

Math 597B – Homework #1

February 2, 2007

Definitions:

For $A, B \subseteq \mathbb{N}$ we say $A \leq_m B$ (A is *many-one reducible* to B) if there exists a computable function $f : \mathbb{N} \rightarrow \mathbb{N}$ such that $\forall x (x \in A \Leftrightarrow f(x) \in B)$.

We say $A \equiv_m B$ (A is *many-one equivalent* to B) if $A \leq_m B$ and $B \leq_m A$. Define $A \oplus B = \{2x \mid x \in A\} \cup \{2x + 1 \mid x \in B\}$.

1. (a) Show that \leq_m is reflexive and transitive.
(b) Show that \equiv_m is an equivalence relation.
(c) Show that \oplus acts as a least upper bound operator for \leq_m . That is, $A \oplus B \leq_m C$ if and only if $A \leq_m C$ and $B \leq_m C$.
2. Define
 - (a) $K = \{x \mid \varphi_x^{(1)}(x) \downarrow\}$, diagonal halting problem.
 - (b) $H = \{x \mid \varphi_x^{(1)}(0) \downarrow\}$, the halting problem.
 - (c) $G = \{3^x 5^y 7^z \mid \varphi_x^{(1)}(y) \simeq z\}$.
 - (d) $E = \{x \mid \varphi_x^{(1)} \text{ is the empty function}\}$.
 - (e) $R = \{3^x 5^y \mid y \in \text{range}(\varphi_x^{(1)})\}$.

Show that $H \equiv_m K \equiv_m G \equiv_m \overline{E} \equiv_m R$.

Here we are writing $\overline{A} = \mathbb{N} \setminus A$ = the complement of A .

3. (Rice's Theorem) Let \mathcal{P} be the class of 1-place partial computable functions. For any subclass $\mathcal{C} \subseteq \mathcal{P}$, define $I_{\mathcal{C}} = \{x \mid \varphi_x^{(1)} \in \mathcal{C}\}$. This is called an *index set*. Prove that $I_{\mathcal{C}}$ is always noncomputable, except in the trivial cases $\mathcal{C} = \emptyset$ and $\mathcal{C} = \mathcal{P}$.
4. Write a register machine program which computes the *exponential function*, i.e., the 2-place number-theoretic function $\exp(x, y) = x^y$. Note that $x^0 = 1$ for all x .