQQQQQ

mmmmmmmmmmmmmmmmm

Remark 7.3.13. Trees are in a sense the opposite of prefix-free sets of strings.
T is a tree if and only if all prefixes of members of T are members of T . S is
prefix-free if and only if no prefix of a member of S is a member of S.

Definition 7.3.14. Let T be a tree. A path through T is a function f ∈ NN

such that f ↾ n ∈ T for all n.

97

Example 7.3.15. The Π0
1 set 2N ⊆ NN is the set of paths through 2<N, the full

binary tree.

Theorem 7.3.16. A set P ⊆ NN is Π0
1 if and only if P = {paths through T }

for some recursive tree T .

Proof. (⇒) Assume P is Π0
1. Then

P = {f ∈ NN | ϕ(1),f
e (0) ↑}

= {f ∈ NN | ∀n ϕ(1),f↾n
e (0) ↑}

(by finite approximation)

= {f ∈ NN | f is a path through T }

where T = {τ ∈ N<N | ϕ(1),τ
e (0) ↑}. Note that T is a recursive tree.

(⇐) Assume P = {paths through T } for some recursive tree T . Then

P = {f ∈ NN | ∀n f ↾ n ∈ T︸ ︷︷ ︸
recursive

}

= {f ∈ NN | ∀nR(f, n)}

= Π0
1

Remark 7.3.17. The same applies to Π0
1 sets in the Cantor space, 2N. Note

also that if P ⊆ 2N is Π0
1 then we may restrict our attention to bitstrings, so we

may take our recursive tree T to be a subtree of 2<N.

Definition 7.3.18. A set P ⊆ NN is defined to be closed if it complement
NN \ P is open.

In analogy with Theorems 7.3.9 and 7.3.16 we have

Theorem 7.3.19. For P ⊆ NN the following are pairwise equivalent.

1. P is closed.

2. P is Π0,f
1 for some oracle f .

3. P = {paths through T } for some tree T .

Moreover, if P ⊆ 2N then we may take T to be a subtree of 2<N.

Proof. This follows easily from Theorems 7.3.9 and 7.3.16 and relativization.

98

7.4 Compactness of 2N

In order to study the Turing degrees of random sequences, it is convenient to use
the fact that the Cantor space 2N is compact. This is embodied in the following
theorem.

Theorem 7.4.1 (compactness of 2N). If S is a set of bitstrings such that 2N =⋃
σ∈S Nσ, then 2N =

⋃
σ∈F Nσ for some finite F ⊆ S. In other words,

“Every covering of 2N by neighborhoods contains a finite subcover-
ing.”

Note that this does not hold for the Baire space, NN. For example, NN =⋃∞
i=0N〈i〉 but obviously there is no finite subcovering.
In order to prove Theorem 7.4.1, we shall first prove a combinatorial lemma

concerning trees. Recall that a tree is a set T ⊆ N<N which is closed under
initial segments, i.e., σ ⊂ τ, τ ∈ T ⇒ σ ∈ T .

Definition 7.4.2. A tree T is said to be finitely branching if for every σ ∈ T
there are only finitely many n such that σa〈n〉 ∈ T .

Define an immediate extension of a string σ to be any string of the form
σa〈n〉 for some n. Note that a tree T is finitely branching if and only if each
string in T has only finitely many immediate extensions in T .

Example 7.4.3. The full binary tree 2<N is finitely branching, because for any
bitstring σ the only immediate extensions of σ which are bitstrings are σa〈0〉
and σa〈1〉.

Note also that any subtree of a finitely branching tree is finitely branching.
In particular, any subtree of the full binary tree is finitely branching.

Lemma 7.4.4 (König’s Lemma). Let T be a finitely branching tree. Then T
is infinite ⇔ T has a path.

Note that König’s Lemma fails badly for trees that are not finitely branching.
For example, the tree {〈〉, 〈0〉, 〈1〉, 〈2〉, . . .} is infinite and not finitely branching
and has no path, in fact it contains no string of length 2.

Proof of König’s Lemma. The ⇐ is obvious. If f is a path through T , then T
contains the strings f ↾ n, n = 0, 1, 2, . . ., hence T is infinite.

To prove ⇒, let T be an infinite, finitely branching tree. Define

T̂ = {σ ∈ T | T contains infinitely many extensions of σ} .

Note that T̂ is a subtree of T .
We claim that the empty string 〈〉 belongs to T̂ . This is obvious, because T

is infinite.
We claim that any σ ∈ T̂ has an immediate extension belonging to T̂ . This

is because any extension of σ in T is an extension of some immediate extension

99

of σ in T . Since σ has infinitely many extensions in T , and σ has only finitely
many immediate extensions in T (because T is finitely branching), it follows by
the Pigeonhole Principle that at least one of the immediate extensions of σ has
infinitely many extensions in T , i.e., it belongs to T̂ .

Now, to construct a path through T , it suffices to construct a path through T̂ .
Start with σ0 = 〈〉 ∈ T̂ . Given σi ∈ T̂ , let ni = some n such that σi

a〈n〉 ∈ T̂ ,

and let σi+1 = σi
a〈ni〉. Thus σ0, σ1, σ2, . . . is an infinite path through T̂ .

Actually, the infinite path f is defined by f(i) = ni for all i.

Proof of Theorem 7.4.1. Given a covering 2N =
⋃
σ∈S Nσ where S is a set of

bitstrings, let

T = {τ ∈ 2<N | ¬ (∃m ≤ |τ |) (τ ↾ m ∈ S)} .

Clearly T is a tree. T is finitely branching, because T ⊆ 2<N. T has no path,
because if X ∈ 2N were a path through T we would have X ↾ n ∈ T for all n,
hence X ↾ n /∈ S for all n, hence X /∈ Nσ for all σ ∈ S, a contradiction.

Therefore, by König’s Lemma, T is finite. Let n be such that T contains no
bitstring of length n. In other words, every bitstring of length n has an initial
segment belonging to S. Hence,

2N =
⋃

σ∈S,|σ|≤n

Nσ =
⋃

σ∈F

Nσ

where F = {σ ∈ S | |σ| ≤ n}. Note that F is finite of cardinality ≤ 2n.

Corollary 7.4.5. If 2N =
⋃∞
n=0 Vn with Vn open, then 2N =

⋃k
n=0 Vn for some

k. In other words, 2N is compact in the usual topological sense:

“Every open covering of 2N has a finite subcovering.”

Proof. This follows easily from Theorem 7.4.1, because an open set is the union
of a sequence of neighborhoods.

Lecture 31: November 7, 2007

Remark 7.4.6. Here are a few announcements about upcoming seminars and
colloquia relevant to this course.

• Tomorrow, MASS Colloquium: Professor Alexandra Shlapentokh, expert
on Hilbert’s 10th Problem.

• Tuesday, MASS Seminar: Professor Peter Cholak, expert on randomness,
Kolmogorov complexity, etc.

• Tuesday, Logic Seminar: Professor Peter Cholak (2:30-3:45 in 106 McAl-
lister).

We now continue with our discussion of the fact that 2N is compact.
We have proved:

100

Corollary 7.4.7. If 2N =
⋃∞
n=0 Vn where each Vn is an open subset of 2N, then

2N =
⋃k
n=0 Vn for some k. In other words:

“Every open covering of 2N has a finite subcovering.”

Since a closed set is the complement of an open set, we can restate the
previous corollary in terms of closed sets, as follows:

Corollary 7.4.8. Assume that

Q0 ⊇ Q1 ⊇ · · · ⊇ Qn ⊇ Qn+1 ⊇ · · ·

is a descending sequence of closed sets in 2N and Qn 6= ∅ for all n. Then⋂∞
n=0Qn 6= ∅.

Proof. Look at the open sets Vn = 2N \Qn and apply the previous corollary.

Remark 7.4.9. Recall also that Σ0
1 sets are open, and Π0

1 sets are closed.
Hence, the above corollaries apply to these sets as well.

7.5 Σ0
1 and Π0

1 predicates in 2N

We now use the compactness of 2N to draw some interesting consequences con-
cerning Σ0

1 and Π0
1 predicates.

Recall that we are dealing with three important spaces: NN (the Baire space),
2N (the Cantor space), and N (the natural numbers). Actually we are dealing
with “mixed” predicates S ⊆ (NN)m × (2N)l × Nk. For convenience in stating
the following lemma, let us abbreviate S(f1, . . . , fm, X1, . . . , Xl, n1, . . . , nk) as
S(−,−,−).

Lemma 7.5.1. Let f be a variable ranging over NN. Then any Σ0
1 predicate

S(f,−,−,−) can be written in the form

S(f,−,−,−) ≡ ∃nR(f ↾ n,−,−,−)

where R(σ,−,−,−) is a recursive predicate and σ is a variable ranging over
strings.

Proof. This follows easily from the idea of finite approximation. In detail we
have

S(f,−,−,−) ≡ ϕ
(k),f⊕−⊕−
e (−) ↓

≡ ∃s ϕ(k),f↾s⊕−↾s⊕−↾s
e,s (−) ↓

≡ ∃s R(f ↾ s,−,−,−)

where R(σ,−,−,−) is the recursive predicate ϕ
(k),σ⊕−↾|σ|⊕−↾|σ|
e,|σ| (−) ↓.

101

Lemma 7.5.2 (boundedness principle). Let X be a variable ranging over 2N.
Let S(X,n,−) be a Σ0

1 predicate. Then

∀X ∃nS(X,n,−) ≡ ∃k ∀X (∃n < k)S(X,n,−) .

In other words, the n’s on the left hand side are bounded.

Proof. Fix − and let Vn = {X ∈ 2N | S(X,n,−)}. Since S is Σ0
1, Vn is open.

By Lemma 7.5.1 we have

∀X ∃nS(X,n,−) ≡ ∀X ∃n (X ∈ Vn)

≡ 2N =
⋃∞
n=0 Vn

≡ ∃k 2N =
⋃k−1
n=0 Vn (by compactness)

≡ ∃k ∀X (∃n < k) S(X,n,−) .

Lemma 7.5.3 (the Magic Lemma). Let X be a variable ranging over 2N.

1. If S(X,−) is Σ0
1 then ∀X S(X,−) is Σ0

1.

2. If P (X,−) is Π0
1 then ∃X P (X,−) is Π0

1.

In other words,

1. The class of Σ0
1 predicates is closed under ∀X .

2. The class of Π0
1 predicates is closed under ∃X .

These closure properties are useful in Tarski/Kuratowski computations.

Proof. We prove only part 1. Part 2 follows by duality. Let S(X,−) be a Σ0
1

predicate. Use Lemma 7.5.1 to write

S(X,−) ≡ ∃nR(X ↾ n,−)

where R(σ,−) is a recursive predicate. By Lemma 7.5.2 we have

∀X S(X,−) ≡ ∀X ∃nR(X ↾ n,−)

≡ ∃k ∀X (∃n < k)R(X ↾ n,−)

≡ ∃k (∀ bitstrings σ of length k) (∃n < k)︸ ︷︷ ︸
bounded number quantifiers

R(σ ↾ n,−)︸ ︷︷ ︸
recursive

≡ Σ0
1

102

Remark 7.5.4. Lemmas 7.5.1, 7.5.2, and 7.5.3 will be useful in Homework
#11, Problems 1, 3, and 4. They will also be useful in the proof of the Low
Basis Theorem, below.

Corollary 7.5.5. Let

Pe = {X ∈ 2N | ϕ(1),X
e (0) ↑}, e = 0, 1, 2, . . .

be our standard recursive enumeration of all Π0
1 subsets of 2N. Then, the set

{e | Pe 6= ∅} is Π0
1. Also, the sets {3i5j | Pi ∩ Pj 6= ∅}, etc., are Π0

1.

Proof. By the Magic Lemma 7.5.3 we have

Pe 6= ∅ ≡ ∃X (X ∈ Pe)︸ ︷︷ ︸
Π0

1︸ ︷︷ ︸
Π0

1

and similarly

Pi ∩ Pj 6= ∅ ≡ ∃X (X ∈ Pi ∧X ∈ Pj) ≡ Π0
1

etc.

103

Chapter 8

Randomness

In this chapter we study Martin-Löf’s concept of randomness. We shall see that
it is closely related to Kolmogorov’s concept of complexity.

Lecture 23: October 19, 2007

8.1 Foundations of mathematics

The purpose of foundations of mathematics is to understand very clearly and
precisely the most basic concepts of mathematics. We wish to answer questions
such as:

1. What is a number?

2. What is a shape?

3. What is a set?

4. What is a function?

5. What is an axiom?

6. What is a theorem?

7. What is a proof?

8. What is an algorithm?

All of mathematics is built on these concepts, yet often we proceed without
having a precise idea of what they mean. There is a lot of interest in these
questions. Moreover, the issue of how these questions should be answered is an
important topic in philosophy of mathematics.

Researchers in foundations of mathematics have made a lot of progress on
these questions. Concepts such as set, function, and number have been grounded

104

and made precise in terms of set theory. Concepts such as theorem, proof, and
axiom have been made precise in mathematical logic.

One example we have seen of defining a fundamental concept is Turing’s
definition of a computable function, which is widely recognized as the “right
definition”, i.e., the right answer to the question

What is a computable function?

Turing’s definition has intuitive appeal. The functions which we believe should
be computable satisfy the definition, and conversely. Before Turing, the idea of
a computable function had not been made precise.

In a similar vein, we now wish to clarify the concept of randomness, i.e., to
answer the question

What is a random point in a probability space?

8.2 Definitions of randomness

We wish to define what we mean by a random point in a probability space.
To keep things simple, we consider only one probability space: the Cantor

space, 2N, with the fair coin probability measure, µ. Recall that each bitstring
σ ∈ 2<N determines a neighborhood Nσ = {X ∈ 2N | σ ⊂ X} in 2N. The
measure of Nσ is µ(Nσ) = 1/2|σ| = Prob(σ is an initial segment of X). The
measure µ has the following properties:

1. µ(2N) = 1 and µ(∅) = 0.

2. µ(
⋃∞
i=0 Si) =

∑∞
i=0 µ(Si) provided the sets Si, i = 0, 1, 2, . . . are pairwise

disjoint.

3. µ(2N \ S) = 1− µ(S).

We wish to define what we might mean by saying that a point X ∈ 2N, X =
an infinite sequence of 0’s and 1’s, is random. Our first attempt is as follows.

Definition 8.2.1 (non-rigorous). A point X ∈ 2N is said to be random if it
is the outcome of an infinite sequence of tosses of an unbiased coin, identifying
heads as 1 and tails as 0.

This definition, although not rigorous, provides some guidance. For example,
we would not expect a randomX to haveX(2n) = 1 for all n, because this would
mean that all of the even-numbered coin tosses result in heads, an event which
is highly unlikely. This corresponds to the fact that

Prob(∀n (X(2n) = 1)) = µ{X ∈ 2N | ∀n (X(2n) = 1)} = 0.

These considerations suggest the following attempt at defining randomness, us-
ing simple concepts from measure theory.

105

Definition 8.2.2 (temporary). A point X ∈ 2N is said to be random if X does
not belong to any set S ⊆ 2N which is of measure 0.

This definition of randomness has the advantage of being perfectly rigorous.
Furthermore, if X is random according to this definition, then X obviously has
many properties which are intuitively associated with sequences of coin tosses.
For instance, if X is random then ¬∀n (X(2n) = 1) as desired. In fact, if X is
random, then no event of probability 0 occurs.

A fatal difficulty with this definition is that, under this definition, random
points do not exist! For any point X ∈ 2N, the singleton set {X} is a null set,
and X ∈ {X}, so X is not random. Thus, the above definition of randomness
turns out to be uninteresting.

We therefore discard the above definition and replace it be another definition
in which we consider only “nice” sets of measure 0, instead of arbitrary sets of
measure 0. In order to define what we mean by a “nice” set of measure 0, we
use concepts from recursion theory.

Definition 8.2.3. For each n ≥ 1, a point X ∈ 2N is said to be weakly n-random
if X /∈ any Π0

n set of measure 0. Equivalently, X /∈ any Σ0
n+1 set of measure 0.

Remark 8.2.4. Note that X /∈ any Π0
n set of measure 0 if and only if X /∈ any

Σ0
n+1 set of measure 0. This is because a Σ0

n+1 set is a union of Π0
n sets.

Remark 8.2.5. In the previous definition, we do not consider Σ0
1 sets of mea-

sure 0. The reason for this restriction is that the only Σ0
1 set of measure 0 is the

empty set. If we were to make the above definition with Σ0
1 instead of Π0

n, then
all points of 2N would be random, so the definition would be uninteresting.

Lemma 8.2.6. There exist points X ∈ 2N which are weakly n-random.

Proof. There are only countably many Π0
n sets. Hence, there are only countably

many Π0
n sets of measure 0. Let Sn = the union of all Π0

n sets of measure 0.
Equivalently, Sn is the union of all Σ0

n+1 sets of measure 0. By countable
additivity, µ(Sn) = 0. Any X /∈ Sn is weakly n-random.

Remark 8.2.7. Note that Sn itself is not Π0
n or even Σ0

n+1.

Remark 8.2.8. It is clear that, for each n ≥ 1, weak n+1-randomness implies
weak n-randomness. We shall see later that the converse does not hold.

Definition 8.2.9. A point X ∈ 2N is said to be arithmetically random if X /∈
any Π0

n set of measure 0 for any n ≥ 1. Equivalently, X is weakly n-random for
all n ≥ 1.

Remark 8.2.10. They exist because, by countable additivity, µ(
⋃∞
n=1 Sn) = 0.

Remark 8.2.11. If X is weakly 1-random, then X has at least some of the
desirable properties which we would normally expect of sequences of coin tosses.
For example, ¬∀n (X(2n) = 1). This is because the set {X ∈ 2N | ∀n (X(2n) =
1)} is Π0

1 of measure 0.

106

Similarly we can show that if X is weakly 1-random then X is the character-
istic function of a biimmune set. (A set B ⊆ N is said to be biimmune if both
B and the complement of B are immune.) See also Homework #9 Problem 6.
Note also that this gives an example of two immune sets whose union is not
immune. Other examples of biimmune sets can be constructed using finite ap-
proximation, but the present example in terms of weak 1-randomness is perhaps
easier and more interesting.

Remark 8.2.12. From the previous remark, we see that the concept of weak
1-randomness is useful. However, we shall see later that this concept is not
really what we want. For example, it is possible for X to be weakly 1-random
yet not obey the Strong Law of Large Numbers.

A better concept of randomness is due to P. Martin-Löf in a paper published
in 1966. We shall see that Martin-Löf’s concept of randomness is intermediate
between weak 1-randomness and weak 2-randomness and implies essentially all
desirable statistical properties which would normally be expected of an infinite
sequence of coin tosses.

Our goal now is to present Martin-Löf’s definition of randomness. First we
need some preliminary definitions.

Definition 8.2.13. A null set is a set S ⊆ 2N which is of measure 0, i.e.,
µ(S) = 0.

Remark 8.2.14. A well known fact is that S is null if and only if

(∀ǫ > 0) (∃ open set V) (S ⊆ V ∧ µ(V) < ǫ) .

This follows from the fact that the fair coin probability measure µ is regular.

Next we are going to “effectivize” the concept of a null set. This means that
we are going to define a more restricted concept which pays more attention to
computability.

Definition 8.2.15.

1. A set V ⊆ 2N is said to be effectively open if V is Σ0
1. (See also Theorem

7.3.9.)

2. A set S ⊆ 2N is said to be effectively null if there exists a recursive sequence
of effectively open sets Vn, n = 0, 1, 2, . . ., such that

∀n (S ⊆ Vn ∧ µ(Vn) ≤ 1/2n) .

Remark 8.2.16. Recall that our standard recursive enumeration of all Σ0
1

subsets of 2N is given by

Ue = {X ∈ 2N | ϕ(1),X
e (0) ↓}

107

where e = 0, 1, 2, By a recursive sequence of effectively open sets we mean
a sequence Vn = Uf(n), n = 0, 1, 2, . . ., where f(n) is a total recursive function.
In this case we could also say that the sequence Vn, n = 0, 1, 2, . . . is uniformly
effectively open, or we could say that the sequence is uniformly Σ0

1.

Remark 8.2.17. Obviously every effectively null set is a null set, but the
converse does not hold. Later we shall prove the surprising result that the
union of all effectively null sets is an effectively null set. Thus, there is a unique
largest effectively null set.

Finally we are able to present Martin-Löf’s definition of randomness.

Definition 8.2.18 (Martin-Löf). A point X ∈ 2N is said to be random if X /∈
any effectively null set. Equivalently, the singleton set {X} is not effectively
null.

Exercise 8.2.19. Let X ∈ 2N be random in the sense of Martin-Löf. Prove
that for all bitstrings σ there exist infinitely many n such that X(n+ i) = σ(i)
for all i < |σ|.

Hint: Given a bitstring σ, construct a Martin-Löf test appropriate for σ. In
other words, construct an effectively null set Sσ such that every X /∈ Sσ has the
desired property.

8.3 Homework #9, due October 29, 2007

Exercises 8.3.1.

1. Hoeffding’s Inequality says that the probability space 2N with the fair coin
probability measure satisfies

Prob

(∣∣∣∣∣

∑n−1
i=0 X(i)

n
− 1

2

∣∣∣∣∣ > ǫ

)
<

2

exp 2nǫ2
.

Use Hoeffding’s Inequality to prove that if a point X ∈ 2N is random
(i.e., random in the sense of Martin-Löf), then X obeys the Strong Law
of Large Numbers:

∑n−1
i=0 X(i)

n
→ 1

2
as n→∞ .

2. Prove that there exist weakly 1-random points in 2N which do not obey
the Strong Law of Large Numbers.

Hint: Use finite approximation.

3. In problem 1, can you say anything about the rate of convergence to 1/2?

4. Prove that if X ⊕ Y ∈ 2N is random (i.e., random in the sense of Martin-
Löf), then X �T Y and Y �T X .

108

5. Prove that there exist points X,Y ∈ 2N such that X ⊕ Y is weakly 1-
random yet X ≡T Y .

6. A set B ⊆ N is said to be biimmune if both B and its complement N \B
are immune. Prove that if X ∈ 2N is weakly 1-random then X is the
characteristic function of a biimmune set.

7. Let f be a Turing oracle.

For each i ∈ N define

Ufi = {X ∈ 2N | ϕ(1),f⊕X
i (0) ↓}.

Thus Ufi , i = 0, 1, 2, . . . is the standard recursive enumeration of all Σ0,f
1

subsets of 2N.

Given a sequence of sets Vn ⊆ 2N, n = 0, 1, 2, . . ., prove that the following
are pairwise equivalent.

(a) There exists a total recursive function g such that Vn = Uf
g(n) for all

n.

(b) There exists a total f -recursive function h such that Vn = Uf
h(n) for

all n.

(c) The predicate P ⊆ 2N × N given by

P (X,n) ≡ X ∈ Vn
is Σ0,f

1 .

In this case we say that the sequence of sets Vn, n = 0, 1, 2, . . . is uniformly
Σ0,f

1 or uniformly Σ0
1 relative to f .

Note: This concept will be part of the definition of what it means for a
point X ∈ 2N to be random relative to the oracle f .

Lecture 24: October 22, 2007

8.4 Properties of Martin-Löf randomness

Review:
We defined a set S ⊆ 2N to be effectively null if S ⊆ ⋂∞

n=0 Vn where Vn,
n = 0, 1, 2, . . . is uniformly Σ0

1 and µ(Vn) ≤ 1/2n. We defined a point X ∈ 2N

to be random (in the sense of Martin-Löf) if X /∈ any effectively null set.

Remark 8.4.1. Homework #9 Problems 1, 3, and 4 show that if X is random
then X has various desirable properties which we would attribute to a sequence
of coin tosses:

109

1. SLLN = Strong Law of Large Numbers:

lim
n→∞

∑n−1
i=0 X(i)

n
=

1

2
.

In other words, “the proportion of heads in the first n coin tosses goes to
1/2 as n goes to infinity.”

2. For X ∈ 2N we can write X uniquely as X = X0 ⊕X1 where X0 and X1

are the even and odd parts of X , i.e., X0(n) = X(2n) and X1 = X(2n+1)
for all n. Then, X random implies X0 �T X1 and X1 �T X0. In other
words, “the even part does not help us to compute the odd part, and vice
versa.”

Results such as these tend to justify the Martin-Löf definition of randomness.

We now compare Martin-Löf’s concept of randomness to weak n-randomness,
n = 1, 2,

Lemma 8.4.2. Let P be a subset of 2N.

1. If P is Π0
1 and null, then P is effectively null.

2. If P is effectively null, then P ⊆ S for some S which is Π0
2 and effectively

null.

Proof. 1. If P is Π0
1, we can write P = {paths through T } where T is a

recursive tree. Then

P =
∞⋂

n=0

Vn, where Vn =
⋃

τ ∈ T
|τ | = n

Nτ

with V0 ⊇ V1 ⊇ V2 ⊇ · · · ⊇ Vn ⊇ · · · and Vn, n = 0, 1, 2, . . . is uniformly
Σ0

1. (In fact, Vn is uniformly ∆0
1.) Hence µ(P) = limn→∞ µ(Vn). Clearly

the function µ(Vn) is a recursive function of n, because

µ(Vn) =
∑

τ ∈ T
|τ | = n

1

2n
.

See also Homework #8 Problem 4. If P is null, then

µ(P) = lim
n→∞

µ(Vn) = 0

so let f(k) = the least n such that µ(Vn) ≤ 1/2k. Then f is a recursive
function, so the sets V ∗

k = Vf(k), k = 0, 1, 2, . . . are uniformly Σ0
1 and

µ(V ∗
k) ≤ 1/2k. We now see that

P =

∞⋂

n=0

Vn =

∞⋂

k=0

V ∗
k

is an effectively null set.

110

2. If P is effectively null, we have P ⊆ ⋂∞
n=0 Vn, µ(Vn) ≤ 1/2n, Vn uniformly

Σ0
1. Letting S =

⋂∞
n=0 Vn we see that P ⊆ S, S is effectively null, and

X ∈ S ≡ ∀n (X ∈ Vn︸ ︷︷ ︸
Σ0

1

)

︸ ︷︷ ︸
Π0

2

so S is Π0
2.

Theorem 8.4.3. Let X ∈ 2N.

1. X random ⇒ X weakly 1-random.

2. X weakly 2-random ⇒ X random.

Proof. 1. Suppose X is random. To show X is weakly 1-random, consider
any null Π0

1 set P . By part 1 of Lemma 8.4.2, P is effectively null. It
follows that X /∈ P .

2. Assume that X is weakly 2-random, i.e., X /∈ any null Π0
2 set. It follows by

part 2 of Lemma 8.4.2 that X /∈ any effectively null set, i.e., X is random.

Remark 8.4.4. From now on we shall write

random ≡ random in the sense of Martin-Löf,

weakly random ≡ weakly 1-random,

strongly random ≡ weakly 2-random.

The previous theorem tells us that strongly random⇒ random, and random⇒
weakly random. We shall see later that the converses do not hold.

Remark 8.4.5. Random ⇒ not recursive. In fact, weakly random ⇒ not
recursive. To see this, note that for all X ∈ 2N we have {X} = P = {paths
through T } where T = {X ↾ n | n ∈ N} is a tree and P is a null set. If X is
recursive, then T is recursive, hence P is a Π0

1 null set, hence X is not weakly
random.

An important technical lemma is:

Lemma 8.4.6 (Solovay’s Lemma). Let X ∈ 2N be random. Let Vn, n =
0, 1, 2, . . . be uniformly Σ0

1 subsets of 2N such that

∞∑

n=0

µ(Vn) < ∞ .

Then X ∈ Vn for only finitely many n. In other words, X /∈ Vn for all sufficiently
large n.

Note: This lemma may be useful in Homework #9, Problem 1.

111

Lecture 25: October 24, 2007

Proof. By assumption, let c be a constant such that

∞∑

n=0

µ(Vn) ≤ 2c < ∞ .

For k = 0, 1, 2, . . . consider the sets

Wk = {X ∈ 2N | X ∈ Vn for at least k many n’s}

and note that these sets are uniformly Σ0
1:

X ∈ Wk ≡ ∃n1 < · · · < nk ∀i ≤ k︸ ︷︷ ︸
bounded

quantification

(X ∈ Vni︸ ︷︷ ︸
Σ0

1

)

︸ ︷︷ ︸
Σ0

1

We claim that µ(Wk) ≤ 2c/k for all k.
Assuming this claim, we have µ(W2c+k) ≤ 2c/2c+k = 1/2k and these sets

are also uniformly Σ0
1. Therefore, since X is random, X /∈W2c+k for some k. It

follows that X ∈ Vn for < 2c+k many n’s. This proves Solovay’s Lemma.
It remains to prove the claim. We have

Wk = {X ∈ 2N | (∃≥kn) (X ∈ Vn)}

so for all s let
Wk,s = {X ∈ 2N | (∃≥kn ≤ s) (X ∈ Vn)} .

To simplify the calculations, let us identify the sets Vn, Wk, Wk,s with their
characteristic functions. Thus, µ(Vn) =

∫
X∈2N Vn(X) dX , etc. We have

2c ≥
∞∑

n=0

µ(Vn) ≥
s∑

n=0

µ(Vn)

=

s∑

n=0

∫

X

Vn(X) dX

=

∫

X

s∑

n=0

Vn(X) dX (the sum is ≥ k if X ∈Wk,s)

≥
∫

X

kWk,s(X) dX = kµ(Wk,s) .

But obviously Wk =
⋃∞
s=0Wk,s, hence µ(Wk) = lims→∞ µ(Wk,s), hence our

calculation above shows that 2c ≥ kµ(Wk). This proves the claim and completes
the proof of Solovay’s Lemma.

Remark 8.4.7. Solovay’s Lemma is a recursion-theoretic refinement of the
Borel/Cantelli lemma in probability theory. Solovay’s Lemma is frequently used
in order to prove that a random X behaves as we would expect.

112

We now prove another important theorem about Martin-Löf’s concept of
randomness.

Theorem 8.4.8. The union of all effectively null sets is effectively null.

Remark 8.4.9. We can rephrase the theorem as, “there is a universal effec-
tively null set.” Or, “there is a universal test for randomness.”

By a test for randomness we mean a uniformly Σ0
1 sequence of sets Vn,

n = 0, 1, 2, . . . such that µ(Vn) ≤ 1/2n for all n. We say that a point X ∈ 2N

passes the test if X /∈ ⋂∞
n=0 Vn. Our definition of randomness says that X is

random if and only if it passes all tests for randomness. The theorem says that
there is a particular test for randomness which is universal in the following
sense: if X passes this particular test for randomness, then it passes all tests
for randomness and is therefore random.

Proof. Recall our standard recursive enumeration of all Σ0
1 subsets of 2N,

Ue = {X ∈ 2N | ϕ(1),X
e (0) ↓} .

Define
Ue,s = {X ∈ 2N | ϕ(1),X↾s

e,s (0) ↓}
and note that Ue,s is uniformly Σ0

1 (in fact, uniformly ∆0
1) and Ue =

⋃∞
s=0 Ue,s.

Furthermore, µ(Ue,s) is a rational number and is recursive as a function of e, s.
This is because

Ue,s =
⋃

ϕ
(1),σ

e,|σ|
(0) ↓

|σ| = s

Nσ

and

µ(Ue,s) =
∑

ϕ
(1),σ

e,|σ|
(0) ↓

|σ| = s

1

2s

and the predicates ϕ
(1),σ
e,s (0) ↓ and |σ| = s are recursive. Note that σ ranges

over bitstrings of length s.
Given a rational number r, define

Ue[r] =
⋃

µ(Ue,s)≤r

Ue,s .

Intuitively Ue[r] is “Ue enumerated so long as its measure is ≤ r”.
Some easily verified facts are:

1. Ue[r] ⊆ Ue.

2. µ(Ue[r]) ≤ r.

3. If µ(Ue) ≤ r then Ue[r] = Ue.

113

4. The sets Ue[r] are uniformly Σ0
1. In other words, the 3-place predicate

P (X, e, r) ≡ X ∈ Ue[r] is Σ0
1.

Now define

Ve,n =

Ui[1/2
n] if ϕ

(1)
e (n) ≃ i ,

∅ if ϕ
(1)
e (n) ↑ .

Some easy facts are:

1. Ve,n is uniformly Σ0
1.

Namely, X ∈ Ve,n ≡ ∃i (ϕ(1)
e (n) ↓≃ i ∧X ∈ Ui[1/2n]) which is obviously

Σ0
1.

2. µ(Ve,n) ≤ 1/2n for all n.

Therefore, for each e, the sequence of sets Ve,n, n = 0, 1, 2, . . . is a test
for randomness. Moreover, we claim that all tests for randomness are among
these. To see this, suppose that Vn, n = 0, 1, 2, . . . is a test for randomness, say
Vn = Uf(n) = Uf(n)[1/2

n] for some recursive function f(n). Let e be an index

of f , so that f(n) ≃ ϕ(1)
e (n) for all n. Then clearly Vn = Ve,n for all n.

Now, to obtain a universal test for randomness, we diagonalize over all tests
for randomness by letting

Ṽn =
∞⋃

e=0

Ve,e+n+1 .

Then X ∈ Ṽn ≡ ∃e (X ∈ Ve,e+n+1) so the sequence Ṽn, n = 0, 1, 2, . . ., is
uniformly Σ0

1. Moreover

µ(Ṽn) ≤
∞∑

e=0

µ(Ve,e+n+1)

≤
∞∑

e=0

1

2e+n+1

=
1

2n
(
1

2
+

1

4
+ · · ·)

=
1

2n

so Ṽn, n = 0, 1, 2, . . . is a test for randomness. We claim that it is a universal
test for randomness. In other words, for all e,

∞⋂

n=0

Ve,n ⊆
∞⋂

n=0

Ṽn .

This is easily verified: if X ∈ ⋂∞
n=0 Ve,n then X ∈ Ve,e+n+1 for all n, hence

X ∈ Ṽn for all n, hence X ∈ ⋂∞
n=0 Ṽn. This completes the proof.

114

Remark 8.4.10. We view the existence of a universal test for randomness as
providing good evidence for the “naturalness” of our concept of randomness.
Similarly, Turing’s theorem stating the existence of a universal partial recur-
sive function provides good evidence for the “naturalness” of our concept of
computable function.

Questions about the “naturalness” of various concepts in mathematics are
extremely important. This is because, as mathematicians, we have only a finite
amount of time to spend on mathematical research, and therefore it is extremely
important to choose the right research topics. If a mathematical concept is “nat-
ural” or “interesting”, then this suggests that time spent studying the concept
will be well spent.

Lecture 26: October 26, 2007

8.5 Comments on Homework #8

Problem 1

Recall that the machine M is prefix-free if dom(M) is prefix-free. Define a
prefix-free machine, M , by M(σ1

aσ2) ≃ U(σ1)
aU(σ2). You must check that

1. M is single-valued; i.e., M(σ) is well-defined.

2. M is partial recursive.

3. dom(M) is prefix-free.

Problem 3

Let r ∈ R be a real number which is both left r.e. and right r.e. In other words,

r = lim
n
an, an ր (increasing)

and
r = lim

n
bn, bn ց (decreasing)

where an and bn are recursive sequences of rational numbers. We need to show
that r is a recursive real number.

One solution is to define f(k) = µn (|an− bn| < 1/2k). Then f is a recursive
function, r = limk→∞ af(k), and |af(k) − r| < 1/2k. So the recursive sequence
of rational numbers af(k), k = 0, 1, 2, . . . witnesses that r is a recursive real
number.

Alternatively, we can use the characterization of recursive real numbers as
a real number r such that g(n) =“nth decimal digit of r” is recursive. It is
natural to try something like this:

“Let h(k) = the least n such that an and bn have the same first k+1
digits, and then let g(k) = the kth digit of ah(k).”

115

However, this does not always work! Consider r = 0.1 with an = 0.0 99 . . .9︸ ︷︷ ︸
n

and

bn = 0.1 00 . . .0︸ ︷︷ ︸
n

1. In this case and for many other rational r, h(k) is undefined.

We can get around this difficulty by considering rational and irrational r as
separate cases.

Problem 4

By part (e) we know that for any Π0
1 set P ⊆ 2N the real number µ(P) is right

recursively enumerable. Part (f) asks us to find a P such that µ(P) is not
recursive. The easiest example is

P = 2N \
⋃

e∈H

N〈0, . . . , 0︸ ︷︷ ︸
e

,1〉

where H is the Halting Problem. Clearly P is Π0
1 and

µ(P) = 1 −
∑

e∈H

1

2e+1

which is a nonrecursive real number.

Problem 5

To find an example of a nonempty Π0
1 subset of 2N which has no recursive

element.
Consider

P = {X ∈ 2N | X separates A,B}
where A,B is a disjoint pair of recursively inseparable r.e. subsets of N. Obvi-
ously P is nonempty has no recursive element. For all X ∈ 2N we have

X ∈ P ≡ ¬∃n ((X(n) = 0 ∧ n ∈ A) ∨ (X(n) = 1 ∧ n ∈ B)) .

Since A and B are Σ0
1, a Tarski/Kuratowski computation shows that P is Π0

1.
Alternatively, consider

Q = {X ∈ 2N | ∀n (X(n) 6≃ ϕ(1)
n (n))}

= {X ∈ 2N | X is diagonally nonrecursive}.

Again, Q is nonempty Π0
1 and has no recursive element.

Problem 6

Let P ⊆ NN be Π0
2. Say f ∈ P ≡ ∀x∃y R(f, x, y) where R is recursive.

116

For part (a), let Q = {f ⊕ g | ∀x (g(x) = µyR(f, x, y))}. Clearly Q is Turing
isomorphic to P because g ≤T f , hence f ≡T f ⊕ g. To check that Q is Π0

1, we
have f ⊕ g ∈ Q ≡ ∀x (R(f, x, g(x)) ∧ ¬∃y < g(x)R(f, x, y)).

For part (b), let Q = {χGf
| f ∈ P} where Gf = {3i5j | f(i) = j} = the

“graph” of f . ObviouslyQ is Turing isomorphic to P , because f ≡T Gf ≡T χGf
.

It remains to check that Q is Π0
2. Recall that f ∈ P ≡ ∀x∃y R(f, x, y). Define

the partial recursive functional Φ(f, x) ≃ µy R(f, x, y). Let e be an index of Φ.
By finite approximation we have

f ∈ P ≡ ∀x (ϕ(1),f
e (x) ↓) ≡ ∀x∃n (ϕ(1),f↾n

e,n (x) ↓) .

We know that X ∈ Q if and only if X is the characteristic function of the
“graph” of some function f which belongs to P . Writing this out in detail in
terms of e using finite approximation, we have

X ∈ Q ≡

∀n [(X(n) = 1) ⇒ (n = 3(n)1 · 5(n)2)]

∧ ∀m ∀n [(X(m) = 1 ∧X(n) = 1 ∧ (m)1 = (n)1) ⇒ (m)2 = (n)2]

∧ ∀i ∃j ∃n [X(n) = 1 ∧ n = 3i · 5j]

∧ ∀x∃σ (∀i < |σ|) [X(3i · 5σ(i)) = 1 ∧ ϕ(1),σ
e,|σ| (x) ↓] .

These four lines say that X has the form χGf
where f is single-valued, f is

total, and f ∈ P . Thus we see that Q is Π0
2.

For part (c), the answer is NO! Not every Π0
2 subset of 2N is Turing isomor-

phic to a Π0
1 subset of 2N. For an example illustrating this, recall the hierarchy

based on the jump operator, 0, 0′, 0′′, . . . , 0(n), Post’s Theorem tells us that
a set A ⊆ N is Σ0

n if and only if A ≤m 0(n). Define

0(ω) =

∞⊕

n=1

0(n) = {3m · 5n | m ∈ 0(n)} .

Thus 0(ω) is outside the arithmetical hierarchy. Identifying the set 0(ω) with its
characteristic function in 2N, we can prove that the singleton set {0(ω)} ⊆ 2N

is Π0
2. On the other hand, we can prove that if P ⊆ 2N is Π0

1 and nonempty,
then P contains some X which belongs to the arithmetical hierarchy. See also
Homework #10, Problems 2 and 3.

8.6 Homework #10, due November 5, 2007

Exercises 8.6.1.

1. Let f and g be Turing oracles. Define f ≤LK g to mean that

Kg(τ) ≤ Kf(τ) +O(1)

for all bitstrings τ . Define f ≤LR g to mean that

117

(∀X ∈ 2N) (if X is g-random then X is f -random).

(a) Show that f ≤T g implies both f ≤LK g and f ≤LR g.
(b) Let X ∈ 2N be such that X ≤LK 0. Show that X is K-trivial, i.e.,

K(X ↾ n) ≤ K(n) +O(1) for all n.

Note: It can be shown that the properties f ≤LK g and f ≤LR g are
equivalent to each other. However, they are not equivalent to f ≤T g. In
fact, we can find a nonrecursive X ∈ 2N such that X ≤LK 0. It can be
shown that X ≤LK 0 if and only if X is K-trivial.

2. For convenience in stating this problem, let us identify subsets of N with
their characteristic functions. In other words, we identify A ⊆ N with
χA ∈ 2N. Thus 2N is the set of all subsets of N.

Let J : 2N → 2N be the Turing jump operator:

J(X) = X ′ = HX = the Halting Problem relative to X .

Recall that 0(1) = 0′ = J(0) and in general 0(n+1) = (0(n))′ = J(0(n)) for
all n. By Post’s Theorem we know that for each n ≥ 1 the set 0(n) is Σ0

n

and not ∆0
n. Define

0(ω) =

∞⊕

n=1

0(n) = {3m5n | m ∈ 0(n)} .

Note that the set 0(ω) is not arithmetical, i.e., it is not ∆0
n for any n.

(a) Show that the 2-place predicate P ⊆ 2N × 2N given by

P (X,Y) ≡ J(X) = Y

is Π0
2.

(b) Show that for each n ≥ 1 the singleton set {0(n)} is Π0
2.

(c) Show that the singleton set {0(ω)} is Π0
2.

Note: These singleton sets are subsets of 2N.

3. (a) Show that every nonempty Π0
1 subset of 2N contains a member which

is ∆0
n for some n.

(b) In part (a), what is the optimal value of n?

(c) In parts (a) and (b), what if we replace Π0
1 sets by Π0

2 sets?

(d) Is every Π0
2 subset of 2N Turing isomorphic to a Π0

1 subset of 2N?

4. Let X ∈ 2N. We say that X is 2-random if X is random relative to 0′.
Recall also that X is weakly 2-random if X /∈ any Π0

2 set of measure 0.
Let a = degT (X) = the Turing degree of X .

118

(a) Show that if X is 2-random then X is weakly 2-random.

(b) Show that if X is weakly 2-random then inf(a,0′) = 0.

(c) In part (b) what if we assume only that X is random?

(d) Show that if X is 2-random then sup(a,0′) = a′.

(e) In part (d) what if we assume only that X is weakly 2-random?

5. Show that every Π0
2 subset of 2N includes a Σ0,0′

2 set of the same measure.

8.7 Initial segment complexity

Let X ∈ 2N, an infinite sequence of 0’s and 1’s. We can consider the complexity
or prefix-free complexity of the finite initial segments of X : C(X ↾ n) and
K(X ↾ n). These quantities are called the initial segment complexity of X . The
asymptotic behavior of the initial segment complexity of X as n goes to infinity
may be viewed as a measure of the “amount of complexity” inherent in X .

Recall that, roughly speaking, K(|τ |) ≤ K(τ) ≤ |τ | for all strings τ . In
other words, K(n) ≤ K(X ↾ n) ≤ n for X ∈ 2N and all positive integers n. And
similarly for C. All of these inequalities are modulo an additive constant O(1).
Roughly speaking, we have two extreme possibilities for the initial segment
complexity of X , given by the following two definitions.

Definition 8.7.1. We say that X is K-trivial if K(X ↾ n) = K(n) ± O(1)
for all n. In other words, ∃c ∀n (K(X ↾ n) ≤ K(n) + c). We define C-trivial
similarly.

Definition 8.7.2. We say that X is K-random if K(X ↾ n) = n±O(1) for all
n. In other words, ∃c ∀n (K(X ↾ n) ≥ n− c). We define C-random similarly.

The following facts are known and we shall prove some of them.

1. X is C-trivial ⇔ X is recursive.

2. ∃K-trivial X such that X is not recursive.

3. X is K-random ⇔ X is random.

4. X is C-maximal ⇔ ???

In addition to the two extremes of K-triviality and K-randomness, there are
many intermediate possibilities. This leads to a fine classification of X in terms
of the “amount of complexity” inherent in X , as measured by initial segment
complexity.

119

Lecture 29: November 2, 2007

We now exhibit a close connection between randomness and Kolmogorov com-
plexity. Recall that X ∈ 2N is said to be K-random if K(X ↾ n) ≥ n−O(1). In
other words, ∃c ∀n (K(X ↾ n) ≥ n− c).

Theorem 8.7.3 (Schnorr’s Theorem). X is random ⇔ X is K-random.

Proof. (⇒) Assume X is random. Let Vc = {X ∈ 2N | ∃n (K(X ↾ n) < n− c)}.
Note Vc is uniformly Σ0

1 for all c = 0, 1, 2, . . ., namely

X ∈ Vc ≡ ∃τ (τ ⊂ X ∧K(τ) < |τ | − c)
≡ ∃τ (τ ⊂ X ∧ ∃σ (|σ| < |τ | − c ∧ U(σ) ≃ τ))
≡ Σ0

1

where U is a universal prefix-free machine.
We claim that µ(Vc) < 1/2c. To see this, for each τ such that K(τ) < |τ |− c

choose a σ such that U(σ) ≃ τ and |σ| < |τ | − c. We then have

∑

σ

1

2|σ|
≤ 1

by the Kraft inequality. It follows that

µ(Vc) ≤
∑

τ

1

2|τ |
<
∑

σ

1

2|σ|+c
≤ 1

2c

which proves the claim.
Thus, X random implies X /∈ Vc for some c, which means that ∀nK(X ↾

n) ≥ n− c. Hence K(X ↾ n) ≥ n−O(1), i.e., X is K-random, Q.E.D.
(⇐) Assume X is not random. Then X ∈ ⋂∞

n=0 Vn where Vn is uniformly Σ0
1

and µ(Vn) ≤ 1/2n. Let Tn, n = 0, 1, 2, . . . be a uniformly recursive, prefix-free
set of bitstrings such that Vn =

⋃
τ∈Tn

Nτ . We have

∞∑

n=0

∑

τ∈T2n

1

2|τ |−n
=

∞∑

n=0

2nµ(V2n) ≤
∞∑

n=0

2n
(

1

22n

)
=

∞∑

n=0

1

2n
= 2 .

It follows by Kraft/Chaitin (see Corollary 6.3.11) that K(τ) ≤ |τ | − n + O(1)
for all such pairs (τ, n). That is, for some fixed c, K(τ) ≤ |τ | − n + c for all n
and all τ ∈ T2n. But then, since X ∈ V2n for all n, we have ∀n ∃m (K(X ↾ m) ≤
m− n + c). In other words, it is not the case that K(X ↾ m) > m − c − O(1)
for all m. Thus X is not K-random, Q.E.D.

Remark 8.7.4. Schnorr’s Theorem exhibits a close relationship between our
two approaches to randomness. We may view prefix-free complexity K(τ) as
the length of the smallest compressed version of τ . So randomness can be seen
not only in terms of probability, but also in terms of compressibility of strings.

120

Remark 8.7.5. As usual, we can relativize all of these concepts and theorems
to an arbitrary oracle f ∈ NN. This goes as follows.

Definition 8.7.6. A sequence of sets Vn ⊆ 2N, n = 0, 1, 2, . . . is said to be
uniformly Σ0,f

1 if The final problem in Homework #9 was to show that
three reasonable definitions of this concept coincide.

Definition 8.7.7. We say that X is f -random (i.e., random relative to f)

if there is no uniformly Σ0,f
1 sequence of sets Vn, n = 0, 1, 2, . . . such that

X ∈ ⋂∞
n=0 Vn and µ(Vn) ≤ 1/2n for all n.

Definition 8.7.8. An f -machine is a partial f -recursive function from bit-
strings to bitstrings, M :⊆ 2<N → 2<N.

Definition 8.7.9. M is prefix-free if

Definition 8.7.10. A universal prefix-free f -machine is

Definition 8.7.11. We define Kf(τ) = min{|σ||Uf (σ) ≃ τ} where Uf is a
universal prefix-free f -machine.

Theorem 8.7.12 (relativization of Schnorr’s Theorem). X is f -random ⇔ X
is Kf -random.

8.8 Solutions for Homework #9

Problem 1

For all n ≥ 1 and all rational ǫ > 0, let Vn,ǫ be the set of X ∈ 2N such that

∣∣∣∣∣

∑n−1
i=0 X(i)

n
− 1

2

∣∣∣∣∣ > ǫ .

Note that Vn,ǫ is uniformly Σ0
1. Hoeffding’s Inequality says that

µ(Vn,ǫ) ≤
2

e2nǫ2
= 2

(
1

e2ǫ2

)n
.

Since 1/e2ǫ
2

is < 1, we have

∞∑

n=0

(
1

e2ǫ2

)n
< ∞ (geometric series)

hence
∑∞

n=0 µ(Vn,ǫ) < ∞. Thus, by Solovay’s Lemma, if X is random then
X ∈ Vn,ǫ for only finitely many n. Since this holds for all ǫ > 0, we see that X
satisfies the Strong Law of Large Numbers,

lim
n→∞

∑n−1
i=0 X(i)

n
=

1

2
.

121

Problem 3

We modify the argument for Problem 1 by letting ǫ depend on n. For instance,
we can define

ǫn =

√
logn

n
.

Letting Vn = Vn,ǫn we see that

∞∑

n=0

µ(Vn) ≤
∞∑

n=0

2

e2nǫn2 =

∞∑

n=0

2

e2 logn
=

∞∑

n=0

2

n2
< ∞

(p-series, p = 2). So again X ∈ Vn for only finitely many n. In other words,

∣∣∣∣∣

∑n−1
i=0 X(i)

n
− 1

2

∣∣∣∣∣ ≤
√

logn

n

for all sufficiently large n.

Problem 5

For all X ∈ 2N we have X = X0 ⊕ X1 where X0(n) = X(2n) and X1(n) =
X(2n+ 1). Thus X0 and X1 are the even and odd parts of X , respectively.

Problem 4 was to show that if X is random then X0 and X1 are Turing
incomparable.

Problem 5 was to find a weakly random X such that X0 ≡T X1. We con-
struct X by finite approximation.

Stage 0. Let σ0 = 〈〉.
Stage e+ 1. Assume we already know σe.

Case 1: ∃σ ⊇ σe
a〈1, 1〉 such that ϕ

(1),σ
e,|σ| (0) ↓. Let σe+1 = the least such σ

which is of even length.
Case 2: not Case 1. Let σe+1 = σe

a〈0, 0〉.
Finally let X =

⋃∞
e=0 σe. Note that |σe| is even for all e.

Recall our standard recursive enumeration of all Π0
1 subsets of 2N, namely

Pe = {X ∈ 2N | ϕ(1),X
e (0) ↑}. Consider what happened at stage e + 1. If Case

1 holds, then X /∈ Pe. If Case 2 holds, then Nσe
a〈1,1〉 ⊆ Pe, hence µ(Pe) > 0.

Thus X is weakly random.
To see that X0 ≡T X1, it suffices to show that the entire construction σe,

e = 0, 1, 2, . . . is both ≤T X0 and ≤T X1. Assume that we are using one of the
oracles X0 or X1 and we have already computed σe. Note that Case 1 holds at
stage e + 1 if and only if X0(|σe|/2) = 1, if and only if X1(|σe|/2) = 1. Thus
we can use our oracle to tell which case we are in. If we are in Case 1, we can
recursively search for σe+1 = the least σ ⊇ σe

a〈1, 1〉 of even length such that

ϕ
(1),σ
e,|σ| (0) ↓. Otherwise we are in Case 2 and σe+1 = σe

a〈0, 0〉. Either way we

have now computed σe+1.

122

Problem 6

Let X be weakly random. Suppose We is an infinite r.e. set. Since We is infinite,

P = {X ∈ 2N | ∀n (n ∈We ⇒ X(n) = 1)}

is of measure 0. Since We is Σ0
1, a Tarski/Kuratowski computation shows that

P is Π0
1. Hence X /∈ P , hence X(n) = 0 for at least one n ∈ We. Similarly we

can show that X(n) = 1 for at least one n ∈ We. Thus X is the characteristic
function of a biimune set.

8.9 Homework #11, due November 12, 2007

Exercises 8.9.1. For f, g ∈ NN say that f is majorized by g if f(n) < g(n) for
all n.

1. If P (f, g,−) is a Π0
1 predicate, prove that the predicate

Q(g,−) ≡ ∃f (P (f, g,−) ∧ f is majorized by g)

is again Π0
1.

Note: This is a generalization of the Magic Lemma, Lemma 7.5.3 in the
Lecture Notes. You can prove it by imitating the the proof of Lemma
7.5.3.

2. (a) Show that the result of Problem 1 holds if we replace Π0
1 by Σ0

2.

(b) Show that the result does not hold if we replace Π0
1 by Π0

2.

In fact, we can find a Π0
2 predicate P (X,−) with X ranging over 2N

such that the predicate ∃X P (X,−) is not arithmetical, i.e., it is not
Π0
n or Σ0

n for any n.

3. Let P ⊆ 2N be Π0
1. Let Φ(X,n) be a partial recursive functional such that

Φ(X,n) ↓ for all X ∈ P and all n. Find a total recursive function g(n)
which majorizes Φ(X,n) for all X ∈ P and all n.

4. An oracle X is said to be hyperimmune-free (sorry for the awkward ter-
minology) if each f ≤T X is majorized by some recursive function.

Note: This is another example of a “lowness property” of X .

(a) Let P ⊆ 2N be nonempty and Π0
1. Prove that there exists X ∈

P such that X is hyperimmune-free. This result is known as the
Hyperimmune-Free Basis Theorem.

Hint: Use Π0
1 approximation as in the Low Basis Theorem.

(b) Deduce that we can find a random X which is hyperimmune-free.

123

5. Prove that if 0 <T X ≤T 0′ then X is not hyperimmune-free.

Note: This prevents us from combining the Low Basis Theorem and the
Hyperimmune-Free Basis Theorem into one theorem.

Hint for the proof: By Post’s Theorem X is ∆0
2. Deduce that the singleton

set {X} is Π0
2. Use this to find f ≡T X such that the singleton set {f}

is Π0
1. If such an f is majorized by a recursive function, use the result of

Problem 1 to show that f is recursive.

6. (Extra Credit)

(a) Prove that if X is 2-random then X is not hyperimmune-free.

(b) What if we assume only that X is weakly 2-random?

7. (a) Prove that if Y is nonrecursive then µ({X ∈ 2N | Y �T X}) = 1.

(b) Deduce that for each nonrecursive Y we can find a random X such
that Y �T X .

(c) More generally, prove the following. Given a sequence of nonrecursive
oracles Yi, i = 0, 1, 2, . . ., we can find an X which is n-random for all
n and such that Yi �T X for all i.

Note: It can be shown that for all Y we can find a random X such that
Y ≤T X . In fact, each Turing degree ≥ 0′ contains a randomX . However,
this does not hold for weakly 2-random X ’s, because all such X ’s are
Turing incomparable with 0′.

8. (a) Assume that P ⊆ 2N is Π0
1 and

¬∃X (X ∈ P ∧X is recursive).

Find a nonrecursive Y such that

¬∃X (X ∈ P ∧X ≤T Y).

Hint: Use finite approximation.

(b) Find a nonrecursive Y such that

¬∃X (X is random ∧X ≤T Y).

Hint: Use the fact that {X | X is random} is the union of a sequence
of Π0

1 sets.

124

Chapter 9

Some advanced topics

In this chapter we present some advanced topics related to computability, un-
solvability, and randomness.

Lecture 30: November 5, 2007

9.1 Turing degrees of random sequences

Let X be an infinite sequence of 0’s and 1’s which is random in the sense of
Martin-Löf. What can we say about the Turing degree of X? We shall obtain
some answers to this question.

Remark 9.1.1. We already know that if X is random then X is nonrecursive,
i.e., the Turing degree of X is nonzero. We shall prove:

1. There exist random X ’s whose Turing degree is < 0′.

2. There exist random X ’s whose Turing degree is incomparable with 0′ (see
below for more details).

3. There exist nonzero Turing degrees b such that no Turing degree ≤ b

contains a random X .

4. Every Turing degree ≥ 0′ contains a random X (if time permits).

Definition 9.1.2. A Turing degree a is said to be low if a′ = 0′.

Definition 9.1.3. For f, g ∈ NN we say f is dominated by g if f(n) < g(n) for
all sufficiently large n. We say that f is majorized by g if f(n) < g(n) for all n.

Definition 9.1.4. A Turing degree a is said to be hyperimmune-free if every
function of degree a is dominated by a recursive function. Equivalently, every
function of degree a is majorized by a recursive function.

Remark 9.1.5. Both of these properties, lowness and hyperimmune-freeness,
say that the Turing degree a is in some sense close to 0. We shall see:

125

1. There exist random X ’s which are low.

2. There exist random X ’s which are hyperimmune-free.

3. There do not exist randomX ’s which are both low and hyperimmune-free.

9.2 The Low Basis Theorem

Definition 9.2.1. X is low if X ′ ≡T 0′. Note that this implies X <T 0′.

Theorem 9.2.2 (Low Basis Theorem). Given a nonempty Π0
1 set P ⊆ 2N, we

can find an element X ∈ P such that X is low.

Remark 9.2.3. The Low Basis Theorem should be compared with the result
from Homework #8 that there is a nonempty Π0

1 set P ⊆ 2N with no recursive
elements.

In general, a “basis theorem” is a theorem asserting that any nonempty
“nice” set must contain a “nice” element. Thus, the low elements of 2N form a
“basis” for the Π0

1 sets, but the recursive elements of 2N do not.

Proof of the Low Basis Theorem. Let P ⊆ 2N be nonempty Π0
1. We shall obtain

X ∈ P by a technique known as “Π0
1 approximation.” This means that, starting

with P , we shall construct a descending sequence of nonempty Π0
1 sets

P = Q0 ⊇ Q1 ⊇ · · · ⊇ Qe ⊇ Qe+1 ⊇ · · ·

and then let X ∈ ⋂∞
e=0Qe. Note that

⋂∞
e=0Qe is nonempty in view of Corollary

7.4.8.
We shall perform this construction in such a way as to insure that X is

low, i.e., HX ≤T H where H is the Halting Problem. Recall that HX = {e |
ϕ

(1),X
e (0) ↓}. Actually, the entire construction will be ≤T H .

Here is the construction.
Stage 0: Let Q0 = P .
Stage e+ 1: The purpose of this stage is to decide whether e ∈ HX or not.

Assume inductively that Qe is already known and is a nonempty Π0
1 set.

Case 1: (∃X ∈ Qe) (ϕ
(1),X
e (0) ↑). In this case let

Qe+1 = {X ∈ Qe | ϕ(1),X
e (0) ↑}

and note that Qe+1 is a nonempty Π0
1 set. Moreover, e /∈ HX for all X ∈ Qe+1.

Case 2: Not case 1. I.e., (∀X ∈ Qe) (ϕ
(1),X
e (0) ↓). In this case let Qe+1 = Qe.

Again Qe+1 is a nonempty Π0
1 set. Moreover, e ∈ HX for all X ∈ Qe+1.

The construction insures that e ∈ HX if and only if Case 2 holds at stage
e + 1. It remains to verify that the entire construction is ≤T H . It will then
follow that HX ≤T H , i.e., X is low.

126

Lecture 32: November 8, 2007

Here are the details of why the entire construction is ≤T H .
We shall use our standard recursive enumeration Pe, e = 0, 1, 2, . . . of all Π0

1

subsets of 2N, namely

Pe = {X ∈ 2N | ϕ(1),X
e (0) ↑} .

We say that e is an index of the Π0
1 set Pe. Note also that X ′ = HX = {e |

ϕ
(1),X
e (0) ↓} = {e | X /∈ Pe}.

Recall that if P,Q are Π0
1 subsets of 2N, then P ∩ Q is of course Π0

1 and
this holds uniformly with respect to the indices. In other words, we can find a
recursive function f(i, j) such that Pf(i,j) = Pi ∩ Pj for all i, j. (This is proved
by means of the Parametrization Theorem.)

To see that the construction is ≤T H , we shall define a function g(e) and
define Qe as Qe = Pg(e). In other words, g(e) will be an index of Qe. To define
g, let B = {3i · 5j | Pi ∩ Pj 6= ∅}. By Lemma 7.5.3, B is Π0

1. See also Corollary
7.5.5. It follows that B ≤T 0′.

Our construction may be described as follows. Start by letting g(0) be an
index of P . If Pg(e) ∩Pe 6= ∅, let g(e+1) = f(g(e), e), so that Pg(e+1) = Pg ∩Pe.
If Pg(e) ∩ Pe = ∅, let g(e + 1) = g(e), so that Pg(e+1) = Pg(e). Note that

g ≤T B ≤T 0′. Moreover, for all e, e ∈ HX if and only if 3g(e)5e /∈ B. Hence
X ′ = HX ≤T B ≤T 0′. Thus X is low. This completes the proof.

We now apply the Low Basis Theorem to draw a conclusion about random-
ness. First, note the following:

Theorem 9.2.4. Let

R = {X ∈ 2N | X is (Martin-Löf) random}.

Then R is Σ0
2.

We present two proofs of this result.

First Proof. Our first proof is based on the existence of a universal test for
randomness. Let Vn, n = 0, 1, 2, · · · be a universal test for randomness. Thus
Vn is uniformly Σ0

1, µ(Vn) ≤ 1/2n (a test), and ∀X (X is random ⇔ X passes
the test, i.e., X /∈ ⋂∞

n=0 Vn). Then

R = 2N \
∞⋂

n=0

Vn

︸ ︷︷ ︸
Π0

2︸ ︷︷ ︸
Σ0

2

.

127

Second Proof. Our second proof is based on Schnorr’s Theorem. We have

X ∈ R ≡ K(X ↾ n) ≥ n−O(1)

≡ ∃c ∀n (K(X ↾ N) ≥ n− c)
≡ ∃c ∀n ∀σ [(U(σ) ≃ X ↾ n)︸ ︷︷ ︸

Σ0
1

⇒ |σ| ≥ n− c]

︸ ︷︷ ︸
Π0

1︸ ︷︷ ︸
Σ0

2

.

Corollary 9.2.5. We can find a nonempty Π0
1 set P ⊆ 2N such that ∀X (X ∈

P ⇒ X is random).

Proof. Since R is Σ0
2, R is the union of a sequence of Π0

1 sets. Since R is
nonempty, at least one of these is nonempty.

Remark 9.2.6.

1. We can actually find P as in the corollary such that µ(P) ≥ 1− ǫ for any
ǫ > 0. This follows easily from the fact that µ(R) = 1.

2. It can be shown that any P as in the corollary is Turing isomorphic to R
(Kučera 1985).

Corollary 9.2.7. We can find X ∈ 2N such that X is random and low.

Proof. This follows from the previous corollary plus the Low Basis Theorem.

Similar to the Low Basis Theorem, there is the Hyperimmune-Free Basis
Theorem:

Theorem 9.2.8 (Hyperimmune-Free Basis Theorem). If P ⊆ 2N is Π0
1, nonempty

then ∃X ∈ P (X is hyperimmune-free).

Proof. See Homework #11 Problem 4. The proof is by Π0
1 approximation as

in the proof of the Low Basis Theorem. Starting with P define a descending
sequence of nonempty Π0

1 sets

P = Q0 ⊇ Q1 ⊇ Q2 ⊇ · · · ⊇ Qe ⊇ · · · .
By compactness,

⋂∞
n=0Qn is nonempty. Break the definition of hyperimmune-

freeness into countably many requirements, and at stage e+ 1 construct Qe+1

to satisfy requirement e. The details are left to the student.

Corollary 9.2.9. We can find X ∈ 2N which is random and hyperimmune-free.

Proof. This follows from the Hyperimmune-Free Basis Theorem, just as the
previous corollary followed from the Low Basis Theorem.

Remark 9.2.10. We cannot combine these corollaries to get a randomX which
is both low and hyperimmune-free. In fact, the only Turing degree which is both
low and hyperimmune-free is 0. See Homework #11, Problem 5.

128

Lecture 33: November 9, 2007

9.3 Randomness relative to an oracle

Recall that X is random relative to f (i.e., f -random) if X /∈ ⋂∞
n=0 V

f
n , where

V fn is any uniformly Σ0,f
1 sequence of sets with µ(V fn) ≤ 1/2n.

Lemma 9.3.1. Assume that A⊕B is random. Then A is B-random and B is
A-random. In particular, A and B are random, and A �T B and B �T A.

This lemma strengthens the result of Homework #9 Problem 4, which said
that if X is random then X0 �T X1 and X1 �T X0. Here X0 = the even part
of X and X1 = the odd part of X , defined by X = X0 ⊕X1.

Corollary 9.3.2. There is an infinite descending sequence of Turing degrees.

Proof. Let X be random and consider X >T X0 >T X00 >T X000 >T · · ·.

Proof of Lemma. Suppose B is not A-random. Then B ∈ ⋂∞
n=0 V

A
n where V An

is uniformly Σ0,A
1 and µ(V An) ≤ 1/2n. Letting Φ(X,Y, n) be a partial recursive

functional such that V An = {Y | Φ(A, Y, n) ↓}, define V Xn = {Y | Φ(X,Y, n)}
and Wn = {X ⊕ Y | Y ∈ V Xn [1/2n]}. Here we are using the isomorphism
2N ∼= 2N × 2N given by X ⊕ Y 7→ (X,Y). Note that Wn is uniformly Σ0

1, and
by Fubini’s Theorem µ(Wn) ≤ 1/2n. Also A ⊕ B ∈ Wn because B ∈ V An =
V An [1/2n] for all n. This contradicts the assumption that A⊕B is random.

Theorem 9.3.3 (Van Lambalgen’s Theorem). The following are pairwise equiv-
alent:

1. A⊕B is random.

2. A is random and B is A-random.

3. B is random and A is B-random.

Proof. The previous lemma gives 1 ⇒ 2 and 1 ⇒ 3. We will prove 2 ⇒ 1, and
the proof of 3⇒ 1 is similar. Assume 2∧¬ 1, i.e., A is random, B is A-random,
and A⊕B is not random. Since A⊕B is not random, we have A⊕B ∈ ⋂∞

n=0Wn

where Wn is uniformly Σ0
1 and µ(Wn) ≤ 1/2n. By passing to a subsequence,

we may assume that µ(Wn) ≤ 1/22n. Let V Xn = {Y | X ⊕ Y ∈ Wn} and
Un = {X | µ(V Xn) > 1/2n}. Note that Un is uniformly Σ0

1, because

X ∈ Un ≡ µ(V Xn) > 1/2n

≡ ∃s µ(V Xn,s) > 1/2n
︸ ︷︷ ︸
R(X,n,s) recursive

Moreover, µ(Un) ≤ 1/2n because otherwise by Fubini’s Theorem we would have

µ(Wn) ≥ µ(Un) ·
1

2n
>

1

2n
· 1

2n
=

1

22n

129

a contradiction. Since A is random, Solovay’s Lemma tells us that A /∈ Un for
all but finitely many n. In other words, µ(V An) ≤ 1/2n for all but finitely many

n. But V An is uniformly Σ0,A
1 , and B ∈ V An for all n (since A⊕B ∈ Wn). Thus

B is not A-random. This completes the proof.

Theorem 9.3.4 (Miller/Yu 2004). Assume A is random and A ≤T B where B
is C-random. Then A is C-random.

Proof. We omit the proof.

9.4 Comments on Homework #11

In Homework #11, Problem 1 is to prove a generalization of the Magic Lemma
7.5.3, which states that the class of Π0

1 predicates is closed under ∃X . Recall
that the proof of the Magic Lemma used the fact that 2N is compact. Note that
2N is a product space,

2N = {0, 1}N =

∞∏

n=0

{0, 1} = {0, 1} × {0, 1} × {0, 1} × · · · .

There is a theorem of general topology known as Tychonoff’s Theorem, which
says that the product of any family of compact spaces is compact. Since {0, 1} is
compact, we could have used Tychonoff’s Theorem to prove that 2N is compact.
Similarly, for any fixed g ∈ NN the product space

Pg =

∞∏

n=0

{0, 1, 2, . . . , g(n)− 1} = {f ∈ NN | f is majorized by g}

is compact, by Tychonoff’s Theorem. Another way to see this is to note that
the full g-tree

Tg = {σ ∈ N<N | (∀n < |σ|) (σ(n) < g(n))}

is a finitely branching tree, so König’s Lemma applies. This remark will be
useful in solving Problem 1.

Lemmas 7.5.1, 7.5.2, 7.5.3 are useful in Homework #11. Also useful is the
fact that, in NN, Π0

2 sets are Turing isomorphic to Π0
1 sets. This was proved in

a previous homework.

Lecture 34: November 12, 2007

Reminder: Professor Cholak, an expert on Kolmogorov complexity and ran-
domness, will give two talks tomorrow, Tuesday November 13.

• MASS Seminar, 10:10–12:05.

• Logic Seminar, 2:30–3:45.

130

Problem 2(b)

Recall

0(n) = 0

′′ · · · ′︸ ︷︷ ︸
n = the nth Turing jump of 0.

By Post’s Theorem, the set 0(n) ⊆ N is Σ0
n complete. Define

0(ω) =
⊕∞

n=0 0(n) = {3m5n | m ∈ 0(n)}.
Thus 0(ω) is not Σ0

n for any n, i.e., it is not in the arithmetical hierarchy. We
have seen in an earlier homework problem that the singleton set {0(ω)} is Π0

2.
Consider the predicates

P (X,n) ≡ X = 0(ω) ∧ X(n) = 1

and
Q(n) ≡ ∃X P (X,n) ≡ n ∈ 0(ω) .

Note that while P is Π0
2, Q is not arithmetical.

Problem 3

Let P ⊆ 2N be Π0
1. Let Φ(X,n) be a partial recursive functional such that

Φ(X,n) ↓ for all X ∈ P and all n. We are asked to find a total recursive
function g(n) exceeding Φ(X,n) for all X ∈ P and all n.

First we show that for each n, the values of Φ(X,n) for X ∈ P are bounded.
We have

∀n (∀X ∈ P)∃i (Φ(X,n) ≃ i)
hence

∀n ∀X ∃i (X /∈ P︸ ︷︷ ︸
Σ0

1

∨Φ(X,n) ≃ i︸ ︷︷ ︸
Σ0

1

)

hence by Lemma 7.5.2 (the bounding principle)

∀n ∃j ∀X (∃i < j)(X /∈ P ∨ Φ(X,n) ≃ i)

hence
∀n ∃j (∀X ∈ P) (∃i < j) (Φ(X,n) ≃ i)

so the values are bounded. Now consider the predicate Q(n, j) saying that j is
an appropriate bound, i.e.,

Q(n, j) ≡ (∀X ∈ P) (∃i < j) (Φ(X,n) ≃ i)
≡ ∀X (∃i < j) (X /∈ P ∨Φ(X,n) ≃ i)
≡ ∀X (X /∈ P ∨ Φ(X,n) ↓< j︸ ︷︷ ︸

Σ0
1

)

︸ ︷︷ ︸
Σ0

1

131

by Lemma 7.5.3. Thus the predicate Q(n, j) is Σ0
1. Since ∀n ∃j Q(n, j) holds,

we can find a recursive function g(n) such that ∀nQ(n, g(n)). This is the g as
desired.

9.5 Homework #12, due November 26, 2007

Exercises 9.5.1.

1. (a) Let P be a Π0
1 subset of 2N. If P has only finitely many elements,

prove that all of the elements of P are recursive.

Hint: Use Lemma 7.5.3, a.k.a., the Magic Lemma.

(b) Does this hold with NN instead of 2N?

2. (a) Let P ⊆ 2N be nonempty Π0
1 with no recursive elements. Prove that

for all Y we can find X ∈ P such that X ′ ≡T X ⊕ 0′ ≡T Y ⊕ 0′.

Note: This result is a combination of the Low Basis Theorem and
the Friedberg Jump Inversion Theorem. The proof is basically a
combination of the two proofs.

(b) Deduce that for all Y we can find a random X such that X ′ ≡T
X ⊕ 0′ ≡T Y ⊕ 0′.

3. Recall that we have defined

K(n) = K(〈1, . . . , 1︸ ︷︷ ︸
n

〉)

for all n ∈ N.

Assume that f(n) is a recursive function such that

∞∑

n=0

1

2f(n)
< ∞ .

Prove that K(n) ≤ f(n) +O(1) for all n.

4. Prove that
K(τ) ≤ C(τ) +K(C(τ)) +O(1)

for all bitstrings τ .

9.6 The Kučera/Gács Theorem

Continuing the line already pursued in Sections 9.1 and 9.2, we now present
another theorem about degT (X) where X is random in the sense of Martin-Löf.

Theorem 9.6.1 (Kuc̆era 1985). For all Y ≥T 0′ we can find X such that
X ≡T Y and X is random.

132

Corollary 9.6.2 (Gács). ∀Y ∃X (X random and Y ≤T X).

Corollary 9.6.3. ∃X (X random and 0′ ≤T X).

To prove the theorem, we first prove some lemmas.

Lemma 9.6.4. Let P ⊆ 2N be a measurable set. Let σ be a bitstring such that
µ(P ∩Nσ) ≥ 1/2k where k ≥ 1. Then we can find at least two distinct bitstrings
τ of length 2k extending σ such that µ(P ∩Nτ) ≥ 1/24k.

Proof. Note first that

1

2|σ|
= µ(Nσ) ≥ µ(P ∩Nσ) ≥

1

2k

hence |σ| ≤ k < 2k since k ≥ 1. It follows that

P ∩Nσ =
⋃

τ⊃σ,|τ |=2k

P ∩Nτ (disjoint union)

hence
µ(P ∩Nσ) =

∑

τ⊃σ,|τ |=2k

µ(P ∩Nτ) .

Suppose for a contradiction that there is at most one τ as required. Then

∑

τ⊃σ,|τ |=2k

µ(P ∩Nτ) ≤
1

22k
+ (22k−|σ| − 1)

1

24k
<

1

22k
+ 22k 1

24k
=

2

22k
≤ 1

2k

so µ(P ∩Nσ) < 1/2k a contradiction.

Lecture 35: November 14, 2007

The following lemma has been implicit in previous results and homework, but
we pause to make it explicit.

Lemma 9.6.5. Let P ⊆ 2N be Π0
1. Then, the 2-place number-theoretic predi-

cate

Q(τ, k) ≡ µ(P ∩Nτ) ≥
1

2k

is Π0
1.

Proof. Let T ⊆ 2<N be a recursive tree such that P = {paths through T }. Then

µ(P ∩Nτ) ≥
1

2k
≡ (∀n ≥ |τ |)

(|{σ ∈ T | σ ⊇ τ, |σ| = n}|
2n

≥ 1

2k

)

and this is clearly Π0
1.

Lemma 9.6.6. Let P ⊆ 2N be Π0
1 of positive measure. Then for all Y we can

find X ∈ P such that Y ≤T X . Moreover X ≤T Y ⊕ 0′.

133

Proof. The idea of the proof is to apply Lemma 9.6.4 repeatedly to construct
a mapping f : 2<N → 2<N. Namely, for each ρ ∈ 2<N, f(ρa〈0〉) and f(ρa〈1〉)
will be incompatible bitstrings extending f(ρ) obtained from Lemma 9.6.4. For
technical reasons, we choose f(ρa〈0〉) and f(ρa〈1〉) to be the leftmost and
rightmost such strings. Here “leftmost” and “rightmost” are with respect to
some fixed recursive linear ordering of all bitstrings.

Here are the details of the construction of f . Fix k ≥ 1 such that µ(P) ≥
1/2k. Define f(ρ) by induction on |ρ|. Begin with f(〈〉) = 〈〉. Note that
N〈〉 = 2N hence µ(P ∩N〈〉) = µ(P) ≥ 1/2k. Assume inductively that f(ρ) has

already been defined and µ(P ∩ Nf(ρ)) ≥ 1/24nk where n = |ρ|. By Lemma
9.6.4 there are at least two bitstrings τ extending f(ρ) of length 2 · 4nk such

that µ(P ∩ Nτ) ≥ 1/24n+1k. Let f(ρa〈0〉) and f(ρa〈1〉) be the leftmost and
rightmost such τ . Note that f(ρa〈0〉) and f(ρa〈1〉) are distinct bitstrings of
length 2 · 4nk.

By Lemma 9.6.5 we have f ≤T 0′. Given Y ∈ 2N, let X =
⋃∞
n=0 f(Y ↾ n).

Clearly X ≤T Y ⊕ f ≤T Y ⊕ 0′ and Y ≤T X ⊕ f ≤T X ⊕ 0′. Moreover,
X ∈ Nf(Y ↾n) and P ∩Nf(Y ↾n) 6= ∅ for all n. Since P is a closed set, it follows
that X ∈ P .

It remains to show that Y ≤T X . Using X as an oracle, we describe how
to compute Y . Suppose we have already computed Y ↾ n. We need to decide
whether Y (n) = 0 or Y (n) = 1. We know what f(Y ↾ n + 1) is, namely it is
X ↾ 2 · 4nk. We also know what f(Y ↾ n) is, namely it is X ↾ 2 · 4n−1k if n > 0,
or 〈〉 if n = 0. Moreover, we know that Y (n) = 0 (respectively Y (n) = 1) if and

only if µ(P ∩Nτ) < 1/24n+1k for all τ extending f(Y ↾ n) of length 2 · 4nk lying
to the left (respectively right) of X ↾ 2 · 4nk. By Lemma 9.6.5 these predicates
are Σ0

1. Therefore, since one of these predicates holds, we can wait until we find
out which one holds, and at that point we know whether Y (n) = 0 or Y (n) = 1.
This completes the proof.

Lecture 36: November 15, 2007

Proof of Theorem 9.6.1. Let P be a Π0
1 set containing only random X . For

any Turing degree a ≥ 0′, let Y be such that a = degT (Y). Then by the above
lemma, we can find X ∈ P such that Y ≤T X and X ≤ Y ⊕0′. But Y ⊕0′ ≡T Y ,
so X ≡T Y .

In addition Jonas Kibelbek presented solutions of Problems 7 and 8 in Home-
work #11. See Section 9.8 below.

Lecture 37: November 23, 2007

Jonas presented solutions of some problems in Homework #10. See Section 9.7
below.

134

Lecture 38: November 26, 2007

We have proved the following two theorems.

Theorem 9.6.7 (van Lambalgen’s Theorem). The following are pairwise equiv-
alent:

1. A⊕B is random

2. A is random, and B is random relative to A.

3. B is random, and A is random relative to B.

Theorem 9.6.8 (Kučera/Gács Theorem). For all Y ≥T 0′ we can find a random
X ≡T Y .

We now combine these two theorems to deduce the following corollaries.

Corollary 9.6.9. Suppose A is random, A ≤T B, B is random relative to C,
and C ≥T 0′. Then A is random relative to C.

Proof. Since C ≥T 0′, we can assume by Kuc̆era/Gács that C is random. Since
B is random relative to C, it follows by van Lambalgen that B ⊕C is random.
Hence, by van Lambalgen again, C is random relative to B. Hence, since A ≤T
B, C is random relative to A. We are also assuming that A is random, so by
van Lambalgen we get that A⊕ C is random. Applying van Lambalgen again,
we see that A is random relative to C.

Remark 9.6.10. The previous corollary actually holds without the assumption
C ≥T 0′. This result is due to Miller/Yu 2004.

Definition 9.6.11. We say that A is n-random if A is random relative to
0(n−1). We say that A is arithmetically random if A is n-random for all n.

For example,

1-random ≡ random,

2-random ≡ random relative to 0′,

3-random ≡ random relative to 0′′,

etc.

Thus we have a hierarchy which we can use to measure higher and higher
amounts of randomness.

Corollary 9.6.12. Assume that A is random and A ≤T B.

1. If B is n-random, then so is A.

2. If B is arithmetically random, then so is A.

135

Proof. In the previous corollary, let C = 0(n−1).

Remark 9.6.13. The above corollaries can be paraphrased as follows:

If A is random, and if A ≤T B for some B which is “highly random,”
then A itself is “highly random.”

Thus we see that Martin-Löf randomness is in a sense a threshhold amount of
randomness. Beyond this threshhold, higher amounts of randomness behave
nicely in that they propagate downward via Turing reducibility. This phe-
nomenon may be viewed as further evidence for our belief that Martin-Löf’s
concept of randomness is a very natural concept.

9.7 Some solutions for Homework #10

Problem 4

LetX ∈ 2N. We say thatX is 2-random ifX is random relative to 0′. Recall also
that X is weakly 2-random if X /∈ any Π0

2 set of measure 0. Let a = degT (X) =
the Turing degree of X .

Part (a): Show that if X is 2-random then X is weakly 2-random.

Solution. We need to show

(X /∈ any Martin-Löf test relative to 0′)⇒
(
X /∈ any Π0

2 null set
)

We will do this by showing that every Π0
2 null set P corresponds to a Martin-

Löf test relative to 0′.
Since P is Π0

2, we have X ∈ P ≡ ∀m ∃nR(X,m, n) where R is recursive. If

we consider the Σ0
1 sets Wm = {X | ∃nR(X,m, n)}, we see that P =

∞⋂

m=0

Wm.

That is, a Π0
2 set is the intersection of a uniform sequence of Σ0

1 sets. We may
assume that W0 ⊇W1 ⊇ · · · ⊇Wm ⊇ · · ·, since we could replace each Wm with

W̃m =

m⋂

i=0

Wi, which is again a uniform sequence of Σ0
1 sets.

The difference between P and a Martin-Löf test is that we do not have a
nice bound on how quickly µ(Wm) goes to 0. (Recall that a Martin-Löf test is
T =

⋂∞
n=0 Vn where the Vn are uniformly Σ0

1 and µ(Vn) ≤ 1
2n .) We can use the

Halting Problem to estimate the measures µ(Wm) and take a subsequence f(n)
so that µ(Wf(n)) ≤ 1/2n.

Recall that we have a standard way to index Σ0
1 sets; Ue = {X | ϕ(1),X

e (0) ↓}.
By the Parametrization Theorem, we can find a total function h(m) such that

Wm = Uh(m). It is helpful to define the setsWm,s = Uh(m),s = {X | ϕ(1),X↾s
e,s (0) ↓

}, which are “finite approximations of Wm.” For all s, Wm,s is recursive, and

Wm,0 ⊆Wm,1 ⊆ · · · ⊆Wm,s ⊆ · · · with
∞⋃

s=0

Wm,s = Wm.

136

Define the partial recursive function ψ(n,m) = the least s such that µ(Wm,s) >
1/2n. Then ψ(n,m) halts if µ(Wm) > 1/2n and it fails to halt if µ(Wm) ≤ 1/2n.
So, using the Halting Problem, we can compute an m sufficiently large that
µ(Wm) ≤ 1/2n.

Define f(n) = the least m such that ψ(n,m) fails to halt. Then Wf(n)

is a uniform Σ0,0′

1 sequence with µ(Wf(n)) ≤ 1/2n. Thus, P =
⋂∞
m=0Wm =⋂∞

n=0Wf(n) is a Martin-Löf test relative to 0′; and so every 2-random X is also
weakly 2-random.

Part (b): Show that if X is weakly 2-random then inf(a,0′) = 0.

Solution. Suppose that inf(a,0′) 6= 0. Let Y be such that 0 <T Y ≤T 0′ and
Y ≤T X . Since Y ≤T 0′, by Post’s Theorem, Y is ∆0

2. Since Y ≤T X , there is

some e such that Y = ϕ
(1),X
e .

We will show that the set P = {X | Y = ϕ
(1),X
e } is Π0

2 of measure 0, so that
X cannot be weakly 2-random. Since Y is nonrecursive, we know that P has
measure 0. (See problem 7 of Homework #11.) We check that P is Π0

2:

X ∈ P ≡ ∀n

ϕ(1),X

e (n) ↓︸ ︷︷ ︸
Σ0

1

∧ ϕ(1),X
e (n) = Y (n)︸ ︷︷ ︸

∆0
2

︸ ︷︷ ︸
∆0

2︸ ︷︷ ︸
Π0

2

Part (c): In Part (b), what if we assume only that X is random?

Solution. By the Low Basis Theorem, we can show that there exists X that are
random and low. That is, X ′ ≡T 0′, which implies X <T 0′. Then, letting
a = degT (X), inf(a,0′) = a 6= 0. Thus, the result of part (b) does not hold if
we only assume that X is random.

Part (d): If X is 2-random then X ′ ≡T X ⊕ 0′.

Solution. Recall that X ′ = HX = {e | ϕ(1),X
e (0) ↓} = the Halting Problem

relative to X .
Let Ue = {X | ϕ(1),X

e (0) ↓}
= the eth Σ0

1 subset of 2N .

Let Ue,s = {X | ϕ(1),X↾s
e,s (0) ↓}

=
⋃
σ∈2N,|σ|=sNσ where ϕ

(1),σ
e,s (0) ↓ .

Note that

1. Ue,s is a finite union of neighborhoods.

2. µ(Ue,s) is a recursive function of e, s.

137

3. Ue =

∞⋃

s=0

Ue,s, hence µ(Ue) = lims→∞ µ(Ue,s).

Let f(e) = the least s such that µ(Ue \Ue,s) ≤ 1/2e. We claim that f ≤T 0′.
This is because f(e) = the least s such that (∀t ≥ s) (µ(Ue,t \ Ue,s) ≤ 1/2e)
which is a Π0

1 condition.

Let Ve = Ue \ Ue,f(e). Note that µ(Ve) ≤ 1/2e. Moreover Ve is Σ0,f
1 , hence

Σ0,0′

1 . So the sets Ve, e = 0, 1, 2, . . . form a test for randomness relative to 0′.
By Solovay’s Lemma relative to 0′, since X is random relative to 0′, X /∈ Ve

for all but finitely many e.
Therefore, for all sufficiently large e, e ∈ HX ≡ X ∈ Ue ≡ X ∈ Ue,f(e). It

follows that HX ≤T X ⊕ f ≤T X ⊕ 0′, which is what we need to show that
X ′ ≡T X ⊕ 0′.

9.8 Some solutions for Homework #11

Problem 3

Let P ⊆ 2N be Π0
1. Let Φ(X,n) be a partial recursive functional such that

Φ(X,n) ↓ for all X ∈ P and all n. We are to find a recursive upper bound on
these values, g(n), where g is a total recursive function.

One solution was given in class earlier, using several lemmas. A more hands-
on approach is to note that for each X ∈ P and each n there is a finite amount
of information from X that causes Φ(X,n) to halt. This finite amount of infor-
mation is essentially a neighborhood, and P is covered by these neighborhoods.
Since P is a Π0

1 subset of 2N, it is closed and hence compact, so we can find a fi-
nite subcovering. In fact, we can find such a finite subcovering recursively. Since
we now have only finitely many neighborhoods to consider, we can take g(n) to
be one more than the maximum value of Φ(X,n) on these neighborhoods.

Problem 4

Given P ⊆ 2N Π0
1 nonempty. To find a hyperimmune-free X ∈ P , we construct

a descending sequence of nonempty Π0
1 sets

P = Q0 ⊇ Q1 ⊇ · · · ⊇ Qe ⊇ Qe+1 ⊇ · · ·

and at the end of the construction we let X ∈ ⋂∞
e=0Qe.

Stage 0. Let Q0 = P .
Stage e+ 1. Given Qe, there are two cases.

Case 1: ∃n (∃X ∈ Qe) (ϕ
(1),X
e (n) ↑). In this case, fix such an n and let

Qe+1 = {X ∈ Qe | ϕ(1),X
e (n) ↑}. Note that Qe+1 is Π0

1 because we have chosen
a particular n and defined

X ∈ Qe+1 ≡ X ∈ Qe ∧ ϕ(1),X
e (n) ↑ .

138

Moreover Qe+1 is nonempty by the choice of n. We have now satisfied the eth
requirement for hyperimmune-freeness, because the partial X-recursive function

ϕ
(1),X
e (n) is not total for any X ∈ Qe+1.

Case 2: Not case 1. In this case let Qe+1 = Qe. Then, the partial recursive

functional Φ(X,n) ≃ ϕ
(1),X
e (n) is ↓ for all X ∈ Qe+1 and all n. Hence by

Problem 3 we can find a total recursive function ge such that ϕ
(1),X
e (n) ↓ < ge(n)

for all X ∈ Qe+1 and all n. Thus, in this case also, the eth requirement for
hyperimmune-freeness has been satisfied.

Problem 7

Part (a): Prove that if Y is nonrecursive then µ({X | Y �T X}) = 1.

Solution. This is equivalent to saying that µ({X | Y ≤T X}) = 0. We can

simplify by defining the sets Ce = {X | Y = ϕ
(1),X
e }. Then our problem is

equivalent to showing that µ(Ce) = 0 for all e. (Since the union of countably
many measure 0 sets has measure 0.)

Suppose for some e, Ce has positive measure. It would be nice if we could
conclude that there is some neighborhood Nσ ⊆ Ce, so that Y can be computed,
using the program given by e, using as an oracle anyX ⊃ σ. This would make Y
recursive, since it could be computed using just the finite amount of information
in σ, which would give us the needed contradiction.

However, it is not true that if Ce has positive measure, it must contain
some neighborhood. (For example, the set of random elements has measure 1,
but contains no neighborhoods.) We can however approximate Ce closely by
neighborhoods. By regularity of the measure µ, there is an open set U containing
Ce with µ(U) < 4µ(Ce)/3. Since U is an open set, it is a union of neighborhoods,
U =

⋃
σ∈S Nσ. We can take a finite subset F of S so that V =

⋃
σ∈F Nσ has

measure µ(V) > 3µ(U)/4. This gives us a very simple open set V that is a good
approximation of Ce. The set V is a finite union of neighborhoods, and at least
2/3 of V by measure is in Ce. (The worst case is that all of U \Ce is in V , but
µ(U \ Ce) < µ(U)/4 < µ(V)/3.)

This means that, by measure, most of the X ∈ V are such that ϕ
(1),X
e = Y .

So, to compute Y (n), find the least k such that for strings σ of length k with

Nσ ⊆ V , the computation ϕ
(1),σ
e (n) halts with the same value for enough σ’s to

account for at least 1/3 of the measure of V . Then the value at which they halt
is Y (n). Thus, Y is computable, which contradicts our initial assumption.

Hence, Ce = {X ∈ 2N | Y = ϕ
(1),X
e } has measure 0 for all e.

Part (b): Deduce that for each nonrecursive Y we can find a random X such
that Y �T X .

Solution. Note that the set R = {X | X is random} has measure 1. So, for any
nonrecursive Y , R ∩ {X ∈ 2N | Y �T X} is the intersection of two measure 1
sets, and thus has measure 1 and is nonempty.

139

Part (c): More generally, given a sequence of nonrecursive oracles Yi, i =
0, 1, 2, . . ., find an X which is n-random for all n such that Yi �T X for all i.

Solution. For each n, the set Rn = {X | X is n-random} has measure 1. (This
is because the Martin-Löf tests relative to 0(n−1) can be enumerated as Tni, i =
0, 1, 2, . . ., i.e., there are only countably many of them. Then Rn = 2N\⋃∞

i=0 Tn,i
where

⋃∞
i=0 Tni has measure 0 because each Tn,i has measure 0.)

Thus
⋂∞
n=0Rn has measure 1. Similarly,

⋂∞
i=0{X ∈ 2N | Yi �T X} has

measure 1. Their intersection still has measure 1 and so is nonempty.

Problem 8

Part (a): Assume that P ⊆ 2N is Π0
1 and ¬∃X (X ∈ P ∧X is recursive). Find

a nonrecursive Y such that ∄X (X ∈ P ∧X ≤T Y).

Solution. We will construct such a Y by finite approximation. We need to
guarantee that Y is nonrecursive. (This step is straightforward; we have done
it several times before.) The new step is to guarantee that Y cannot be used to

compute any X ∈ P . That is, for each e, we need to guarantee that ϕ
(1),Y
e is

not in P .
Stage 0. Let σ0 = 〈〉.
Stage 2e+1.
Case 1: If ϕe(|σ2e|) = 0, let σ2e+1 = σ2e

a〈1〉.
Case 2: If ϕe(|σ2e|) 6= 0, let σ2e+1 = σ2e

a〈0〉.
The odd numbered steps guarantee that Y =

⋃∞
n=0 σn is nonrecursive.

Stage 2e+2. Find a σ ⊃ σ2e+1 such that there is no Y ⊃ σ with ϕ
(1),Y
e in

P . Let σ2e+2 = σ.
Claim: There is no need for a case 2, since such a σ always exists.
It is clear that if the claim is true, then Y =

⋃∞
n=0 σn will not compute any

X in P , and the problem will be complete.
Suppose there is no such σ. Then for all τ ⊇ σ2e+1, there is some Y ⊃ τ

with ϕ
(1),Y
e in P . We will show that some X in P is recursive.

To compute X , first find the least τ0 ⊇ σ2e+1 such that ϕ
(1),τ0
e (0) halts;

define X(0) = ϕ
(1),τ0
e (0).

Given τn, let τn+1 be the least extension of τn such that ϕ
(1),τn
e (n) halts;

define X(n+ 1) = ϕ
(1),τn+1
e (n+ 1).

Note that we can always find such extensions, by the assumption that every

string τ extending σ2e+1 is an initial segment for some Y where ϕ
(1),Y
e is total

and in P . Clearly, X is recursive. Since P is Π0
1, P is the set of infinite paths

through a recursive tree T . Since each τn is an initial segment for some Y with

ϕ
(1),Y
e in P , ϕ

(1),τn
e ↾ n = ϕ

(1),Y
e ↾ n is in the tree T . That is, X ↾ n = ϕ

(1),τn
e ↾ n

is in T for all n; thus X ∈ P .
This gives us our contradiction, since we assume that P contains no recursive

elements.

140

Part (b): Find a nonrecursive Y such that ¬∃X (X is random ∧X ≤T Y).

Solution. Recall that the set of random elements R = 2N \ ⋂∞
n=0 Vn where⋂∞

n=0 Vn is a universal Martin-Löf test and each Vn is Σ0
1. Then R =

⋃∞
n=0(2

N \
Vn) is the union of countably many Π0

1 sets.
So, to construct a Y that does not compute any random X , we modify the

above finite approximation construction so that we take care of all the sets
Pn = 2N \ Vn. (Note that these are Π0

1 sets without any recursive elements, as
required.)

Stage 0: Let σ0 = 〈〉.
Stage 2k+1:
Case 1: If ϕk(|σ2k|) = 0, let σ2k+1 = σ2k

a〈1〉.
Case 2: If ϕk(|σ2k|) 6= 0, let σ2k+1 = σ2k

a〈0〉.
The odd numbered steps guarantee that Y =

⋃∞
n=0 σn is nonrecursive.

Stage 2k+2: Let n = (k)0 and e = (k)1. Find a σ ⊃ σ2k+1 such that there

is no Y ⊃ σ with ϕ
(1),Y
e in Pn. Let σ2k+2 = σ.

Let Y =
⋃∞
n=0 σn. Then Y is nonrecursive and no X ∈ Pn for any n is

Turing reducible to Y . Since each random X ∈ some Pn, no random X is
Turing reducible to Y .

9.9 Comments on Homework #12

Problem 4

The problem should have been to prove K(τ) ≤ C(τ) +K(C(τ)) +O(1).

Solution. Define M by

M(ρaσ) ≃ τ ≡ U(ρ) = 〈1, . . . , 1︸ ︷︷ ︸
|σ|

〉 ∧ U∗(σ) ≃ τ

where U is a universal prefix-free machine and U∗ is a universal machine. It
is easy to verify that M is a prefix-free machine. Given τ , let σ be such that
U∗(σ) ≃ τ and |σ| = C(τ). Let ρ be such that U(ρ) = 〈1, . . . , 1︸ ︷︷ ︸

|σ|

〉 and |ρ| =

K(|σ|). Then M(ρaσ) ≃ τ , hence K(τ) ≤ |ρ|+ |σ|+O(1) = C(τ) +K(C(τ)) +
O(1).

9.10 Homework #13, due December 3, 2007

Exercises 9.10.1. Recall that A is said to be strongly random if A does not
belong to any Π0

2 set of measure 0.

1. (a) Suppose A ⊕ B is strongly random. Prove that inf(a,b) = 0 where
a = degT (A) and b = degT (B).

141

(b) What if we assume only that A⊕B is random?

2. Prove the following. If A is random and A ≤T B and B is strongly
random, then A is strongly random.

3. Prove that the following conditions are equivalent.

(a) A is random relative to 0(n) for all n.

(b) A does not belong to any arithmetical set of measure 0.

In this case we say that A is arithmetically random.

9.11 LR- and LK-reducibility

We shall end the course by discussing two additional methods of classifying Tur-
ing oracles. These classification methods are motivated by the ideas of relative
randomness and relative prefix-free complexity, respectively.

Definition 9.11.1 (LR-reducibility). Write A ≤LR B to mean that

∀X (if X is B-random then X is A-random).

Write A ≡LR B to mean that A ≤LR B and B ≤LR A. Write A <LR B to
mean that A ≤LR B and B �LR A.

Remark 9.11.2. The idea of LR-reducibility is that we are classifying oracles
according to their ability to reveal nonrandom patterns.

Remark 9.11.3. Clearly A ≤T B implies A ≤LR B. Moreover, LR-reducibility
is similar to Turing reducibility in that it is a transitive, reflexive relation on
Turing oracles. Likewise A ≡T B implies A ≡LR B, and ≡LR is similar to ≡T
in that it is an equivalence relation.

Exercise 9.11.4. Show that A <LR A
′ for all A. Here A is any Turing oracle,

and A′ is the Turing jump of A.

Solution. We know that A <T A′, hence A ≤LR A′. It remains to show that
A′ �LR A. There are several ways to see this. First, by Corollary 9.2.7 rela-
tivized to A, let X be A-random and low relative to A, i.e., (X ⊕ A)′ ≡T A′.
Since X is low relative to A, it follows in particular that X ≤T A′, hence X
is not A′-random. Thus X witnesses that A′ �LR A. Alternatively, by the
Kučera/Gács Theorem 9.6.1 relativized to A, let X be A-random such that
X ⊕ A ≡T A′. Again it follows that X ≤T A′, hence X is not A′-random, so
again X witnesses A′ �LR A.

The following theorem says that, not suprisingly, LR-reducibility does not
coincide with Turing reducibility.

Theorem 9.11.5 (Kuc̆era/Terwijn 2002). For all A we can find B such that
A <T B and A ≡LR B.

142

We also have the following characterization of LR-reducibility. This charac-
terization is interesting in that it does not mention randomness.

Theorem 9.11.6 (Kjos-Hanssen 2005). A ≤LR B if and only if every Π0,A
1 set

of positive measure includes a Π0,B
1 set of positive measure.

The second classification method which we want to consider is as follows.

Definition 9.11.7 (LK-reducibility). Write A ≤LK B to mean that

KB(τ) ≤ KA(τ) +O(1)

for all bitstrings τ . Write A ≡LK B to mean that A ≤LK B and B ≤LK A.
Write A <LK B to mean that A ≤LK B and B �LK A.

Remark 9.11.8. Just as for LR-reducibility, we have similar properties for
LK-reducibility. Namely, A ≤T B implies A ≤LK B, and LK-reducibility is
reflexive and transitive, and ≡LK is an equivalence relation.

The idea of LK-reducibility is that we are classifying oracles according to
their ability to compress bitstrings. From this point of view, the following the-
orem is remarkable. It says that LR-reducibility and LK-reducibility coincide.

Theorem 9.11.9 (Kjos-Hanssen/Miller/Solomon 2006). A ≤LR B if and only
if A ≤LK B.

In the time remaining, we shall try to prove as many of these theorems as
possible.

Lecture 39: November 28, 2007

Remark 9.11.10 (Final Examinations). December 10, 12, 14. Each student
will have an individual 1-hour oral final exam. The exam will consist of a
question from the list handed out in class, a problem to solve similar to easier
homework questions, and a presentation of the research project. Please turn in
the paper for your research project by 8 am on Monday, December 10 so
that it can be reviewed before the final examination, when grades are assigned.

We now begin the proofs of some of the theorems on LR-reducibility.
Let U, V be Σ0

1 subsets of 2N, with U =
⋃
σ∈S Nσ, V =

⋃
τ∈T Nτ where S, T

are prefix-free Σ0
1 subsets of 2<N.

Define a product operation UV =
⋃
σ∈S

⋃
τ∈T Nσaτ .

Properties:

1. UV is Σ0
1.

2. Given indices of U, V (qua Σ0
1 sets), we can compute an index of UV (qua

Σ0
1 set). Namely,

Ue = {X | ϕ(1),X
e (0) ↓} =

⋃

σ∈Se

Nσ

where Se = {σ | ϕ(1),σ
e,|σ| (0) ↓ ∧(∀ρ ⊂ σ)ϕ

(1),ρ
e,|ρ| (0) ↑}

143

3. UV ⊆ U (because Nσaτ ⊆ Nσ).

4. µ(UV) = µ(U)µ(V).

(because each Nσ is a copy of the entire Cantor space, NσV has measure
µ(V)/2|σ|, and UV =

⋃
σ∈S NσV .)

5. The product is associative. (UV)W = U(VW).

Define Un = U · · ·U︸ ︷︷ ︸
n

. Then µ(Un) = µ(U)n. If µ(U) < 1, then limn→∞ µ(Un) =

0. Let k be such that µ(Uk) ≤ 1/2, then µ(Unk) = (µ(Uk)n) ≤ 1/2n, hence
Unk, n = 0, 1, 2, . . . is a Martin-Löf test.

Lecture 40: November 29, 2007

Review:

Definition 9.11.11. Let U, V ⊆ 2N be open with U =
⋃
σ∈S Nσ and V =⋃

τ∈T Nτ where S, T are prefix-free sets of bitstrings. Define UV =
⋃
σ∈S,τ∈T Nσaτ .

This is again an open set.

Remark 9.11.12. This product operation UV is not really an operation on
open sets. Rather, it is an operation on the prefix-free sets of bitstrings which
define these open sets. To be absolutely correct we should write ST = {σaτ |
σ ∈ S, τ ∈ T } and note that this is again a prefix-free set of bitstrings. However,
we shall instead continue to abuse notation by writing UV as if it were an
operation on open sets.

Remark 9.11.13. Our product operation UV has the following properties:

1. UV ⊆ U .

2. (UV)W = U(VW).

3. µ(UV) = µ(U)µ(V).

4. If U and V are Σ0
1, then UV is Σ0

1. Moreover, this holds uniformly.

Letting Un = U · · ·U︸ ︷︷ ︸
n

we see that µ(Un) = µ(U)n. Therefore, if µ(U) < 1

we have limn→∞ µ(Un) = limn→∞ µ(U)n = 0 geometrically. If in addition U
is Σ0

1, then the sequence of sets Un, n = 0, 1, 2, . . . is uniformly Σ0
1, so we have

a Martin-Löf test. Thus, for any random X ∈ 2N we have X /∈ Un for some
n. Consider the least such n. Then X ∈ Un−1 and X /∈ Un = Un−1U . Thus
X = σ1

a · · ·aσn−1
aY for some σ1, . . . , σn−1 ∈ S and some Y /∈ U .

We have now essentially proved the following lemma:

Lemma 9.11.14 (Kuc̆era, 1985). Let P ⊆ 2N be Π0
1 of positive measure. Then

for all random X ∈ 2N there exist σ and Y such that X = σaY and Y ∈ P .

144

Proof. Let U = 2N \ P and reason as above. Let σ = σ1
a · · ·aσn−1 and let Y

be such that X = σaY .

Remark 9.11.15. The above lemma is a refinement of the 0− 1 Law in prob-
ability theory.

Corollary 9.11.16. Let P,Q be nonempty Π0
1 sets consisting of random ele-

ments. Then P,Q are Turing isomorphic.

Proof. For each X ∈ P we haveX = σaY for some bitstring σ and some Y ∈ Q,
hence X ≡T Y . And vice versa.

The following lemma is implicit in earlier work.

Lemma 9.11.17. Let P ⊆ 2N be Π0
1. The following are pairwise equivalent:

1. µ(P) > 0

2. P includes a nonempty Π0
1 set consisting of random element.

3. P contains a random element.

Proof. (1⇒ 2) Recall that R = {X | X is random } is Σ0
2, hence R =

⋃∞
n=0 Pn

where Pn is Π0
1. Also, µ(R) = 1. If µ(P) > 0, then µ(P ∩ Pn) > 0 for some n.

Thus P ∩ Pn is a Π0
1 set which is included in P and consists entirely of random

elements.
(2⇒ 3) is trivial.
(3⇒ 1) because random ⇒ weakly random.

Our goal now is to prove the following result giving several characterizations
of LR-reducibility.

Theorem 9.11.18 (Kjos-Hanssen 2005). The following are pairwise equivalent.

1. A ≤LR B. (This means that B-random implies A-random.)

2. Every Π0,A
1 set of positive measure includes a Π0,B

1 set of positive measure.

3. There exists a Π0,A
1 set consisting of A-random elements which includes a

Π0,B
1 set of positive measure.

4. There exists a Π0,B
1 set of positive measure consisting of A-random ele-

ments.

Toward the proof of this theorem, note that 2⇒ 3 follows from the previous
lemma relativized to A. Also, 3 ⇒ 4 is trivial. To prove 4 ⇒ 1, assume 4 and
let Q be a Π0,B

1 set of positive measure consisting of A-random elements. If X
is B-random, then by Lemma 9.11.14 relativized to B we have X = σaY for
some Y ∈ Q. It follows that Y is A-random, hence X is A-random, and this
proves 1.

It remains to prove 1 ⇒ 2. In order to prove 1 ⇒ 2 we make the following
definition.

145

Definition 9.11.19. Let U ⊆ 2N be open. We say that U is fat if U intersects
every Π0

1 set of positive measure. We say that U is B-fat if U intersects every

Π0,B
1 set of positive measure.

Note that 2 amounts to saying that every B-fat Σ0,A
1 set is of measure 1.

Lemma 9.11.20. If U and V are fat, then UV is fat.

Proof. Let U and V be fat. Let Q be a Π0
1 set of positive measure. By the

previous lemma, we may assume every element of Q is random. Write U =⋃
σ∈S Nσ where S is prefix-free. Then UV =

⋃
σ∈S σ

aV . Since U is fat, U∩Q 6=
∅, hence Nσ∩Q 6= ∅ for some σ ∈ S. Hence Nσ∩Q is Π0

1 of positive measure (by
previous lemma). Since V is fat, σaV is fat within Nσ. Hence Q ∩ (σaV) 6= ∅,
hence Q ∩ UV 6= ∅, Q.E.D.

Note also that Lemma 9.11.20 relativizes as follows:

For all B, if U and V are B-fat then UV is B-fat.

Lecture 41: November 30, 2007

Review:

Lemma 9.11.21. Every Π0
1 set of positive measure includes a Π0

1 set of positive
measure consisting of random elements.

Proof. This is because {X | X is random} is Σ0
2 of measure 1.

Lemma 9.11.22. Every Π0
1 set which contains a random element is of positive

measure.

Proof. This is because randomness implies weak randomness.

Lemma 9.11.23 (Kuc̆era’s Lemma). If P is Π0
1 of positive measure then ∀X (X

random ⇒ P contains a “tail” of X), i.e., X = σaY where Y ∈ P .

We have also proved:

Lemma 9.11.24. If U and V are open and fat, then UV is open and fat.
(Recall fat = “intersects every Π0

1 set of positive measure.”)

We shall now prove Theorem 9.11.18.

Proof. (2⇒ 3) is immediate from Lemma 9.11.21 relativized to A.
(3⇒ 4) is trivial.
(4 ⇒ 1) follows from Kuc̆era’s Lemma 9.11.23. Namely, let P be as in 4,

i.e., P is Π0,B
1 of positive measure consisting of A-random elements. Let X be

B-random. By Kuc̆era’s Lemma relative to B, X has a tail in P , i.e., X = σaY
where Y ∈ P . By our assumption about P , Y is A-random. Therefore X is
A-random.

It remains to prove (1⇒ 2).

146

Assume 1, i.e., A ≤LR B. To prove 2, it suffices to prove that every B-fat
Σ0,A

1 set is of measure 1.

Let U be a Σ0,A
1 set which is B-fat. Assume for a contradiction that µ(U) <

1. As we have seen, the sets Un, n = 1, 2, 3, . . . form a test for A-randomness.
Hence every X ∈ ⋂∞

n=1 U
n is not A-random. Also, since U is B-fat, by Lemma

9.11.24 relativized to B we see that Un is B-fat for all n.
By Lemma 9.11.21 relativized to B, let P be nonempty Π0,B

1 consisting of
B-random elements. By Lemma 9.11.22 we have µ(P) > 0. More generally, by
Lemma 9.11.22 we have

∀σ (P ∩Nσ 6= ∅ ⇒ µ(P ∩Nσ) > 0).

Since Un is B-fat, it follows that

∀n ∀σ (P ∩Nσ 6= ∅ ⇒ (P ∩Nσ ∩ Un 6= ∅)).
Since Un is open, it follows that

∀n ∀σ (P ∩Nσ 6= ∅ ⇒ (∃τ ⊃ σ) (P ∩Nτ 6= ∅ ∧Nτ ⊆ Un)).
Apply this repeatedly starting with σ0 = 〈〉 to get an increasing sequence of
bitstrings σ0 ⊂ σ1 ⊂ · · · ⊂ σn ⊂ σn+1 ⊂ · · · such that for all n,

P ∩Nσn
6= ∅ and Nσn

⊆ Un.
Finally let X =

⋃∞
n=1 σn. Then X ∈ P (because P is closed), hence X is B-

random. On the other hand X ∈ ⋂∞
n=1 U

n, hence X is not A-random. This
contradicts our assumption A ≤LR B.

This completes the proof of Theorem 9.11.18.

We now prove one more important theorem concerning LR-reducibility.

Theorem 9.11.25 (Kučera/Terwijn, 2002). We can find a simple r.e. set A
such that A ≤LR 0.

Corollary 9.11.26. ∃A (A ≤LR 0 and A not recursive).

Corollary 9.11.27. ≤LR does not coincide with ≤T .

Corollary 9.11.28. ∃A (A is recursively enumerable ∧ 0 <T A < T 0′).

Proof. Let A be as in Theorem 9.11.25. Since A is simple, A is recursively
enumerable and 0 <T A ≤T 0′. It remains to prove that A <T 0′. For this it
suffices to prove that 0′ �LR 0, but this is immediate from Exercise 9.11.4.

Remark 9.11.29. We have seen in Theorem 5.5.7 (due to Kleene and Post
in 19454) that there exist Turing degrees a such that 0 < a < 0′. Corollary
9.11.28 improves this by obtaining a recursively enumerable Turing degree with
these properties. This result is originally due to Friedberg 1957 and Muchnik
1956, independently and by a different method.

Some other known results are as follows:

147

Theorem 9.11.30. A ≤LR 0⇒ A is low i.e., A′ ≡T 0′.

Corollary 9.11.31. A ≤LR 0⇒ A ≤T 0′, hence A is ∆0
2.

Corollary 9.11.32. There are only countably many A such that A ≤LR 0.

Theorem 9.11.33. If A ≤LR 0 and B ≤LR 0 then A⊕B ≤LR 0.

Theorem 9.11.34. A ≤LR 0⇒ ∃B (B r.e., A ≤T B, B ≤LR 0).

Theorem 9.11.35. A ≤LR B ⇔ A ≤LK B.

Remark 9.11.36. Let A be a Turing oracle. If A ≤LR 0 we say that A is low-
for-random. If A ≤LK 0 we say that A is low-for-K. The above results have
been proved in the past few years and give much insight concerning oracles
which are low-for-random. In particular, A is low-for-random if and only if A is
low-for-K.

We now begin the proof of the Kučera/Terwijn Theorem 9.11.25.

Proof of Theorem 9.11.25. We know we can find a Π0
1 set P with µ(P) > 1/2

such that ∀X (X ∈ P ⇒ X is random).
Let us uniformly relativize this to an arbitrary oracle C. Thus PC is uni-

formly Π0,C
1 , µ(PC) > 1/2 and ∀X (X ∈ PC ⇒ X is C-random).

Let UC = 2N \ PC . Note that UC is Σ0,C
1 (uniformly) and µ(UC) < 1/2.

To prove the theorem, it will suffice to build a simple r.e. set A and a Σ0
1 set

V such that UA ⊆ V and µ(V) < 1.
Then, letting Q = 2N \ V , it follows that Q is Π0

1 and µ(Q) > 0 and all
elements of Q are A-random. Hence by Theorem 9.11.18 every random X is
A-random, i.e., A ≤LR 0, Q.E.D.

The proof will be completed next class.

Lecture 42: December 3, 2007

We have reduced Theorem 9.11.25 to a lemma:

Lemma 9.11.37. For all oracles C let UC be uniformly Σ0,C
1 of measure < 1/2.

Then we can find a simple r.e. set A and a Σ0
1 set V such that UA ⊆ V and

µ(V) < 1.

We shall now prove this lemma and thereby complete the proof of Theorem
9.11.25.

Proof. We shall build A as A =
⋃∞
s=0 As where A0 ⊆ A1 ⊆ · · · ⊆ As ⊆ As+1 ⊆

· · · is an increasing recursive sequence of finite sets. The entire construction will
be recursive. Consequently A will be r.e. We will let V =

⋃∞
s=0 U

As↾s
s so that

V is Σ0
1. We need to insure (1) A is simple, (2) µ(V) < 1.

148

Explanation: UC is uniformly Σ0,C
1 , so let e be such that UC = {X |

ϕ
(1),C⊕X
e (0) ↓} for all oracles C. Define UC↾s

s = {X | ϕ(1),C↾s⊕X↾s
e,s (0) ↓} and

note that this is a finite union of neighborhoods, namely

UC↾s
s =

⋃

|σ| = s

ϕ(1),C↾s⊕σ
e,s (0) ↓

Nσ .

In particular, UAs↾s
s , s = 0, 1, 2, . . . is the union of a finite set of neighborhoods,

and this finite set of neighborhoods can be computed recursively from s.
To control µ(V), let us write V as a disjoint union, V =

⋃∞
t=0 Vt where

Vt = UAt↾t
t \ ⋃s<t UAs↾s

s . Note that Vt, t = 0, 1, 2, . . . is again a recursive
sequence of finite unions of neighborhoods. Moreover, the sets Vt, t = 0, 1, 2, . . .
are pairwise disjoint.

Recall that an r.e. set A is said to be simple if (1) N \ A is infinite, (2)
∀e (We infinite ⇒ A∩We 6= ∅). To insure that A is simple, we use our standard

enumeration of all r.e. sets, We = {n | ϕ(1)
e (n) ↓}. We use the approximations

We,s = {n < s | ϕ(1)
e,s(n) ↓}. Clearly We,s is a recursive sequence of finite sets,

and We =
⋃∞
s=0We,s.

The construction of A is as follows.
Stage 0: Let A0 = ∅.
Assume that At, t = 0, 1, . . . , s have already been defined. Hence UAt↾t

t and
Vt, t = 0, 1, . . . , s have already been defined. In preparation for stage s + 1,
define c(n, s) = µ(

⋃
n<t≤s Vt) =

∑
n<t≤s µ(Vt). The recursive function c(n, s) is

known as a “cost function.” Its purpose is to measure the potential “cost” of
putting n into A at stage s+ 1.

Stage s+ 1: For each e < s such that As ∩We,s = ∅, look for n ∈We,s such
that n ≥ 2e and c(n, s) ≤ 1/2e+2 and, if such an n is found, put the least such
n into As+1.

This completes our description of the construction. Note that the entire
construction is recursive.

We claim that N \A is infinite.
To see this, note that for each e at most one n was put into A for the

sake of intersecting We. Therefore, our restriction n ≥ 2e insures that |A ∩
{0, 1, 2, . . . , 2e−1}| ≤ e for all e. It follows that the complement of A is infinite.

We claim that We infinite ⇒ A ∩We 6= ∅.
To see this, note that

∑
t µ(Vt) = µ(

⋃
t Vt) ≤ 1, hence

∑
n<t µ(Vt) → 0

as n → ∞. Since We is infinite, let n ∈ We be so large that n ≥ 2e and∑
n<t µ(Vt) ≤ 1/2e+1. It follows that c(n, s) =

∑
n<t≤s µ(Vt) ≤ 1/2e+1 for all

s. Let s be so large that n ∈We,s. Then by construction As+1 ∩We,s 6= ∅.
We claim that µ(V) < 1.
To see this, it suffices to prove that µ(V \ UA) ≤ 1/2 (because we already

know that µ(UA) < 1/2). Given X ∈ V \ UA, consider the unique t such that

X ∈ Vt. Then X ∈ UAt↾t
t \ UA. It follows that A ↾ t 6= At ↾ t. Therefore, at

some stage s + 1 > t, some n < t must have been put into As+1 for the sake

149

of We for some e < s. For this particular e, the set of all such X ’s is included
in
⋃
n<t≤s Vt and is therefore of measure ≤ ∑n<t≤s µ(Vt) = c(n, s) ≤ 1/2e+1.

Hence, the set of all such X ’s for all e is of measure ≤∑∞
e=0 1/2e+1 = 1/2. This

proves the claim.
The proof of Lemma 9.11.37 and Theorem 9.11.25 is now complete.

150

Chapter 10

Solutions to all of the
exercises

In this chapter we present solutions to all of the exercises in the previous chap-
ters.

151

