

Math 597B – Homework #5

April 13, 2007

1. A set $A \subseteq \mathbb{N}$ is said to be *simple* if

- (a) A is recursively enumerable,
- (b) $\mathbb{N} \setminus A$ is infinite, and
- (c) $\mathbb{N} \setminus A$ includes no infinite recursively enumerable set.

Let A be a simple, recursively enumerable set. Prove that A is neither recursive nor many-one complete.

2. For $m, n \in \mathbb{N}$ let us write $m \ll n$ to mean that $f(m) < n$ where f is some fixed fast-growing recursive function. For instance, we could take $f(m) =$ a stack of 2's of height m .

For $n \in \mathbb{N}$ let us write $C(n) = C(\underbrace{\langle 1, \dots, 1 \rangle}_n)$.

Prove that the set $\{n \in \mathbb{N} \mid C(n) \ll n\}$ is simple.

3. Prove that $C(\tau) \leq |\tau| + O(1)$.

This means: $(\exists c) (\forall \tau \in 2^{<\mathbb{N}}) (C(\tau) \leq |\tau| + c)$.

4. Prove that $C(\tau) \leq K(\tau) + O(1)$.

5. Prove the following series of inequalities:

- (a) $K(\tau) \leq 2C(\tau) + O(1)$.
- (b) $K(\tau) \leq C(\tau) + 2 \log C(\tau) + O(1)$.
- (c) $K(\tau) \leq C(\tau) + \log C(\tau) + 2 \log \log C(\tau) + O(1)$.
- (d) Et cetera.

Here $\log n$ is defined to be the base 2 logarithm of n .

6. (a) Prove that $K(|\tau|) \leq K(\tau) + O(1)$.

(b) Prove Zambella's Theorem: For each c , the cardinality of

$$\{\tau \mid |\tau| = n, K(\tau) \leq K(|\tau|) + c\}$$

is bounded by a constant which is independent of n .

(c) In fact, this constant is $O(2^c)$.